/*****************************************************************************\ * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC. * Copyright (C) 2007 The Regents of the University of California. * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER). * Written by Brian Behlendorf . * UCRL-CODE-235197 * * This file is part of the SPL, Solaris Porting Layer. * For details, see . * * The SPL is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * * The SPL is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with the SPL. If not, see . \*****************************************************************************/ #ifndef _SPL_KMEM_H #define _SPL_KMEM_H #include #include #include #include #include #include #include #include #include #include #include #include /* * Memory allocation interfaces */ #define KM_SLEEP GFP_KERNEL /* Can sleep, never fails */ #define KM_NOSLEEP GFP_ATOMIC /* Can not sleep, may fail */ #define KM_PUSHPAGE (GFP_NOIO | __GFP_HIGH) /* Use reserved memory */ #define KM_NODEBUG __GFP_NOWARN /* Suppress warnings */ #define KM_FLAGS __GFP_BITS_MASK #define KM_VMFLAGS GFP_LEVEL_MASK /* * Used internally, the kernel does not need to support this flag */ #ifndef __GFP_ZERO # define __GFP_ZERO 0x8000 #endif /* * PF_NOFS is a per-process debug flag which is set in current->flags to * detect when a process is performing an unsafe allocation. All tasks * with PF_NOFS set must strictly use KM_PUSHPAGE for allocations because * if they enter direct reclaim and initiate I/O the may deadlock. * * When debugging is disabled, any incorrect usage will be detected and * a call stack with warning will be printed to the console. The flags * will then be automatically corrected to allow for safe execution. If * debugging is enabled this will be treated as a fatal condition. * * To avoid any risk of conflicting with the existing PF_ flags. The * PF_NOFS bit shadows the rarely used PF_MUTEX_TESTER bit. Only when * CONFIG_RT_MUTEX_TESTER is not set, and we know this bit is unused, * will the PF_NOFS bit be valid. Happily, most existing distributions * ship a kernel with CONFIG_RT_MUTEX_TESTER disabled. */ #if !defined(CONFIG_RT_MUTEX_TESTER) && defined(PF_MUTEX_TESTER) # define PF_NOFS PF_MUTEX_TESTER static inline void sanitize_flags(struct task_struct *p, gfp_t *flags) { if (unlikely((p->flags & PF_NOFS) && (*flags & (__GFP_IO|__GFP_FS)))) { # ifdef NDEBUG SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "Fixing allocation for " "task %s (%d) which used GFP flags 0x%x with PF_NOFS set\n", p->comm, p->pid, flags); spl_debug_dumpstack(p); *flags &= ~(__GFP_IO|__GFP_FS); # else PANIC("FATAL allocation for task %s (%d) which used GFP " "flags 0x%x with PF_NOFS set\n", p->comm, p->pid, flags); # endif /* NDEBUG */ } } #else # define PF_NOFS 0x00000000 # define sanitize_flags(p, fl) ((void)0) #endif /* !defined(CONFIG_RT_MUTEX_TESTER) && defined(PF_MUTEX_TESTER) */ /* * __GFP_NOFAIL looks like it will be removed from the kernel perhaps as * early as 2.6.32. To avoid this issue when it occurs in upstream kernels * we retry the allocation here as long as it is not __GFP_WAIT (GFP_ATOMIC). * I would prefer the caller handle the failure case cleanly but we are * trying to emulate Solaris and those are not the Solaris semantics. */ static inline void * kmalloc_nofail(size_t size, gfp_t flags) { void *ptr; sanitize_flags(current, &flags); do { ptr = kmalloc(size, flags); } while (ptr == NULL && (flags & __GFP_WAIT)); return ptr; } static inline void * kzalloc_nofail(size_t size, gfp_t flags) { void *ptr; sanitize_flags(current, &flags); do { ptr = kzalloc(size, flags); } while (ptr == NULL && (flags & __GFP_WAIT)); return ptr; } static inline void * kmalloc_node_nofail(size_t size, gfp_t flags, int node) { #ifdef HAVE_KMALLOC_NODE void *ptr; sanitize_flags(current, &flags); do { ptr = kmalloc_node(size, flags, node); } while (ptr == NULL && (flags & __GFP_WAIT)); return ptr; #else return kmalloc_nofail(size, flags); #endif /* HAVE_KMALLOC_NODE */ } static inline void * vmalloc_nofail(size_t size, gfp_t flags) { void *ptr; sanitize_flags(current, &flags); /* * Retry failed __vmalloc() allocations once every second. The * rational for the delay is that the likely failure modes are: * * 1) The system has completely exhausted memory, in which case * delaying 1 second for the memory reclaim to run is reasonable * to avoid thrashing the system. * 2) The system has memory but has exhausted the small virtual * address space available on 32-bit systems. Retrying the * allocation immediately will only result in spinning on the * virtual address space lock. It is better delay a second and * hope that another process will free some of the address space. * But the bottom line is there is not much we can actually do * since we can never safely return a failure and honor the * Solaris semantics. */ while (1) { ptr = __vmalloc(size, flags | __GFP_HIGHMEM, PAGE_KERNEL); if (unlikely((ptr == NULL) && (flags & __GFP_WAIT))) { set_current_state(TASK_INTERRUPTIBLE); schedule_timeout(HZ); } else { break; } } return ptr; } static inline void * vzalloc_nofail(size_t size, gfp_t flags) { void *ptr; ptr = vmalloc_nofail(size, flags); if (ptr) memset(ptr, 0, (size)); return ptr; } #ifdef DEBUG_KMEM /* * Memory accounting functions to be used only when DEBUG_KMEM is set. */ # ifdef HAVE_ATOMIC64_T # define kmem_alloc_used_add(size) atomic64_add(size, &kmem_alloc_used) # define kmem_alloc_used_sub(size) atomic64_sub(size, &kmem_alloc_used) # define kmem_alloc_used_read() atomic64_read(&kmem_alloc_used) # define kmem_alloc_used_set(size) atomic64_set(&kmem_alloc_used, size) # define vmem_alloc_used_add(size) atomic64_add(size, &vmem_alloc_used) # define vmem_alloc_used_sub(size) atomic64_sub(size, &vmem_alloc_used) # define vmem_alloc_used_read() atomic64_read(&vmem_alloc_used) # define vmem_alloc_used_set(size) atomic64_set(&vmem_alloc_used, size) extern atomic64_t kmem_alloc_used; extern unsigned long long kmem_alloc_max; extern atomic64_t vmem_alloc_used; extern unsigned long long vmem_alloc_max; # else /* HAVE_ATOMIC64_T */ # define kmem_alloc_used_add(size) atomic_add(size, &kmem_alloc_used) # define kmem_alloc_used_sub(size) atomic_sub(size, &kmem_alloc_used) # define kmem_alloc_used_read() atomic_read(&kmem_alloc_used) # define kmem_alloc_used_set(size) atomic_set(&kmem_alloc_used, size) # define vmem_alloc_used_add(size) atomic_add(size, &vmem_alloc_used) # define vmem_alloc_used_sub(size) atomic_sub(size, &vmem_alloc_used) # define vmem_alloc_used_read() atomic_read(&vmem_alloc_used) # define vmem_alloc_used_set(size) atomic_set(&vmem_alloc_used, size) extern atomic_t kmem_alloc_used; extern unsigned long long kmem_alloc_max; extern atomic_t vmem_alloc_used; extern unsigned long long vmem_alloc_max; # endif /* HAVE_ATOMIC64_T */ # ifdef DEBUG_KMEM_TRACKING /* * DEBUG_KMEM && DEBUG_KMEM_TRACKING * * The maximum level of memory debugging. All memory will be accounted * for and each allocation will be explicitly tracked. Any allocation * which is leaked will be reported on module unload and the exact location * where that memory was allocation will be reported. This level of memory * tracking will have a significant impact on performance and should only * be enabled for debugging. This feature may be enabled by passing * --enable-debug-kmem-tracking to configure. */ # define kmem_alloc(sz, fl) kmem_alloc_track((sz), (fl), \ __FUNCTION__, __LINE__, 0, 0) # define kmem_zalloc(sz, fl) kmem_alloc_track((sz), (fl)|__GFP_ZERO,\ __FUNCTION__, __LINE__, 0, 0) # define kmem_alloc_node(sz, fl, nd) kmem_alloc_track((sz), (fl), \ __FUNCTION__, __LINE__, 1, nd) # define kmem_free(ptr, sz) kmem_free_track((ptr), (sz)) # define vmem_alloc(sz, fl) vmem_alloc_track((sz), (fl), \ __FUNCTION__, __LINE__) # define vmem_zalloc(sz, fl) vmem_alloc_track((sz), (fl)|__GFP_ZERO,\ __FUNCTION__, __LINE__) # define vmem_free(ptr, sz) vmem_free_track((ptr), (sz)) extern void *kmem_alloc_track(size_t, int, const char *, int, int, int); extern void kmem_free_track(const void *, size_t); extern void *vmem_alloc_track(size_t, int, const char *, int); extern void vmem_free_track(const void *, size_t); # else /* DEBUG_KMEM_TRACKING */ /* * DEBUG_KMEM && !DEBUG_KMEM_TRACKING * * The default build will set DEBUG_KEM. This provides basic memory * accounting with little to no impact on performance. When the module * is unloaded in any memory was leaked the total number of leaked bytes * will be reported on the console. To disable this basic accounting * pass the --disable-debug-kmem option to configure. */ # define kmem_alloc(sz, fl) kmem_alloc_debug((sz), (fl), \ __FUNCTION__, __LINE__, 0, 0) # define kmem_zalloc(sz, fl) kmem_alloc_debug((sz), (fl)|__GFP_ZERO,\ __FUNCTION__, __LINE__, 0, 0) # define kmem_alloc_node(sz, fl, nd) kmem_alloc_debug((sz), (fl), \ __FUNCTION__, __LINE__, 1, nd) # define kmem_free(ptr, sz) kmem_free_debug((ptr), (sz)) # define vmem_alloc(sz, fl) vmem_alloc_debug((sz), (fl), \ __FUNCTION__, __LINE__) # define vmem_zalloc(sz, fl) vmem_alloc_debug((sz), (fl)|__GFP_ZERO,\ __FUNCTION__, __LINE__) # define vmem_free(ptr, sz) vmem_free_debug((ptr), (sz)) extern void *kmem_alloc_debug(size_t, int, const char *, int, int, int); extern void kmem_free_debug(const void *, size_t); extern void *vmem_alloc_debug(size_t, int, const char *, int); extern void vmem_free_debug(const void *, size_t); # endif /* DEBUG_KMEM_TRACKING */ #else /* DEBUG_KMEM */ /* * !DEBUG_KMEM && !DEBUG_KMEM_TRACKING * * All debugging is disabled. There will be no overhead even for * minimal memory accounting. To enable basic accounting pass the * --enable-debug-kmem option to configure. */ # define kmem_alloc(sz, fl) kmalloc_nofail((sz), (fl)) # define kmem_zalloc(sz, fl) kzalloc_nofail((sz), (fl)) # define kmem_alloc_node(sz, fl, nd) kmalloc_node_nofail((sz), (fl), (nd)) # define kmem_free(ptr, sz) ((void)(sz), kfree(ptr)) # define vmem_alloc(sz, fl) vmalloc_nofail((sz), (fl)) # define vmem_zalloc(sz, fl) vzalloc_nofail((sz), (fl)) # define vmem_free(ptr, sz) ((void)(sz), vfree(ptr)) #endif /* DEBUG_KMEM */ extern int kmem_debugging(void); extern char *kmem_vasprintf(const char *fmt, va_list ap); extern char *kmem_asprintf(const char *fmt, ...); extern char *strdup(const char *str); extern void strfree(char *str); /* * Slab allocation interfaces. The SPL slab differs from the standard * Linux SLAB or SLUB primarily in that each cache may be backed by slabs * allocated from the physical or virtal memory address space. The virtual * slabs allow for good behavior when allocation large objects of identical * size. This slab implementation also supports both constructors and * destructions which the Linux slab does not. */ enum { KMC_BIT_NOTOUCH = 0, /* Don't update ages */ KMC_BIT_NODEBUG = 1, /* Default behavior */ KMC_BIT_NOMAGAZINE = 2, /* XXX: Unsupported */ KMC_BIT_NOHASH = 3, /* XXX: Unsupported */ KMC_BIT_QCACHE = 4, /* XXX: Unsupported */ KMC_BIT_KMEM = 5, /* Use kmem cache */ KMC_BIT_VMEM = 6, /* Use vmem cache */ KMC_BIT_OFFSLAB = 7, /* Objects not on slab */ KMC_BIT_NOEMERGENCY = 8, /* Disable emergency objects */ KMC_BIT_GROWING = 15, /* Growing in progress */ KMC_BIT_REAPING = 16, /* Reaping in progress */ KMC_BIT_DESTROY = 17, /* Destroy in progress */ KMC_BIT_TOTAL = 18, /* Proc handler helper bit */ KMC_BIT_ALLOC = 19, /* Proc handler helper bit */ KMC_BIT_MAX = 20, /* Proc handler helper bit */ }; /* kmem move callback return values */ typedef enum kmem_cbrc { KMEM_CBRC_YES = 0, /* Object moved */ KMEM_CBRC_NO = 1, /* Object not moved */ KMEM_CBRC_LATER = 2, /* Object not moved, try again later */ KMEM_CBRC_DONT_NEED = 3, /* Neither object is needed */ KMEM_CBRC_DONT_KNOW = 4, /* Object unknown */ } kmem_cbrc_t; #define KMC_NOTOUCH (1 << KMC_BIT_NOTOUCH) #define KMC_NODEBUG (1 << KMC_BIT_NODEBUG) #define KMC_NOMAGAZINE (1 << KMC_BIT_NOMAGAZINE) #define KMC_NOHASH (1 << KMC_BIT_NOHASH) #define KMC_QCACHE (1 << KMC_BIT_QCACHE) #define KMC_KMEM (1 << KMC_BIT_KMEM) #define KMC_VMEM (1 << KMC_BIT_VMEM) #define KMC_OFFSLAB (1 << KMC_BIT_OFFSLAB) #define KMC_NOEMERGENCY (1 << KMC_BIT_NOEMERGENCY) #define KMC_GROWING (1 << KMC_BIT_GROWING) #define KMC_REAPING (1 << KMC_BIT_REAPING) #define KMC_DESTROY (1 << KMC_BIT_DESTROY) #define KMC_TOTAL (1 << KMC_BIT_TOTAL) #define KMC_ALLOC (1 << KMC_BIT_ALLOC) #define KMC_MAX (1 << KMC_BIT_MAX) #define KMC_REAP_CHUNK INT_MAX #define KMC_DEFAULT_SEEKS 1 extern struct list_head spl_kmem_cache_list; extern struct rw_semaphore spl_kmem_cache_sem; #define SKM_MAGIC 0x2e2e2e2e #define SKO_MAGIC 0x20202020 #define SKS_MAGIC 0x22222222 #define SKC_MAGIC 0x2c2c2c2c #define SPL_KMEM_CACHE_DELAY 15 /* Minimum slab release age */ #define SPL_KMEM_CACHE_REAP 0 /* Default reap everything */ #define SPL_KMEM_CACHE_OBJ_PER_SLAB 16 /* Target objects per slab */ #define SPL_KMEM_CACHE_OBJ_PER_SLAB_MIN 8 /* Minimum objects per slab */ #define SPL_KMEM_CACHE_ALIGN 8 /* Default object alignment */ #define POINTER_IS_VALID(p) 0 /* Unimplemented */ #define POINTER_INVALIDATE(pp) /* Unimplemented */ typedef int (*spl_kmem_ctor_t)(void *, void *, int); typedef void (*spl_kmem_dtor_t)(void *, void *); typedef void (*spl_kmem_reclaim_t)(void *); typedef struct spl_kmem_magazine { uint32_t skm_magic; /* Sanity magic */ uint32_t skm_avail; /* Available objects */ uint32_t skm_size; /* Magazine size */ uint32_t skm_refill; /* Batch refill size */ struct spl_kmem_cache *skm_cache; /* Owned by cache */ struct delayed_work skm_work; /* Magazine reclaim work */ unsigned long skm_age; /* Last cache access */ unsigned int skm_cpu; /* Owned by cpu */ void *skm_objs[0]; /* Object pointers */ } spl_kmem_magazine_t; typedef struct spl_kmem_obj { uint32_t sko_magic; /* Sanity magic */ void *sko_addr; /* Buffer address */ struct spl_kmem_slab *sko_slab; /* Owned by slab */ struct list_head sko_list; /* Free object list linkage */ } spl_kmem_obj_t; typedef struct spl_kmem_slab { uint32_t sks_magic; /* Sanity magic */ uint32_t sks_objs; /* Objects per slab */ struct spl_kmem_cache *sks_cache; /* Owned by cache */ struct list_head sks_list; /* Slab list linkage */ struct list_head sks_free_list; /* Free object list */ unsigned long sks_age; /* Last modify jiffie */ uint32_t sks_ref; /* Ref count used objects */ } spl_kmem_slab_t; typedef struct spl_kmem_alloc { struct spl_kmem_cache *ska_cache; /* Owned by cache */ int ska_flags; /* Allocation flags */ struct delayed_work ska_work; /* Allocation work */ } spl_kmem_alloc_t; typedef struct spl_kmem_emergency { void *ske_obj; /* Buffer address */ struct list_head ske_list; /* Emergency list linkage */ } spl_kmem_emergency_t; typedef struct spl_kmem_cache { uint32_t skc_magic; /* Sanity magic */ uint32_t skc_name_size; /* Name length */ char *skc_name; /* Name string */ spl_kmem_magazine_t *skc_mag[NR_CPUS]; /* Per-CPU warm cache */ uint32_t skc_mag_size; /* Magazine size */ uint32_t skc_mag_refill; /* Magazine refill count */ spl_kmem_ctor_t skc_ctor; /* Constructor */ spl_kmem_dtor_t skc_dtor; /* Destructor */ spl_kmem_reclaim_t skc_reclaim; /* Reclaimator */ void *skc_private; /* Private data */ void *skc_vmp; /* Unused */ unsigned long skc_flags; /* Flags */ uint32_t skc_obj_size; /* Object size */ uint32_t skc_obj_align; /* Object alignment */ uint32_t skc_slab_objs; /* Objects per slab */ uint32_t skc_slab_size; /* Slab size */ uint32_t skc_delay; /* Slab reclaim interval */ uint32_t skc_reap; /* Slab reclaim count */ atomic_t skc_ref; /* Ref count callers */ struct delayed_work skc_work; /* Slab reclaim work */ struct list_head skc_list; /* List of caches linkage */ struct list_head skc_complete_list;/* Completely alloc'ed */ struct list_head skc_partial_list; /* Partially alloc'ed */ struct list_head skc_emergency_list; /* Min sized objects */ spinlock_t skc_lock; /* Cache lock */ wait_queue_head_t skc_waitq; /* Allocation waiters */ uint64_t skc_slab_fail; /* Slab alloc failures */ uint64_t skc_slab_create;/* Slab creates */ uint64_t skc_slab_destroy;/* Slab destroys */ uint64_t skc_slab_total; /* Slab total current */ uint64_t skc_slab_alloc; /* Slab alloc current */ uint64_t skc_slab_max; /* Slab max historic */ uint64_t skc_obj_total; /* Obj total current */ uint64_t skc_obj_alloc; /* Obj alloc current */ uint64_t skc_obj_max; /* Obj max historic */ uint64_t skc_obj_emergency; /* Obj emergency current */ uint64_t skc_obj_emergency_max; /* Obj emergency max */ } spl_kmem_cache_t; #define kmem_cache_t spl_kmem_cache_t extern spl_kmem_cache_t *spl_kmem_cache_create(char *name, size_t size, size_t align, spl_kmem_ctor_t ctor, spl_kmem_dtor_t dtor, spl_kmem_reclaim_t reclaim, void *priv, void *vmp, int flags); extern void spl_kmem_cache_set_move(spl_kmem_cache_t *, kmem_cbrc_t (*)(void *, void *, size_t, void *)); extern void spl_kmem_cache_destroy(spl_kmem_cache_t *skc); extern void *spl_kmem_cache_alloc(spl_kmem_cache_t *skc, int flags); extern void spl_kmem_cache_free(spl_kmem_cache_t *skc, void *obj); extern void spl_kmem_cache_reap_now(spl_kmem_cache_t *skc, int count); extern void spl_kmem_reap(void); int spl_kmem_init_kallsyms_lookup(void); int spl_kmem_init(void); void spl_kmem_fini(void); #define kmem_cache_create(name,size,align,ctor,dtor,rclm,priv,vmp,flags) \ spl_kmem_cache_create(name,size,align,ctor,dtor,rclm,priv,vmp,flags) #define kmem_cache_set_move(skc, move) spl_kmem_cache_set_move(skc, move) #define kmem_cache_destroy(skc) spl_kmem_cache_destroy(skc) #define kmem_cache_alloc(skc, flags) spl_kmem_cache_alloc(skc, flags) #define kmem_cache_free(skc, obj) spl_kmem_cache_free(skc, obj) #define kmem_cache_reap_now(skc) \ spl_kmem_cache_reap_now(skc, skc->skc_reap) #define kmem_reap() spl_kmem_reap() #define kmem_virt(ptr) (((ptr) >= (void *)VMALLOC_START) && \ ((ptr) < (void *)VMALLOC_END)) #endif /* _SPL_KMEM_H */