summaryrefslogtreecommitdiffstats
path: root/scripts/Makefile.am
Commit message (Collapse)AuthorAgeFilesLines
* Add zfs-helpers.sh scriptBrian Behlendorf2016-05-101-1/+2
| | | | | | | | | | | | | Add a script designed to facilitate in-tree development and testing by installing symlinks on your system which refer to in-tree helper utilities. These helper utilities must be installed to in order to exercise all ZFS functionality. By using symbolic links and keeping the scripts in-tree during development they can be easily modified and those changes tracked. Signed-off-by: Brian Behlendorf <[email protected]> Signed-off-by: Olaf Faaland <[email protected]> Closes #4607
* Add zloop.sh test scriptBrian Behlendorf2016-03-231-0/+1
| | | | | | | | | | | | | | | | | | | Add Chris Williamson's "new" zloop script so that it may be intergated with ZoLs automated testing. The original script may be found in the openzfs-build repository on Github. Minor modifications were made to the script so it can be run directly from the ZoL source tree or from installed packages. Additionally it was updated to use gdb instead of mdb to extact debugging information from a core dump. References: https://github.com/openzfs/openzfs-build/commit/7fb5d8b https://github.com/openzfs/openzfs-build/blob/master/ansible/roles/openzfs-jenkins-slave/files/usr/local/zloop.sh Signed-off-by: Brian Behlendorf <[email protected]> Closes #4441
* Add the ZFS Test SuiteBrian Behlendorf2016-03-161-41/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Add the ZFS Test Suite and test-runner framework from illumos. This is a continuation of the work done by Turbo Fredriksson to port the ZFS Test Suite to Linux. While this work was originally conceived as a stand alone project integrating it directly with the ZoL source tree has several advantages: * Allows the ZFS Test Suite to be packaged in zfs-test package. * Facilitates easy integration with the CI testing. * Users can locally run the ZFS Test Suite to validate ZFS. This testing should ONLY be done on a dedicated test system because the ZFS Test Suite in its current form is destructive. * Allows the ZFS Test Suite to be run directly in the ZoL source tree enabled developers to iterate quickly during development. * Developers can easily add/modify tests in the framework as features are added or functionality is changed. The tests will then always be in sync with the implementation. Full documentation for how to run the ZFS Test Suite is available in the tests/README.md file. Warning: This test suite is designed to be run on a dedicated test system. It will make modifications to the system including, but not limited to, the following. * Adding new users * Adding new groups * Modifying the following /proc files: * /proc/sys/kernel/core_pattern * /proc/sys/kernel/core_uses_pid * Creating directories under / Notes: * Not all of the test cases are expected to pass and by default these test cases are disabled. The failures are primarily due to assumption made for illumos which are invalid under Linux. * When updating these test cases it should be done in as generic a way as possible so the patch can be submitted back upstream. Most existing library functions have been updated to be Linux aware, and the following functions and variables have been added. * Functions: * is_linux - Used to wrap a Linux specific section. * block_device_wait - Waits for block devices to be added to /dev/. * Variables: Linux Illumos * ZVOL_DEVDIR "/dev/zvol" "/dev/zvol/dsk" * ZVOL_RDEVDIR "/dev/zvol" "/dev/zvol/rdsk" * DEV_DSKDIR "/dev" "/dev/dsk" * DEV_RDSKDIR "/dev" "/dev/rdsk" * NEWFS_DEFAULT_FS "ext2" "ufs" * Many of the disabled test cases fail because 'zfs/zpool destroy' returns EBUSY. This is largely causes by the asynchronous nature of device handling on Linux and is expected, the impacted test cases will need to be updated to handle this. * There are several test cases which have been disabled because they can trigger a deadlock. A primary example of this is to recursively create zpools within zpools. These tests have been disabled until the root issue can be addressed. * Illumos specific utilities such as (mkfile) should be added to the tests/zfs-tests/cmd/ directory. Custom programs required by the test scripts can also be added here. * SELinux should be either is permissive mode or disabled when running the tests. The test cases should be updated to conform to a standard policy. * Redundant test functionality has been removed (zfault.sh). * Existing test scripts (zconfig.sh) should be migrated to use the framework for consistency and ease of testing. * The DISKS environment variable currently only supports loopback devices because of how the ZFS Test Suite expects partitions to be named (p1, p2, etc). Support must be added to generate the correct partition name based on the device location and name. * The ZFS Test Suite is part of the illumos code base at: https://github.com/illumos/illumos-gate/tree/master/usr/src/test Original-patch-by: Turbo Fredriksson <[email protected]> Signed-off-by: Brian Behlendorf <[email protected]> Signed-off-by: Olaf Faaland <[email protected]> Closes #6 Closes #1534
* Add ziltest.shBrian Behlendorf2015-06-261-0/+1
| | | | | | | | | | | | | | | The ziltest.sh script is a test case designed to verify the correct functioning of the ZIL. It's being added to the scripts directory so it can be easily added to the automated regression testing. The general idea is to build up an intent log from a bunch of diverse user commands without actually committing them to the file system. Then copy the file system, replay the intent log and compare the file system and the copy. Ported-by: Don Brady <[email protected]> Signed-off-by: Brian Behlendorf <[email protected]> Closes #3531
* Install header during post-build rather than post-install.Tom Prince2014-10-091-1/+1
| | | | | | | | | | | | | | | | New versions of dkms clean up the build directory after installing. It appears that this was always intended, but had rm -rf "/path/to/build/*" (note the quotes), which prevented it from working. Also, the build step is already installing stuff into the directory where these files go, so installing our stuff there as part of build rather than install makes sense. Signed-off-by: Tom Prince <[email protected]> Signed-off-by: Richard Yao <[email protected]> Signed-off-by: Brian Behlendorf <[email protected]> Closes #2776
* Add zimport.sh compatibility test scriptBrian Behlendorf2014-02-211-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Verify that an assortment of known good reference pools can be imported using different versions of the ZoL code. By default references pools for the major ZFS implementation will be checked against the most recent ZoL tags and the master development branch. Alternate tags or branches may be verified with the '-s <src-tag> option. Passing the keyword "installed" will instruct the script to test whatever version is installed. Preferentially a reference pool is used for all tests. However, if one does not exist and the pool-tag matches one of the src-tags then a new reference pool will be created using binaries from that source build. This is particularly useful when you need to test your changes before opening a pull request. New reference pools may be added by placing a bzip2 compressed tarball of the pool in the scripts/zpool-example directory and then passing the -p <pool-tag> option. To increase the test coverage reference pools should be collected for all the major ZFS implementations. Having these pools easily available is also helpful to the developers. Care should be taken to run these tests with a kernel supported by all the listed tags. Otherwise build failure will cause false positives. EXAMPLES: The following example will verify the zfs-0.6.2 tag, the master branch, and the installed zfs version can correctly import the listed pools. Note there is no reference pool available for master and installed but because binaries are available one is automatically constructed. The working directory is also preserved between runs (-k) preventing the need to rebuild from source for multiple runs. zimport.sh -k -f /var/tmp/zimport \ -s "zfs-0.6.1 zfs-0.6.2 master installed" \ -p "all master installed" --------------------- ZFS on Linux Source Versions -------------- zfs-0.6.1 zfs-0.6.2 master 0.6.2-180 ----------------------------------------------------------------- Clone SPL Skip Skip Skip Skip Clone ZFS Skip Skip Skip Skip Build SPL Skip Skip Skip Skip Build ZFS Skip Skip Skip Skip ----------------------------------------------------------------- zevo-1.1.1 Pass Pass Pass Pass zol-0.6.1 Pass Pass Pass Pass zol-0.6.2-173 Fail Fail Pass Pass zol-0.6.2 Pass Pass Pass Pass master Fail Fail Pass Pass installed Pass Pass Pass Pass Signed-off-by: Brian Behlendorf <[email protected]> Signed-off-by: Tim Chase <[email protected]> Signed-off-by: Richard Yao <[email protected]> Issue #2094
* Add cstyle.pl utility and cstyle.1 man pageBrian Behlendorf2013-10-301-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | Cstyle is the C source style checker used by Illumos. Since the original ZFS source was written using these style guidelines they must also be followed by ZoL for consistency. The checker has been added to the scripts directory and may be run on a per file basis. New patches should be careful to avoid introducing new style warnings. Additionally, the 'checkstyle' target has been added to the top level Makefile and can be used to check the entire source tree. While Zol has historically attempted to follow the SunOS style guide the lack of a rigorous style checker has allowed various warning to be introduced. Currently there are 2211 reported style violations and we want to gradually eliminate these from the tree. Note the cstyle.1 man page is provided under man/man1/cstyle.1 but since it is a developer utility it is not installed along with the other man pages. Signed-off-by: Brian Behlendorf <[email protected]>
* Add script to fix file names in upstream patchesPrakash Surya2013-10-291-1/+1
| | | | | | | | | | | | | | | | | | | | | Added a simple sed script to do a search and replace on the Illumos ZFS file names and replace them with the ZFS on Linux equivalent. Example usage: # Replace Illumos paths with Linux paths $ ./scripts/zfs2zol-patch.sed arc.c.patch > arc.c.patch.linux # Ensure the script worked as expected $ diff arc.c.patch arc.c.patch.linux # Apply the patch using Linux paths $ patch -p1 < arc.c.patch.linux Signed-off-by: Richard Yao <[email protected]> Signed-off-by: Prakash Surya <[email protected]> Signed-off-by: Brian Behlendorf <[email protected]> Closes #1679
* Refresh RPM packagingBrian Behlendorf2013-03-181-0/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | Refresh the existing RPM packaging to conform to the 'Fedora Packaging Guidelines'. This includes adopting the kmods2 packaging standard which is used fod kmods distributed by rpmfusion for Fedora/RHEL. http://fedoraproject.org/wiki/Packaging:Guidelines http://rpmfusion.org/Packaging/KernelModules/Kmods2 While the spec files have been entirely rewritten from a user perspective the only major changes are: * The Fedora packages now have a build dependency on the rpmfusion repositories. The generic kmod packages also have a new dependency on kmodtool-1.22 but it is bundled with the source rpm so no additional packages are needed. * The kernel binary module packages have been renamed from zfs-modules-* to kmod-zfs-* as specificed by kmods2. * The is now a common kmod-zfs-devel-* package in addition to the per-kernel devel packages. The common package contains the development headers while the per-kernel package contains kernel specific build products. Signed-off-by: Brian Behlendorf <[email protected]> Closes #1341
* Replace libexecdir with datadirBrian Behlendorf2013-03-061-20/+1
| | | | | | | | | | According to the FHS. Testing scripts and examples which are all architecture independent should be installed in a subdirectory under /usr/share. http://www.pathname.com/fhs/2.2/fhs-4.11.html Signed-off-by: Brian Behlendorf <[email protected]>
* Retire zpool_id infrastructureBrian Behlendorf2013-01-291-1/+1
| | | | | | | | | | | | | | | | | | | In the interest of maintaining only one udev helper to give vdevs user friendly names, the zpool_id and zpool_layout infrastructure is being retired. They are superseded by vdev_id which incorporates all the previous functionality. Documentation for the new vdev_id(8) helper and its configuration file, vdev_id.conf(5), can be found in their respective man pages. Several useful example files are installed under /etc/zfs/. /etc/zfs/vdev_id.conf.alias.example /etc/zfs/vdev_id.conf.multipath.example /etc/zfs/vdev_id.conf.sas_direct.example /etc/zfs/vdev_id.conf.sas_switch.example Signed-off-by: Brian Behlendorf <[email protected]> Closes #981
* Implemented sharing datasets via SMB using libshareTurbo Fredriksson2012-12-031-1/+2
| | | | | | | | | Add the initial support for the 'smbshare' option using the existing libshare infrastructure. Because this implementation relies on usershares samba version 3.0.23 is required. Signed-off-by: Brian Behlendorf <[email protected]> Closes #493
* Remove spl/zfs modules as part of cleanupBrian Behlendorf2010-11-111-0/+1
| | | | | | | | | | The idea behind the '-c' flag is to cleanup everything from a previous test run which might cause the test script to fail. This should also include removing the previously loaded module. This makes it a little easier to run 'zconfig.sh -c', however remember this is a test script and it will take all of your other zpools offline for the purposes of the test. This notion has also been extended to the default 'make check' behavior.
* Add zfault zpool configurations and testsBrian Behlendorf2010-10-121-1/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Eleven new zpool configurations were added to allow testing of various failure cases. The first 5 zpool configurations leverage the 'faulty' md device type which allow us to simuluate IO errors at the block layer. The last 6 zpool configurations leverage the scsi_debug module provided by modern kernels. This device allows you to create virtual scsi devices which are backed by a ram disk. With this setup we can verify the full IO stack by injecting faults at the lowest layer. Both methods of fault injection are important to verifying the IO stack. The zfs code itself also provides a mechanism for error injection via the zinject command line tool. While we should also take advantage of this appraoch to validate the code it does not address any of the Linux integration issues which are the most concerning. For the moment we're trusting that the upstream Solaris guys are running zinject and would have caught internal zfs logic errors. Currently, there are 6 r/w test cases layered on top of the 'faulty' md devices. They include 3 writes tests for soft/transient errors, hard/permenant errors, and all writes error to the device. There are 3 matching read tests for soft/transient errors, hard/permenant errors, and fixable read error with a write. Although for this last case zfs doesn't do anything special. The seventh test case verifies zfs detects and corrects checksum errors. In this case one of the drives is extensively damaged and by dd'ing over large sections of it. We then ensure zfs logs the issue and correctly rebuilds the damage. The next test cases use the scsi_debug configuration to injects error at the bottom of the scsi stack. This ensures we find any flaws in the scsi midlayer or our usage of it. Plus it stresses the device specific retry, timeout, and error handling outside of zfs's control. The eighth test case is to verify that the system correctly handles an intermittent device timeout. Here the scsi_debug device drops 1 in N requests resulting in a retry either at the block level. The ZFS code does specify the FAILFAST option but it turns out that for this case the Linux IO stack with still retry the command. The FAILFAST logic located in scsi_noretry_cmd() does no seem to apply to the simply timeout case. It appears to be more targeted to specific device or transport errors from the lower layers. The ninth test case handles a persistent failure in which the device is removed from the system by Linux. The test verifies that the failure is detected, the device is made unavailable, and then can be successfully re-add when brought back online. Additionally, it ensures that errors and events are logged to the correct places and the no data corruption has occured due to the failure.
* Add [-m map] option to zpool_layoutBrian Behlendorf2010-09-171-1/+1
| | | | | | | | | | | | | | | | | By default the zpool_layout command would always use the slot number assigned by Linux when generating the zdev.conf file. This is a reasonable default there are cases when it makes sense to remap the slot id assigned by Linux using your own custom mapping. This commit adds support to zpool_layout to provide a custom slot mapping file. The file contains in the first column the Linux slot it and in the second column the custom slot mapping. By passing this map file with '-m map' to zpool_config the mapping will be applied when generating zdev.conf. Additionally, two sample mapping have been added which reflect different ways to map the slots in the dragon drawers.
* Support custom build directories and move includesBrian Behlendorf2010-09-081-15/+32
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | One of the neat tricks an autoconf style project is capable of is allow configurion/building in a directory other than the source directory. The major advantage to this is that you can build the project various different ways while making changes in a single source tree. For example, this project is designed to work on various different Linux distributions each of which work slightly differently. This means that changes need to verified on each of those supported distributions perferably before the change is committed to the public git repo. Using nfs and custom build directories makes this much easier. I now have a single source tree in nfs mounted on several different systems each running a supported distribution. When I make a change to the source base I suspect may break things I can concurrently build from the same source on all the systems each in their own subdirectory. wget -c http://github.com/downloads/behlendorf/zfs/zfs-x.y.z.tar.gz tar -xzf zfs-x.y.z.tar.gz cd zfs-x-y-z ------------------------- run concurrently ---------------------- <ubuntu system> <fedora system> <debian system> <rhel6 system> mkdir ubuntu mkdir fedora mkdir debian mkdir rhel6 cd ubuntu cd fedora cd debian cd rhel6 ../configure ../configure ../configure ../configure make make make make make check make check make check make check This change also moves many of the include headers from individual incude/sys directories under the modules directory in to a single top level include directory. This has the advantage of making the build rules cleaner and logically it makes a bit more sense.
* Add linux zpios supportBrian Behlendorf2010-08-311-0/+14
| | | | | | Linux kernel implementation of PIOS test app. Signed-off-by: Brian Behlendorf <[email protected]>
* Add build systemBrian Behlendorf2010-08-311-0/+29
| | | | | | Add autoconf style build infrastructure to the ZFS tree. This includes autogen.sh, configure.ac, m4 macros, some scripts/*, and makefiles for all the core ZFS components.
* Removed build system from master branch, will relocate to linux-zfs-branchBrian Behlendorf2008-12-011-8/+0
|
* Initial Linux ZFS GIT RepoBrian Behlendorf2008-11-201-0/+8