| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
| |
Renamed to avoid conflicting with refcount.h when a different
implementation is already provided by the platform.
Reviewed-by: Ryan Moeller <[email protected]>
Reviewed-by: Brian Behlendorf <[email protected]>
Signed-off-by: Matt Macy <[email protected]>
Closes #10620
|
|
|
|
|
|
|
|
|
|
|
| |
Mark functions used only in the same translation unit as static. This
only includes functions that do not have a prototype in a header file
either.
Reviewed-by: Ryan Moeller <[email protected]>
Reviewed-by: Brian Behlendorf <[email protected]>
Signed-off-by: Arvind Sankar <[email protected]>
Closes #10470
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The strcpy() and sprintf() functions are deprecated on some platforms.
Care is needed to ensure correct size is used. If some platforms
miss snprintf, we can add a #define to sprintf, likewise strlcpy().
The biggest change is adding a size parameter to zfs_id_to_fuidstr().
The various *_impl_get() functions are only used on linux and have
not yet been updated.
Reviewed by: Sean Eric Fagan <[email protected]>
Reviewed-by: Brian Behlendorf <[email protected]>
Signed-off-by: Jorgen Lundman <[email protected]>
Closes #10400
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch implements a new tree structure for ZFS, and uses it to
store range trees more efficiently.
The new structure is approximately a B-tree, though there are some
small differences from the usual characterizations. The tree has core
nodes and leaf nodes; each contain data elements, which the elements
in the core nodes acting as separators between its children. The
difference between core and leaf nodes is that the core nodes have an
array of children, while leaf nodes don't. Every node in the tree may
be only partially full; in most cases, they are all at least 50% full
(in terms of element count) except for the root node, which can be
less full. Underfull nodes will steal from their neighbors or merge to
remain full enough, while overfull nodes will split in two. The data
elements are contained in tree-controlled buffers; they are copied
into these on insertion, and overwritten on deletion. This means that
the elements are not independently allocated, which reduces overhead,
but also means they can't be shared between trees (and also that
pointers to them are only valid until a side-effectful tree operation
occurs). The overhead varies based on how dense the tree is, but is
usually on the order of about 50% of the element size; the per-node
overheads are very small, and so don't make a significant difference.
The trees can accept arbitrary records; they accept a size and a
comparator to allow them to be used for a variety of purposes.
The new trees replace the AVL trees used in the range trees today.
Currently, the range_seg_t structure contains three 8 byte integers
of payload and two 24 byte avl_tree_node_ts to handle its storage in
both an offset-sorted tree and a size-sorted tree (total size: 64
bytes). In the new model, the range seg structures are usually two 4
byte integers, but a separate one needs to exist for the size-sorted
and offset-sorted tree. Between the raw size, the 50% overhead, and
the double storage, the new btrees are expected to use 8*1.5*2 = 24
bytes per record, or 33.3% as much memory as the AVL trees (this is
for the purposes of storing metaslab range trees; for other purposes,
like scrubs, they use ~50% as much memory).
We reduced the size of the payload in the range segments by teaching
range trees about starting offsets and shifts; since metaslabs have a
fixed starting offset, and they all operate in terms of disk sectors,
we can store the ranges using 4-byte integers as long as the size of
the metaslab divided by the sector size is less than 2^32. For 512-byte
sectors, this is a 2^41 (or 2TB) metaslab, which with the default
settings corresponds to a 256PB disk. 4k sector disks can handle
metaslabs up to 2^46 bytes, or 2^63 byte disks. Since we do not
anticipate disks of this size in the near future, there should be
almost no cases where metaslabs need 64-byte integers to store their
ranges. We do still have the capability to store 64-byte integer ranges
to account for cases where we are storing per-vdev (or per-dnode) trees,
which could reasonably go above the limits discussed. We also do not
store fill information in the compact version of the node, since it
is only used for sorted scrub.
We also optimized the metaslab loading process in various other ways
to offset some inefficiencies in the btree model. While individual
operations (find, insert, remove_from) are faster for the btree than
they are for the avl tree, remove usually requires a find operation,
while in the AVL tree model the element itself suffices. Some clever
changes actually caused an overall speedup in metaslab loading; we use
approximately 40% less cpu to load metaslabs in our tests on Illumos.
Another memory and performance optimization was achieved by changing
what is stored in the size-sorted trees. When a disk is heavily
fragmented, the df algorithm used by default in ZFS will almost always
find a number of small regions in its initial cursor-based search; it
will usually only fall back to the size-sorted tree to find larger
regions. If we increase the size of the cursor-based search slightly,
and don't store segments that are smaller than a tunable size floor
in the size-sorted tree, we can further cut memory usage down to
below 20% of what the AVL trees store. This also results in further
reductions in CPU time spent loading metaslabs.
The 16KiB size floor was chosen because it results in substantial memory
usage reduction while not usually resulting in situations where we can't
find an appropriate chunk with the cursor and are forced to use an
oversized chunk from the size-sorted tree. In addition, even if we do
have to use an oversized chunk from the size-sorted tree, the chunk
would be too small to use for ZIL allocations, so it isn't as big of a
loss as it might otherwise be. And often, more small allocations will
follow the initial one, and the cursor search will now find the
remainder of the chunk we didn't use all of and use it for subsequent
allocations. Practical testing has shown little or no change in
fragmentation as a result of this change.
If the size-sorted tree becomes empty while the offset sorted one still
has entries, it will load all the entries from the offset sorted tree
and disregard the size floor until it is unloaded again. This operation
occurs rarely with the default setting, only on incredibly thoroughly
fragmented pools.
There are some other small changes to zdb to teach it to handle btrees,
but nothing major.
Reviewed-by: George Wilson <[email protected]>
Reviewed-by: Matt Ahrens <[email protected]>
Reviewed by: Sebastien Roy [email protected]
Reviewed-by: Igor Kozhukhov <[email protected]>
Reviewed-by: Brian Behlendorf <[email protected]>
Signed-off-by: Paul Dagnelie <[email protected]>
Closes #9181
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When iterating over a ZAP object, we're almost always certain to iterate
over the entire object. If there are multiple leaf blocks, we can
realize a performance win by issuing reads for all the leaf blocks in
parallel when the iteration begins.
For example, if we have 10,000 snapshots, "zfs destroy -nv
pool/fs@1%9999" can take 30 minutes when the cache is cold. This change
provides a >3x performance improvement, by issuing the reads for all ~64
blocks of each ZAP object in parallel.
Reviewed-by: Andreas Dilger <[email protected]>
Reviewed-by: Brian Behlendorf <[email protected]>
Signed-off-by: Matthew Ahrens <[email protected]>
External-issue: DLPX-58347
Closes #8862
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Object allocation performance can be improved for complex operations
by providing an interface which returns the newly allocated dnode.
This allows the caller to immediately use the dnode without incurring
the expense of looking up the dnode by object number.
The functions dmu_object_alloc_hold(), zap_create_hold(), and
dmu_bonus_hold_by_dnode() were added for this purpose.
The zap_create_* functions have been updated to take advantage of
this new functionality. The dmu_bonus_hold_impl() function should
really have never been included in sys/dmu.h and was removed.
It's sole caller was converted to use dmu_bonus_hold_by_dnode().
The new symbols have been exported for use by Lustre.
Reviewed-by: Tony Hutter <[email protected]>
Reviewed by: Matt Ahrens <[email protected]>
Signed-off-by: Brian Behlendorf <[email protected]>
Closes #8015
|
|
|
|
|
|
|
|
|
|
|
| |
This patch simply removes an invalid assert from the zap_update()
function. The ASSERT is invalid because it does not hold the zap
lock from the time it fetches the old value to the time it confirms
that it is what it should be.
Reviewed by: Matt Ahrens <[email protected]>
Reviewed-by: Brian Behlendorf <[email protected]>
Signed-off-by: Tom Caputi <[email protected]>
Closes #8209
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
For the null pointer issue shown below, the solution is to initialize the
contents of the object before changing its type, so that concurrent accessors
will see it as non-zapified until it is ready for access via the ZAP.
BAD TRAP: type=e (#pf Page fault) rp=ffffff00ff520440 addr=20 occurred
in module "zfs" due to a NULL pointer dereference
ffffff00ff520320 unix:die+df ()
ffffff00ff520430 unix:trap+dc0 ()
ffffff00ff520440 unix:cmntrap+e6 ()
ffffff00ff520590 zfs:zap_leaf_lookup+46 ()
ffffff00ff520640 zfs:fzap_lookup+a9 ()
ffffff00ff5206e0 zfs:zap_lookup_norm+111 ()
ffffff00ff520730 zfs:zap_contains+42 ()
ffffff00ff520760 zfs:dsl_dataset_has_resume_receive_state+47 ()
ffffff00ff520900 zfs:get_receive_resume_stats+3e ()
ffffff00ff520a90 zfs:dsl_dataset_stats+262 ()
ffffff00ff520ac0 zfs:dmu_objset_stats+2b ()
ffffff00ff520b10 zfs:zfs_ioc_objset_stats_impl+64 ()
ffffff00ff520b60 zfs:zfs_ioc_objset_stats+33 ()
ffffff00ff520bd0 zfs:zfs_ioc_dataset_list_next+140 ()
ffffff00ff520c80 zfs:zfsdev_ioctl+4d7 ()
ffffff00ff520cc0 genunix:cdev_ioctl+39 ()
ffffff00ff520d10 specfs:spec_ioctl+60 ()
ffffff00ff520da0 genunix:fop_ioctl+55 ()
ffffff00ff520ec0 genunix:ioctl+9b ()
ffffff00ff520f10 unix:brand_sys_sysenter+1c9 ()
Porting Notes:
* DMU_OT_BYTESWAP conditional in zap_lockdir_impl() kept.
Authored by: Matthew Ahrens <[email protected]>
Reviewed by: Pavel Zakharov <[email protected]>
Reviewed by: Brad Lewis <[email protected]>
Reviewed-by: George Melikov <[email protected]>
Approved by: Dan McDonald <[email protected]>
Ported-by: Brian Behlendorf <[email protected]>
OpenZFS-issue: https://illumos.org/issues/9329
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/e8e0f97
Closes #7578
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The ZAP code was written before we allowed c99 in the Solaris kernel. We
should change it to take advantage of being able to declare variables where
they are first used. This reduces variable scope and means less scrolling
to find the type of variables.
Authored by: Matthew Ahrens <[email protected]>
Reviewed by: Steve Gonczi <[email protected]>
Reviewed by: George Wilson <[email protected]>
Reviewed-by: George Melikov <[email protected]>
Approved by: Dan McDonald <[email protected]>
Ported-by: Brian Behlendorf <[email protected]>
OpenZFS-issue: https://illumos.org/issues/9328
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/76ead05
Closes #7578
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Minimal changes required to integrate the SPL sources in to the
ZFS repository build infrastructure and packaging.
Build system and packaging:
* Renamed SPL_* autoconf m4 macros to ZFS_*.
* Removed redundant SPL_* autoconf m4 macros.
* Updated the RPM spec files to remove SPL package dependency.
* The zfs package obsoletes the spl package, and the zfs-kmod
package obsoletes the spl-kmod package.
* The zfs-kmod-devel* packages were updated to add compatibility
symlinks under /usr/src/spl-x.y.z until all dependent packages
can be updated. They will be removed in a future release.
* Updated copy-builtin script for in-kernel builds.
* Updated DKMS package to include the spl.ko.
* Updated stale AUTHORS file to include all contributors.
* Updated stale COPYRIGHT and included the SPL as an exception.
* Renamed README.markdown to README.md
* Renamed OPENSOLARIS.LICENSE to LICENSE.
* Renamed DISCLAIMER to NOTICE.
Required code changes:
* Removed redundant HAVE_SPL macro.
* Removed _BOOT from nvpairs since it doesn't apply for Linux.
* Initial header cleanup (removal of empty headers, refactoring).
* Remove SPL repository clone/build from zimport.sh.
* Use of DEFINE_RATELIMIT_STATE and DEFINE_SPINLOCK removed due
to build issues when forcing C99 compilation.
* Replaced legacy ACCESS_ONCE with READ_ONCE.
* Include needed headers for `current` and `EXPORT_SYMBOL`.
Reviewed-by: Tony Hutter <[email protected]>
Reviewed-by: Olaf Faaland <[email protected]>
Reviewed-by: Matthew Ahrens <[email protected]>
Reviewed-by: Pavel Zakharov <[email protected]>
Signed-off-by: Brian Behlendorf <[email protected]>
TEST_ZIMPORT_SKIP="yes"
Closes #7556
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Commit cc63068 caused ENOSPC error when copy a large amount of files
between two directories. The reason is that the patch limits zap leaf
expansion to 2 retries, and return ENOSPC when failed.
The intent for limiting retries is to prevent pointlessly growing table
to max size when adding a block full of entries with same name in
different case in mixed mode. However, it turns out we cannot use any
limit on the retry. When we copy files from one directory in readdir
order, we are copying in hash order, one leaf block at a time. Which
means that if the leaf block in source directory has expanded 6 times,
and you copy those entries in that block, by the time you need to expand
the leaf in destination directory, you need to expand it 6 times in one
go. So any limit on the retry will result in error where it shouldn't.
Note that while we do use different salt for different directories, it
seems that the salt/hash function doesn't provide enough randomization
to the hash distance to prevent this from happening.
Since cc63068 has already been reverted. This patch adds it back and
removes the retry limit.
Also, as it turn out, failing on zap_add() has a serious side effect for
mzap_upgrade(). When upgrading from micro zap to fat zap, it will
call zap_add() to transfer entries one at a time. If it hit any error
halfway through, the remaining entries will be lost, causing those files
to become orphan. This patch add a VERIFY to catch it.
Reviewed-by: Sanjeev Bagewadi <[email protected]>
Reviewed-by: Richard Yao <[email protected]>
Reviewed-by: Tony Hutter <[email protected]>
Reviewed-by: Albert Lee <[email protected]>
Reviewed-by: Brian Behlendorf <[email protected]>
Reviewed by: Matthew Ahrens <[email protected]>
Signed-off-by: Chunwei Chen <[email protected]>
Closes #7401
Closes #7421
|
|
|
|
|
|
|
|
|
|
|
|
| |
This reverts commit cc63068e95ee725cce03b1b7ce50179825a6cda5.
Under certain circumstances this change can result in an ENOSPC
error when adding new files to a directory. See #7401 for full
details.
Reviewed-by: Brian Behlendorf <[email protected]>
Signed-off-by: Tony Hutter <[email protected]>
Issue #7401
Cloes #7416
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
With "casesensitivity=mixed", zap_add() could fail when the number of
files/directories with the same name (varying in case) exceed the
capacity of the leaf node of a Fatzap. This results in a ASSERT()
failure as zfs_link_create() does not expect zap_add() to fail. The fix
is to handle these failures and rollback the transactions.
Reviewed by: Matt Ahrens <[email protected]>
Reviewed-by: Chunwei Chen <[email protected]>
Reviewed-by: Brian Behlendorf <[email protected]>
Signed-off-by: Sanjeev Bagewadi <[email protected]>
Closes #7011
Closes #7054
|
|
|
|
|
|
|
|
|
| |
With PR 5756 the zfs module now supports c99 and the
remaining past c89 workarounds can be undone.
Reviewed-by: Brian Behlendorf <[email protected]>
Reviewed-by: George Melikov <[email protected]>
Signed-off-by: Don Brady <[email protected]>
Closes #6816
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When performing concurrent object allocations using the new
multi-threaded allocator and large dnodes it's possible to
allocate overlapping large dnodes.
This case should have been handled by detecting an error
returned by dnode_hold_impl(). But that logic only checked
the returned dnp was not-NULL, and the dnp variable was not
reset to NULL when retrying. Resolve this issue by properly
checking the return value of dnode_hold_impl().
Additionally, it was possible that dnode_hold_impl() would
misreport a dnode as free when it was in fact in use. This
could occurs for two reasons:
* The per-slot zrl_lock must be held over the entire critical
section which includes the alloc/free until the new dnode
is assigned to children_dnodes. Additionally, all of the
zrl_lock's in the range must be held to protect moving
dnodes.
* The dn->dn_ot_type cannot be solely relied upon to check
the type. When allocating a new dnode its type will be
DMU_OT_NONE after dnode_create(). Only latter when
dnode_allocate() is called will it transition to the new
type. This means there's a window when allocating where
it can mistaken for a free dnode.
Reviewed-by: Giuseppe Di Natale <[email protected]>
Reviewed-by: Ned Bass <[email protected]>
Reviewed-by: Tony Hutter <[email protected]>
Reviewed-by: Olaf Faaland <[email protected]>
Signed-off-by: Brian Behlendorf <[email protected]>
Closes #6414
Closes #6439
|
|
|
|
|
|
|
|
|
| |
The proposed debugging enhancements in zfsonlinux/spl#587
identified the following missing *_destroy/*_fini calls.
Reviewed-by: Brian Behlendorf <[email protected]>
Signed-off-by: Gvozden Neskovic <[email protected]>
Closes #5428
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Reviewed by: Steve Gonczi <[email protected]>
Reviewed by: George Wilson <[email protected]>
Reviewed by: Pavel Zakharov <[email protected]>
Ported-by: Brian Behlendorf <[email protected]>
Background information: This assertion about tx_space_* verifies that we
are not dirtying more stuff than we thought we would. We “need” to know
how much we will dirty so that we can check if we should fail this
transaction with ENOSPC/EDQUOT, in dmu_tx_assign(). While the
transaction is open (i.e. between dmu_tx_assign() and dmu_tx_commit() —
typically less than a millisecond), we call dbuf_dirty() on the exact
blocks that will be modified. Once this happens, the temporary
accounting in tx_space_* is unnecessary, because we know exactly what
blocks are newly dirtied; we call dnode_willuse_space() to track this
more exact accounting.
The fundamental problem causing this bug is that dmu_tx_hold_*() relies
on the current state in the DMU (e.g. dn_nlevels) to predict how much
will be dirtied by this transaction, but this state can change before we
actually perform the transaction (i.e. call dbuf_dirty()).
This bug will be fixed by removing the assertion that the tx_space_*
accounting is perfectly accurate (i.e. we never dirty more than was
predicted by dmu_tx_hold_*()). By removing the requirement that this
accounting be perfectly accurate, we can also vastly simplify it, e.g.
removing most of the logic in dmu_tx_count_*().
The new tx space accounting will be very approximate, and may be more or
less than what is actually dirtied. It will still be used to determine
if this transaction will put us over quota. Transactions that are marked
by dmu_tx_mark_netfree() will be excepted from this check. We won’t make
an attempt to determine how much space will be freed by the transaction
— this was rarely accurate enough to determine if a transaction should
be permitted when we are over quota, which is why dmu_tx_mark_netfree()
was introduced in 2014.
We also won’t attempt to give “credit” when overwriting existing blocks,
if those blocks may be freed. This allows us to remove the
do_free_accounting logic in dbuf_dirty(), and associated routines. This
logic attempted to predict what will be on disk when this txg syncs, to
know if the overwritten block will be freed (i.e. exists, and has no
snapshots).
OpenZFS-issue: https://www.illumos.org/issues/7793
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/3704e0a
Upstream bugs: DLPX-32883a
Closes #5804
Porting notes:
- DNODE_SIZE replaced with DNODE_MIN_SIZE in dmu_tx_count_dnode(),
Using the default dnode size would be slightly better.
- DEBUG_DMU_TX wrappers and configure option removed.
- Resolved _by_dnode() conflicts these changes have not yet been
applied to OpenZFS.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
https://github.com/zfsonlinux/zfs/commit/0eef1bde31d67091d3deed23fe2394f5a8bf2276
introduced some changes which we slightly improved the style of when
porting to illumos.
There is also one minor error-handling fix, in zap_add() the "zap" may
become NULL in case of an error re-opening the ZAP.
Originally suggested at: https://github.com/openzfs/openzfs/pull/276
Reviewed-by: Brian Behlendorf <[email protected]>
Reviewed by: Pavel Zakharov <[email protected]>
Signed-off-by: Matthew Ahrens <[email protected]>
Closes #5805
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Authored by: Kevin Crowe <[email protected]>
Reviewed by: Yuri Pankov <[email protected]>
Reviewed by: Pavel Zakharov <[email protected]>
Reviewed by: Matt Ahrens <[email protected]>
Reviewed-by: Brian Behlendorf <[email protected]>
Ported-by: George Melikov <[email protected]>
OpenZFS-issue: https://www.illumos.org/issues/1300
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/8f1750d
Closes #5725
Porting notes:
- zap_micro.c: all `MT_EXACT` are replaced by `0`
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
fsid change
Authored by: Josef 'Jeff' Sipek <[email protected]>
Reviewed by: Saso Kiselkov <[email protected]>
Reviewed by: Sanjay Nadkarni <[email protected]>
Reviewed by: Dan Vatca <[email protected]>
Reviewed by: Matthew Ahrens <[email protected]>
Reviewed by: George Wilson <[email protected]>
Reviewed by: Sebastien Roy <[email protected]>
Approved by: Robert Mustacchi <[email protected]>
Reviewed-by: Brian Behlendorf <[email protected]>
Ported-by: George Melikov <[email protected]>
OpenZFS-issue: https://www.illumos.org/issues/6676
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/40510e8
Closes #5667
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Authored by: Igor Kozhukhov [email protected]
Reviewed by: George Wilson <[email protected]>
Reviewed by: Paul Dagnelie <[email protected]>
Reviewed by: Igor Kozhukhov <[email protected]>
Approved by: Dan McDonald <[email protected]>
Reviewed-by: Brian Behlendorf <[email protected]>
Ported-by: George Melikov [email protected]
OpenZFS-issue: https://www.illumos.org/issues/7054
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/0c779ad
Closes #5600
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add *_by_dnode() routines for accessing objects given their
dnode_t *, this is more efficient than accessing the object by
(objset_t *, uint64_t object). This change converts some but
not all of the existing consumers. As performance-sensitive
code paths are discovered they should be converted to use
these routines.
Reviewed-by: Matthew Ahrens <[email protected]>
Reviewed-by: Brian Behlendorf <[email protected]>
Signed-off-by: Alex Zhuravlev <[email protected]>
Closes #5534
Issue #4802
|
|
|
|
|
|
|
|
|
| |
Reviewed-by: Brian Behlendorf <[email protected]
Reviewed-by: Giuseppe Di Natale <[email protected]>>
Reviewed-by: George Melikov <[email protected]>
Reviewed-by: Haakan T Johansson <[email protected]>
Closes #5547
Closes #5543
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In multiple cases zio_buf_alloc() was used instead of kmem_alloc()
or vmem_alloc(). This was often done because the allocations
could be large and it was easy to use zfs_buf_alloc() for them.
But this isn't ideal for allocations which are small or short
lived. In these cases it is better to use kmem_alloc() or
vmem_alloc(). If possible we want to avoid the case where
we have slabs allocated for kmem caches which are rarely used.
Note for small allocations vmem_alloc() will be internally
converted to kmem_alloc(). Therefore as long as large
allocations are infrequent and short lived the penalty for
using vmem_alloc() is small.
Reviewed-by: Chunwei Chen <[email protected]>
Signed-off-by: Brian Behlendorf <[email protected]>
Closes #5409
|
|
|
|
|
|
|
|
|
|
| |
coverity scan CID:147650, Type:copy into fixed size buffer.
coverity scan CID:147649, Type:copy into fixed size buffer.
coverity scan CID:147647, Type:copy into fixed size buffer.
coverity scan CID:147646, Type:copy into fixed size buffer.
Reviewed-by: Brian Behlendorf <[email protected]>
Signed-off-by: cao.xuewen <[email protected]>
Closes #5161
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
perf: 2.75x faster ddt_entry_compare()
First 256bits of ddt_key_t is a block checksum, which are expected
to be close to random data. Hence, on average, comparison only needs to
look at first few bytes of the keys. To reduce number of conditional
jump instructions, the result is computed as: sign(memcmp(k1, k2)).
Sign of an integer 'a' can be obtained as: `(0 < a) - (a < 0)` := {-1, 0, 1} ,
which is computed efficiently. Synthetic performance evaluation of
original and new algorithm over 1G random keys on 2.6GHz Intel(R) Xeon(R)
CPU E5-2660 v3:
old 6.85789 s
new 2.49089 s
perf: 2.8x faster vdev_queue_offset_compare() and vdev_queue_timestamp_compare()
Compute the result directly instead of using conditionals
perf: zfs_range_compare()
Speedup between 1.1x - 2.5x, depending on compiler version and
optimization level.
perf: spa_error_entry_compare()
`bcmp()` is not suitable for comparator use. Use `memcmp()` instead.
perf: 2.8x faster metaslab_compare() and metaslab_rangesize_compare()
perf: 2.8x faster zil_bp_compare()
perf: 2.8x faster mze_compare()
perf: faster dbuf_compare()
perf: faster compares in spa_misc
perf: 2.8x faster layout_hash_compare()
perf: 2.8x faster space_reftree_compare()
perf: libzfs: faster avl tree comparators
perf: guid_compare()
perf: dsl_deadlist_compare()
perf: perm_set_compare()
perf: 2x faster range_tree_seg_compare()
perf: faster unique_compare()
perf: faster vdev_cache _compare()
perf: faster vdev_uberblock_compare()
perf: faster fuid _compare()
perf: faster zfs_znode_hold_compare()
Signed-off-by: Gvozden Neskovic <[email protected]>
Signed-off-by: Richard Elling <[email protected]>
Signed-off-by: Brian Behlendorf <[email protected]>
Closes #5033
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Using a benchmark which has 32 threads creating 2 million files in the
same directory, on a machine with 16 CPU cores, I observed poor
performance. I noticed that dmu_tx_hold_zap() was using about 30% of
all CPU, and doing dnode_hold() 7 times on the same object (the ZAP
object that is being held).
dmu_tx_hold_zap() keeps a hold on the dnode_t the entire time it is
running, in dmu_tx_hold_t:txh_dnode, so it would be nice to use the
dnode_t that we already have in hand, rather than repeatedly calling
dnode_hold(). To do this, we need to pass the dnode_t down through
all the intermediate calls that dmu_tx_hold_zap() makes, making these
routines take the dnode_t* rather than an objset_t* and a uint64_t
object number. In particular, the following routines will need to have
analogous *_by_dnode() variants created:
dmu_buf_hold_noread()
dmu_buf_hold()
zap_lookup()
zap_lookup_norm()
zap_count_write()
zap_lockdir()
zap_count_write()
This can improve performance on the benchmark described above by 100%,
from 30,000 file creations per second to 60,000. (This improvement is on
top of that provided by working around the object allocation issue. Peak
performance of ~90,000 creations per second was observed with 8 CPUs;
adding CPUs past that decreased performance due to lock contention.) The
CPU used by dmu_tx_hold_zap() was reduced by 88%, from 340 CPU-seconds
to 40 CPU-seconds.
Sponsored by: Intel Corp.
Signed-off-by: Matthew Ahrens <[email protected]>
Signed-off-by: Ned Bass <[email protected]>
Signed-off-by: Brian Behlendorf <[email protected]>
OpenZFS-issue: https://www.illumos.org/issues/7004
OpenZFS-commit: https://github.com/openzfs/openzfs/pull/109
Closes #4641
Closes #4972
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
zap_lockdir() / zap_unlockdir() should take a "void *tag" argument which
tags the hold on the zap. This will help diagnose programming errors
which misuse the hold on the ZAP.
Sponsored by: Intel Corp.
Signed-off-by: Matthew Ahrens <[email protected]>
Signed-off-by: Pavel Zakharov <[email protected]>
Signed-off-by: Brian Behlendorf <[email protected]>
OpenZFS-issue: https://www.illumos.org/issues/7003
OpenZFS-commit: https://github.com/openzfs/openzfs/pull/108
Closes #4972
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Justification
-------------
This feature adds support for variable length dnodes. Our motivation is
to eliminate the overhead associated with using spill blocks. Spill
blocks are used to store system attribute data (i.e. file metadata) that
does not fit in the dnode's bonus buffer. By allowing a larger bonus
buffer area the use of a spill block can be avoided. Spill blocks
potentially incur an additional read I/O for every dnode in a dnode
block. As a worst case example, reading 32 dnodes from a 16k dnode block
and all of the spill blocks could issue 33 separate reads. Now suppose
those dnodes have size 1024 and therefore don't need spill blocks. Then
the worst case number of blocks read is reduced to from 33 to two--one
per dnode block. In practice spill blocks may tend to be co-located on
disk with the dnode blocks so the reduction in I/O would not be this
drastic. In a badly fragmented pool, however, the improvement could be
significant.
ZFS-on-Linux systems that make heavy use of extended attributes would
benefit from this feature. In particular, ZFS-on-Linux supports the
xattr=sa dataset property which allows file extended attribute data
to be stored in the dnode bonus buffer as an alternative to the
traditional directory-based format. Workloads such as SELinux and the
Lustre distributed filesystem often store enough xattr data to force
spill bocks when xattr=sa is in effect. Large dnodes may therefore
provide a performance benefit to such systems.
Other use cases that may benefit from this feature include files with
large ACLs and symbolic links with long target names. Furthermore,
this feature may be desirable on other platforms in case future
applications or features are developed that could make use of a
larger bonus buffer area.
Implementation
--------------
The size of a dnode may be a multiple of 512 bytes up to the size of
a dnode block (currently 16384 bytes). A dn_extra_slots field was
added to the current on-disk dnode_phys_t structure to describe the
size of the physical dnode on disk. The 8 bits for this field were
taken from the zero filled dn_pad2 field. The field represents how
many "extra" dnode_phys_t slots a dnode consumes in its dnode block.
This convention results in a value of 0 for 512 byte dnodes which
preserves on-disk format compatibility with older software.
Similarly, the in-memory dnode_t structure has a new dn_num_slots field
to represent the total number of dnode_phys_t slots consumed on disk.
Thus dn->dn_num_slots is 1 greater than the corresponding
dnp->dn_extra_slots. This difference in convention was adopted
because, unlike on-disk structures, backward compatibility is not a
concern for in-memory objects, so we used a more natural way to
represent size for a dnode_t.
The default size for newly created dnodes is determined by the value of
a new "dnodesize" dataset property. By default the property is set to
"legacy" which is compatible with older software. Setting the property
to "auto" will allow the filesystem to choose the most suitable dnode
size. Currently this just sets the default dnode size to 1k, but future
code improvements could dynamically choose a size based on observed
workload patterns. Dnodes of varying sizes can coexist within the same
dataset and even within the same dnode block. For example, to enable
automatically-sized dnodes, run
# zfs set dnodesize=auto tank/fish
The user can also specify literal values for the dnodesize property.
These are currently limited to powers of two from 1k to 16k. The
power-of-2 limitation is only for simplicity of the user interface.
Internally the implementation can handle any multiple of 512 up to 16k,
and consumers of the DMU API can specify any legal dnode value.
The size of a new dnode is determined at object allocation time and
stored as a new field in the znode in-memory structure. New DMU
interfaces are added to allow the consumer to specify the dnode size
that a newly allocated object should use. Existing interfaces are
unchanged to avoid having to update every call site and to preserve
compatibility with external consumers such as Lustre. The new
interfaces names are given below. The versions of these functions that
don't take a dnodesize parameter now just call the _dnsize() versions
with a dnodesize of 0, which means use the legacy dnode size.
New DMU interfaces:
dmu_object_alloc_dnsize()
dmu_object_claim_dnsize()
dmu_object_reclaim_dnsize()
New ZAP interfaces:
zap_create_dnsize()
zap_create_norm_dnsize()
zap_create_flags_dnsize()
zap_create_claim_norm_dnsize()
zap_create_link_dnsize()
The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The
spa_maxdnodesize() function should be used to determine the maximum
bonus length for a pool.
These are a few noteworthy changes to key functions:
* The prototype for dnode_hold_impl() now takes a "slots" parameter.
When the DNODE_MUST_BE_FREE flag is set, this parameter is used to
ensure the hole at the specified object offset is large enough to
hold the dnode being created. The slots parameter is also used
to ensure a dnode does not span multiple dnode blocks. In both of
these cases, if a failure occurs, ENOSPC is returned. Keep in mind,
these failure cases are only possible when using DNODE_MUST_BE_FREE.
If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0.
dnode_hold_impl() will check if the requested dnode is already
consumed as an extra dnode slot by an large dnode, in which case
it returns ENOENT.
* The function dmu_object_alloc() advances to the next dnode block
if dnode_hold_impl() returns an error for a requested object.
This is because the beginning of the next dnode block is the only
location it can safely assume to either be a hole or a valid
starting point for a dnode.
* dnode_next_offset_level() and other functions that iterate
through dnode blocks may no longer use a simple array indexing
scheme. These now use the current dnode's dn_num_slots field to
advance to the next dnode in the block. This is to ensure we
properly skip the current dnode's bonus area and don't interpret it
as a valid dnode.
zdb
---
The zdb command was updated to display a dnode's size under the
"dnsize" column when the object is dumped.
For ZIL create log records, zdb will now display the slot count for
the object.
ztest
-----
Ztest chooses a random dnodesize for every newly created object. The
random distribution is more heavily weighted toward small dnodes to
better simulate real-world datasets.
Unused bonus buffer space is filled with non-zero values computed from
the object number, dataset id, offset, and generation number. This
helps ensure that the dnode traversal code properly skips the interior
regions of large dnodes, and that these interior regions are not
overwritten by data belonging to other dnodes. A new test visits each
object in a dataset. It verifies that the actual dnode size matches what
was stored in the ztest block tag when it was created. It also verifies
that the unused bonus buffer space is filled with the expected data
patterns.
ZFS Test Suite
--------------
Added six new large dnode-specific tests, and integrated the dnodesize
property into existing tests for zfs allow and send/recv.
Send/Receive
------------
ZFS send streams for datasets containing large dnodes cannot be received
on pools that don't support the large_dnode feature. A send stream with
large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be
unrecognized by an incompatible receiving pool so that the zfs receive
will fail gracefully.
While not implemented here, it may be possible to generate a
backward-compatible send stream from a dataset containing large
dnodes. The implementation may be tricky, however, because the send
object record for a large dnode would need to be resized to a 512
byte dnode, possibly kicking in a spill block in the process. This
means we would need to construct a new SA layout and possibly
register it in the SA layout object. The SA layout is normally just
sent as an ordinary object record. But if we are constructing new
layouts while generating the send stream we'd have to build the SA
layout object dynamically and send it at the end of the stream.
For sending and receiving between pools that do support large dnodes,
the drr_object send record type is extended with a new field to store
the dnode slot count. This field was repurposed from unused padding
in the structure.
ZIL Replay
----------
The dnode slot count is stored in the uppermost 8 bits of the lr_foid
field. The bits were unused as the object id is currently capped at
48 bits.
Resizing Dnodes
---------------
It should be possible to resize a dnode when it is dirtied if the
current dnodesize dataset property differs from the dnode's size, but
this functionality is not currently implemented. Clearly a dnode can
only grow if there are sufficient contiguous unused slots in the
dnode block, but it should always be possible to shrink a dnode.
Growing dnodes may be useful to reduce fragmentation in a pool with
many spill blocks in use. Shrinking dnodes may be useful to allow
sending a dataset to a pool that doesn't support the large_dnode
feature.
Feature Reference Counting
--------------------------
The reference count for the large_dnode pool feature tracks the
number of datasets that have ever contained a dnode of size larger
than 512 bytes. The first time a large dnode is created in a dataset
the dataset is converted to an extensible dataset. This is a one-way
operation and the only way to decrement the feature count is to
destroy the dataset, even if the dataset no longer contains any large
dnodes. The complexity of reference counting on a per-dnode basis was
too high, so we chose to track it on a per-dataset basis similarly to
the large_block feature.
Signed-off-by: Ned Bass <[email protected]>
Signed-off-by: Brian Behlendorf <[email protected]>
Closes #3542
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Reviewed by: Brian Behlendorf <[email protected]>
Reviewed by: Dan McDonald <[email protected]>
Reviewed by: Matthew Ahrens <[email protected]>
Approved by: Robert Mustacchi <[email protected]>
Ported-by: Denys Rtveliashvili <[email protected]>
Signed-off-by: Brian Behlendorf <[email protected]>
An initial version of this patch was applied in commit 29572cc and
subsequently refined upstream. Since the implementations do not
conflict with each other both are left applied for now.
OpenZFS-issue: https://www.illumos.org/issues/6842
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/02525cd
Closes #4615
|
|
|
|
|
|
|
|
|
|
|
| |
Provide a generic interface to prefetch ZAP entries by name. This
functionality is being added for external consumers such as Lustre.
It is based of the existing zap_prefetch_uint64() version which is
used by the deduplication code.
Signed-off-by: Brian Behlendorf <[email protected]>
Signed-off-by: Richard Yao <[email protected]>
Closes #4061
|
|
|
|
|
|
|
|
|
| |
Without the parenthesis, this particular ASSERT will evaluate to
"(RW_READER == (!zap->zap_ismicro && fatreader)) ? RW_READER : lti"
Signed-off-by: Chunwei Chen <[email protected]>
Signed-off-by: Brian Behlendorf <[email protected]>
Closes #3685
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
5027 zfs large block support
Reviewed by: Alek Pinchuk <[email protected]>
Reviewed by: George Wilson <[email protected]>
Reviewed by: Josef 'Jeff' Sipek <[email protected]>
Reviewed by: Richard Elling <[email protected]>
Reviewed by: Saso Kiselkov <[email protected]>
Reviewed by: Brian Behlendorf <[email protected]>
Approved by: Dan McDonald <[email protected]>
References:
https://www.illumos.org/issues/5027
https://github.com/illumos/illumos-gate/commit/b515258
Porting Notes:
* Included in this patch is a tiny ISP2() cleanup in zio_init() from
Illumos 5255.
* Unlike the upstream Illumos commit this patch does not impose an
arbitrary 128K block size limit on volumes. Volumes, like filesystems,
are limited by the zfs_max_recordsize=1M module option.
* By default the maximum record size is limited to 1M by the module
option zfs_max_recordsize. This value may be safely increased up to
16M which is the largest block size supported by the on-disk format.
At the moment, 1M blocks clearly offer a significant performance
improvement but the benefits of going beyond this for the majority
of workloads are less clear.
* The illumos version of this patch increased DMU_MAX_ACCESS to 32M.
This was determined not to be large enough when using 16M blocks
because the zfs_make_xattrdir() function will fail (EFBIG) when
assigning a TX. This was immediately observed under Linux because
all newly created files must have a security xattr created and
that was failing. Therefore, we've set DMU_MAX_ACCESS to 64M.
* On 32-bit platforms a hard limit of 1M is set for blocks due
to the limited virtual address space. We should be able to relax
this one the ABD patches are merged.
Ported-by: Brian Behlendorf <[email protected]>
Closes #354
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
3654 zdb should print number of ganged blocks
3656 remove unused function zap_cursor_move_to_key()
Reviewed by: George Wilson <[email protected]>
Reviewed by: Christopher Siden <[email protected]>
Reviewed by: Dan McDonald <[email protected]>
Approved by: Garrett D'Amore <[email protected]>
References:
https://www.illumos.org/issues/3654
https://www.illumos.org/issues/3656
https://github.com/illumos/illumos-gate/commit/d5ee8a1
Porting Notes:
3655 and 3657 were part of this commit but those hunks were dropped
since they apply to mdb.
Ported by: Brian Behlendorf <[email protected]>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
5056 ZFS deadlock on db_mtx and dn_holds
Author: Justin Gibbs <[email protected]>
Reviewed by: Will Andrews <[email protected]>
Reviewed by: Matt Ahrens <[email protected]>
Reviewed by: George Wilson <[email protected]>
Approved by: Dan McDonald <[email protected]>
References:
https://www.illumos.org/issues/5056
https://github.com/illumos/illumos-gate/commit/bc9014e
Porting Notes:
sa_handle_get_from_db():
- the original patch includes an otherwise unmentioned fix for a
possible usage of an uninitialised variable
dmu_objset_open_impl():
- Under Illumos list_link_init() is the same as filling a list_node_t
with NULLs, so they don't notice if they miss doing list_link_init()
on a zero'd containing structure (e.g. allocated with kmem_zalloc as
here). Under Linux, not so much: an uninitialised list_node_t goes
"Boom!" some time later when it's used or destroyed.
dmu_objset_evict_dbufs():
- reduce stack usage using kmem_alloc()
Ported-by: Chris Dunlop <[email protected]>
Signed-off-by: Brian Behlendorf <[email protected]>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
5314 Remove "dbuf phys" db->db_data pointer aliases in ZFS
Author: Justin T. Gibbs <[email protected]>
Reviewed by: Andriy Gapon <[email protected]>
Reviewed by: Matthew Ahrens <[email protected]>
Reviewed by: Will Andrews <[email protected]>
Approved by: Dan McDonald <[email protected]>
References:
https://www.illumos.org/issues/5314
https://github.com/illumos/illumos-gate/commit/c137962
Ported-by: Chris Dunlop <[email protected]>
Signed-off-by: Brian Behlendorf <[email protected]>
|
|
|
|
|
|
|
|
|
|
| |
There are a handful of ASSERT(!"...")'s throughout the code base for
cases which should be impossible. This patch converts them to use
cmn_err(CE_PANIC, ...) to ensure they are always enabled and so that
additional debugging is logged if they were to occur.
Signed-off-by: Brian Behlendorf <[email protected]>
Issue #1445
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
By marking DMU transaction processing contexts with PF_FSTRANS
we can revert the KM_PUSHPAGE -> KM_SLEEP changes. This brings
us back in line with upstream. In some cases this means simply
swapping the flags back. For others fnvlist_alloc() was replaced
by nvlist_alloc(..., KM_PUSHPAGE) and must be reverted back to
fnvlist_alloc() which assumes KM_SLEEP.
The one place KM_PUSHPAGE is kept is when allocating ARC buffers
which allows us to dip in to reserved memory. This is again the
same as upstream.
Signed-off-by: Brian Behlendorf <[email protected]>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
If a non-ZAP object is passed to zap_lockdir() it will be treated
as a valid ZAP object. This can result in zap_lockdir() attempting
to read what it believes are leaf blocks from invalid disk locations.
The SCSI layer will eventually generate errors for these bogus IOs
but the caller will hang in zap_get_leaf_byblk().
The good news is that is a situation which can not occur unless the
pool has been damaged. The bad news is that there are reports from
both FreeBSD and Solaris of damaged pools. Specifically, there are
normal files in the filesystem which reference another normal file
as their parent.
Since pools like this are known to exist the zap_lockdir() function
has been updated to verify the type of the object. If a non-ZAP
object has been passed it EINVAL will be returned immediately.
Signed-off-by: Brian Behlendorf <[email protected]>
Issue #2597
Issue #2602
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
As originally implemented the mzap_upgrade() function will
perform up to SPA_MAXBLOCKSIZE allocations using kmem_alloc().
These large allocations can potentially block indefinitely
if contiguous memory is not available. Since this allocation
is done under the zap->zap_rwlock it can appear as if there is
a deadlock in zap_lockdir(). This is shown below.
The optimal fix for this would be to rework mzap_upgrade()
such that no large allocations are required. This could be
done but it would result in us diverging further from the other
implementations. Therefore I've opted against doing this
unless it becomes absolutely necessary.
Instead mzap_upgrade() has been updated to use zio_buf_alloc()
which can reliably provide buffers of up to SPA_MAXBLOCKSIZE.
Signed-off-by: Brian Behlendorf <[email protected]>
Signed-off-by: Richard Yao <[email protected]>
Close #2580
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
4374 dn_free_ranges should use range_tree_t
Reviewed by: George Wilson <[email protected]>
Reviewed by: Max Grossman <[email protected]>
Reviewed by: Christopher Siden <[email protected]
Reviewed by: Garrett D'Amore <[email protected]>
Reviewed by: Dan McDonald <[email protected]>
Approved by: Dan McDonald <[email protected]>
References:
https://www.illumos.org/issues/4374
https://github.com/illumos/illumos-gate/commit/bf16b11
Ported by: Tim Chase <[email protected]>
Signed-off-by: Brian Behlendorf <[email protected]>
Closes #2531
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
4171 clean up spa_feature_*() interfaces
4172 implement extensible_dataset feature for use by other zpool features
Reviewed by: Max Grossman <[email protected]>
Reviewed by: Christopher Siden <[email protected]>
Reviewed by: George Wilson <[email protected]>
Reviewed by: Jerry Jelinek <[email protected]>
Approved by: Garrett D'Amore <[email protected]>a
References:
https://www.illumos.org/issues/4171
https://www.illumos.org/issues/4172
https://github.com/illumos/illumos-gate/commit/2acef22
Ported-by: Tim Chase <[email protected]>
Signed-off-by: Brian Behlendorf <[email protected]>
Closes #2528
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The vast majority of these changes are in Linux specific code.
They are the result of not having an automated style checker to
validate the code when it was originally written. Others were
caused when the common code was slightly adjusted for Linux.
This patch contains no functional changes. It only refreshes
the code to conform to style guide.
Everyone submitting patches for inclusion upstream should now
run 'make checkstyle' and resolve any warning prior to opening
a pull request. The automated builders have been updated to
fail a build if when 'make checkstyle' detects an issue.
Signed-off-by: Brian Behlendorf <[email protected]>
Closes #1821
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
3598 want to dtrace when errors are generated in zfs
Reviewed by: Dan Kimmel <[email protected]>
Reviewed by: Adam Leventhal <[email protected]>
Reviewed by: Christopher Siden <[email protected]>
Approved by: Garrett D'Amore <[email protected]>
References:
https://www.illumos.org/issues/3598
illumos/illumos-gate@be6fd75a69ae679453d9cda5bff3326111e6d1ca
Ported-by: Richard Yao <[email protected]>
Signed-off-by: Brian Behlendorf <[email protected]>
Issue #1775
Porting notes:
1. include/sys/zfs_context.h has been modified to render some new
macros inert until dtrace is available on Linux.
2. Linux-specific changes have been adapted to use SET_ERROR().
3. I'm NOT happy about this change. It does nothing but ugly
up the code under Linux. Unfortunately we need to take it to
avoid more merge conflicts in the future. -Brian
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
3006 VERIFY[S,U,P] and ASSERT[S,U,P] frequently check if first
argument is zero
Reviewed by Matt Ahrens <[email protected]>
Reviewed by George Wilson <[email protected]>
Approved by Eric Schrock <[email protected]>
References:
illumos/illumos-gate@fb09f5aad449c97fe309678f3f604982b563a96f
https://illumos.org/issues/3006
Requires:
zfsonlinux/spl@1c6d149feb4033e4a56fb987004edc5d45288bcb
Ported-by: Tim Chase <[email protected]>
Signed-off-by: Brian Behlendorf <[email protected]>
Closes #1509
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
2619 asynchronous destruction of ZFS file systems
2747 SPA versioning with zfs feature flags
Reviewed by: Matt Ahrens <[email protected]>
Reviewed by: George Wilson <[email protected]>
Reviewed by: Richard Lowe <[email protected]>
Reviewed by: Dan Kruchinin <[email protected]>
Approved by: Eric Schrock <[email protected]>
References:
illumos/illumos-gate@53089ab7c84db6fb76c16ca50076c147cda11757
illumos/illumos-gate@ad135b5d644628e791c3188a6ecbd9c257961ef8
illumos changeset: 13700:2889e2596bd6
https://www.illumos.org/issues/2619
https://www.illumos.org/issues/2747
NOTE: The grub specific changes were not ported. This change
must be made to the Linux grub packages.
Ported-by: Brian Behlendorf <[email protected]>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This warning indicates the incorrect use of KM_SLEEP in a call
path which must use KM_PUSHPAGE to avoid deadlocking in direct
reclaim. See commit b8d06fca089fae4680c3a552fc55c512bfb02202
for additional details.
SPL: Fixing allocation for task txg_sync (6093) which
used GFP flags 0x297bda7c with PF_NOFS set
Signed-off-by: Brian Behlendorf <[email protected]>
Issue #917
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Differences between how paging is done on Solaris and Linux can cause
deadlocks if KM_SLEEP is used in any the following contexts.
* The txg_sync thread
* The zvol write/discard threads
* The zpl_putpage() VFS callback
This is because KM_SLEEP will allow for direct reclaim which may result
in the VM calling back in to the filesystem or block layer to write out
pages. If a lock is held over this operation the potential exists to
deadlock the system. To ensure forward progress all memory allocations
in these contexts must us KM_PUSHPAGE which disables performing any I/O
to accomplish the memory allocation.
Previously, this behavior was acheived by setting PF_MEMALLOC on the
thread. However, that resulted in unexpected side effects such as the
exhaustion of pages in ZONE_DMA. This approach touchs more of the zfs
code, but it is more consistent with the right way to handle these cases
under Linux.
This is patch lays the ground work for being able to safely revert the
following commits which used PF_MEMALLOC:
21ade34 Disable direct reclaim for z_wr_* threads
cfc9a5c Fix zpl_writepage() deadlock
eec8164 Fix ASSERTION(!dsl_pool_sync_context(tx->tx_pool))
Signed-off-by: Richard Yao <[email protected]>
Signed-off-by: Brian Behlendorf <[email protected]>
Issue #726
|
|
|
|
|
|
|
|
|
|
| |
These allocations in mzap_update() used to be kmem_alloc() but
were changed to vmem_alloc() due to the size of the allocation.
However, since it turns out this function may be called in the
context of the txg_sync thread they must be changed back to use
a kmem_alloc() to ensure the KM_PUSHPAGE flag is honored.
Signed-off-by: Brian Behlendorf <[email protected]>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
1644 add ZFS "clones" property
1645 add ZFS "written" and "written@..." properties
1646 "zfs send" should estimate size of stream
1647 "zfs destroy" should determine space reclaimed by
destroying multiple snapshots
1708 adjust size of zpool history data
References:
https://www.illumos.org/issues/1644
https://www.illumos.org/issues/1645
https://www.illumos.org/issues/1646
https://www.illumos.org/issues/1647
https://www.illumos.org/issues/1708
This commit modifies the user to kernel space ioctl ABI. Extra
care should be taken when updating to ensure both the kernel
modules and utilities are updated. This change has reordered
all of the new ioctl()s to the end of the list. This should
help minimize this issue in the future.
Reviewed by: Richard Lowe <[email protected]>
Reviewed by: George Wilson <[email protected]>
Reviewed by: Albert Lee <[email protected]>
Approved by: Garrett D'Amore <[email protected]>
Ported by: Martin Matuska <[email protected]>
Signed-off-by: Brian Behlendorf <[email protected]>
Closes #826
Closes #664
|