/* * CDDL HEADER START * * This file and its contents are supplied under the terms of the * Common Development and Distribution License ("CDDL"), version 1.0. * You may only use this file in accordance with the terms of version * 1.0 of the CDDL. * * A full copy of the text of the CDDL should have accompanied this * source. A copy of the CDDL is also available via the Internet at * http://www.illumos.org/license/CDDL. * * CDDL HEADER END */ /* * Copyright (c) 2019 by Delphix. All rights reserved. */ #include #include #include kmem_cache_t *zfs_btree_leaf_cache; /* * Control the extent of the verification that occurs when zfs_btree_verify is * called. Primarily used for debugging when extending the btree logic and * functionality. As the intensity is increased, new verification steps are * added. These steps are cumulative; intensity = 3 includes the intensity = 1 * and intensity = 2 steps as well. * * Intensity 1: Verify that the tree's height is consistent throughout. * Intensity 2: Verify that a core node's children's parent pointers point * to the core node. * Intensity 3: Verify that the total number of elements in the tree matches the * sum of the number of elements in each node. Also verifies that each node's * count obeys the invariants (less than or equal to maximum value, greater than * or equal to half the maximum minus one). * Intensity 4: Verify that each element compares less than the element * immediately after it and greater than the one immediately before it using the * comparator function. For core nodes, also checks that each element is greater * than the last element in the first of the two nodes it separates, and less * than the first element in the second of the two nodes. * Intensity 5: Verifies, if ZFS_DEBUG is defined, that all unused memory inside * of each node is poisoned appropriately. Note that poisoning always occurs if * ZFS_DEBUG is set, so it is safe to set the intensity to 5 during normal * operation. * * Intensity 4 and 5 are particularly expensive to perform; the previous levels * are a few memory operations per node, while these levels require multiple * operations per element. In addition, when creating large btrees, these * operations are called at every step, resulting in extremely slow operation * (while the asymptotic complexity of the other steps is the same, the * importance of the constant factors cannot be denied). */ int zfs_btree_verify_intensity = 0; /* * A convenience function to silence warnings from memmove's return value and * change argument order to src, dest. */ void bmov(const void *src, void *dest, size_t size) { (void) memmove(dest, src, size); } #ifdef _ILP32 #define BTREE_POISON 0xabadb10c #else #define BTREE_POISON 0xabadb10cdeadbeef #endif static void zfs_btree_poison_node(zfs_btree_t *tree, zfs_btree_hdr_t *hdr) { #ifdef ZFS_DEBUG size_t size = tree->bt_elem_size; if (!hdr->bth_core) { zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr; (void) memset(leaf->btl_elems + hdr->bth_count * size, 0x0f, BTREE_LEAF_SIZE - sizeof (zfs_btree_hdr_t) - hdr->bth_count * size); } else { zfs_btree_core_t *node = (zfs_btree_core_t *)hdr; for (int i = hdr->bth_count + 1; i <= BTREE_CORE_ELEMS; i++) { node->btc_children[i] = (zfs_btree_hdr_t *)BTREE_POISON; } (void) memset(node->btc_elems + hdr->bth_count * size, 0x0f, (BTREE_CORE_ELEMS - hdr->bth_count) * size); } #endif } static inline void zfs_btree_poison_node_at(zfs_btree_t *tree, zfs_btree_hdr_t *hdr, uint64_t offset) { #ifdef ZFS_DEBUG size_t size = tree->bt_elem_size; ASSERT3U(offset, >=, hdr->bth_count); if (!hdr->bth_core) { zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr; (void) memset(leaf->btl_elems + offset * size, 0x0f, size); } else { zfs_btree_core_t *node = (zfs_btree_core_t *)hdr; node->btc_children[offset + 1] = (zfs_btree_hdr_t *)BTREE_POISON; (void) memset(node->btc_elems + offset * size, 0x0f, size); } #endif } static inline void zfs_btree_verify_poison_at(zfs_btree_t *tree, zfs_btree_hdr_t *hdr, uint64_t offset) { #ifdef ZFS_DEBUG size_t size = tree->bt_elem_size; uint8_t eval = 0x0f; if (hdr->bth_core) { zfs_btree_core_t *node = (zfs_btree_core_t *)hdr; zfs_btree_hdr_t *cval = (zfs_btree_hdr_t *)BTREE_POISON; VERIFY3P(node->btc_children[offset + 1], ==, cval); for (int i = 0; i < size; i++) VERIFY3U(node->btc_elems[offset * size + i], ==, eval); } else { zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr; for (int i = 0; i < size; i++) VERIFY3U(leaf->btl_elems[offset * size + i], ==, eval); } #endif } void zfs_btree_init(void) { zfs_btree_leaf_cache = kmem_cache_create("zfs_btree_leaf_cache", BTREE_LEAF_SIZE, 0, NULL, NULL, NULL, NULL, NULL, 0); } void zfs_btree_fini(void) { kmem_cache_destroy(zfs_btree_leaf_cache); } void zfs_btree_create(zfs_btree_t *tree, int (*compar) (const void *, const void *), size_t size) { /* * We need a minimmum of 4 elements so that when we split a node we * always have at least two elements in each node. This simplifies the * logic in zfs_btree_bulk_finish, since it means the last leaf will * always have a left sibling to share with (unless it's the root). */ ASSERT3U(size, <=, (BTREE_LEAF_SIZE - sizeof (zfs_btree_hdr_t)) / 4); bzero(tree, sizeof (*tree)); tree->bt_compar = compar; tree->bt_elem_size = size; tree->bt_height = -1; tree->bt_bulk = NULL; } /* * Find value in the array of elements provided. Uses a simple binary search. */ static void * zfs_btree_find_in_buf(zfs_btree_t *tree, uint8_t *buf, uint64_t nelems, const void *value, zfs_btree_index_t *where) { uint64_t max = nelems; uint64_t min = 0; while (max > min) { uint64_t idx = (min + max) / 2; uint8_t *cur = buf + idx * tree->bt_elem_size; int comp = tree->bt_compar(cur, value); if (comp == -1) { min = idx + 1; } else if (comp == 1) { max = idx; } else { ASSERT0(comp); where->bti_offset = idx; where->bti_before = B_FALSE; return (cur); } } where->bti_offset = max; where->bti_before = B_TRUE; return (NULL); } /* * Find the given value in the tree. where may be passed as null to use as a * membership test or if the btree is being used as a map. */ void * zfs_btree_find(zfs_btree_t *tree, const void *value, zfs_btree_index_t *where) { if (tree->bt_height == -1) { if (where != NULL) { where->bti_node = NULL; where->bti_offset = 0; } ASSERT0(tree->bt_num_elems); return (NULL); } /* * If we're in bulk-insert mode, we check the last spot in the tree * and the last leaf in the tree before doing the normal search, * because for most workloads the vast majority of finds in * bulk-insert mode are to insert new elements. */ zfs_btree_index_t idx; if (tree->bt_bulk != NULL) { zfs_btree_leaf_t *last_leaf = tree->bt_bulk; int compar = tree->bt_compar(last_leaf->btl_elems + ((last_leaf->btl_hdr.bth_count - 1) * tree->bt_elem_size), value); if (compar < 0) { /* * If what they're looking for is after the last * element, it's not in the tree. */ if (where != NULL) { where->bti_node = (zfs_btree_hdr_t *)last_leaf; where->bti_offset = last_leaf->btl_hdr.bth_count; where->bti_before = B_TRUE; } return (NULL); } else if (compar == 0) { if (where != NULL) { where->bti_node = (zfs_btree_hdr_t *)last_leaf; where->bti_offset = last_leaf->btl_hdr.bth_count - 1; where->bti_before = B_FALSE; } return (last_leaf->btl_elems + ((last_leaf->btl_hdr.bth_count - 1) * tree->bt_elem_size)); } if (tree->bt_compar(last_leaf->btl_elems, value) <= 0) { /* * If what they're looking for is after the first * element in the last leaf, it's in the last leaf or * it's not in the tree. */ void *d = zfs_btree_find_in_buf(tree, last_leaf->btl_elems, last_leaf->btl_hdr.bth_count, value, &idx); if (where != NULL) { idx.bti_node = (zfs_btree_hdr_t *)last_leaf; *where = idx; } return (d); } } zfs_btree_core_t *node = NULL; uint64_t child = 0; uint64_t depth = 0; /* * Iterate down the tree, finding which child the value should be in * by comparing with the separators. */ for (node = (zfs_btree_core_t *)tree->bt_root; depth < tree->bt_height; node = (zfs_btree_core_t *)node->btc_children[child], depth++) { ASSERT3P(node, !=, NULL); void *d = zfs_btree_find_in_buf(tree, node->btc_elems, node->btc_hdr.bth_count, value, &idx); EQUIV(d != NULL, !idx.bti_before); if (d != NULL) { if (where != NULL) { idx.bti_node = (zfs_btree_hdr_t *)node; *where = idx; } return (d); } ASSERT(idx.bti_before); child = idx.bti_offset; } /* * The value is in this leaf, or it would be if it were in the * tree. Find its proper location and return it. */ zfs_btree_leaf_t *leaf = (depth == 0 ? (zfs_btree_leaf_t *)tree->bt_root : (zfs_btree_leaf_t *)node); void *d = zfs_btree_find_in_buf(tree, leaf->btl_elems, leaf->btl_hdr.bth_count, value, &idx); if (where != NULL) { idx.bti_node = (zfs_btree_hdr_t *)leaf; *where = idx; } return (d); } /* * To explain the following functions, it is useful to understand the four * kinds of shifts used in btree operation. First, a shift is a movement of * elements within a node. It is used to create gaps for inserting new * elements and children, or cover gaps created when things are removed. A * shift has two fundamental properties, each of which can be one of two * values, making four types of shifts. There is the direction of the shift * (left or right) and the shape of the shift (parallelogram or isoceles * trapezoid (shortened to trapezoid hereafter)). The shape distinction only * applies to shifts of core nodes. * * The names derive from the following imagining of the layout of a node: * * Elements: * * * * * * * ... * * * * Children: * * * * * * * * ... * * * * * This layout follows from the fact that the elements act as separators * between pairs of children, and that children root subtrees "below" the * current node. A left and right shift are fairly self-explanatory; a left * shift moves things to the left, while a right shift moves things to the * right. A parallelogram shift is a shift with the same number of elements * and children being moved, while a trapezoid shift is a shift that moves one * more children than elements. An example follows: * * A parallelogram shift could contain the following: * _______________ * \* * * * \ * * * ... * * * * * \ * * * *\ * * * ... * * * * --------------- * A trapezoid shift could contain the following: * ___________ * * / * * * \ * * * ... * * * * * / * * * *\ * * * ... * * * * --------------- * * Note that a parellelogram shift is always shaped like a "left-leaning" * parallelogram, where the starting index of the children being moved is * always one higher than the starting index of the elements being moved. No * "right-leaning" parallelogram shifts are needed (shifts where the starting * element index and starting child index being moved are the same) to achieve * any btree operations, so we ignore them. */ enum bt_shift_shape { BSS_TRAPEZOID, BSS_PARALLELOGRAM }; enum bt_shift_direction { BSD_LEFT, BSD_RIGHT }; /* * Shift elements and children in the provided core node by off spots. The * first element moved is idx, and count elements are moved. The shape of the * shift is determined by shape. The direction is determined by dir. */ static inline void bt_shift_core(zfs_btree_t *tree, zfs_btree_core_t *node, uint64_t idx, uint64_t count, uint64_t off, enum bt_shift_shape shape, enum bt_shift_direction dir) { size_t size = tree->bt_elem_size; ASSERT(node->btc_hdr.bth_core); uint8_t *e_start = node->btc_elems + idx * size; int sign = (dir == BSD_LEFT ? -1 : +1); uint8_t *e_out = e_start + sign * off * size; uint64_t e_count = count; bmov(e_start, e_out, e_count * size); zfs_btree_hdr_t **c_start = node->btc_children + idx + (shape == BSS_TRAPEZOID ? 0 : 1); zfs_btree_hdr_t **c_out = (dir == BSD_LEFT ? c_start - off : c_start + off); uint64_t c_count = count + (shape == BSS_TRAPEZOID ? 1 : 0); bmov(c_start, c_out, c_count * sizeof (*c_start)); } /* * Shift elements and children in the provided core node left by one spot. * The first element moved is idx, and count elements are moved. The * shape of the shift is determined by trap; true if the shift is a trapezoid, * false if it is a parallelogram. */ static inline void bt_shift_core_left(zfs_btree_t *tree, zfs_btree_core_t *node, uint64_t idx, uint64_t count, enum bt_shift_shape shape) { bt_shift_core(tree, node, idx, count, 1, shape, BSD_LEFT); } /* * Shift elements and children in the provided core node right by one spot. * Starts with elements[idx] and children[idx] and one more child than element. */ static inline void bt_shift_core_right(zfs_btree_t *tree, zfs_btree_core_t *node, uint64_t idx, uint64_t count, enum bt_shift_shape shape) { bt_shift_core(tree, node, idx, count, 1, shape, BSD_RIGHT); } /* * Shift elements and children in the provided leaf node by off spots. * The first element moved is idx, and count elements are moved. The direction * is determined by left. */ static inline void bt_shift_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *node, uint64_t idx, uint64_t count, uint64_t off, enum bt_shift_direction dir) { size_t size = tree->bt_elem_size; ASSERT(!node->btl_hdr.bth_core); uint8_t *start = node->btl_elems + idx * size; int sign = (dir == BSD_LEFT ? -1 : +1); uint8_t *out = start + sign * off * size; bmov(start, out, count * size); } static inline void bt_shift_leaf_right(zfs_btree_t *tree, zfs_btree_leaf_t *leaf, uint64_t idx, uint64_t count) { bt_shift_leaf(tree, leaf, idx, count, 1, BSD_RIGHT); } static inline void bt_shift_leaf_left(zfs_btree_t *tree, zfs_btree_leaf_t *leaf, uint64_t idx, uint64_t count) { bt_shift_leaf(tree, leaf, idx, count, 1, BSD_LEFT); } /* * Move children and elements from one core node to another. The shape * parameter behaves the same as it does in the shift logic. */ static inline void bt_transfer_core(zfs_btree_t *tree, zfs_btree_core_t *source, uint64_t sidx, uint64_t count, zfs_btree_core_t *dest, uint64_t didx, enum bt_shift_shape shape) { size_t size = tree->bt_elem_size; ASSERT(source->btc_hdr.bth_core); ASSERT(dest->btc_hdr.bth_core); bmov(source->btc_elems + sidx * size, dest->btc_elems + didx * size, count * size); uint64_t c_count = count + (shape == BSS_TRAPEZOID ? 1 : 0); bmov(source->btc_children + sidx + (shape == BSS_TRAPEZOID ? 0 : 1), dest->btc_children + didx + (shape == BSS_TRAPEZOID ? 0 : 1), c_count * sizeof (*source->btc_children)); } static inline void bt_transfer_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *source, uint64_t sidx, uint64_t count, zfs_btree_leaf_t *dest, uint64_t didx) { size_t size = tree->bt_elem_size; ASSERT(!source->btl_hdr.bth_core); ASSERT(!dest->btl_hdr.bth_core); bmov(source->btl_elems + sidx * size, dest->btl_elems + didx * size, count * size); } /* * Find the first element in the subtree rooted at hdr, return its value and * put its location in where if non-null. */ static void * zfs_btree_first_helper(zfs_btree_hdr_t *hdr, zfs_btree_index_t *where) { zfs_btree_hdr_t *node; for (node = hdr; node->bth_core; node = ((zfs_btree_core_t *)node)->btc_children[0]) ; ASSERT(!node->bth_core); zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)node; if (where != NULL) { where->bti_node = node; where->bti_offset = 0; where->bti_before = B_FALSE; } return (&leaf->btl_elems[0]); } /* Insert an element and a child into a core node at the given offset. */ static void zfs_btree_insert_core_impl(zfs_btree_t *tree, zfs_btree_core_t *parent, uint64_t offset, zfs_btree_hdr_t *new_node, void *buf) { uint64_t size = tree->bt_elem_size; zfs_btree_hdr_t *par_hdr = &parent->btc_hdr; ASSERT3P(par_hdr, ==, new_node->bth_parent); ASSERT3U(par_hdr->bth_count, <, BTREE_CORE_ELEMS); if (zfs_btree_verify_intensity >= 5) { zfs_btree_verify_poison_at(tree, par_hdr, par_hdr->bth_count); } /* Shift existing elements and children */ uint64_t count = par_hdr->bth_count - offset; bt_shift_core_right(tree, parent, offset, count, BSS_PARALLELOGRAM); /* Insert new values */ parent->btc_children[offset + 1] = new_node; bmov(buf, parent->btc_elems + offset * size, size); par_hdr->bth_count++; } /* * Insert new_node into the parent of old_node directly after old_node, with * buf as the dividing element between the two. */ static void zfs_btree_insert_into_parent(zfs_btree_t *tree, zfs_btree_hdr_t *old_node, zfs_btree_hdr_t *new_node, void *buf) { ASSERT3P(old_node->bth_parent, ==, new_node->bth_parent); uint64_t size = tree->bt_elem_size; zfs_btree_core_t *parent = old_node->bth_parent; zfs_btree_hdr_t *par_hdr = &parent->btc_hdr; /* * If this is the root node we were splitting, we create a new root * and increase the height of the tree. */ if (parent == NULL) { ASSERT3P(old_node, ==, tree->bt_root); tree->bt_num_nodes++; zfs_btree_core_t *new_root = kmem_alloc(sizeof (zfs_btree_core_t) + BTREE_CORE_ELEMS * size, KM_SLEEP); zfs_btree_hdr_t *new_root_hdr = &new_root->btc_hdr; new_root_hdr->bth_parent = NULL; new_root_hdr->bth_core = B_TRUE; new_root_hdr->bth_count = 1; old_node->bth_parent = new_node->bth_parent = new_root; new_root->btc_children[0] = old_node; new_root->btc_children[1] = new_node; bmov(buf, new_root->btc_elems, size); tree->bt_height++; tree->bt_root = new_root_hdr; zfs_btree_poison_node(tree, new_root_hdr); return; } /* * Since we have the new separator, binary search for where to put * new_node. */ zfs_btree_index_t idx; ASSERT(par_hdr->bth_core); VERIFY3P(zfs_btree_find_in_buf(tree, parent->btc_elems, par_hdr->bth_count, buf, &idx), ==, NULL); ASSERT(idx.bti_before); uint64_t offset = idx.bti_offset; ASSERT3U(offset, <=, par_hdr->bth_count); ASSERT3P(parent->btc_children[offset], ==, old_node); /* * If the parent isn't full, shift things to accomodate our insertions * and return. */ if (par_hdr->bth_count != BTREE_CORE_ELEMS) { zfs_btree_insert_core_impl(tree, parent, offset, new_node, buf); return; } /* * We need to split this core node into two. Currently there are * BTREE_CORE_ELEMS + 1 child nodes, and we are adding one for * BTREE_CORE_ELEMS + 2. Some of the children will be part of the * current node, and the others will be moved to the new core node. * There are BTREE_CORE_ELEMS + 1 elements including the new one. One * will be used as the new separator in our parent, and the others * will be split among the two core nodes. * * Usually we will split the node in half evenly, with * BTREE_CORE_ELEMS/2 elements in each node. If we're bulk loading, we * instead move only about a quarter of the elements (and children) to * the new node. Since the average state after a long time is a 3/4 * full node, shortcutting directly to that state improves efficiency. * * We do this in two stages: first we split into two nodes, and then we * reuse our existing logic to insert the new element and child. */ uint64_t move_count = MAX((BTREE_CORE_ELEMS / (tree->bt_bulk == NULL ? 2 : 4)) - 1, 2); uint64_t keep_count = BTREE_CORE_ELEMS - move_count - 1; ASSERT3U(BTREE_CORE_ELEMS - move_count, >=, 2); tree->bt_num_nodes++; zfs_btree_core_t *new_parent = kmem_alloc(sizeof (zfs_btree_core_t) + BTREE_CORE_ELEMS * size, KM_SLEEP); zfs_btree_hdr_t *new_par_hdr = &new_parent->btc_hdr; new_par_hdr->bth_parent = par_hdr->bth_parent; new_par_hdr->bth_core = B_TRUE; new_par_hdr->bth_count = move_count; zfs_btree_poison_node(tree, new_par_hdr); par_hdr->bth_count = keep_count; bt_transfer_core(tree, parent, keep_count + 1, move_count, new_parent, 0, BSS_TRAPEZOID); /* Store the new separator in a buffer. */ uint8_t *tmp_buf = kmem_alloc(size, KM_SLEEP); bmov(parent->btc_elems + keep_count * size, tmp_buf, size); zfs_btree_poison_node(tree, par_hdr); if (offset < keep_count) { /* Insert the new node into the left half */ zfs_btree_insert_core_impl(tree, parent, offset, new_node, buf); /* * Move the new separator to the existing buffer. */ bmov(tmp_buf, buf, size); } else if (offset > keep_count) { /* Insert the new node into the right half */ new_node->bth_parent = new_parent; zfs_btree_insert_core_impl(tree, new_parent, offset - keep_count - 1, new_node, buf); /* * Move the new separator to the existing buffer. */ bmov(tmp_buf, buf, size); } else { /* * Move the new separator into the right half, and replace it * with buf. We also need to shift back the elements in the * right half to accomodate new_node. */ bt_shift_core_right(tree, new_parent, 0, move_count, BSS_TRAPEZOID); new_parent->btc_children[0] = new_node; bmov(tmp_buf, new_parent->btc_elems, size); new_par_hdr->bth_count++; } kmem_free(tmp_buf, size); zfs_btree_poison_node(tree, par_hdr); for (int i = 0; i <= new_parent->btc_hdr.bth_count; i++) new_parent->btc_children[i]->bth_parent = new_parent; for (int i = 0; i <= parent->btc_hdr.bth_count; i++) ASSERT3P(parent->btc_children[i]->bth_parent, ==, parent); /* * Now that the node is split, we need to insert the new node into its * parent. This may cause further splitting. */ zfs_btree_insert_into_parent(tree, &parent->btc_hdr, &new_parent->btc_hdr, buf); } /* Insert an element into a leaf node at the given offset. */ static void zfs_btree_insert_leaf_impl(zfs_btree_t *tree, zfs_btree_leaf_t *leaf, uint64_t idx, const void *value) { uint64_t size = tree->bt_elem_size; uint8_t *start = leaf->btl_elems + (idx * size); zfs_btree_hdr_t *hdr = &leaf->btl_hdr; ASSERTV(uint64_t capacity = P2ALIGN((BTREE_LEAF_SIZE - sizeof (zfs_btree_hdr_t)) / size, 2)); uint64_t count = leaf->btl_hdr.bth_count - idx; ASSERT3U(leaf->btl_hdr.bth_count, <, capacity); if (zfs_btree_verify_intensity >= 5) { zfs_btree_verify_poison_at(tree, &leaf->btl_hdr, leaf->btl_hdr.bth_count); } bt_shift_leaf_right(tree, leaf, idx, count); bmov(value, start, size); hdr->bth_count++; } /* Helper function for inserting a new value into leaf at the given index. */ static void zfs_btree_insert_into_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *leaf, const void *value, uint64_t idx) { uint64_t size = tree->bt_elem_size; uint64_t capacity = P2ALIGN((BTREE_LEAF_SIZE - sizeof (zfs_btree_hdr_t)) / size, 2); /* * If the leaf isn't full, shift the elements after idx and insert * value. */ if (leaf->btl_hdr.bth_count != capacity) { zfs_btree_insert_leaf_impl(tree, leaf, idx, value); return; } /* * Otherwise, we split the leaf node into two nodes. If we're not bulk * inserting, each is of size (capacity / 2). If we are bulk * inserting, we move a quarter of the elements to the new node so * inserts into the old node don't cause immediate splitting but the * tree stays relatively dense. Since the average state after a long * time is a 3/4 full node, shortcutting directly to that state * improves efficiency. At the end of the bulk insertion process * we'll need to go through and fix up any nodes (the last leaf and * its ancestors, potentially) that are below the minimum. * * In either case, we're left with one extra element. The leftover * element will become the new dividing element between the two nodes. */ uint64_t move_count = MAX(capacity / (tree->bt_bulk == NULL ? 2 : 4) - 1, 2); uint64_t keep_count = capacity - move_count - 1; ASSERT3U(capacity - move_count, >=, 2); tree->bt_num_nodes++; zfs_btree_leaf_t *new_leaf = kmem_cache_alloc(zfs_btree_leaf_cache, KM_SLEEP); zfs_btree_hdr_t *new_hdr = &new_leaf->btl_hdr; new_hdr->bth_parent = leaf->btl_hdr.bth_parent; new_hdr->bth_core = B_FALSE; new_hdr->bth_count = move_count; zfs_btree_poison_node(tree, new_hdr); leaf->btl_hdr.bth_count = keep_count; if (tree->bt_bulk != NULL && leaf == tree->bt_bulk) tree->bt_bulk = new_leaf; /* Copy the back part to the new leaf. */ bt_transfer_leaf(tree, leaf, keep_count + 1, move_count, new_leaf, 0); /* We store the new separator in a buffer we control for simplicity. */ uint8_t *buf = kmem_alloc(size, KM_SLEEP); bmov(leaf->btl_elems + (keep_count * size), buf, size); zfs_btree_poison_node(tree, &leaf->btl_hdr); if (idx < keep_count) { /* Insert into the existing leaf. */ zfs_btree_insert_leaf_impl(tree, leaf, idx, value); } else if (idx > keep_count) { /* Insert into the new leaf. */ zfs_btree_insert_leaf_impl(tree, new_leaf, idx - keep_count - 1, value); } else { /* * Shift the elements in the new leaf to make room for the * separator, and use the new value as the new separator. */ bt_shift_leaf_right(tree, new_leaf, 0, move_count); bmov(buf, new_leaf->btl_elems, size); bmov(value, buf, size); new_hdr->bth_count++; } /* * Now that the node is split, we need to insert the new node into its * parent. This may cause further splitting, bur only of core nodes. */ zfs_btree_insert_into_parent(tree, &leaf->btl_hdr, &new_leaf->btl_hdr, buf); kmem_free(buf, size); } static uint64_t zfs_btree_find_parent_idx(zfs_btree_t *tree, zfs_btree_hdr_t *hdr) { void *buf; if (hdr->bth_core) { buf = ((zfs_btree_core_t *)hdr)->btc_elems; } else { buf = ((zfs_btree_leaf_t *)hdr)->btl_elems; } zfs_btree_index_t idx; zfs_btree_core_t *parent = hdr->bth_parent; VERIFY3P(zfs_btree_find_in_buf(tree, parent->btc_elems, parent->btc_hdr.bth_count, buf, &idx), ==, NULL); ASSERT(idx.bti_before); ASSERT3U(idx.bti_offset, <=, parent->btc_hdr.bth_count); ASSERT3P(parent->btc_children[idx.bti_offset], ==, hdr); return (idx.bti_offset); } /* * Take the b-tree out of bulk insert mode. During bulk-insert mode, some * nodes may violate the invariant that non-root nodes must be at least half * full. All nodes violating this invariant should be the last node in their * particular level. To correct the invariant, we take values from their left * neighbor until they are half full. They must have a left neighbor at their * level because the last node at a level is not the first node unless it's * the root. */ static void zfs_btree_bulk_finish(zfs_btree_t *tree) { ASSERT3P(tree->bt_bulk, !=, NULL); ASSERT3P(tree->bt_root, !=, NULL); zfs_btree_leaf_t *leaf = tree->bt_bulk; zfs_btree_hdr_t *hdr = &leaf->btl_hdr; zfs_btree_core_t *parent = hdr->bth_parent; uint64_t size = tree->bt_elem_size; uint64_t capacity = P2ALIGN((BTREE_LEAF_SIZE - sizeof (zfs_btree_hdr_t)) / size, 2); /* * The invariant doesn't apply to the root node, if that's the only * node in the tree we're done. */ if (parent == NULL) { tree->bt_bulk = NULL; return; } /* First, take elements to rebalance the leaf node. */ if (hdr->bth_count < capacity / 2) { /* * First, find the left neighbor. The simplest way to do this * is to call zfs_btree_prev twice; the first time finds some * ancestor of this node, and the second time finds the left * neighbor. The ancestor found is the lowest common ancestor * of leaf and the neighbor. */ zfs_btree_index_t idx = { .bti_node = hdr, .bti_offset = 0 }; VERIFY3P(zfs_btree_prev(tree, &idx, &idx), !=, NULL); ASSERT(idx.bti_node->bth_core); zfs_btree_core_t *common = (zfs_btree_core_t *)idx.bti_node; uint64_t common_idx = idx.bti_offset; VERIFY3P(zfs_btree_prev(tree, &idx, &idx), !=, NULL); ASSERT(!idx.bti_node->bth_core); zfs_btree_leaf_t *l_neighbor = (zfs_btree_leaf_t *)idx.bti_node; zfs_btree_hdr_t *l_hdr = idx.bti_node; uint64_t move_count = (capacity / 2) - hdr->bth_count; ASSERT3U(l_neighbor->btl_hdr.bth_count - move_count, >=, capacity / 2); if (zfs_btree_verify_intensity >= 5) { for (int i = 0; i < move_count; i++) { zfs_btree_verify_poison_at(tree, hdr, leaf->btl_hdr.bth_count + i); } } /* First, shift elements in leaf back. */ bt_shift_leaf(tree, leaf, 0, hdr->bth_count, move_count, BSD_RIGHT); /* Next, move the separator from the common ancestor to leaf. */ uint8_t *separator = common->btc_elems + (common_idx * size); uint8_t *out = leaf->btl_elems + ((move_count - 1) * size); bmov(separator, out, size); move_count--; /* * Now we move elements from the tail of the left neighbor to * fill the remaining spots in leaf. */ bt_transfer_leaf(tree, l_neighbor, l_hdr->bth_count - move_count, move_count, leaf, 0); /* * Finally, move the new last element in the left neighbor to * the separator. */ bmov(l_neighbor->btl_elems + (l_hdr->bth_count - move_count - 1) * size, separator, size); /* Adjust the node's counts, and we're done. */ l_hdr->bth_count -= move_count + 1; hdr->bth_count += move_count + 1; ASSERT3U(l_hdr->bth_count, >=, capacity / 2); ASSERT3U(hdr->bth_count, >=, capacity / 2); zfs_btree_poison_node(tree, l_hdr); } /* * Now we have to rebalance any ancestors of leaf that may also * violate the invariant. */ capacity = BTREE_CORE_ELEMS; while (parent->btc_hdr.bth_parent != NULL) { zfs_btree_core_t *cur = parent; zfs_btree_hdr_t *hdr = &cur->btc_hdr; parent = hdr->bth_parent; /* * If the invariant isn't violated, move on to the next * ancestor. */ if (hdr->bth_count >= capacity / 2) continue; /* * Because the smallest number of nodes we can move when * splitting is 2, we never need to worry about not having a * left sibling (a sibling is a neighbor with the same parent). */ uint64_t parent_idx = zfs_btree_find_parent_idx(tree, hdr); ASSERT3U(parent_idx, >, 0); zfs_btree_core_t *l_neighbor = (zfs_btree_core_t *)parent->btc_children[parent_idx - 1]; uint64_t move_count = (capacity / 2) - hdr->bth_count; ASSERT3U(l_neighbor->btc_hdr.bth_count - move_count, >=, capacity / 2); if (zfs_btree_verify_intensity >= 5) { for (int i = 0; i < move_count; i++) { zfs_btree_verify_poison_at(tree, hdr, hdr->bth_count + i); } } /* First, shift things in the right node back. */ bt_shift_core(tree, cur, 0, hdr->bth_count, move_count, BSS_TRAPEZOID, BSD_RIGHT); /* Next, move the separator to the right node. */ uint8_t *separator = parent->btc_elems + ((parent_idx - 1) * size); uint8_t *e_out = cur->btc_elems + ((move_count - 1) * size); bmov(separator, e_out, size); /* * Now, move elements and children from the left node to the * right. We move one more child than elements. */ move_count--; uint64_t move_idx = l_neighbor->btc_hdr.bth_count - move_count; bt_transfer_core(tree, l_neighbor, move_idx, move_count, cur, 0, BSS_TRAPEZOID); /* * Finally, move the last element in the left node to the * separator's position. */ move_idx--; bmov(l_neighbor->btc_elems + move_idx * size, separator, size); l_neighbor->btc_hdr.bth_count -= move_count + 1; hdr->bth_count += move_count + 1; ASSERT3U(l_neighbor->btc_hdr.bth_count, >=, capacity / 2); ASSERT3U(hdr->bth_count, >=, capacity / 2); zfs_btree_poison_node(tree, &l_neighbor->btc_hdr); for (int i = 0; i <= hdr->bth_count; i++) cur->btc_children[i]->bth_parent = cur; } tree->bt_bulk = NULL; } /* * Insert value into tree at the location specified by where. */ void zfs_btree_add_idx(zfs_btree_t *tree, const void *value, const zfs_btree_index_t *where) { zfs_btree_index_t idx = {0}; /* If we're not inserting in the last leaf, end bulk insert mode. */ if (tree->bt_bulk != NULL) { if (where->bti_node != &tree->bt_bulk->btl_hdr) { zfs_btree_bulk_finish(tree); VERIFY3P(zfs_btree_find(tree, value, &idx), ==, NULL); where = &idx; } } tree->bt_num_elems++; /* * If this is the first element in the tree, create a leaf root node * and add the value to it. */ if (where->bti_node == NULL) { ASSERT3U(tree->bt_num_elems, ==, 1); ASSERT3S(tree->bt_height, ==, -1); ASSERT3P(tree->bt_root, ==, NULL); ASSERT0(where->bti_offset); tree->bt_num_nodes++; zfs_btree_leaf_t *leaf = kmem_cache_alloc(zfs_btree_leaf_cache, KM_SLEEP); tree->bt_root = &leaf->btl_hdr; tree->bt_height++; zfs_btree_hdr_t *hdr = &leaf->btl_hdr; hdr->bth_parent = NULL; hdr->bth_core = B_FALSE; hdr->bth_count = 0; zfs_btree_poison_node(tree, hdr); zfs_btree_insert_into_leaf(tree, leaf, value, 0); tree->bt_bulk = leaf; } else if (!where->bti_node->bth_core) { /* * If we're inserting into a leaf, go directly to the helper * function. */ zfs_btree_insert_into_leaf(tree, (zfs_btree_leaf_t *)where->bti_node, value, where->bti_offset); } else { /* * If we're inserting into a core node, we can't just shift * the existing element in that slot in the same node without * breaking our ordering invariants. Instead we place the new * value in the node at that spot and then insert the old * separator into the first slot in the subtree to the right. */ ASSERT(where->bti_node->bth_core); zfs_btree_core_t *node = (zfs_btree_core_t *)where->bti_node; /* * We can ignore bti_before, because either way the value * should end up in bti_offset. */ uint64_t off = where->bti_offset; zfs_btree_hdr_t *subtree = node->btc_children[off + 1]; size_t size = tree->bt_elem_size; uint8_t *buf = kmem_alloc(size, KM_SLEEP); bmov(node->btc_elems + off * size, buf, size); bmov(value, node->btc_elems + off * size, size); /* * Find the first slot in the subtree to the right, insert * there. */ zfs_btree_index_t new_idx; VERIFY3P(zfs_btree_first_helper(subtree, &new_idx), !=, NULL); ASSERT0(new_idx.bti_offset); ASSERT(!new_idx.bti_node->bth_core); zfs_btree_insert_into_leaf(tree, (zfs_btree_leaf_t *)new_idx.bti_node, buf, 0); kmem_free(buf, size); } zfs_btree_verify(tree); } /* * Return the first element in the tree, and put its location in where if * non-null. */ void * zfs_btree_first(zfs_btree_t *tree, zfs_btree_index_t *where) { if (tree->bt_height == -1) { ASSERT0(tree->bt_num_elems); return (NULL); } return (zfs_btree_first_helper(tree->bt_root, where)); } /* * Find the last element in the subtree rooted at hdr, return its value and * put its location in where if non-null. */ static void * zfs_btree_last_helper(zfs_btree_t *btree, zfs_btree_hdr_t *hdr, zfs_btree_index_t *where) { zfs_btree_hdr_t *node; for (node = hdr; node->bth_core; node = ((zfs_btree_core_t *)node)->btc_children[node->bth_count]) ; zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)node; if (where != NULL) { where->bti_node = node; where->bti_offset = node->bth_count - 1; where->bti_before = B_FALSE; } return (leaf->btl_elems + (node->bth_count - 1) * btree->bt_elem_size); } /* * Return the last element in the tree, and put its location in where if * non-null. */ void * zfs_btree_last(zfs_btree_t *tree, zfs_btree_index_t *where) { if (tree->bt_height == -1) { ASSERT0(tree->bt_num_elems); return (NULL); } return (zfs_btree_last_helper(tree, tree->bt_root, where)); } /* * This function contains the logic to find the next node in the tree. A * helper function is used because there are multiple internal consumemrs of * this logic. The done_func is used by zfs_btree_destroy_nodes to clean up each * node after we've finished with it. */ static void * zfs_btree_next_helper(zfs_btree_t *tree, const zfs_btree_index_t *idx, zfs_btree_index_t *out_idx, void (*done_func)(zfs_btree_t *, zfs_btree_hdr_t *)) { if (idx->bti_node == NULL) { ASSERT3S(tree->bt_height, ==, -1); return (NULL); } uint64_t offset = idx->bti_offset; if (!idx->bti_node->bth_core) { /* * When finding the next element of an element in a leaf, * there are two cases. If the element isn't the last one in * the leaf, in which case we just return the next element in * the leaf. Otherwise, we need to traverse up our parents * until we find one where our ancestor isn't the last child * of its parent. Once we do, the next element is the * separator after our ancestor in its parent. */ zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)idx->bti_node; uint64_t new_off = offset + (idx->bti_before ? 0 : 1); if (leaf->btl_hdr.bth_count > new_off) { out_idx->bti_node = &leaf->btl_hdr; out_idx->bti_offset = new_off; out_idx->bti_before = B_FALSE; return (leaf->btl_elems + new_off * tree->bt_elem_size); } zfs_btree_hdr_t *prev = &leaf->btl_hdr; for (zfs_btree_core_t *node = leaf->btl_hdr.bth_parent; node != NULL; node = node->btc_hdr.bth_parent) { zfs_btree_hdr_t *hdr = &node->btc_hdr; ASSERT(hdr->bth_core); uint64_t i = zfs_btree_find_parent_idx(tree, prev); if (done_func != NULL) done_func(tree, prev); if (i == hdr->bth_count) { prev = hdr; continue; } out_idx->bti_node = hdr; out_idx->bti_offset = i; out_idx->bti_before = B_FALSE; return (node->btc_elems + i * tree->bt_elem_size); } if (done_func != NULL) done_func(tree, prev); /* * We've traversed all the way up and been at the end of the * node every time, so this was the last element in the tree. */ return (NULL); } /* If we were before an element in a core node, return that element. */ ASSERT(idx->bti_node->bth_core); zfs_btree_core_t *node = (zfs_btree_core_t *)idx->bti_node; if (idx->bti_before) { out_idx->bti_before = B_FALSE; return (node->btc_elems + offset * tree->bt_elem_size); } /* * The next element from one in a core node is the first element in * the subtree just to the right of the separator. */ zfs_btree_hdr_t *child = node->btc_children[offset + 1]; return (zfs_btree_first_helper(child, out_idx)); } /* * Return the next valued node in the tree. The same address can be safely * passed for idx and out_idx. */ void * zfs_btree_next(zfs_btree_t *tree, const zfs_btree_index_t *idx, zfs_btree_index_t *out_idx) { return (zfs_btree_next_helper(tree, idx, out_idx, NULL)); } /* * Return the previous valued node in the tree. The same value can be safely * passed for idx and out_idx. */ void * zfs_btree_prev(zfs_btree_t *tree, const zfs_btree_index_t *idx, zfs_btree_index_t *out_idx) { if (idx->bti_node == NULL) { ASSERT3S(tree->bt_height, ==, -1); return (NULL); } uint64_t offset = idx->bti_offset; if (!idx->bti_node->bth_core) { /* * When finding the previous element of an element in a leaf, * there are two cases. If the element isn't the first one in * the leaf, in which case we just return the previous element * in the leaf. Otherwise, we need to traverse up our parents * until we find one where our previous ancestor isn't the * first child. Once we do, the previous element is the * separator after our previous ancestor. */ zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)idx->bti_node; if (offset != 0) { out_idx->bti_node = &leaf->btl_hdr; out_idx->bti_offset = offset - 1; out_idx->bti_before = B_FALSE; return (leaf->btl_elems + (offset - 1) * tree->bt_elem_size); } zfs_btree_hdr_t *prev = &leaf->btl_hdr; for (zfs_btree_core_t *node = leaf->btl_hdr.bth_parent; node != NULL; node = node->btc_hdr.bth_parent) { zfs_btree_hdr_t *hdr = &node->btc_hdr; ASSERT(hdr->bth_core); uint64_t i = zfs_btree_find_parent_idx(tree, prev); if (i == 0) { prev = hdr; continue; } out_idx->bti_node = hdr; out_idx->bti_offset = i - 1; out_idx->bti_before = B_FALSE; return (node->btc_elems + (i - 1) * tree->bt_elem_size); } /* * We've traversed all the way up and been at the start of the * node every time, so this was the first node in the tree. */ return (NULL); } /* * The previous element from one in a core node is the last element in * the subtree just to the left of the separator. */ ASSERT(idx->bti_node->bth_core); zfs_btree_core_t *node = (zfs_btree_core_t *)idx->bti_node; zfs_btree_hdr_t *child = node->btc_children[offset]; return (zfs_btree_last_helper(tree, child, out_idx)); } /* * Get the value at the provided index in the tree. * * Note that the value returned from this function can be mutated, but only * if it will not change the ordering of the element with respect to any other * elements that could be in the tree. */ void * zfs_btree_get(zfs_btree_t *tree, zfs_btree_index_t *idx) { ASSERT(!idx->bti_before); if (!idx->bti_node->bth_core) { zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)idx->bti_node; return (leaf->btl_elems + idx->bti_offset * tree->bt_elem_size); } ASSERT(idx->bti_node->bth_core); zfs_btree_core_t *node = (zfs_btree_core_t *)idx->bti_node; return (node->btc_elems + idx->bti_offset * tree->bt_elem_size); } /* Add the given value to the tree. Must not already be in the tree. */ void zfs_btree_add(zfs_btree_t *tree, const void *node) { zfs_btree_index_t where = {0}; VERIFY3P(zfs_btree_find(tree, node, &where), ==, NULL); zfs_btree_add_idx(tree, node, &where); } /* Helper function to free a tree node. */ static void zfs_btree_node_destroy(zfs_btree_t *tree, zfs_btree_hdr_t *node) { tree->bt_num_nodes--; if (!node->bth_core) { kmem_cache_free(zfs_btree_leaf_cache, node); } else { kmem_free(node, sizeof (zfs_btree_core_t) + BTREE_CORE_ELEMS * tree->bt_elem_size); } } /* * Remove the rm_hdr and the separator to its left from the parent node. The * buffer that rm_hdr was stored in may already be freed, so its contents * cannot be accessed. */ static void zfs_btree_remove_from_node(zfs_btree_t *tree, zfs_btree_core_t *node, zfs_btree_hdr_t *rm_hdr) { size_t size = tree->bt_elem_size; uint64_t min_count = (BTREE_CORE_ELEMS / 2) - 1; zfs_btree_hdr_t *hdr = &node->btc_hdr; /* * If the node is the root node and rm_hdr is one of two children, * promote the other child to the root. */ if (hdr->bth_parent == NULL && hdr->bth_count <= 1) { ASSERT3U(hdr->bth_count, ==, 1); ASSERT3P(tree->bt_root, ==, node); ASSERT3P(node->btc_children[1], ==, rm_hdr); tree->bt_root = node->btc_children[0]; node->btc_children[0]->bth_parent = NULL; zfs_btree_node_destroy(tree, hdr); tree->bt_height--; return; } uint64_t idx; for (idx = 0; idx <= hdr->bth_count; idx++) { if (node->btc_children[idx] == rm_hdr) break; } ASSERT3U(idx, <=, hdr->bth_count); /* * If the node is the root or it has more than the minimum number of * children, just remove the child and separator, and return. */ if (hdr->bth_parent == NULL || hdr->bth_count > min_count) { /* * Shift the element and children to the right of rm_hdr to * the left by one spot. */ bt_shift_core_left(tree, node, idx, hdr->bth_count - idx, BSS_PARALLELOGRAM); hdr->bth_count--; zfs_btree_poison_node_at(tree, hdr, hdr->bth_count); return; } ASSERT3U(hdr->bth_count, ==, min_count); /* * Now we try to take a node from a neighbor. We check left, then * right. If the neighbor exists and has more than the minimum number * of elements, we move the separator betweeen us and them to our * node, move their closest element (last for left, first for right) * to the separator, and move their closest child to our node. Along * the way we need to collapse the gap made by idx, and (for our right * neighbor) the gap made by removing their first element and child. * * Note: this logic currently doesn't support taking from a neighbor * that isn't a sibling (i.e. a neighbor with a different * parent). This isn't critical functionality, but may be worth * implementing in the future for completeness' sake. */ zfs_btree_core_t *parent = hdr->bth_parent; uint64_t parent_idx = zfs_btree_find_parent_idx(tree, hdr); zfs_btree_hdr_t *l_hdr = (parent_idx == 0 ? NULL : parent->btc_children[parent_idx - 1]); if (l_hdr != NULL && l_hdr->bth_count > min_count) { /* We can take a node from the left neighbor. */ ASSERT(l_hdr->bth_core); zfs_btree_core_t *neighbor = (zfs_btree_core_t *)l_hdr; /* * Start by shifting the elements and children in the current * node to the right by one spot. */ bt_shift_core_right(tree, node, 0, idx - 1, BSS_TRAPEZOID); /* * Move the separator between node and neighbor to the first * element slot in the current node. */ uint8_t *separator = parent->btc_elems + (parent_idx - 1) * size; bmov(separator, node->btc_elems, size); /* Move the last child of neighbor to our first child slot. */ zfs_btree_hdr_t **take_child = neighbor->btc_children + l_hdr->bth_count; bmov(take_child, node->btc_children, sizeof (*take_child)); node->btc_children[0]->bth_parent = node; /* Move the last element of neighbor to the separator spot. */ uint8_t *take_elem = neighbor->btc_elems + (l_hdr->bth_count - 1) * size; bmov(take_elem, separator, size); l_hdr->bth_count--; zfs_btree_poison_node_at(tree, l_hdr, l_hdr->bth_count); return; } zfs_btree_hdr_t *r_hdr = (parent_idx == parent->btc_hdr.bth_count ? NULL : parent->btc_children[parent_idx + 1]); if (r_hdr != NULL && r_hdr->bth_count > min_count) { /* We can take a node from the right neighbor. */ ASSERT(r_hdr->bth_core); zfs_btree_core_t *neighbor = (zfs_btree_core_t *)r_hdr; /* * Shift elements in node left by one spot to overwrite rm_hdr * and the separator before it. */ bt_shift_core_left(tree, node, idx, hdr->bth_count - idx, BSS_PARALLELOGRAM); /* * Move the separator between node and neighbor to the last * element spot in node. */ uint8_t *separator = parent->btc_elems + parent_idx * size; bmov(separator, node->btc_elems + (hdr->bth_count - 1) * size, size); /* * Move the first child of neighbor to the last child spot in * node. */ zfs_btree_hdr_t **take_child = neighbor->btc_children; bmov(take_child, node->btc_children + hdr->bth_count, sizeof (*take_child)); node->btc_children[hdr->bth_count]->bth_parent = node; /* Move the first element of neighbor to the separator spot. */ uint8_t *take_elem = neighbor->btc_elems; bmov(take_elem, separator, size); r_hdr->bth_count--; /* * Shift the elements and children of neighbor to cover the * stolen elements. */ bt_shift_core_left(tree, neighbor, 1, r_hdr->bth_count, BSS_TRAPEZOID); zfs_btree_poison_node_at(tree, r_hdr, r_hdr->bth_count); return; } /* * In this case, neither of our neighbors can spare an element, so we * need to merge with one of them. We prefer the left one, * arabitrarily. Move the separator into the leftmost merging node * (which may be us or the left neighbor), and then move the right * merging node's elements. Once that's done, we go back and delete * the element we're removing. Finally, go into the parent and delete * the right merging node and the separator. This may cause further * merging. */ zfs_btree_hdr_t *new_rm_hdr, *keep_hdr; uint64_t new_idx = idx; if (l_hdr != NULL) { keep_hdr = l_hdr; new_rm_hdr = hdr; new_idx += keep_hdr->bth_count + 1; } else { ASSERT3P(r_hdr, !=, NULL); keep_hdr = hdr; new_rm_hdr = r_hdr; parent_idx++; } ASSERT(keep_hdr->bth_core); ASSERT(new_rm_hdr->bth_core); zfs_btree_core_t *keep = (zfs_btree_core_t *)keep_hdr; zfs_btree_core_t *rm = (zfs_btree_core_t *)new_rm_hdr; if (zfs_btree_verify_intensity >= 5) { for (int i = 0; i < new_rm_hdr->bth_count + 1; i++) { zfs_btree_verify_poison_at(tree, keep_hdr, keep_hdr->bth_count + i); } } /* Move the separator into the left node. */ uint8_t *e_out = keep->btc_elems + keep_hdr->bth_count * size; uint8_t *separator = parent->btc_elems + (parent_idx - 1) * size; bmov(separator, e_out, size); keep_hdr->bth_count++; /* Move all our elements and children into the left node. */ bt_transfer_core(tree, rm, 0, new_rm_hdr->bth_count, keep, keep_hdr->bth_count, BSS_TRAPEZOID); uint64_t old_count = keep_hdr->bth_count; /* Update bookkeeping */ keep_hdr->bth_count += new_rm_hdr->bth_count; ASSERT3U(keep_hdr->bth_count, ==, (min_count * 2) + 1); /* * Shift the element and children to the right of rm_hdr to * the left by one spot. */ ASSERT3P(keep->btc_children[new_idx], ==, rm_hdr); bt_shift_core_left(tree, keep, new_idx, keep_hdr->bth_count - new_idx, BSS_PARALLELOGRAM); keep_hdr->bth_count--; /* Reparent all our children to point to the left node. */ zfs_btree_hdr_t **new_start = keep->btc_children + old_count - 1; for (int i = 0; i < new_rm_hdr->bth_count + 1; i++) new_start[i]->bth_parent = keep; for (int i = 0; i <= keep_hdr->bth_count; i++) { ASSERT3P(keep->btc_children[i]->bth_parent, ==, keep); ASSERT3P(keep->btc_children[i], !=, rm_hdr); } zfs_btree_poison_node_at(tree, keep_hdr, keep_hdr->bth_count); new_rm_hdr->bth_count = 0; zfs_btree_node_destroy(tree, new_rm_hdr); zfs_btree_remove_from_node(tree, parent, new_rm_hdr); } /* Remove the element at the specific location. */ void zfs_btree_remove_idx(zfs_btree_t *tree, zfs_btree_index_t *where) { size_t size = tree->bt_elem_size; zfs_btree_hdr_t *hdr = where->bti_node; uint64_t idx = where->bti_offset; uint64_t capacity = P2ALIGN((BTREE_LEAF_SIZE - sizeof (zfs_btree_hdr_t)) / size, 2); ASSERT(!where->bti_before); if (tree->bt_bulk != NULL) { /* * Leave bulk insert mode. Note that our index would be * invalid after we correct the tree, so we copy the value * we're planning to remove and find it again after * bulk_finish. */ uint8_t *value = zfs_btree_get(tree, where); uint8_t *tmp = kmem_alloc(size, KM_SLEEP); bmov(value, tmp, size); zfs_btree_bulk_finish(tree); VERIFY3P(zfs_btree_find(tree, tmp, where), !=, NULL); kmem_free(tmp, size); hdr = where->bti_node; idx = where->bti_offset; } tree->bt_num_elems--; /* * If the element happens to be in a core node, we move a leaf node's * element into its place and then remove the leaf node element. This * makes the rebalance logic not need to be recursive both upwards and * downwards. */ if (hdr->bth_core) { zfs_btree_core_t *node = (zfs_btree_core_t *)hdr; zfs_btree_hdr_t *left_subtree = node->btc_children[idx]; void *new_value = zfs_btree_last_helper(tree, left_subtree, where); ASSERT3P(new_value, !=, NULL); bmov(new_value, node->btc_elems + idx * size, size); hdr = where->bti_node; idx = where->bti_offset; ASSERT(!where->bti_before); } /* * First, we'll update the leaf's metadata. Then, we shift any * elements after the idx to the left. After that, we rebalance if * needed. */ ASSERT(!hdr->bth_core); zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr; ASSERT3U(hdr->bth_count, >, 0); uint64_t min_count = (capacity / 2) - 1; /* * If we're over the minimum size or this is the root, just overwrite * the value and return. */ if (hdr->bth_count > min_count || hdr->bth_parent == NULL) { hdr->bth_count--; bt_shift_leaf_left(tree, leaf, idx + 1, hdr->bth_count - idx); if (hdr->bth_parent == NULL) { ASSERT0(tree->bt_height); if (hdr->bth_count == 0) { tree->bt_root = NULL; tree->bt_height--; zfs_btree_node_destroy(tree, &leaf->btl_hdr); } } if (tree->bt_root != NULL) zfs_btree_poison_node_at(tree, hdr, hdr->bth_count); zfs_btree_verify(tree); return; } ASSERT3U(hdr->bth_count, ==, min_count); /* * Now we try to take a node from a sibling. We check left, then * right. If they exist and have more than the minimum number of * elements, we move the separator betweeen us and them to our node * and move their closest element (last for left, first for right) to * the separator. Along the way we need to collapse the gap made by * idx, and (for our right neighbor) the gap made by removing their * first element. * * Note: this logic currently doesn't support taking from a neighbor * that isn't a sibling. This isn't critical functionality, but may be * worth implementing in the future for completeness' sake. */ zfs_btree_core_t *parent = hdr->bth_parent; uint64_t parent_idx = zfs_btree_find_parent_idx(tree, hdr); zfs_btree_hdr_t *l_hdr = (parent_idx == 0 ? NULL : parent->btc_children[parent_idx - 1]); if (l_hdr != NULL && l_hdr->bth_count > min_count) { /* We can take a node from the left neighbor. */ ASSERT(!l_hdr->bth_core); /* * Move our elements back by one spot to make room for the * stolen element and overwrite the element being removed. */ bt_shift_leaf_right(tree, leaf, 0, idx); uint8_t *separator = parent->btc_elems + (parent_idx - 1) * size; uint8_t *take_elem = ((zfs_btree_leaf_t *)l_hdr)->btl_elems + (l_hdr->bth_count - 1) * size; /* Move the separator to our first spot. */ bmov(separator, leaf->btl_elems, size); /* Move our neighbor's last element to the separator. */ bmov(take_elem, separator, size); /* Update the bookkeeping. */ l_hdr->bth_count--; zfs_btree_poison_node_at(tree, l_hdr, l_hdr->bth_count); zfs_btree_verify(tree); return; } zfs_btree_hdr_t *r_hdr = (parent_idx == parent->btc_hdr.bth_count ? NULL : parent->btc_children[parent_idx + 1]); if (r_hdr != NULL && r_hdr->bth_count > min_count) { /* We can take a node from the right neighbor. */ ASSERT(!r_hdr->bth_core); zfs_btree_leaf_t *neighbor = (zfs_btree_leaf_t *)r_hdr; /* * Move our elements after the element being removed forwards * by one spot to make room for the stolen element and * overwrite the element being removed. */ bt_shift_leaf_left(tree, leaf, idx + 1, hdr->bth_count - idx - 1); uint8_t *separator = parent->btc_elems + parent_idx * size; uint8_t *take_elem = ((zfs_btree_leaf_t *)r_hdr)->btl_elems; /* Move the separator between us to our last spot. */ bmov(separator, leaf->btl_elems + (hdr->bth_count - 1) * size, size); /* Move our neighbor's first element to the separator. */ bmov(take_elem, separator, size); /* Update the bookkeeping. */ r_hdr->bth_count--; /* * Move our neighbors elements forwards to overwrite the * stolen element. */ bt_shift_leaf_left(tree, neighbor, 1, r_hdr->bth_count); zfs_btree_poison_node_at(tree, r_hdr, r_hdr->bth_count); zfs_btree_verify(tree); return; } /* * In this case, neither of our neighbors can spare an element, so we * need to merge with one of them. We prefer the left one, * arabitrarily. Move the separator into the leftmost merging node * (which may be us or the left neighbor), and then move the right * merging node's elements. Once that's done, we go back and delete * the element we're removing. Finally, go into the parent and delete * the right merging node and the separator. This may cause further * merging. */ zfs_btree_hdr_t *rm_hdr, *keep_hdr; uint64_t new_idx = idx; if (l_hdr != NULL) { keep_hdr = l_hdr; rm_hdr = hdr; new_idx += keep_hdr->bth_count + 1; // 449 } else { ASSERT3P(r_hdr, !=, NULL); keep_hdr = hdr; rm_hdr = r_hdr; parent_idx++; } ASSERT(!keep_hdr->bth_core); ASSERT(!rm_hdr->bth_core); ASSERT3U(keep_hdr->bth_count, ==, min_count); ASSERT3U(rm_hdr->bth_count, ==, min_count); zfs_btree_leaf_t *keep = (zfs_btree_leaf_t *)keep_hdr; zfs_btree_leaf_t *rm = (zfs_btree_leaf_t *)rm_hdr; if (zfs_btree_verify_intensity >= 5) { for (int i = 0; i < rm_hdr->bth_count + 1; i++) { zfs_btree_verify_poison_at(tree, keep_hdr, keep_hdr->bth_count + i); } } /* * Move the separator into the first open spot in the left * neighbor. */ uint8_t *out = keep->btl_elems + keep_hdr->bth_count * size; uint8_t *separator = parent->btc_elems + (parent_idx - 1) * size; bmov(separator, out, size); keep_hdr->bth_count++; /* Move our elements to the left neighbor. */ bt_transfer_leaf(tree, rm, 0, rm_hdr->bth_count, keep, keep_hdr->bth_count); /* Update the bookkeeping. */ keep_hdr->bth_count += rm_hdr->bth_count; ASSERT3U(keep_hdr->bth_count, ==, min_count * 2 + 1); /* Remove the value from the node */ keep_hdr->bth_count--; bt_shift_leaf_left(tree, keep, new_idx + 1, keep_hdr->bth_count - new_idx); zfs_btree_poison_node_at(tree, keep_hdr, keep_hdr->bth_count); rm_hdr->bth_count = 0; zfs_btree_node_destroy(tree, rm_hdr); /* Remove the emptied node from the parent. */ zfs_btree_remove_from_node(tree, parent, rm_hdr); zfs_btree_verify(tree); } /* Remove the given value from the tree. */ void zfs_btree_remove(zfs_btree_t *tree, const void *value) { zfs_btree_index_t where = {0}; VERIFY3P(zfs_btree_find(tree, value, &where), !=, NULL); zfs_btree_remove_idx(tree, &where); } /* Return the number of elements in the tree. */ ulong_t zfs_btree_numnodes(zfs_btree_t *tree) { return (tree->bt_num_elems); } /* * This function is used to visit all the elements in the tree before * destroying the tree. This allows the calling code to perform any cleanup it * needs to do. This is more efficient than just removing the first element * over and over, because it removes all rebalancing. Once the destroy_nodes() * function has been called, no other btree operations are valid until it * returns NULL, which point the only valid operation is zfs_btree_destroy(). * * example: * * zfs_btree_index_t *cookie = NULL; * my_data_t *node; * * while ((node = zfs_btree_destroy_nodes(tree, &cookie)) != NULL) * free(node->ptr); * zfs_btree_destroy(tree); * */ void * zfs_btree_destroy_nodes(zfs_btree_t *tree, zfs_btree_index_t **cookie) { if (*cookie == NULL) { if (tree->bt_height == -1) return (NULL); *cookie = kmem_alloc(sizeof (**cookie), KM_SLEEP); return (zfs_btree_first(tree, *cookie)); } void *rval = zfs_btree_next_helper(tree, *cookie, *cookie, zfs_btree_node_destroy); if (rval == NULL) { tree->bt_root = NULL; tree->bt_height = -1; tree->bt_num_elems = 0; kmem_free(*cookie, sizeof (**cookie)); tree->bt_bulk = NULL; } return (rval); } static void zfs_btree_clear_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr) { if (hdr->bth_core) { zfs_btree_core_t *btc = (zfs_btree_core_t *)hdr; for (int i = 0; i <= hdr->bth_count; i++) { zfs_btree_clear_helper(tree, btc->btc_children[i]); } } zfs_btree_node_destroy(tree, hdr); } void zfs_btree_clear(zfs_btree_t *tree) { if (tree->bt_root == NULL) { ASSERT0(tree->bt_num_elems); return; } zfs_btree_clear_helper(tree, tree->bt_root); tree->bt_num_elems = 0; tree->bt_root = NULL; tree->bt_num_nodes = 0; tree->bt_height = -1; tree->bt_bulk = NULL; } void zfs_btree_destroy(zfs_btree_t *tree) { ASSERT0(tree->bt_num_elems); ASSERT3P(tree->bt_root, ==, NULL); } /* Verify that every child of this node has the correct parent pointer. */ static void zfs_btree_verify_pointers_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr) { if (!hdr->bth_core) return; zfs_btree_core_t *node = (zfs_btree_core_t *)hdr; for (int i = 0; i <= hdr->bth_count; i++) { VERIFY3P(node->btc_children[i]->bth_parent, ==, hdr); zfs_btree_verify_pointers_helper(tree, node->btc_children[i]); } } /* Verify that every node has the correct parent pointer. */ static void zfs_btree_verify_pointers(zfs_btree_t *tree) { if (tree->bt_height == -1) { VERIFY3P(tree->bt_root, ==, NULL); return; } VERIFY3P(tree->bt_root->bth_parent, ==, NULL); zfs_btree_verify_pointers_helper(tree, tree->bt_root); } /* * Verify that all the current node and its children satisfy the count * invariants, and return the total count in the subtree rooted in this node. */ static uint64_t zfs_btree_verify_counts_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr) { if (!hdr->bth_core) { if (tree->bt_root != hdr && hdr != &tree->bt_bulk->btl_hdr) { uint64_t capacity = P2ALIGN((BTREE_LEAF_SIZE - sizeof (zfs_btree_hdr_t)) / tree->bt_elem_size, 2); VERIFY3U(hdr->bth_count, >=, (capacity / 2) - 1); } return (hdr->bth_count); } else { zfs_btree_core_t *node = (zfs_btree_core_t *)hdr; uint64_t ret = hdr->bth_count; if (tree->bt_root != hdr && tree->bt_bulk == NULL) VERIFY3P(hdr->bth_count, >=, BTREE_CORE_ELEMS / 2 - 1); for (int i = 0; i <= hdr->bth_count; i++) { ret += zfs_btree_verify_counts_helper(tree, node->btc_children[i]); } return (ret); } } /* * Verify that all nodes satisfy the invariants and that the total number of * elements is correct. */ static void zfs_btree_verify_counts(zfs_btree_t *tree) { EQUIV(tree->bt_num_elems == 0, tree->bt_height == -1); if (tree->bt_height == -1) { return; } VERIFY3P(zfs_btree_verify_counts_helper(tree, tree->bt_root), ==, tree->bt_num_elems); } /* * Check that the subtree rooted at this node has a uniform height. Returns * the number of nodes under this node, to help verify bt_num_nodes. */ static uint64_t zfs_btree_verify_height_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr, int64_t height) { if (!hdr->bth_core) { VERIFY0(height); return (1); } VERIFY(hdr->bth_core); zfs_btree_core_t *node = (zfs_btree_core_t *)hdr; uint64_t ret = 1; for (int i = 0; i <= hdr->bth_count; i++) { ret += zfs_btree_verify_height_helper(tree, node->btc_children[i], height - 1); } return (ret); } /* * Check that the tree rooted at this node has a uniform height, and that the * bt_height in the tree is correct. */ static void zfs_btree_verify_height(zfs_btree_t *tree) { EQUIV(tree->bt_height == -1, tree->bt_root == NULL); if (tree->bt_height == -1) { return; } VERIFY3U(zfs_btree_verify_height_helper(tree, tree->bt_root, tree->bt_height), ==, tree->bt_num_nodes); } /* * Check that the elements in this node are sorted, and that if this is a core * node, the separators are properly between the subtrees they separaate and * that the children also satisfy this requirement. */ static void zfs_btree_verify_order_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr) { size_t size = tree->bt_elem_size; if (!hdr->bth_core) { zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr; for (int i = 1; i < hdr->bth_count; i++) { VERIFY3S(tree->bt_compar(leaf->btl_elems + (i - 1) * size, leaf->btl_elems + i * size), ==, -1); } return; } zfs_btree_core_t *node = (zfs_btree_core_t *)hdr; for (int i = 1; i < hdr->bth_count; i++) { VERIFY3S(tree->bt_compar(node->btc_elems + (i - 1) * size, node->btc_elems + i * size), ==, -1); } for (int i = 0; i < hdr->bth_count; i++) { uint8_t *left_child_last = NULL; zfs_btree_hdr_t *left_child_hdr = node->btc_children[i]; if (left_child_hdr->bth_core) { zfs_btree_core_t *left_child = (zfs_btree_core_t *)left_child_hdr; left_child_last = left_child->btc_elems + (left_child_hdr->bth_count - 1) * size; } else { zfs_btree_leaf_t *left_child = (zfs_btree_leaf_t *)left_child_hdr; left_child_last = left_child->btl_elems + (left_child_hdr->bth_count - 1) * size; } if (tree->bt_compar(node->btc_elems + i * size, left_child_last) != 1) { panic("btree: compar returned %d (expected 1) at " "%px %d: compar(%px, %px)", tree->bt_compar( node->btc_elems + i * size, left_child_last), (void *)node, i, (void *)(node->btc_elems + i * size), (void *)left_child_last); } uint8_t *right_child_first = NULL; zfs_btree_hdr_t *right_child_hdr = node->btc_children[i + 1]; if (right_child_hdr->bth_core) { zfs_btree_core_t *right_child = (zfs_btree_core_t *)right_child_hdr; right_child_first = right_child->btc_elems; } else { zfs_btree_leaf_t *right_child = (zfs_btree_leaf_t *)right_child_hdr; right_child_first = right_child->btl_elems; } if (tree->bt_compar(node->btc_elems + i * size, right_child_first) != -1) { panic("btree: compar returned %d (expected -1) at " "%px %d: compar(%px, %px)", tree->bt_compar( node->btc_elems + i * size, right_child_first), (void *)node, i, (void *)(node->btc_elems + i * size), (void *)right_child_first); } } for (int i = 0; i <= hdr->bth_count; i++) { zfs_btree_verify_order_helper(tree, node->btc_children[i]); } } /* Check that all elements in the tree are in sorted order. */ static void zfs_btree_verify_order(zfs_btree_t *tree) { EQUIV(tree->bt_height == -1, tree->bt_root == NULL); if (tree->bt_height == -1) { return; } zfs_btree_verify_order_helper(tree, tree->bt_root); } #ifdef ZFS_DEBUG /* Check that all unused memory is poisoned correctly. */ static void zfs_btree_verify_poison_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr) { size_t size = tree->bt_elem_size; if (!hdr->bth_core) { zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr; uint8_t val = 0x0f; for (int i = hdr->bth_count * size; i < BTREE_LEAF_SIZE - sizeof (zfs_btree_hdr_t); i++) { VERIFY3U(leaf->btl_elems[i], ==, val); } } else { zfs_btree_core_t *node = (zfs_btree_core_t *)hdr; uint8_t val = 0x0f; for (int i = hdr->bth_count * size; i < BTREE_CORE_ELEMS * size; i++) { VERIFY3U(node->btc_elems[i], ==, val); } for (int i = hdr->bth_count + 1; i <= BTREE_CORE_ELEMS; i++) { VERIFY3P(node->btc_children[i], ==, (zfs_btree_hdr_t *)BTREE_POISON); } for (int i = 0; i <= hdr->bth_count; i++) { zfs_btree_verify_poison_helper(tree, node->btc_children[i]); } } } #endif /* Check that unused memory in the tree is still poisoned. */ static void zfs_btree_verify_poison(zfs_btree_t *tree) { #ifdef ZFS_DEBUG if (tree->bt_height == -1) return; zfs_btree_verify_poison_helper(tree, tree->bt_root); #endif } void zfs_btree_verify(zfs_btree_t *tree) { if (zfs_btree_verify_intensity == 0) return; zfs_btree_verify_height(tree); if (zfs_btree_verify_intensity == 1) return; zfs_btree_verify_pointers(tree); if (zfs_btree_verify_intensity == 2) return; zfs_btree_verify_counts(tree); if (zfs_btree_verify_intensity == 3) return; zfs_btree_verify_order(tree); if (zfs_btree_verify_intensity == 4) return; zfs_btree_verify_poison(tree); }