diff options
Diffstat (limited to 'zfs/lib/libzpool/zap_leaf.c')
-rw-r--r-- | zfs/lib/libzpool/zap_leaf.c | 853 |
1 files changed, 853 insertions, 0 deletions
diff --git a/zfs/lib/libzpool/zap_leaf.c b/zfs/lib/libzpool/zap_leaf.c new file mode 100644 index 000000000..132b7af62 --- /dev/null +++ b/zfs/lib/libzpool/zap_leaf.c @@ -0,0 +1,853 @@ +/* + * CDDL HEADER START + * + * The contents of this file are subject to the terms of the + * Common Development and Distribution License (the "License"). + * You may not use this file except in compliance with the License. + * + * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE + * or http://www.opensolaris.org/os/licensing. + * See the License for the specific language governing permissions + * and limitations under the License. + * + * When distributing Covered Code, include this CDDL HEADER in each + * file and include the License file at usr/src/OPENSOLARIS.LICENSE. + * If applicable, add the following below this CDDL HEADER, with the + * fields enclosed by brackets "[]" replaced with your own identifying + * information: Portions Copyright [yyyy] [name of copyright owner] + * + * CDDL HEADER END + */ +/* + * Copyright 2007 Sun Microsystems, Inc. All rights reserved. + * Use is subject to license terms. + */ + +#pragma ident "@(#)zap_leaf.c 1.9 07/11/16 SMI" + +/* + * The 512-byte leaf is broken into 32 16-byte chunks. + * chunk number n means l_chunk[n], even though the header precedes it. + * the names are stored null-terminated. + */ + +#include <sys/zfs_context.h> +#include <sys/zap.h> +#include <sys/zap_impl.h> +#include <sys/zap_leaf.h> +#include <sys/spa.h> +#include <sys/dmu.h> + +static uint16_t *zap_leaf_rehash_entry(zap_leaf_t *l, uint16_t entry); + +#define CHAIN_END 0xffff /* end of the chunk chain */ + +/* half the (current) minimum block size */ +#define MAX_ARRAY_BYTES (8<<10) + +#define LEAF_HASH(l, h) \ + ((ZAP_LEAF_HASH_NUMENTRIES(l)-1) & \ + ((h) >> (64 - ZAP_LEAF_HASH_SHIFT(l)-(l)->l_phys->l_hdr.lh_prefix_len))) + +#define LEAF_HASH_ENTPTR(l, h) (&(l)->l_phys->l_hash[LEAF_HASH(l, h)]) + + +static void +zap_memset(void *a, int c, size_t n) +{ + char *cp = a; + char *cpend = cp + n; + + while (cp < cpend) + *cp++ = c; +} + +static void +stv(int len, void *addr, uint64_t value) +{ + switch (len) { + case 1: + *(uint8_t *)addr = value; + return; + case 2: + *(uint16_t *)addr = value; + return; + case 4: + *(uint32_t *)addr = value; + return; + case 8: + *(uint64_t *)addr = value; + return; + } + ASSERT(!"bad int len"); +} + +static uint64_t +ldv(int len, const void *addr) +{ + switch (len) { + case 1: + return (*(uint8_t *)addr); + case 2: + return (*(uint16_t *)addr); + case 4: + return (*(uint32_t *)addr); + case 8: + return (*(uint64_t *)addr); + } + ASSERT(!"bad int len"); + return (0xFEEDFACEDEADBEEFULL); +} + +void +zap_leaf_byteswap(zap_leaf_phys_t *buf, int size) +{ + int i; + zap_leaf_t l; + l.l_bs = highbit(size)-1; + l.l_phys = buf; + + buf->l_hdr.lh_block_type = BSWAP_64(buf->l_hdr.lh_block_type); + buf->l_hdr.lh_prefix = BSWAP_64(buf->l_hdr.lh_prefix); + buf->l_hdr.lh_magic = BSWAP_32(buf->l_hdr.lh_magic); + buf->l_hdr.lh_nfree = BSWAP_16(buf->l_hdr.lh_nfree); + buf->l_hdr.lh_nentries = BSWAP_16(buf->l_hdr.lh_nentries); + buf->l_hdr.lh_prefix_len = BSWAP_16(buf->l_hdr.lh_prefix_len); + buf->l_hdr.lh_freelist = BSWAP_16(buf->l_hdr.lh_freelist); + + for (i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(&l); i++) + buf->l_hash[i] = BSWAP_16(buf->l_hash[i]); + + for (i = 0; i < ZAP_LEAF_NUMCHUNKS(&l); i++) { + zap_leaf_chunk_t *lc = &ZAP_LEAF_CHUNK(&l, i); + struct zap_leaf_entry *le; + + switch (lc->l_free.lf_type) { + case ZAP_CHUNK_ENTRY: + le = &lc->l_entry; + + le->le_type = BSWAP_8(le->le_type); + le->le_int_size = BSWAP_8(le->le_int_size); + le->le_next = BSWAP_16(le->le_next); + le->le_name_chunk = BSWAP_16(le->le_name_chunk); + le->le_name_length = BSWAP_16(le->le_name_length); + le->le_value_chunk = BSWAP_16(le->le_value_chunk); + le->le_value_length = BSWAP_16(le->le_value_length); + le->le_cd = BSWAP_32(le->le_cd); + le->le_hash = BSWAP_64(le->le_hash); + break; + case ZAP_CHUNK_FREE: + lc->l_free.lf_type = BSWAP_8(lc->l_free.lf_type); + lc->l_free.lf_next = BSWAP_16(lc->l_free.lf_next); + break; + case ZAP_CHUNK_ARRAY: + lc->l_array.la_type = BSWAP_8(lc->l_array.la_type); + lc->l_array.la_next = BSWAP_16(lc->l_array.la_next); + /* la_array doesn't need swapping */ + break; + default: + ASSERT(!"bad leaf type"); + } + } +} + +void +zap_leaf_init(zap_leaf_t *l, boolean_t sort) +{ + int i; + + l->l_bs = highbit(l->l_dbuf->db_size)-1; + zap_memset(&l->l_phys->l_hdr, 0, sizeof (struct zap_leaf_header)); + zap_memset(l->l_phys->l_hash, CHAIN_END, 2*ZAP_LEAF_HASH_NUMENTRIES(l)); + for (i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) { + ZAP_LEAF_CHUNK(l, i).l_free.lf_type = ZAP_CHUNK_FREE; + ZAP_LEAF_CHUNK(l, i).l_free.lf_next = i+1; + } + ZAP_LEAF_CHUNK(l, ZAP_LEAF_NUMCHUNKS(l)-1).l_free.lf_next = CHAIN_END; + l->l_phys->l_hdr.lh_block_type = ZBT_LEAF; + l->l_phys->l_hdr.lh_magic = ZAP_LEAF_MAGIC; + l->l_phys->l_hdr.lh_nfree = ZAP_LEAF_NUMCHUNKS(l); + if (sort) + l->l_phys->l_hdr.lh_flags |= ZLF_ENTRIES_CDSORTED; +} + +/* + * Routines which manipulate leaf chunks (l_chunk[]). + */ + +static uint16_t +zap_leaf_chunk_alloc(zap_leaf_t *l) +{ + int chunk; + + ASSERT(l->l_phys->l_hdr.lh_nfree > 0); + + chunk = l->l_phys->l_hdr.lh_freelist; + ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); + ASSERT3U(ZAP_LEAF_CHUNK(l, chunk).l_free.lf_type, ==, ZAP_CHUNK_FREE); + + l->l_phys->l_hdr.lh_freelist = ZAP_LEAF_CHUNK(l, chunk).l_free.lf_next; + + l->l_phys->l_hdr.lh_nfree--; + + return (chunk); +} + +static void +zap_leaf_chunk_free(zap_leaf_t *l, uint16_t chunk) +{ + struct zap_leaf_free *zlf = &ZAP_LEAF_CHUNK(l, chunk).l_free; + ASSERT3U(l->l_phys->l_hdr.lh_nfree, <, ZAP_LEAF_NUMCHUNKS(l)); + ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); + ASSERT(zlf->lf_type != ZAP_CHUNK_FREE); + + zlf->lf_type = ZAP_CHUNK_FREE; + zlf->lf_next = l->l_phys->l_hdr.lh_freelist; + bzero(zlf->lf_pad, sizeof (zlf->lf_pad)); /* help it to compress */ + l->l_phys->l_hdr.lh_freelist = chunk; + + l->l_phys->l_hdr.lh_nfree++; +} + +/* + * Routines which manipulate leaf arrays (zap_leaf_array type chunks). + */ + +static uint16_t +zap_leaf_array_create(zap_leaf_t *l, const char *buf, + int integer_size, int num_integers) +{ + uint16_t chunk_head; + uint16_t *chunkp = &chunk_head; + int byten = 0; + uint64_t value; + int shift = (integer_size-1)*8; + int len = num_integers; + + ASSERT3U(num_integers * integer_size, <, MAX_ARRAY_BYTES); + + while (len > 0) { + uint16_t chunk = zap_leaf_chunk_alloc(l); + struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array; + int i; + + la->la_type = ZAP_CHUNK_ARRAY; + for (i = 0; i < ZAP_LEAF_ARRAY_BYTES; i++) { + if (byten == 0) + value = ldv(integer_size, buf); + la->la_array[i] = value >> shift; + value <<= 8; + if (++byten == integer_size) { + byten = 0; + buf += integer_size; + if (--len == 0) + break; + } + } + + *chunkp = chunk; + chunkp = &la->la_next; + } + *chunkp = CHAIN_END; + + return (chunk_head); +} + +static void +zap_leaf_array_free(zap_leaf_t *l, uint16_t *chunkp) +{ + uint16_t chunk = *chunkp; + + *chunkp = CHAIN_END; + + while (chunk != CHAIN_END) { + int nextchunk = ZAP_LEAF_CHUNK(l, chunk).l_array.la_next; + ASSERT3U(ZAP_LEAF_CHUNK(l, chunk).l_array.la_type, ==, + ZAP_CHUNK_ARRAY); + zap_leaf_chunk_free(l, chunk); + chunk = nextchunk; + } +} + +/* array_len and buf_len are in integers, not bytes */ +static void +zap_leaf_array_read(zap_leaf_t *l, uint16_t chunk, + int array_int_len, int array_len, int buf_int_len, uint64_t buf_len, + char *buf) +{ + int len = MIN(array_len, buf_len); + int byten = 0; + uint64_t value = 0; + + ASSERT3U(array_int_len, <=, buf_int_len); + + /* Fast path for one 8-byte integer */ + if (array_int_len == 8 && buf_int_len == 8 && len == 1) { + struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array; + uint8_t *ip = la->la_array; + uint64_t *buf64 = (uint64_t *)buf; + + *buf64 = (uint64_t)ip[0] << 56 | (uint64_t)ip[1] << 48 | + (uint64_t)ip[2] << 40 | (uint64_t)ip[3] << 32 | + (uint64_t)ip[4] << 24 | (uint64_t)ip[5] << 16 | + (uint64_t)ip[6] << 8 | (uint64_t)ip[7]; + return; + } + + /* Fast path for an array of 1-byte integers (eg. the entry name) */ + if (array_int_len == 1 && buf_int_len == 1 && + buf_len > array_len + ZAP_LEAF_ARRAY_BYTES) { + while (chunk != CHAIN_END) { + struct zap_leaf_array *la = + &ZAP_LEAF_CHUNK(l, chunk).l_array; + bcopy(la->la_array, buf, ZAP_LEAF_ARRAY_BYTES); + buf += ZAP_LEAF_ARRAY_BYTES; + chunk = la->la_next; + } + return; + } + + while (len > 0) { + struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array; + int i; + + ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); + for (i = 0; i < ZAP_LEAF_ARRAY_BYTES && len > 0; i++) { + value = (value << 8) | la->la_array[i]; + byten++; + if (byten == array_int_len) { + stv(buf_int_len, buf, value); + byten = 0; + len--; + if (len == 0) + return; + buf += buf_int_len; + } + } + chunk = la->la_next; + } +} + +/* + * Only to be used on 8-bit arrays. + * array_len is actual len in bytes (not encoded le_value_length). + * namenorm is null-terminated. + */ +static boolean_t +zap_leaf_array_match(zap_leaf_t *l, zap_name_t *zn, int chunk, int array_len) +{ + int bseen = 0; + + if (zn->zn_matchtype == MT_FIRST) { + char *thisname = kmem_alloc(array_len, KM_SLEEP); + boolean_t match; + + zap_leaf_array_read(l, chunk, 1, array_len, 1, + array_len, thisname); + match = zap_match(zn, thisname); + kmem_free(thisname, array_len); + return (match); + } + + /* Fast path for exact matching */ + while (bseen < array_len) { + struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array; + int toread = MIN(array_len - bseen, ZAP_LEAF_ARRAY_BYTES); + ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); + if (bcmp(la->la_array, zn->zn_name_orij + bseen, toread)) + break; + chunk = la->la_next; + bseen += toread; + } + return (bseen == array_len); +} + +/* + * Routines which manipulate leaf entries. + */ + +int +zap_leaf_lookup(zap_leaf_t *l, zap_name_t *zn, zap_entry_handle_t *zeh) +{ + uint16_t *chunkp; + struct zap_leaf_entry *le; + + ASSERT3U(l->l_phys->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC); + +again: + for (chunkp = LEAF_HASH_ENTPTR(l, zn->zn_hash); + *chunkp != CHAIN_END; chunkp = &le->le_next) { + uint16_t chunk = *chunkp; + le = ZAP_LEAF_ENTRY(l, chunk); + + ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); + ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); + + if (le->le_hash != zn->zn_hash) + continue; + + /* + * NB: the entry chain is always sorted by cd on + * normalized zap objects, so this will find the + * lowest-cd match for MT_FIRST. + */ + ASSERT(zn->zn_matchtype == MT_EXACT || + (l->l_phys->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED)); + if (zap_leaf_array_match(l, zn, le->le_name_chunk, + le->le_name_length)) { + zeh->zeh_num_integers = le->le_value_length; + zeh->zeh_integer_size = le->le_int_size; + zeh->zeh_cd = le->le_cd; + zeh->zeh_hash = le->le_hash; + zeh->zeh_chunkp = chunkp; + zeh->zeh_leaf = l; + return (0); + } + } + + /* + * NB: we could of course do this in one pass, but that would be + * a pain. We'll see if MT_BEST is even used much. + */ + if (zn->zn_matchtype == MT_BEST) { + zn->zn_matchtype = MT_FIRST; + goto again; + } + + return (ENOENT); +} + +/* Return (h1,cd1 >= h2,cd2) */ +#define HCD_GTEQ(h1, cd1, h2, cd2) \ + ((h1 > h2) ? TRUE : ((h1 == h2 && cd1 >= cd2) ? TRUE : FALSE)) + +int +zap_leaf_lookup_closest(zap_leaf_t *l, + uint64_t h, uint32_t cd, zap_entry_handle_t *zeh) +{ + uint16_t chunk; + uint64_t besth = -1ULL; + uint32_t bestcd = ZAP_MAXCD; + uint16_t bestlh = ZAP_LEAF_HASH_NUMENTRIES(l)-1; + uint16_t lh; + struct zap_leaf_entry *le; + + ASSERT3U(l->l_phys->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC); + + for (lh = LEAF_HASH(l, h); lh <= bestlh; lh++) { + for (chunk = l->l_phys->l_hash[lh]; + chunk != CHAIN_END; chunk = le->le_next) { + le = ZAP_LEAF_ENTRY(l, chunk); + + ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); + ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); + + if (HCD_GTEQ(le->le_hash, le->le_cd, h, cd) && + HCD_GTEQ(besth, bestcd, le->le_hash, le->le_cd)) { + ASSERT3U(bestlh, >=, lh); + bestlh = lh; + besth = le->le_hash; + bestcd = le->le_cd; + + zeh->zeh_num_integers = le->le_value_length; + zeh->zeh_integer_size = le->le_int_size; + zeh->zeh_cd = le->le_cd; + zeh->zeh_hash = le->le_hash; + zeh->zeh_fakechunk = chunk; + zeh->zeh_chunkp = &zeh->zeh_fakechunk; + zeh->zeh_leaf = l; + } + } + } + + return (bestcd == ZAP_MAXCD ? ENOENT : 0); +} + +int +zap_entry_read(const zap_entry_handle_t *zeh, + uint8_t integer_size, uint64_t num_integers, void *buf) +{ + struct zap_leaf_entry *le = + ZAP_LEAF_ENTRY(zeh->zeh_leaf, *zeh->zeh_chunkp); + ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); + + if (le->le_int_size > integer_size) + return (EINVAL); + + zap_leaf_array_read(zeh->zeh_leaf, le->le_value_chunk, le->le_int_size, + le->le_value_length, integer_size, num_integers, buf); + + if (zeh->zeh_num_integers > num_integers) + return (EOVERFLOW); + return (0); + +} + +int +zap_entry_read_name(const zap_entry_handle_t *zeh, uint16_t buflen, char *buf) +{ + struct zap_leaf_entry *le = + ZAP_LEAF_ENTRY(zeh->zeh_leaf, *zeh->zeh_chunkp); + ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); + + zap_leaf_array_read(zeh->zeh_leaf, le->le_name_chunk, 1, + le->le_name_length, 1, buflen, buf); + if (le->le_name_length > buflen) + return (EOVERFLOW); + return (0); +} + +int +zap_entry_update(zap_entry_handle_t *zeh, + uint8_t integer_size, uint64_t num_integers, const void *buf) +{ + int delta_chunks; + zap_leaf_t *l = zeh->zeh_leaf; + struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, *zeh->zeh_chunkp); + + delta_chunks = ZAP_LEAF_ARRAY_NCHUNKS(num_integers * integer_size) - + ZAP_LEAF_ARRAY_NCHUNKS(le->le_value_length * le->le_int_size); + + if ((int)l->l_phys->l_hdr.lh_nfree < delta_chunks) + return (EAGAIN); + + /* + * We should search other chained leaves (via + * zap_entry_remove,create?) otherwise returning EAGAIN will + * just send us into an infinite loop if we have to chain + * another leaf block, rather than being able to split this + * block. + */ + + zap_leaf_array_free(l, &le->le_value_chunk); + le->le_value_chunk = + zap_leaf_array_create(l, buf, integer_size, num_integers); + le->le_value_length = num_integers; + le->le_int_size = integer_size; + return (0); +} + +void +zap_entry_remove(zap_entry_handle_t *zeh) +{ + uint16_t entry_chunk; + struct zap_leaf_entry *le; + zap_leaf_t *l = zeh->zeh_leaf; + + ASSERT3P(zeh->zeh_chunkp, !=, &zeh->zeh_fakechunk); + + entry_chunk = *zeh->zeh_chunkp; + le = ZAP_LEAF_ENTRY(l, entry_chunk); + ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); + + zap_leaf_array_free(l, &le->le_name_chunk); + zap_leaf_array_free(l, &le->le_value_chunk); + + *zeh->zeh_chunkp = le->le_next; + zap_leaf_chunk_free(l, entry_chunk); + + l->l_phys->l_hdr.lh_nentries--; +} + +int +zap_entry_create(zap_leaf_t *l, const char *name, uint64_t h, uint32_t cd, + uint8_t integer_size, uint64_t num_integers, const void *buf, + zap_entry_handle_t *zeh) +{ + uint16_t chunk; + uint16_t *chunkp; + struct zap_leaf_entry *le; + uint64_t namelen, valuelen; + int numchunks; + + valuelen = integer_size * num_integers; + namelen = strlen(name) + 1; + ASSERT(namelen >= 2); + + numchunks = 1 + ZAP_LEAF_ARRAY_NCHUNKS(namelen) + + ZAP_LEAF_ARRAY_NCHUNKS(valuelen); + if (numchunks > ZAP_LEAF_NUMCHUNKS(l)) + return (E2BIG); + + if (cd == ZAP_MAXCD) { + /* find the lowest unused cd */ + if (l->l_phys->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED) { + cd = 0; + + for (chunk = *LEAF_HASH_ENTPTR(l, h); + chunk != CHAIN_END; chunk = le->le_next) { + le = ZAP_LEAF_ENTRY(l, chunk); + if (le->le_cd > cd) + break; + if (le->le_hash == h) { + ASSERT3U(cd, ==, le->le_cd); + cd++; + } + } + } else { + /* old unsorted format; do it the O(n^2) way */ + for (cd = 0; cd < ZAP_MAXCD; cd++) { + for (chunk = *LEAF_HASH_ENTPTR(l, h); + chunk != CHAIN_END; chunk = le->le_next) { + le = ZAP_LEAF_ENTRY(l, chunk); + if (le->le_hash == h && + le->le_cd == cd) { + break; + } + } + /* If this cd is not in use, we are good. */ + if (chunk == CHAIN_END) + break; + } + } + /* + * we would run out of space in a block before we could + * have ZAP_MAXCD entries + */ + ASSERT3U(cd, <, ZAP_MAXCD); + } + + if (l->l_phys->l_hdr.lh_nfree < numchunks) + return (EAGAIN); + + /* make the entry */ + chunk = zap_leaf_chunk_alloc(l); + le = ZAP_LEAF_ENTRY(l, chunk); + le->le_type = ZAP_CHUNK_ENTRY; + le->le_name_chunk = zap_leaf_array_create(l, name, 1, namelen); + le->le_name_length = namelen; + le->le_value_chunk = + zap_leaf_array_create(l, buf, integer_size, num_integers); + le->le_value_length = num_integers; + le->le_int_size = integer_size; + le->le_hash = h; + le->le_cd = cd; + + /* link it into the hash chain */ + /* XXX if we did the search above, we could just use that */ + chunkp = zap_leaf_rehash_entry(l, chunk); + + l->l_phys->l_hdr.lh_nentries++; + + zeh->zeh_leaf = l; + zeh->zeh_num_integers = num_integers; + zeh->zeh_integer_size = le->le_int_size; + zeh->zeh_cd = le->le_cd; + zeh->zeh_hash = le->le_hash; + zeh->zeh_chunkp = chunkp; + + return (0); +} + +/* + * Determine if there is another entry with the same normalized form. + * For performance purposes, either zn or name must be provided (the + * other can be NULL). Note, there usually won't be any hash + * conflicts, in which case we don't need the concatenated/normalized + * form of the name. But all callers have one of these on hand anyway, + * so might as well take advantage. A cleaner but slower interface + * would accept neither argument, and compute the normalized name as + * needed (using zap_name_alloc(zap_entry_read_name(zeh))). + */ +boolean_t +zap_entry_normalization_conflict(zap_entry_handle_t *zeh, zap_name_t *zn, + const char *name, zap_t *zap) +{ + uint64_t chunk; + struct zap_leaf_entry *le; + boolean_t allocdzn = B_FALSE; + + if (zap->zap_normflags == 0) + return (B_FALSE); + + for (chunk = *LEAF_HASH_ENTPTR(zeh->zeh_leaf, zeh->zeh_hash); + chunk != CHAIN_END; chunk = le->le_next) { + le = ZAP_LEAF_ENTRY(zeh->zeh_leaf, chunk); + if (le->le_hash != zeh->zeh_hash) + continue; + if (le->le_cd == zeh->zeh_cd) + continue; + + if (zn == NULL) { + zn = zap_name_alloc(zap, name, MT_FIRST); + allocdzn = B_TRUE; + } + if (zap_leaf_array_match(zeh->zeh_leaf, zn, + le->le_name_chunk, le->le_name_length)) { + if (allocdzn) + zap_name_free(zn); + return (B_TRUE); + } + } + if (allocdzn) + zap_name_free(zn); + return (B_FALSE); +} + +/* + * Routines for transferring entries between leafs. + */ + +static uint16_t * +zap_leaf_rehash_entry(zap_leaf_t *l, uint16_t entry) +{ + struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, entry); + struct zap_leaf_entry *le2; + uint16_t *chunkp; + + /* + * keep the entry chain sorted by cd + * NB: this will not cause problems for unsorted leafs, though + * it is unnecessary there. + */ + for (chunkp = LEAF_HASH_ENTPTR(l, le->le_hash); + *chunkp != CHAIN_END; chunkp = &le2->le_next) { + le2 = ZAP_LEAF_ENTRY(l, *chunkp); + if (le2->le_cd > le->le_cd) + break; + } + + le->le_next = *chunkp; + *chunkp = entry; + return (chunkp); +} + +static uint16_t +zap_leaf_transfer_array(zap_leaf_t *l, uint16_t chunk, zap_leaf_t *nl) +{ + uint16_t new_chunk; + uint16_t *nchunkp = &new_chunk; + + while (chunk != CHAIN_END) { + uint16_t nchunk = zap_leaf_chunk_alloc(nl); + struct zap_leaf_array *nla = + &ZAP_LEAF_CHUNK(nl, nchunk).l_array; + struct zap_leaf_array *la = + &ZAP_LEAF_CHUNK(l, chunk).l_array; + int nextchunk = la->la_next; + + ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); + ASSERT3U(nchunk, <, ZAP_LEAF_NUMCHUNKS(l)); + + *nla = *la; /* structure assignment */ + + zap_leaf_chunk_free(l, chunk); + chunk = nextchunk; + *nchunkp = nchunk; + nchunkp = &nla->la_next; + } + *nchunkp = CHAIN_END; + return (new_chunk); +} + +static void +zap_leaf_transfer_entry(zap_leaf_t *l, int entry, zap_leaf_t *nl) +{ + struct zap_leaf_entry *le, *nle; + uint16_t chunk; + + le = ZAP_LEAF_ENTRY(l, entry); + ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); + + chunk = zap_leaf_chunk_alloc(nl); + nle = ZAP_LEAF_ENTRY(nl, chunk); + *nle = *le; /* structure assignment */ + + (void) zap_leaf_rehash_entry(nl, chunk); + + nle->le_name_chunk = zap_leaf_transfer_array(l, le->le_name_chunk, nl); + nle->le_value_chunk = + zap_leaf_transfer_array(l, le->le_value_chunk, nl); + + zap_leaf_chunk_free(l, entry); + + l->l_phys->l_hdr.lh_nentries--; + nl->l_phys->l_hdr.lh_nentries++; +} + +/* + * Transfer the entries whose hash prefix ends in 1 to the new leaf. + */ +void +zap_leaf_split(zap_leaf_t *l, zap_leaf_t *nl, boolean_t sort) +{ + int i; + int bit = 64 - 1 - l->l_phys->l_hdr.lh_prefix_len; + + /* set new prefix and prefix_len */ + l->l_phys->l_hdr.lh_prefix <<= 1; + l->l_phys->l_hdr.lh_prefix_len++; + nl->l_phys->l_hdr.lh_prefix = l->l_phys->l_hdr.lh_prefix | 1; + nl->l_phys->l_hdr.lh_prefix_len = l->l_phys->l_hdr.lh_prefix_len; + + /* break existing hash chains */ + zap_memset(l->l_phys->l_hash, CHAIN_END, 2*ZAP_LEAF_HASH_NUMENTRIES(l)); + + if (sort) + l->l_phys->l_hdr.lh_flags |= ZLF_ENTRIES_CDSORTED; + + /* + * Transfer entries whose hash bit 'bit' is set to nl; rehash + * the remaining entries + * + * NB: We could find entries via the hashtable instead. That + * would be O(hashents+numents) rather than O(numblks+numents), + * but this accesses memory more sequentially, and when we're + * called, the block is usually pretty full. + */ + for (i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) { + struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, i); + if (le->le_type != ZAP_CHUNK_ENTRY) + continue; + + if (le->le_hash & (1ULL << bit)) + zap_leaf_transfer_entry(l, i, nl); + else + (void) zap_leaf_rehash_entry(l, i); + } +} + +void +zap_leaf_stats(zap_t *zap, zap_leaf_t *l, zap_stats_t *zs) +{ + int i, n; + + n = zap->zap_f.zap_phys->zap_ptrtbl.zt_shift - + l->l_phys->l_hdr.lh_prefix_len; + n = MIN(n, ZAP_HISTOGRAM_SIZE-1); + zs->zs_leafs_with_2n_pointers[n]++; + + + n = l->l_phys->l_hdr.lh_nentries/5; + n = MIN(n, ZAP_HISTOGRAM_SIZE-1); + zs->zs_blocks_with_n5_entries[n]++; + + n = ((1<<FZAP_BLOCK_SHIFT(zap)) - + l->l_phys->l_hdr.lh_nfree * (ZAP_LEAF_ARRAY_BYTES+1))*10 / + (1<<FZAP_BLOCK_SHIFT(zap)); + n = MIN(n, ZAP_HISTOGRAM_SIZE-1); + zs->zs_blocks_n_tenths_full[n]++; + + for (i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(l); i++) { + int nentries = 0; + int chunk = l->l_phys->l_hash[i]; + + while (chunk != CHAIN_END) { + struct zap_leaf_entry *le = + ZAP_LEAF_ENTRY(l, chunk); + + n = 1 + ZAP_LEAF_ARRAY_NCHUNKS(le->le_name_length) + + ZAP_LEAF_ARRAY_NCHUNKS(le->le_value_length * + le->le_int_size); + n = MIN(n, ZAP_HISTOGRAM_SIZE-1); + zs->zs_entries_using_n_chunks[n]++; + + chunk = le->le_next; + nentries++; + } + + n = nentries; + n = MIN(n, ZAP_HISTOGRAM_SIZE-1); + zs->zs_buckets_with_n_entries[n]++; + } +} |