/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012 by Delphix. All rights reserved. * Copyright 2014 Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2016, 2017, Intel Corporation. */ /* * ZFS syseventd module. * * file origin: openzfs/usr/src/cmd/syseventd/modules/zfs_mod/zfs_mod.c * * The purpose of this module is to identify when devices are added to the * system, and appropriately online or replace the affected vdevs. * * When a device is added to the system: * * 1. Search for any vdevs whose devid matches that of the newly added * device. * * 2. If no vdevs are found, then search for any vdevs whose udev path * matches that of the new device. * * 3. If no vdevs match by either method, then ignore the event. * * 4. Attempt to online the device with a flag to indicate that it should * be unspared when resilvering completes. If this succeeds, then the * same device was inserted and we should continue normally. * * 5. If the pool does not have the 'autoreplace' property set, attempt to * online the device again without the unspare flag, which will * generate a FMA fault. * * 6. If the pool has the 'autoreplace' property set, and the matching vdev * is a whole disk, then label the new disk and attempt a 'zpool * replace'. * * The module responds to EC_DEV_ADD events. The special ESC_ZFS_VDEV_CHECK * event indicates that a device failed to open during pool load, but the * autoreplace property was set. In this case, we deferred the associated * FMA fault until our module had a chance to process the autoreplace logic. * If the device could not be replaced, then the second online attempt will * trigger the FMA fault that we skipped earlier. * * ZFS on Linux porting notes: * In lieu of a thread pool, just spawn a thread on demmand. * Linux udev provides a disk insert for both the disk and the partition * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "zfs_agents.h" #include "../zed_log.h" #define DEV_BYID_PATH "/dev/disk/by-id/" #define DEV_BYPATH_PATH "/dev/disk/by-path/" #define DEV_BYVDEV_PATH "/dev/disk/by-vdev/" typedef void (*zfs_process_func_t)(zpool_handle_t *, nvlist_t *, boolean_t); libzfs_handle_t *g_zfshdl; list_t g_pool_list; /* list of unavailable pools at initialization */ list_t g_device_list; /* list of disks with asynchronous label request */ boolean_t g_enumeration_done; pthread_t g_zfs_tid; typedef struct unavailpool { zpool_handle_t *uap_zhp; pthread_t uap_enable_tid; /* dataset enable thread if activated */ list_node_t uap_node; } unavailpool_t; typedef struct pendingdev { char pd_physpath[128]; list_node_t pd_node; } pendingdev_t; static int zfs_toplevel_state(zpool_handle_t *zhp) { nvlist_t *nvroot; vdev_stat_t *vs; unsigned int c; verify(nvlist_lookup_nvlist(zpool_get_config(zhp, NULL), ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); verify(nvlist_lookup_uint64_array(nvroot, ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &c) == 0); return (vs->vs_state); } static int zfs_unavail_pool(zpool_handle_t *zhp, void *data) { zed_log_msg(LOG_INFO, "zfs_unavail_pool: examining '%s' (state %d)", zpool_get_name(zhp), (int)zfs_toplevel_state(zhp)); if (zfs_toplevel_state(zhp) < VDEV_STATE_DEGRADED) { unavailpool_t *uap; uap = malloc(sizeof (unavailpool_t)); uap->uap_zhp = zhp; uap->uap_enable_tid = 0; list_insert_tail((list_t *)data, uap); } else { zpool_close(zhp); } return (0); } /* * Two stage replace on Linux * since we get disk notifications * we can wait for partitioned disk slice to show up! * * First stage tags the disk, initiates async partitioning, and returns * Second stage finds the tag and proceeds to ZFS labeling/replace * * disk-add --> label-disk + tag-disk --> partition-add --> zpool_vdev_attach * * 1. physical match with no fs, no partition * tag it top, partition disk * * 2. physical match again, see partion and tag * */ /* * The device associated with the given vdev (either by devid or physical path) * has been added to the system. If 'isdisk' is set, then we only attempt a * replacement if it's a whole disk. This also implies that we should label the * disk first. * * First, we attempt to online the device (making sure to undo any spare * operation when finished). If this succeeds, then we're done. If it fails, * and the new state is VDEV_CANT_OPEN, it indicates that the device was opened, * but that the label was not what we expected. If the 'autoreplace' property * is enabled, then we relabel the disk (if specified), and attempt a 'zpool * replace'. If the online is successful, but the new state is something else * (REMOVED or FAULTED), it indicates that we're out of sync or in some sort of * race, and we should avoid attempting to relabel the disk. * * Also can arrive here from a ESC_ZFS_VDEV_CHECK event */ static void zfs_process_add(zpool_handle_t *zhp, nvlist_t *vdev, boolean_t labeled) { char *path; vdev_state_t newstate; nvlist_t *nvroot, *newvd; pendingdev_t *device; uint64_t wholedisk = 0ULL; uint64_t offline = 0ULL; uint64_t guid = 0ULL; char *physpath = NULL, *new_devid = NULL, *enc_sysfs_path = NULL; char rawpath[PATH_MAX], fullpath[PATH_MAX]; char devpath[PATH_MAX]; int ret; int is_dm = 0; int is_sd = 0; uint_t c; vdev_stat_t *vs; if (nvlist_lookup_string(vdev, ZPOOL_CONFIG_PATH, &path) != 0) return; /* Skip healthy disks */ verify(nvlist_lookup_uint64_array(vdev, ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &c) == 0); if (vs->vs_state == VDEV_STATE_HEALTHY) { zed_log_msg(LOG_INFO, "%s: %s is already healthy, skip it.", __func__, path); return; } (void) nvlist_lookup_string(vdev, ZPOOL_CONFIG_PHYS_PATH, &physpath); (void) nvlist_lookup_string(vdev, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH, &enc_sysfs_path); (void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_WHOLE_DISK, &wholedisk); (void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_OFFLINE, &offline); (void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_GUID, &guid); if (offline) return; /* don't intervene if it was taken offline */ is_dm = zfs_dev_is_dm(path); zed_log_msg(LOG_INFO, "zfs_process_add: pool '%s' vdev '%s', phys '%s'" " wholedisk %d, dm %d (%llu)", zpool_get_name(zhp), path, physpath ? physpath : "NULL", wholedisk, is_dm, (long long unsigned int)guid); /* * The VDEV guid is preferred for identification (gets passed in path) */ if (guid != 0) { (void) snprintf(fullpath, sizeof (fullpath), "%llu", (long long unsigned int)guid); } else { /* * otherwise use path sans partition suffix for whole disks */ (void) strlcpy(fullpath, path, sizeof (fullpath)); if (wholedisk) { char *spath = zfs_strip_partition(fullpath); if (!spath) { zed_log_msg(LOG_INFO, "%s: Can't alloc", __func__); return; } (void) strlcpy(fullpath, spath, sizeof (fullpath)); free(spath); } } /* * Attempt to online the device. */ if (zpool_vdev_online(zhp, fullpath, ZFS_ONLINE_CHECKREMOVE | ZFS_ONLINE_UNSPARE, &newstate) == 0 && (newstate == VDEV_STATE_HEALTHY || newstate == VDEV_STATE_DEGRADED)) { zed_log_msg(LOG_INFO, " zpool_vdev_online: vdev %s is %s", fullpath, (newstate == VDEV_STATE_HEALTHY) ? "HEALTHY" : "DEGRADED"); return; } /* * vdev_id alias rule for using scsi_debug devices (FMA automated * testing) */ if (strcmp("scsidebug", physpath) == 0) is_sd = 1; /* * If the pool doesn't have the autoreplace property set, then use * vdev online to trigger a FMA fault by posting an ereport. */ if (!zpool_get_prop_int(zhp, ZPOOL_PROP_AUTOREPLACE, NULL) || !(wholedisk || is_dm) || (physpath == NULL)) { (void) zpool_vdev_online(zhp, fullpath, ZFS_ONLINE_FORCEFAULT, &newstate); zed_log_msg(LOG_INFO, "Pool's autoreplace is not enabled or " "not a whole disk for '%s'", fullpath); return; } /* * Convert physical path into its current device node. Rawpath * needs to be /dev/disk/by-vdev for a scsi_debug device since * /dev/disk/by-path will not be present. */ (void) snprintf(rawpath, sizeof (rawpath), "%s%s", is_sd ? DEV_BYVDEV_PATH : DEV_BYPATH_PATH, physpath); if (realpath(rawpath, devpath) == NULL && !is_dm) { zed_log_msg(LOG_INFO, " realpath: %s failed (%s)", rawpath, strerror(errno)); (void) zpool_vdev_online(zhp, fullpath, ZFS_ONLINE_FORCEFAULT, &newstate); zed_log_msg(LOG_INFO, " zpool_vdev_online: %s FORCEFAULT (%s)", fullpath, libzfs_error_description(g_zfshdl)); return; } /* Only autoreplace bad disks */ if ((vs->vs_state != VDEV_STATE_DEGRADED) && (vs->vs_state != VDEV_STATE_FAULTED) && (vs->vs_state != VDEV_STATE_CANT_OPEN)) { return; } nvlist_lookup_string(vdev, "new_devid", &new_devid); if (is_dm) { /* Don't label device mapper or multipath disks. */ } else if (!labeled) { /* * we're auto-replacing a raw disk, so label it first */ char *leafname; /* * If this is a request to label a whole disk, then attempt to * write out the label. Before we can label the disk, we need * to map the physical string that was matched on to the under * lying device node. * * If any part of this process fails, then do a force online * to trigger a ZFS fault for the device (and any hot spare * replacement). */ leafname = strrchr(devpath, '/') + 1; /* * If this is a request to label a whole disk, then attempt to * write out the label. */ if (zpool_label_disk(g_zfshdl, zhp, leafname) != 0) { zed_log_msg(LOG_INFO, " zpool_label_disk: could not " "label '%s' (%s)", leafname, libzfs_error_description(g_zfshdl)); (void) zpool_vdev_online(zhp, fullpath, ZFS_ONLINE_FORCEFAULT, &newstate); return; } /* * The disk labeling is asynchronous on Linux. Just record * this label request and return as there will be another * disk add event for the partition after the labeling is * completed. */ device = malloc(sizeof (pendingdev_t)); (void) strlcpy(device->pd_physpath, physpath, sizeof (device->pd_physpath)); list_insert_tail(&g_device_list, device); zed_log_msg(LOG_INFO, " zpool_label_disk: async '%s' (%llu)", leafname, (u_longlong_t)guid); return; /* resumes at EC_DEV_ADD.ESC_DISK for partition */ } else /* labeled */ { boolean_t found = B_FALSE; /* * match up with request above to label the disk */ for (device = list_head(&g_device_list); device != NULL; device = list_next(&g_device_list, device)) { if (strcmp(physpath, device->pd_physpath) == 0) { list_remove(&g_device_list, device); free(device); found = B_TRUE; break; } zed_log_msg(LOG_INFO, "zpool_label_disk: %s != %s", physpath, device->pd_physpath); } if (!found) { /* unexpected partition slice encountered */ zed_log_msg(LOG_INFO, "labeled disk %s unexpected here", fullpath); (void) zpool_vdev_online(zhp, fullpath, ZFS_ONLINE_FORCEFAULT, &newstate); return; } zed_log_msg(LOG_INFO, " zpool_label_disk: resume '%s' (%llu)", physpath, (u_longlong_t)guid); (void) snprintf(devpath, sizeof (devpath), "%s%s", DEV_BYID_PATH, new_devid); } /* * Construct the root vdev to pass to zpool_vdev_attach(). While adding * the entire vdev structure is harmless, we construct a reduced set of * path/physpath/wholedisk to keep it simple. */ if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0) { zed_log_msg(LOG_WARNING, "zfs_mod: nvlist_alloc out of memory"); return; } if (nvlist_alloc(&newvd, NV_UNIQUE_NAME, 0) != 0) { zed_log_msg(LOG_WARNING, "zfs_mod: nvlist_alloc out of memory"); nvlist_free(nvroot); return; } if (nvlist_add_string(newvd, ZPOOL_CONFIG_TYPE, VDEV_TYPE_DISK) != 0 || nvlist_add_string(newvd, ZPOOL_CONFIG_PATH, path) != 0 || nvlist_add_string(newvd, ZPOOL_CONFIG_DEVID, new_devid) != 0 || (physpath != NULL && nvlist_add_string(newvd, ZPOOL_CONFIG_PHYS_PATH, physpath) != 0) || (enc_sysfs_path != NULL && nvlist_add_string(newvd, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH, enc_sysfs_path) != 0) || nvlist_add_uint64(newvd, ZPOOL_CONFIG_WHOLE_DISK, wholedisk) != 0 || nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) != 0 || nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, &newvd, 1) != 0) { zed_log_msg(LOG_WARNING, "zfs_mod: unable to add nvlist pairs"); nvlist_free(newvd); nvlist_free(nvroot); return; } nvlist_free(newvd); /* * auto replace a leaf disk at same physical location */ ret = zpool_vdev_attach(zhp, fullpath, path, nvroot, B_TRUE); zed_log_msg(LOG_INFO, " zpool_vdev_replace: %s with %s (%s)", fullpath, path, (ret == 0) ? "no errors" : libzfs_error_description(g_zfshdl)); nvlist_free(nvroot); } /* * Utility functions to find a vdev matching given criteria. */ typedef struct dev_data { const char *dd_compare; const char *dd_prop; zfs_process_func_t dd_func; boolean_t dd_found; boolean_t dd_islabeled; uint64_t dd_pool_guid; uint64_t dd_vdev_guid; const char *dd_new_devid; } dev_data_t; static void zfs_iter_vdev(zpool_handle_t *zhp, nvlist_t *nvl, void *data) { dev_data_t *dp = data; char *path = NULL; uint_t c, children; nvlist_t **child; /* * First iterate over any children. */ if (nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, &children) == 0) { for (c = 0; c < children; c++) zfs_iter_vdev(zhp, child[c], data); return; } /* once a vdev was matched and processed there is nothing left to do */ if (dp->dd_found) return; /* * Match by GUID if available otherwise fallback to devid or physical */ if (dp->dd_vdev_guid != 0) { uint64_t guid; if (nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_GUID, &guid) != 0 || guid != dp->dd_vdev_guid) { return; } zed_log_msg(LOG_INFO, " zfs_iter_vdev: matched on %llu", guid); dp->dd_found = B_TRUE; } else if (dp->dd_compare != NULL) { /* * NOTE: On Linux there is an event for partition, so unlike * illumos, substring matching is not required to accommodate * the partition suffix. An exact match will be present in * the dp->dd_compare value. */ if (nvlist_lookup_string(nvl, dp->dd_prop, &path) != 0 || strcmp(dp->dd_compare, path) != 0) return; zed_log_msg(LOG_INFO, " zfs_iter_vdev: matched %s on %s", dp->dd_prop, path); dp->dd_found = B_TRUE; /* pass the new devid for use by replacing code */ if (dp->dd_new_devid != NULL) { (void) nvlist_add_string(nvl, "new_devid", dp->dd_new_devid); } } (dp->dd_func)(zhp, nvl, dp->dd_islabeled); } static void * zfs_enable_ds(void *arg) { unavailpool_t *pool = (unavailpool_t *)arg; assert(pool->uap_enable_tid = pthread_self()); (void) zpool_enable_datasets(pool->uap_zhp, NULL, 0); zpool_close(pool->uap_zhp); pool->uap_zhp = NULL; /* Note: zfs_slm_fini() will cleanup this pool entry on exit */ return (NULL); } static int zfs_iter_pool(zpool_handle_t *zhp, void *data) { nvlist_t *config, *nvl; dev_data_t *dp = data; uint64_t pool_guid; unavailpool_t *pool; zed_log_msg(LOG_INFO, "zfs_iter_pool: evaluating vdevs on %s (by %s)", zpool_get_name(zhp), dp->dd_vdev_guid ? "GUID" : dp->dd_prop); /* * For each vdev in this pool, look for a match to apply dd_func */ if ((config = zpool_get_config(zhp, NULL)) != NULL) { if (dp->dd_pool_guid == 0 || (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid) == 0 && pool_guid == dp->dd_pool_guid)) { (void) nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl); zfs_iter_vdev(zhp, nvl, data); } } /* * if this pool was originally unavailable, * then enable its datasets asynchronously */ if (g_enumeration_done) { for (pool = list_head(&g_pool_list); pool != NULL; pool = list_next(&g_pool_list, pool)) { if (pool->uap_enable_tid != 0) continue; /* entry already processed */ if (strcmp(zpool_get_name(zhp), zpool_get_name(pool->uap_zhp))) continue; if (zfs_toplevel_state(zhp) >= VDEV_STATE_DEGRADED) { /* send to a background thread; keep on list */ (void) pthread_create(&pool->uap_enable_tid, NULL, zfs_enable_ds, pool); break; } } } zpool_close(zhp); return (dp->dd_found); /* cease iteration after a match */ } /* * Given a physical device location, iterate over all * (pool, vdev) pairs which correspond to that location. */ static boolean_t devphys_iter(const char *physical, const char *devid, zfs_process_func_t func, boolean_t is_slice) { dev_data_t data = { 0 }; data.dd_compare = physical; data.dd_func = func; data.dd_prop = ZPOOL_CONFIG_PHYS_PATH; data.dd_found = B_FALSE; data.dd_islabeled = is_slice; data.dd_new_devid = devid; /* used by auto replace code */ (void) zpool_iter(g_zfshdl, zfs_iter_pool, &data); return (data.dd_found); } /* * Given a device identifier, find any vdevs with a matching devid. * On Linux we can match devid directly which is always a whole disk. */ static boolean_t devid_iter(const char *devid, zfs_process_func_t func, boolean_t is_slice) { dev_data_t data = { 0 }; data.dd_compare = devid; data.dd_func = func; data.dd_prop = ZPOOL_CONFIG_DEVID; data.dd_found = B_FALSE; data.dd_islabeled = is_slice; data.dd_new_devid = devid; (void) zpool_iter(g_zfshdl, zfs_iter_pool, &data); return (data.dd_found); } /* * Handle a EC_DEV_ADD.ESC_DISK event. * * illumos * Expects: DEV_PHYS_PATH string in schema * Matches: vdev's ZPOOL_CONFIG_PHYS_PATH or ZPOOL_CONFIG_DEVID * * path: '/dev/dsk/c0t1d0s0' (persistent) * devid: 'id1,sd@SATA_____Hitachi_HDS72101______JP2940HZ3H74MC/a' * phys_path: '/pci@0,0/pci103c,1609@11/disk@1,0:a' * * linux * provides: DEV_PHYS_PATH and DEV_IDENTIFIER strings in schema * Matches: vdev's ZPOOL_CONFIG_PHYS_PATH or ZPOOL_CONFIG_DEVID * * path: '/dev/sdc1' (not persistent) * devid: 'ata-SAMSUNG_HD204UI_S2HGJD2Z805891-part1' * phys_path: 'pci-0000:04:00.0-sas-0x4433221106000000-lun-0' */ static int zfs_deliver_add(nvlist_t *nvl, boolean_t is_lofi) { char *devpath = NULL, *devid; boolean_t is_slice; /* * Expecting a devid string and an optional physical location */ if (nvlist_lookup_string(nvl, DEV_IDENTIFIER, &devid) != 0) return (-1); (void) nvlist_lookup_string(nvl, DEV_PHYS_PATH, &devpath); is_slice = (nvlist_lookup_boolean(nvl, DEV_IS_PART) == 0); zed_log_msg(LOG_INFO, "zfs_deliver_add: adding %s (%s) (is_slice %d)", devid, devpath ? devpath : "NULL", is_slice); /* * Iterate over all vdevs looking for a match in the folllowing order: * 1. ZPOOL_CONFIG_DEVID (identifies the unique disk) * 2. ZPOOL_CONFIG_PHYS_PATH (identifies disk physical location). * * For disks, we only want to pay attention to vdevs marked as whole * disks or are a multipath device. */ if (!devid_iter(devid, zfs_process_add, is_slice) && devpath != NULL) (void) devphys_iter(devpath, devid, zfs_process_add, is_slice); return (0); } /* * Called when we receive a VDEV_CHECK event, which indicates a device could not * be opened during initial pool open, but the autoreplace property was set on * the pool. In this case, we treat it as if it were an add event. */ static int zfs_deliver_check(nvlist_t *nvl) { dev_data_t data = { 0 }; if (nvlist_lookup_uint64(nvl, ZFS_EV_POOL_GUID, &data.dd_pool_guid) != 0 || nvlist_lookup_uint64(nvl, ZFS_EV_VDEV_GUID, &data.dd_vdev_guid) != 0 || data.dd_vdev_guid == 0) return (0); zed_log_msg(LOG_INFO, "zfs_deliver_check: pool '%llu', vdev %llu", data.dd_pool_guid, data.dd_vdev_guid); data.dd_func = zfs_process_add; (void) zpool_iter(g_zfshdl, zfs_iter_pool, &data); return (0); } static int zfsdle_vdev_online(zpool_handle_t *zhp, void *data) { char *devname = data; boolean_t avail_spare, l2cache; vdev_state_t newstate; nvlist_t *tgt; zed_log_msg(LOG_INFO, "zfsdle_vdev_online: searching for '%s' in '%s'", devname, zpool_get_name(zhp)); if ((tgt = zpool_find_vdev_by_physpath(zhp, devname, &avail_spare, &l2cache, NULL)) != NULL) { char *path, fullpath[MAXPATHLEN]; uint64_t wholedisk = 0ULL; verify(nvlist_lookup_string(tgt, ZPOOL_CONFIG_PATH, &path) == 0); verify(nvlist_lookup_uint64(tgt, ZPOOL_CONFIG_WHOLE_DISK, &wholedisk) == 0); (void) strlcpy(fullpath, path, sizeof (fullpath)); if (wholedisk) { char *spath = zfs_strip_partition(fullpath); if (!spath) { zed_log_msg(LOG_INFO, "%s: Can't alloc", __func__); return (0); } (void) strlcpy(fullpath, spath, sizeof (fullpath)); free(spath); /* * We need to reopen the pool associated with this * device so that the kernel can update the size * of the expanded device. */ (void) zpool_reopen(zhp); } if (zpool_get_prop_int(zhp, ZPOOL_PROP_AUTOEXPAND, NULL)) { zed_log_msg(LOG_INFO, "zfsdle_vdev_online: setting " "device '%s' to ONLINE state in pool '%s'", fullpath, zpool_get_name(zhp)); if (zpool_get_state(zhp) != POOL_STATE_UNAVAIL) (void) zpool_vdev_online(zhp, fullpath, 0, &newstate); } zpool_close(zhp); return (1); } zpool_close(zhp); return (0); } /* * This function handles the ESC_DEV_DLE event. */ static int zfs_deliver_dle(nvlist_t *nvl) { char *devname; if (nvlist_lookup_string(nvl, DEV_PHYS_PATH, &devname) != 0) { zed_log_msg(LOG_INFO, "zfs_deliver_event: no physpath"); return (-1); } if (zpool_iter(g_zfshdl, zfsdle_vdev_online, devname) != 1) { zed_log_msg(LOG_INFO, "zfs_deliver_event: device '%s' not " "found", devname); return (1); } return (0); } /* * syseventd daemon module event handler * * Handles syseventd daemon zfs device related events: * * EC_DEV_ADD.ESC_DISK * EC_DEV_STATUS.ESC_DEV_DLE * EC_ZFS.ESC_ZFS_VDEV_CHECK * * Note: assumes only one thread active at a time (not thread safe) */ static int zfs_slm_deliver_event(const char *class, const char *subclass, nvlist_t *nvl) { int ret; boolean_t is_lofi = B_FALSE, is_check = B_FALSE, is_dle = B_FALSE; if (strcmp(class, EC_DEV_ADD) == 0) { /* * We're mainly interested in disk additions, but we also listen * for new loop devices, to allow for simplified testing. */ if (strcmp(subclass, ESC_DISK) == 0) is_lofi = B_FALSE; else if (strcmp(subclass, ESC_LOFI) == 0) is_lofi = B_TRUE; else return (0); is_check = B_FALSE; } else if (strcmp(class, EC_ZFS) == 0 && strcmp(subclass, ESC_ZFS_VDEV_CHECK) == 0) { /* * This event signifies that a device failed to open * during pool load, but the 'autoreplace' property was * set, so we should pretend it's just been added. */ is_check = B_TRUE; } else if (strcmp(class, EC_DEV_STATUS) == 0 && strcmp(subclass, ESC_DEV_DLE) == 0) { is_dle = B_TRUE; } else { return (0); } if (is_dle) ret = zfs_deliver_dle(nvl); else if (is_check) ret = zfs_deliver_check(nvl); else ret = zfs_deliver_add(nvl, is_lofi); return (ret); } /*ARGSUSED*/ static void * zfs_enum_pools(void *arg) { (void) zpool_iter(g_zfshdl, zfs_unavail_pool, (void *)&g_pool_list); /* * Linux - instead of using a thread pool, each list entry * will spawn a thread when an unavailable pool transitions * to available. zfs_slm_fini will wait for these threads. */ g_enumeration_done = B_TRUE; return (NULL); } /* * called from zed daemon at startup * * sent messages from zevents or udev monitor * * For now, each agent has it's own libzfs instance */ int zfs_slm_init() { if ((g_zfshdl = __libzfs_init()) == NULL) return (-1); /* * collect a list of unavailable pools (asynchronously, * since this can take a while) */ list_create(&g_pool_list, sizeof (struct unavailpool), offsetof(struct unavailpool, uap_node)); if (pthread_create(&g_zfs_tid, NULL, zfs_enum_pools, NULL) != 0) { list_destroy(&g_pool_list); __libzfs_fini(g_zfshdl); return (-1); } list_create(&g_device_list, sizeof (struct pendingdev), offsetof(struct pendingdev, pd_node)); return (0); } void zfs_slm_fini() { unavailpool_t *pool; pendingdev_t *device; /* wait for zfs_enum_pools thread to complete */ (void) pthread_join(g_zfs_tid, NULL); while ((pool = (list_head(&g_pool_list))) != NULL) { /* * each pool entry has two possibilities * 1. was made available (so wait for zfs_enable_ds thread) * 2. still unavailable (just close the pool) */ if (pool->uap_enable_tid) (void) pthread_join(pool->uap_enable_tid, NULL); else if (pool->uap_zhp != NULL) zpool_close(pool->uap_zhp); list_remove(&g_pool_list, pool); free(pool); } list_destroy(&g_pool_list); while ((device = (list_head(&g_device_list))) != NULL) { list_remove(&g_device_list, device); free(device); } list_destroy(&g_device_list); __libzfs_fini(g_zfshdl); } void zfs_slm_event(const char *class, const char *subclass, nvlist_t *nvl) { zed_log_msg(LOG_INFO, "zfs_slm_event: %s.%s", class, subclass); (void) zfs_slm_deliver_event(class, subclass, nvl); }