summaryrefslogtreecommitdiffstats
path: root/zfs/lib/libumem/vmem.c
diff options
context:
space:
mode:
Diffstat (limited to 'zfs/lib/libumem/vmem.c')
-rw-r--r--zfs/lib/libumem/vmem.c1796
1 files changed, 0 insertions, 1796 deletions
diff --git a/zfs/lib/libumem/vmem.c b/zfs/lib/libumem/vmem.c
deleted file mode 100644
index 040517a78..000000000
--- a/zfs/lib/libumem/vmem.c
+++ /dev/null
@@ -1,1796 +0,0 @@
-/*
- * CDDL HEADER START
- *
- * The contents of this file are subject to the terms of the
- * Common Development and Distribution License (the "License").
- * You may not use this file except in compliance with the License.
- *
- * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
- * or http://www.opensolaris.org/os/licensing.
- * See the License for the specific language governing permissions
- * and limitations under the License.
- *
- * When distributing Covered Code, include this CDDL HEADER in each
- * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
- * If applicable, add the following below this CDDL HEADER, with the
- * fields enclosed by brackets "[]" replaced with your own identifying
- * information: Portions Copyright [yyyy] [name of copyright owner]
- *
- * CDDL HEADER END
- */
-
-/*
- * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
- * Use is subject to license terms.
- */
-
-/*
- * For a more complete description of the main ideas, see:
- *
- * Jeff Bonwick and Jonathan Adams,
- *
- * Magazines and vmem: Extending the Slab Allocator to Many CPUs and
- * Arbitrary Resources.
- *
- * Proceedings of the 2001 Usenix Conference.
- * Available as /shared/sac/PSARC/2000/550/materials/vmem.pdf.
- *
- * For the "Big Theory Statement", see usr/src/uts/common/os/vmem.c
- *
- * 1. Overview of changes
- * ------------------------------
- * There have been a few changes to vmem in order to support umem. The
- * main areas are:
- *
- * * VM_SLEEP unsupported
- *
- * * Reaping changes
- *
- * * initialization changes
- *
- * * _vmem_extend_alloc
- *
- *
- * 2. VM_SLEEP Removed
- * -------------------
- * Since VM_SLEEP allocations can hold locks (in vmem_populate()) for
- * possibly infinite amounts of time, they are not supported in this
- * version of vmem. Sleep-like behavior can be achieved through
- * UMEM_NOFAIL umem allocations.
- *
- *
- * 3. Reaping changes
- * ------------------
- * Unlike kmem_reap(), which just asynchronously schedules work, umem_reap()
- * can do allocations and frees synchronously. This is a problem if it
- * occurs during a vmem_populate() allocation.
- *
- * Instead, we delay reaps while populates are active.
- *
- *
- * 4. Initialization changes
- * -------------------------
- * In the kernel, vmem_init() allows you to create a single, top-level arena,
- * which has vmem_internal_arena as a child. For umem, we want to be able
- * to extend arenas dynamically. It is much easier to support this if we
- * allow a two-level "heap" arena:
- *
- * +----------+
- * | "fake" |
- * +----------+
- * |
- * +----------+
- * | "heap" |
- * +----------+
- * | \ \
- * | +-+-- ... <other children>
- * |
- * +---------------+
- * | vmem_internal |
- * +---------------+
- * | | | |
- * <children>
- *
- * The new vmem_init() allows you to specify a "parent" of the heap, along
- * with allocation functions.
- *
- *
- * 5. _vmem_extend_alloc
- * ---------------------
- * The other part of extending is _vmem_extend_alloc. This function allows
- * you to extend (expand current spans, if possible) an arena and allocate
- * a chunk of the newly extened span atomically. This is needed to support
- * extending the heap while vmem_populate()ing it.
- *
- * In order to increase the usefulness of extending, non-imported spans are
- * sorted in address order.
- */
-
-#include <sys/vmem_impl_user.h>
-#include <alloca.h>
-#include <sys/sysmacros.h>
-#include <stdio.h>
-#include <strings.h>
-#include <atomic.h>
-
-#include "vmem_base.h"
-#include "umem_base.h"
-
-#define VMEM_INITIAL 6 /* early vmem arenas */
-#define VMEM_SEG_INITIAL 100 /* early segments */
-
-/*
- * Adding a new span to an arena requires two segment structures: one to
- * represent the span, and one to represent the free segment it contains.
- */
-#define VMEM_SEGS_PER_SPAN_CREATE 2
-
-/*
- * Allocating a piece of an existing segment requires 0-2 segment structures
- * depending on how much of the segment we're allocating.
- *
- * To allocate the entire segment, no new segment structures are needed; we
- * simply move the existing segment structure from the freelist to the
- * allocation hash table.
- *
- * To allocate a piece from the left or right end of the segment, we must
- * split the segment into two pieces (allocated part and remainder), so we
- * need one new segment structure to represent the remainder.
- *
- * To allocate from the middle of a segment, we need two new segment strucures
- * to represent the remainders on either side of the allocated part.
- */
-#define VMEM_SEGS_PER_EXACT_ALLOC 0
-#define VMEM_SEGS_PER_LEFT_ALLOC 1
-#define VMEM_SEGS_PER_RIGHT_ALLOC 1
-#define VMEM_SEGS_PER_MIDDLE_ALLOC 2
-
-/*
- * vmem_populate() preallocates segment structures for vmem to do its work.
- * It must preallocate enough for the worst case, which is when we must import
- * a new span and then allocate from the middle of it.
- */
-#define VMEM_SEGS_PER_ALLOC_MAX \
- (VMEM_SEGS_PER_SPAN_CREATE + VMEM_SEGS_PER_MIDDLE_ALLOC)
-
-/*
- * The segment structures themselves are allocated from vmem_seg_arena, so
- * we have a recursion problem when vmem_seg_arena needs to populate itself.
- * We address this by working out the maximum number of segment structures
- * this act will require, and multiplying by the maximum number of threads
- * that we'll allow to do it simultaneously.
- *
- * The worst-case segment consumption to populate vmem_seg_arena is as
- * follows (depicted as a stack trace to indicate why events are occurring):
- *
- * vmem_alloc(vmem_seg_arena) -> 2 segs (span create + exact alloc)
- * vmem_alloc(vmem_internal_arena) -> 2 segs (span create + exact alloc)
- * heap_alloc(heap_arena)
- * vmem_alloc(heap_arena) -> 4 seg (span create + alloc)
- * parent_alloc(parent_arena)
- * _vmem_extend_alloc(parent_arena) -> 3 seg (span create + left alloc)
- *
- * Note: The reservation for heap_arena must be 4, since vmem_xalloc()
- * is overly pessimistic on allocations where parent_arena has a stricter
- * alignment than heap_arena.
- *
- * The worst-case consumption for any arena is 4 segment structures.
- * For now, we only support VM_NOSLEEP allocations, so as long as we
- * serialize all vmem_populates, a 4-seg reserve is sufficient.
- */
-#define VMEM_POPULATE_SEGS_PER_ARENA 4
-#define VMEM_POPULATE_LOCKS 1
-
-#define VMEM_POPULATE_RESERVE \
- (VMEM_POPULATE_SEGS_PER_ARENA * VMEM_POPULATE_LOCKS)
-
-/*
- * vmem_populate() ensures that each arena has VMEM_MINFREE seg structures
- * so that it can satisfy the worst-case allocation *and* participate in
- * worst-case allocation from vmem_seg_arena.
- */
-#define VMEM_MINFREE (VMEM_POPULATE_RESERVE + VMEM_SEGS_PER_ALLOC_MAX)
-
-/* Don't assume new statics are zeroed - see vmem_startup() */
-static vmem_t vmem0[VMEM_INITIAL];
-static vmem_t *vmem_populator[VMEM_INITIAL];
-static uint32_t vmem_id;
-static uint32_t vmem_populators;
-static vmem_seg_t vmem_seg0[VMEM_SEG_INITIAL];
-static vmem_seg_t *vmem_segfree;
-static mutex_t vmem_list_lock;
-static mutex_t vmem_segfree_lock;
-static vmem_populate_lock_t vmem_nosleep_lock;
-#define IN_POPULATE() (vmem_nosleep_lock.vmpl_thr == thr_self())
-static vmem_t *vmem_list;
-static vmem_t *vmem_internal_arena;
-static vmem_t *vmem_seg_arena;
-static vmem_t *vmem_hash_arena;
-static vmem_t *vmem_vmem_arena;
-
-vmem_t *vmem_heap;
-vmem_alloc_t *vmem_heap_alloc;
-vmem_free_t *vmem_heap_free;
-
-uint32_t vmem_mtbf; /* mean time between failures [default: off] */
-size_t vmem_seg_size = sizeof (vmem_seg_t);
-
-/*
- * Insert/delete from arena list (type 'a') or next-of-kin list (type 'k').
- */
-#define VMEM_INSERT(vprev, vsp, type) \
-{ \
- vmem_seg_t *vnext = (vprev)->vs_##type##next; \
- (vsp)->vs_##type##next = (vnext); \
- (vsp)->vs_##type##prev = (vprev); \
- (vprev)->vs_##type##next = (vsp); \
- (vnext)->vs_##type##prev = (vsp); \
-}
-
-#define VMEM_DELETE(vsp, type) \
-{ \
- vmem_seg_t *vprev = (vsp)->vs_##type##prev; \
- vmem_seg_t *vnext = (vsp)->vs_##type##next; \
- (vprev)->vs_##type##next = (vnext); \
- (vnext)->vs_##type##prev = (vprev); \
-}
-
-/*
- * Get a vmem_seg_t from the global segfree list.
- */
-static vmem_seg_t *
-vmem_getseg_global(void)
-{
- vmem_seg_t *vsp;
-
- (void) mutex_lock(&vmem_segfree_lock);
- if ((vsp = vmem_segfree) != NULL)
- vmem_segfree = vsp->vs_knext;
- (void) mutex_unlock(&vmem_segfree_lock);
-
- return (vsp);
-}
-
-/*
- * Put a vmem_seg_t on the global segfree list.
- */
-static void
-vmem_putseg_global(vmem_seg_t *vsp)
-{
- (void) mutex_lock(&vmem_segfree_lock);
- vsp->vs_knext = vmem_segfree;
- vmem_segfree = vsp;
- (void) mutex_unlock(&vmem_segfree_lock);
-}
-
-/*
- * Get a vmem_seg_t from vmp's segfree list.
- */
-static vmem_seg_t *
-vmem_getseg(vmem_t *vmp)
-{
- vmem_seg_t *vsp;
-
- ASSERT(vmp->vm_nsegfree > 0);
-
- vsp = vmp->vm_segfree;
- vmp->vm_segfree = vsp->vs_knext;
- vmp->vm_nsegfree--;
-
- return (vsp);
-}
-
-/*
- * Put a vmem_seg_t on vmp's segfree list.
- */
-static void
-vmem_putseg(vmem_t *vmp, vmem_seg_t *vsp)
-{
- vsp->vs_knext = vmp->vm_segfree;
- vmp->vm_segfree = vsp;
- vmp->vm_nsegfree++;
-}
-
-/*
- * Add vsp to the appropriate freelist.
- */
-static void
-vmem_freelist_insert(vmem_t *vmp, vmem_seg_t *vsp)
-{
- vmem_seg_t *vprev;
-
- ASSERT(*VMEM_HASH(vmp, vsp->vs_start) != vsp);
-
- vprev = (vmem_seg_t *)&vmp->vm_freelist[highbit(VS_SIZE(vsp)) - 1];
- vsp->vs_type = VMEM_FREE;
- vmp->vm_freemap |= VS_SIZE(vprev);
- VMEM_INSERT(vprev, vsp, k);
-
- (void) cond_broadcast(&vmp->vm_cv);
-}
-
-/*
- * Take vsp from the freelist.
- */
-static void
-vmem_freelist_delete(vmem_t *vmp, vmem_seg_t *vsp)
-{
- ASSERT(*VMEM_HASH(vmp, vsp->vs_start) != vsp);
- ASSERT(vsp->vs_type == VMEM_FREE);
-
- if (vsp->vs_knext->vs_start == 0 && vsp->vs_kprev->vs_start == 0) {
- /*
- * The segments on both sides of 'vsp' are freelist heads,
- * so taking vsp leaves the freelist at vsp->vs_kprev empty.
- */
- ASSERT(vmp->vm_freemap & VS_SIZE(vsp->vs_kprev));
- vmp->vm_freemap ^= VS_SIZE(vsp->vs_kprev);
- }
- VMEM_DELETE(vsp, k);
-}
-
-/*
- * Add vsp to the allocated-segment hash table and update kstats.
- */
-static void
-vmem_hash_insert(vmem_t *vmp, vmem_seg_t *vsp)
-{
- vmem_seg_t **bucket;
-
- vsp->vs_type = VMEM_ALLOC;
- bucket = VMEM_HASH(vmp, vsp->vs_start);
- vsp->vs_knext = *bucket;
- *bucket = vsp;
-
- if (vmem_seg_size == sizeof (vmem_seg_t)) {
- vsp->vs_depth = (uint8_t)getpcstack(vsp->vs_stack,
- VMEM_STACK_DEPTH, 0);
- vsp->vs_thread = thr_self();
- vsp->vs_timestamp = gethrtime();
- } else {
- vsp->vs_depth = 0;
- }
-
- vmp->vm_kstat.vk_alloc++;
- vmp->vm_kstat.vk_mem_inuse += VS_SIZE(vsp);
-}
-
-/*
- * Remove vsp from the allocated-segment hash table and update kstats.
- */
-static vmem_seg_t *
-vmem_hash_delete(vmem_t *vmp, uintptr_t addr, size_t size)
-{
- vmem_seg_t *vsp, **prev_vspp;
-
- prev_vspp = VMEM_HASH(vmp, addr);
- while ((vsp = *prev_vspp) != NULL) {
- if (vsp->vs_start == addr) {
- *prev_vspp = vsp->vs_knext;
- break;
- }
- vmp->vm_kstat.vk_lookup++;
- prev_vspp = &vsp->vs_knext;
- }
-
- if (vsp == NULL) {
- umem_panic("vmem_hash_delete(%p, %lx, %lu): bad free",
- vmp, addr, size);
- }
- if (VS_SIZE(vsp) != size) {
- umem_panic("vmem_hash_delete(%p, %lx, %lu): wrong size "
- "(expect %lu)", vmp, addr, size, VS_SIZE(vsp));
- }
-
- vmp->vm_kstat.vk_free++;
- vmp->vm_kstat.vk_mem_inuse -= size;
-
- return (vsp);
-}
-
-/*
- * Create a segment spanning the range [start, end) and add it to the arena.
- */
-static vmem_seg_t *
-vmem_seg_create(vmem_t *vmp, vmem_seg_t *vprev, uintptr_t start, uintptr_t end)
-{
- vmem_seg_t *newseg = vmem_getseg(vmp);
-
- newseg->vs_start = start;
- newseg->vs_end = end;
- newseg->vs_type = 0;
- newseg->vs_import = 0;
-
- VMEM_INSERT(vprev, newseg, a);
-
- return (newseg);
-}
-
-/*
- * Remove segment vsp from the arena.
- */
-static void
-vmem_seg_destroy(vmem_t *vmp, vmem_seg_t *vsp)
-{
- ASSERT(vsp->vs_type != VMEM_ROTOR);
- VMEM_DELETE(vsp, a);
-
- vmem_putseg(vmp, vsp);
-}
-
-/*
- * Add the span [vaddr, vaddr + size) to vmp and update kstats.
- */
-static vmem_seg_t *
-vmem_span_create(vmem_t *vmp, void *vaddr, size_t size, uint8_t import)
-{
- vmem_seg_t *knext;
- vmem_seg_t *newseg, *span;
- uintptr_t start = (uintptr_t)vaddr;
- uintptr_t end = start + size;
-
- knext = &vmp->vm_seg0;
- if (!import && vmp->vm_source_alloc == NULL) {
- vmem_seg_t *kend, *kprev;
- /*
- * non-imported spans are sorted in address order. This
- * makes vmem_extend_unlocked() much more effective.
- *
- * We search in reverse order, since new spans are
- * generally at higher addresses.
- */
- kend = &vmp->vm_seg0;
- for (kprev = kend->vs_kprev; kprev != kend;
- kprev = kprev->vs_kprev) {
- if (!kprev->vs_import && (kprev->vs_end - 1) < start)
- break;
- }
- knext = kprev->vs_knext;
- }
-
- ASSERT(MUTEX_HELD(&vmp->vm_lock));
-
- if ((start | end) & (vmp->vm_quantum - 1)) {
- umem_panic("vmem_span_create(%p, %p, %lu): misaligned",
- vmp, vaddr, size);
- }
-
- span = vmem_seg_create(vmp, knext->vs_aprev, start, end);
- span->vs_type = VMEM_SPAN;
- VMEM_INSERT(knext->vs_kprev, span, k);
-
- newseg = vmem_seg_create(vmp, span, start, end);
- vmem_freelist_insert(vmp, newseg);
-
- newseg->vs_import = import;
- if (import)
- vmp->vm_kstat.vk_mem_import += size;
- vmp->vm_kstat.vk_mem_total += size;
-
- return (newseg);
-}
-
-/*
- * Remove span vsp from vmp and update kstats.
- */
-static void
-vmem_span_destroy(vmem_t *vmp, vmem_seg_t *vsp)
-{
- vmem_seg_t *span = vsp->vs_aprev;
- size_t size = VS_SIZE(vsp);
-
- ASSERT(MUTEX_HELD(&vmp->vm_lock));
- ASSERT(span->vs_type == VMEM_SPAN);
-
- if (vsp->vs_import)
- vmp->vm_kstat.vk_mem_import -= size;
- vmp->vm_kstat.vk_mem_total -= size;
-
- VMEM_DELETE(span, k);
-
- vmem_seg_destroy(vmp, vsp);
- vmem_seg_destroy(vmp, span);
-}
-
-/*
- * Allocate the subrange [addr, addr + size) from segment vsp.
- * If there are leftovers on either side, place them on the freelist.
- * Returns a pointer to the segment representing [addr, addr + size).
- */
-static vmem_seg_t *
-vmem_seg_alloc(vmem_t *vmp, vmem_seg_t *vsp, uintptr_t addr, size_t size)
-{
- uintptr_t vs_start = vsp->vs_start;
- uintptr_t vs_end = vsp->vs_end;
- size_t vs_size = vs_end - vs_start;
- size_t realsize = P2ROUNDUP(size, vmp->vm_quantum);
- uintptr_t addr_end = addr + realsize;
-
- ASSERT(P2PHASE(vs_start, vmp->vm_quantum) == 0);
- ASSERT(P2PHASE(addr, vmp->vm_quantum) == 0);
- ASSERT(vsp->vs_type == VMEM_FREE);
- ASSERT(addr >= vs_start && addr_end - 1 <= vs_end - 1);
- ASSERT(addr - 1 <= addr_end - 1);
-
- /*
- * If we're allocating from the start of the segment, and the
- * remainder will be on the same freelist, we can save quite
- * a bit of work.
- */
- if (P2SAMEHIGHBIT(vs_size, vs_size - realsize) && addr == vs_start) {
- ASSERT(highbit(vs_size) == highbit(vs_size - realsize));
- vsp->vs_start = addr_end;
- vsp = vmem_seg_create(vmp, vsp->vs_aprev, addr, addr + size);
- vmem_hash_insert(vmp, vsp);
- return (vsp);
- }
-
- vmem_freelist_delete(vmp, vsp);
-
- if (vs_end != addr_end)
- vmem_freelist_insert(vmp,
- vmem_seg_create(vmp, vsp, addr_end, vs_end));
-
- if (vs_start != addr)
- vmem_freelist_insert(vmp,
- vmem_seg_create(vmp, vsp->vs_aprev, vs_start, addr));
-
- vsp->vs_start = addr;
- vsp->vs_end = addr + size;
-
- vmem_hash_insert(vmp, vsp);
- return (vsp);
-}
-
-/*
- * We cannot reap if we are in the middle of a vmem_populate().
- */
-void
-vmem_reap(void)
-{
- if (!IN_POPULATE())
- umem_reap();
-}
-
-/*
- * Populate vmp's segfree list with VMEM_MINFREE vmem_seg_t structures.
- */
-static int
-vmem_populate(vmem_t *vmp, int vmflag)
-{
- char *p;
- vmem_seg_t *vsp;
- ssize_t nseg;
- size_t size;
- vmem_populate_lock_t *lp;
- int i;
-
- while (vmp->vm_nsegfree < VMEM_MINFREE &&
- (vsp = vmem_getseg_global()) != NULL)
- vmem_putseg(vmp, vsp);
-
- if (vmp->vm_nsegfree >= VMEM_MINFREE)
- return (1);
-
- /*
- * If we're already populating, tap the reserve.
- */
- if (vmem_nosleep_lock.vmpl_thr == thr_self()) {
- ASSERT(vmp->vm_cflags & VMC_POPULATOR);
- return (1);
- }
-
- (void) mutex_unlock(&vmp->vm_lock);
-
- ASSERT(vmflag & VM_NOSLEEP); /* we do not allow sleep allocations */
- lp = &vmem_nosleep_lock;
-
- /*
- * Cannot be just a mutex_lock(), since that has no effect if
- * libthread is not linked.
- */
- (void) mutex_lock(&lp->vmpl_mutex);
- ASSERT(lp->vmpl_thr == 0);
- lp->vmpl_thr = thr_self();
-
- nseg = VMEM_MINFREE + vmem_populators * VMEM_POPULATE_RESERVE;
- size = P2ROUNDUP(nseg * vmem_seg_size, vmem_seg_arena->vm_quantum);
- nseg = size / vmem_seg_size;
-
- /*
- * The following vmem_alloc() may need to populate vmem_seg_arena
- * and all the things it imports from. When doing so, it will tap
- * each arena's reserve to prevent recursion (see the block comment
- * above the definition of VMEM_POPULATE_RESERVE).
- *
- * During this allocation, vmem_reap() is a no-op. If the allocation
- * fails, we call vmem_reap() after dropping the population lock.
- */
- p = vmem_alloc(vmem_seg_arena, size, vmflag & VM_UMFLAGS);
- if (p == NULL) {
- lp->vmpl_thr = 0;
- (void) mutex_unlock(&lp->vmpl_mutex);
- vmem_reap();
-
- (void) mutex_lock(&vmp->vm_lock);
- vmp->vm_kstat.vk_populate_fail++;
- return (0);
- }
- /*
- * Restock the arenas that may have been depleted during population.
- */
- for (i = 0; i < vmem_populators; i++) {
- (void) mutex_lock(&vmem_populator[i]->vm_lock);
- while (vmem_populator[i]->vm_nsegfree < VMEM_POPULATE_RESERVE)
- vmem_putseg(vmem_populator[i],
- (vmem_seg_t *)(p + --nseg * vmem_seg_size));
- (void) mutex_unlock(&vmem_populator[i]->vm_lock);
- }
-
- lp->vmpl_thr = 0;
- (void) mutex_unlock(&lp->vmpl_mutex);
- (void) mutex_lock(&vmp->vm_lock);
-
- /*
- * Now take our own segments.
- */
- ASSERT(nseg >= VMEM_MINFREE);
- while (vmp->vm_nsegfree < VMEM_MINFREE)
- vmem_putseg(vmp, (vmem_seg_t *)(p + --nseg * vmem_seg_size));
-
- /*
- * Give the remainder to charity.
- */
- while (nseg > 0)
- vmem_putseg_global((vmem_seg_t *)(p + --nseg * vmem_seg_size));
-
- return (1);
-}
-
-/*
- * Advance a walker from its previous position to 'afterme'.
- * Note: may drop and reacquire vmp->vm_lock.
- */
-static void
-vmem_advance(vmem_t *vmp, vmem_seg_t *walker, vmem_seg_t *afterme)
-{
- vmem_seg_t *vprev = walker->vs_aprev;
- vmem_seg_t *vnext = walker->vs_anext;
- vmem_seg_t *vsp = NULL;
-
- VMEM_DELETE(walker, a);
-
- if (afterme != NULL)
- VMEM_INSERT(afterme, walker, a);
-
- /*
- * The walker segment's presence may have prevented its neighbors
- * from coalescing. If so, coalesce them now.
- */
- if (vprev->vs_type == VMEM_FREE) {
- if (vnext->vs_type == VMEM_FREE) {
- ASSERT(vprev->vs_end == vnext->vs_start);
- vmem_freelist_delete(vmp, vnext);
- vmem_freelist_delete(vmp, vprev);
- vprev->vs_end = vnext->vs_end;
- vmem_freelist_insert(vmp, vprev);
- vmem_seg_destroy(vmp, vnext);
- }
- vsp = vprev;
- } else if (vnext->vs_type == VMEM_FREE) {
- vsp = vnext;
- }
-
- /*
- * vsp could represent a complete imported span,
- * in which case we must return it to the source.
- */
- if (vsp != NULL && vsp->vs_import && vmp->vm_source_free != NULL &&
- vsp->vs_aprev->vs_type == VMEM_SPAN &&
- vsp->vs_anext->vs_type == VMEM_SPAN) {
- void *vaddr = (void *)vsp->vs_start;
- size_t size = VS_SIZE(vsp);
- ASSERT(size == VS_SIZE(vsp->vs_aprev));
- vmem_freelist_delete(vmp, vsp);
- vmem_span_destroy(vmp, vsp);
- (void) mutex_unlock(&vmp->vm_lock);
- vmp->vm_source_free(vmp->vm_source, vaddr, size);
- (void) mutex_lock(&vmp->vm_lock);
- }
-}
-
-/*
- * VM_NEXTFIT allocations deliberately cycle through all virtual addresses
- * in an arena, so that we avoid reusing addresses for as long as possible.
- * This helps to catch used-after-freed bugs. It's also the perfect policy
- * for allocating things like process IDs, where we want to cycle through
- * all values in order.
- */
-static void *
-vmem_nextfit_alloc(vmem_t *vmp, size_t size, int vmflag)
-{
- vmem_seg_t *vsp, *rotor;
- uintptr_t addr;
- size_t realsize = P2ROUNDUP(size, vmp->vm_quantum);
- size_t vs_size;
-
- (void) mutex_lock(&vmp->vm_lock);
-
- if (vmp->vm_nsegfree < VMEM_MINFREE && !vmem_populate(vmp, vmflag)) {
- (void) mutex_unlock(&vmp->vm_lock);
- return (NULL);
- }
-
- /*
- * The common case is that the segment right after the rotor is free,
- * and large enough that extracting 'size' bytes won't change which
- * freelist it's on. In this case we can avoid a *lot* of work.
- * Instead of the normal vmem_seg_alloc(), we just advance the start
- * address of the victim segment. Instead of moving the rotor, we
- * create the new segment structure *behind the rotor*, which has
- * the same effect. And finally, we know we don't have to coalesce
- * the rotor's neighbors because the new segment lies between them.
- */
- rotor = &vmp->vm_rotor;
- vsp = rotor->vs_anext;
- if (vsp->vs_type == VMEM_FREE && (vs_size = VS_SIZE(vsp)) > realsize &&
- P2SAMEHIGHBIT(vs_size, vs_size - realsize)) {
- ASSERT(highbit(vs_size) == highbit(vs_size - realsize));
- addr = vsp->vs_start;
- vsp->vs_start = addr + realsize;
- vmem_hash_insert(vmp,
- vmem_seg_create(vmp, rotor->vs_aprev, addr, addr + size));
- (void) mutex_unlock(&vmp->vm_lock);
- return ((void *)addr);
- }
-
- /*
- * Starting at the rotor, look for a segment large enough to
- * satisfy the allocation.
- */
- for (;;) {
- vmp->vm_kstat.vk_search++;
- if (vsp->vs_type == VMEM_FREE && VS_SIZE(vsp) >= size)
- break;
- vsp = vsp->vs_anext;
- if (vsp == rotor) {
- int cancel_state;
-
- /*
- * We've come full circle. One possibility is that the
- * there's actually enough space, but the rotor itself
- * is preventing the allocation from succeeding because
- * it's sitting between two free segments. Therefore,
- * we advance the rotor and see if that liberates a
- * suitable segment.
- */
- vmem_advance(vmp, rotor, rotor->vs_anext);
- vsp = rotor->vs_aprev;
- if (vsp->vs_type == VMEM_FREE && VS_SIZE(vsp) >= size)
- break;
- /*
- * If there's a lower arena we can import from, or it's
- * a VM_NOSLEEP allocation, let vmem_xalloc() handle it.
- * Otherwise, wait until another thread frees something.
- */
- if (vmp->vm_source_alloc != NULL ||
- (vmflag & VM_NOSLEEP)) {
- (void) mutex_unlock(&vmp->vm_lock);
- return (vmem_xalloc(vmp, size, vmp->vm_quantum,
- 0, 0, NULL, NULL, vmflag & VM_UMFLAGS));
- }
- vmp->vm_kstat.vk_wait++;
- (void) pthread_setcancelstate(PTHREAD_CANCEL_DISABLE,
- &cancel_state);
- (void) cond_wait(&vmp->vm_cv, &vmp->vm_lock);
- (void) pthread_setcancelstate(cancel_state, NULL);
- vsp = rotor->vs_anext;
- }
- }
-
- /*
- * We found a segment. Extract enough space to satisfy the allocation.
- */
- addr = vsp->vs_start;
- vsp = vmem_seg_alloc(vmp, vsp, addr, size);
- ASSERT(vsp->vs_type == VMEM_ALLOC &&
- vsp->vs_start == addr && vsp->vs_end == addr + size);
-
- /*
- * Advance the rotor to right after the newly-allocated segment.
- * That's where the next VM_NEXTFIT allocation will begin searching.
- */
- vmem_advance(vmp, rotor, vsp);
- (void) mutex_unlock(&vmp->vm_lock);
- return ((void *)addr);
-}
-
-/*
- * Allocate size bytes at offset phase from an align boundary such that the
- * resulting segment [addr, addr + size) is a subset of [minaddr, maxaddr)
- * that does not straddle a nocross-aligned boundary.
- */
-void *
-vmem_xalloc(vmem_t *vmp, size_t size, size_t align, size_t phase,
- size_t nocross, void *minaddr, void *maxaddr, int vmflag)
-{
- vmem_seg_t *vsp;
- vmem_seg_t *vbest = NULL;
- uintptr_t addr, taddr, start, end;
- void *vaddr;
- int hb, flist, resv;
- uint32_t mtbf;
-
- if (phase > 0 && phase >= align)
- umem_panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): "
- "invalid phase",
- (void *)vmp, size, align, phase, nocross,
- minaddr, maxaddr, vmflag);
-
- if (align == 0)
- align = vmp->vm_quantum;
-
- if ((align | phase | nocross) & (vmp->vm_quantum - 1)) {
- umem_panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): "
- "parameters not vm_quantum aligned",
- (void *)vmp, size, align, phase, nocross,
- minaddr, maxaddr, vmflag);
- }
-
- if (nocross != 0 &&
- (align > nocross || P2ROUNDUP(phase + size, align) > nocross)) {
- umem_panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): "
- "overconstrained allocation",
- (void *)vmp, size, align, phase, nocross,
- minaddr, maxaddr, vmflag);
- }
-
- if ((mtbf = vmem_mtbf | vmp->vm_mtbf) != 0 && gethrtime() % mtbf == 0 &&
- (vmflag & (VM_NOSLEEP | VM_PANIC)) == VM_NOSLEEP)
- return (NULL);
-
- (void) mutex_lock(&vmp->vm_lock);
- for (;;) {
- int cancel_state;
-
- if (vmp->vm_nsegfree < VMEM_MINFREE &&
- !vmem_populate(vmp, vmflag))
- break;
-
- /*
- * highbit() returns the highest bit + 1, which is exactly
- * what we want: we want to search the first freelist whose
- * members are *definitely* large enough to satisfy our
- * allocation. However, there are certain cases in which we
- * want to look at the next-smallest freelist (which *might*
- * be able to satisfy the allocation):
- *
- * (1) The size is exactly a power of 2, in which case
- * the smaller freelist is always big enough;
- *
- * (2) All other freelists are empty;
- *
- * (3) We're in the highest possible freelist, which is
- * always empty (e.g. the 4GB freelist on 32-bit systems);
- *
- * (4) We're doing a best-fit or first-fit allocation.
- */
- if ((size & (size - 1)) == 0) {
- flist = lowbit(P2ALIGN(vmp->vm_freemap, size));
- } else {
- hb = highbit(size);
- if ((vmp->vm_freemap >> hb) == 0 ||
- hb == VMEM_FREELISTS ||
- (vmflag & (VM_BESTFIT | VM_FIRSTFIT)))
- hb--;
- flist = lowbit(P2ALIGN(vmp->vm_freemap, 1UL << hb));
- }
-
- for (vbest = NULL, vsp = (flist == 0) ? NULL :
- vmp->vm_freelist[flist - 1].vs_knext;
- vsp != NULL; vsp = vsp->vs_knext) {
- vmp->vm_kstat.vk_search++;
- if (vsp->vs_start == 0) {
- /*
- * We're moving up to a larger freelist,
- * so if we've already found a candidate,
- * the fit can't possibly get any better.
- */
- if (vbest != NULL)
- break;
- /*
- * Find the next non-empty freelist.
- */
- flist = lowbit(P2ALIGN(vmp->vm_freemap,
- VS_SIZE(vsp)));
- if (flist-- == 0)
- break;
- vsp = (vmem_seg_t *)&vmp->vm_freelist[flist];
- ASSERT(vsp->vs_knext->vs_type == VMEM_FREE);
- continue;
- }
- if (vsp->vs_end - 1 < (uintptr_t)minaddr)
- continue;
- if (vsp->vs_start > (uintptr_t)maxaddr - 1)
- continue;
- start = MAX(vsp->vs_start, (uintptr_t)minaddr);
- end = MIN(vsp->vs_end - 1, (uintptr_t)maxaddr - 1) + 1;
- taddr = P2PHASEUP(start, align, phase);
- if (P2BOUNDARY(taddr, size, nocross))
- taddr +=
- P2ROUNDUP(P2NPHASE(taddr, nocross), align);
- if ((taddr - start) + size > end - start ||
- (vbest != NULL && VS_SIZE(vsp) >= VS_SIZE(vbest)))
- continue;
- vbest = vsp;
- addr = taddr;
- if (!(vmflag & VM_BESTFIT) || VS_SIZE(vbest) == size)
- break;
- }
- if (vbest != NULL)
- break;
- if (size == 0)
- umem_panic("vmem_xalloc(): size == 0");
- if (vmp->vm_source_alloc != NULL && nocross == 0 &&
- minaddr == NULL && maxaddr == NULL) {
- size_t asize = P2ROUNDUP(size + phase,
- MAX(align, vmp->vm_source->vm_quantum));
- if (asize < size) { /* overflow */
- (void) mutex_unlock(&vmp->vm_lock);
- if (vmflag & VM_NOSLEEP)
- return (NULL);
-
- umem_panic("vmem_xalloc(): "
- "overflow on VM_SLEEP allocation");
- }
- /*
- * Determine how many segment structures we'll consume.
- * The calculation must be presise because if we're
- * here on behalf of vmem_populate(), we are taking
- * segments from a very limited reserve.
- */
- resv = (size == asize) ?
- VMEM_SEGS_PER_SPAN_CREATE +
- VMEM_SEGS_PER_EXACT_ALLOC :
- VMEM_SEGS_PER_ALLOC_MAX;
- ASSERT(vmp->vm_nsegfree >= resv);
- vmp->vm_nsegfree -= resv; /* reserve our segs */
- (void) mutex_unlock(&vmp->vm_lock);
- vaddr = vmp->vm_source_alloc(vmp->vm_source, asize,
- vmflag & VM_UMFLAGS);
- (void) mutex_lock(&vmp->vm_lock);
- vmp->vm_nsegfree += resv; /* claim reservation */
- if (vaddr != NULL) {
- vbest = vmem_span_create(vmp, vaddr, asize, 1);
- addr = P2PHASEUP(vbest->vs_start, align, phase);
- break;
- }
- }
- (void) mutex_unlock(&vmp->vm_lock);
- vmem_reap();
- (void) mutex_lock(&vmp->vm_lock);
- if (vmflag & VM_NOSLEEP)
- break;
- vmp->vm_kstat.vk_wait++;
- (void) pthread_setcancelstate(PTHREAD_CANCEL_DISABLE,
- &cancel_state);
- (void) cond_wait(&vmp->vm_cv, &vmp->vm_lock);
- (void) pthread_setcancelstate(cancel_state, NULL);
- }
- if (vbest != NULL) {
- ASSERT(vbest->vs_type == VMEM_FREE);
- ASSERT(vbest->vs_knext != vbest);
- (void) vmem_seg_alloc(vmp, vbest, addr, size);
- (void) mutex_unlock(&vmp->vm_lock);
- ASSERT(P2PHASE(addr, align) == phase);
- ASSERT(!P2BOUNDARY(addr, size, nocross));
- ASSERT(addr >= (uintptr_t)minaddr);
- ASSERT(addr + size - 1 <= (uintptr_t)maxaddr - 1);
- return ((void *)addr);
- }
- vmp->vm_kstat.vk_fail++;
- (void) mutex_unlock(&vmp->vm_lock);
- if (vmflag & VM_PANIC)
- umem_panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): "
- "cannot satisfy mandatory allocation",
- (void *)vmp, size, align, phase, nocross,
- minaddr, maxaddr, vmflag);
- return (NULL);
-}
-
-/*
- * Free the segment [vaddr, vaddr + size), where vaddr was a constrained
- * allocation. vmem_xalloc() and vmem_xfree() must always be paired because
- * both routines bypass the quantum caches.
- */
-void
-vmem_xfree(vmem_t *vmp, void *vaddr, size_t size)
-{
- vmem_seg_t *vsp, *vnext, *vprev;
-
- (void) mutex_lock(&vmp->vm_lock);
-
- vsp = vmem_hash_delete(vmp, (uintptr_t)vaddr, size);
- vsp->vs_end = P2ROUNDUP(vsp->vs_end, vmp->vm_quantum);
-
- /*
- * Attempt to coalesce with the next segment.
- */
- vnext = vsp->vs_anext;
- if (vnext->vs_type == VMEM_FREE) {
- ASSERT(vsp->vs_end == vnext->vs_start);
- vmem_freelist_delete(vmp, vnext);
- vsp->vs_end = vnext->vs_end;
- vmem_seg_destroy(vmp, vnext);
- }
-
- /*
- * Attempt to coalesce with the previous segment.
- */
- vprev = vsp->vs_aprev;
- if (vprev->vs_type == VMEM_FREE) {
- ASSERT(vprev->vs_end == vsp->vs_start);
- vmem_freelist_delete(vmp, vprev);
- vprev->vs_end = vsp->vs_end;
- vmem_seg_destroy(vmp, vsp);
- vsp = vprev;
- }
-
- /*
- * If the entire span is free, return it to the source.
- */
- if (vsp->vs_import && vmp->vm_source_free != NULL &&
- vsp->vs_aprev->vs_type == VMEM_SPAN &&
- vsp->vs_anext->vs_type == VMEM_SPAN) {
- vaddr = (void *)vsp->vs_start;
- size = VS_SIZE(vsp);
- ASSERT(size == VS_SIZE(vsp->vs_aprev));
- vmem_span_destroy(vmp, vsp);
- (void) mutex_unlock(&vmp->vm_lock);
- vmp->vm_source_free(vmp->vm_source, vaddr, size);
- } else {
- vmem_freelist_insert(vmp, vsp);
- (void) mutex_unlock(&vmp->vm_lock);
- }
-}
-
-/*
- * Allocate size bytes from arena vmp. Returns the allocated address
- * on success, NULL on failure. vmflag specifies VM_SLEEP or VM_NOSLEEP,
- * and may also specify best-fit, first-fit, or next-fit allocation policy
- * instead of the default instant-fit policy. VM_SLEEP allocations are
- * guaranteed to succeed.
- */
-void *
-vmem_alloc(vmem_t *vmp, size_t size, int vmflag)
-{
- vmem_seg_t *vsp;
- uintptr_t addr;
- int hb;
- int flist = 0;
- uint32_t mtbf;
-
- if (size - 1 < vmp->vm_qcache_max) {
- ASSERT(vmflag & VM_NOSLEEP);
- return (_umem_cache_alloc(vmp->vm_qcache[(size - 1) >>
- vmp->vm_qshift], UMEM_DEFAULT));
- }
-
- if ((mtbf = vmem_mtbf | vmp->vm_mtbf) != 0 && gethrtime() % mtbf == 0 &&
- (vmflag & (VM_NOSLEEP | VM_PANIC)) == VM_NOSLEEP)
- return (NULL);
-
- if (vmflag & VM_NEXTFIT)
- return (vmem_nextfit_alloc(vmp, size, vmflag));
-
- if (vmflag & (VM_BESTFIT | VM_FIRSTFIT))
- return (vmem_xalloc(vmp, size, vmp->vm_quantum, 0, 0,
- NULL, NULL, vmflag));
-
- /*
- * Unconstrained instant-fit allocation from the segment list.
- */
- (void) mutex_lock(&vmp->vm_lock);
-
- if (vmp->vm_nsegfree >= VMEM_MINFREE || vmem_populate(vmp, vmflag)) {
- if ((size & (size - 1)) == 0)
- flist = lowbit(P2ALIGN(vmp->vm_freemap, size));
- else if ((hb = highbit(size)) < VMEM_FREELISTS)
- flist = lowbit(P2ALIGN(vmp->vm_freemap, 1UL << hb));
- }
-
- if (flist-- == 0) {
- (void) mutex_unlock(&vmp->vm_lock);
- return (vmem_xalloc(vmp, size, vmp->vm_quantum,
- 0, 0, NULL, NULL, vmflag));
- }
-
- ASSERT(size <= (1UL << flist));
- vsp = vmp->vm_freelist[flist].vs_knext;
- addr = vsp->vs_start;
- (void) vmem_seg_alloc(vmp, vsp, addr, size);
- (void) mutex_unlock(&vmp->vm_lock);
- return ((void *)addr);
-}
-
-/*
- * Free the segment [vaddr, vaddr + size).
- */
-void
-vmem_free(vmem_t *vmp, void *vaddr, size_t size)
-{
- if (size - 1 < vmp->vm_qcache_max)
- _umem_cache_free(vmp->vm_qcache[(size - 1) >> vmp->vm_qshift],
- vaddr);
- else
- vmem_xfree(vmp, vaddr, size);
-}
-
-/*
- * Determine whether arena vmp contains the segment [vaddr, vaddr + size).
- */
-int
-vmem_contains(vmem_t *vmp, void *vaddr, size_t size)
-{
- uintptr_t start = (uintptr_t)vaddr;
- uintptr_t end = start + size;
- vmem_seg_t *vsp;
- vmem_seg_t *seg0 = &vmp->vm_seg0;
-
- (void) mutex_lock(&vmp->vm_lock);
- vmp->vm_kstat.vk_contains++;
- for (vsp = seg0->vs_knext; vsp != seg0; vsp = vsp->vs_knext) {
- vmp->vm_kstat.vk_contains_search++;
- ASSERT(vsp->vs_type == VMEM_SPAN);
- if (start >= vsp->vs_start && end - 1 <= vsp->vs_end - 1)
- break;
- }
- (void) mutex_unlock(&vmp->vm_lock);
- return (vsp != seg0);
-}
-
-/*
- * Add the span [vaddr, vaddr + size) to arena vmp.
- */
-void *
-vmem_add(vmem_t *vmp, void *vaddr, size_t size, int vmflag)
-{
- if (vaddr == NULL || size == 0) {
- umem_panic("vmem_add(%p, %p, %lu): bad arguments",
- vmp, vaddr, size);
- }
-
- ASSERT(!vmem_contains(vmp, vaddr, size));
-
- (void) mutex_lock(&vmp->vm_lock);
- if (vmem_populate(vmp, vmflag))
- (void) vmem_span_create(vmp, vaddr, size, 0);
- else
- vaddr = NULL;
- (void) cond_broadcast(&vmp->vm_cv);
- (void) mutex_unlock(&vmp->vm_lock);
- return (vaddr);
-}
-
-/*
- * Adds the address range [addr, endaddr) to arena vmp, by either:
- * 1. joining two existing spans, [x, addr), and [endaddr, y) (which
- * are in that order) into a single [x, y) span,
- * 2. expanding an existing [x, addr) span to [x, endaddr),
- * 3. expanding an existing [endaddr, x) span to [addr, x), or
- * 4. creating a new [addr, endaddr) span.
- *
- * Called with vmp->vm_lock held, and a successful vmem_populate() completed.
- * Cannot fail. Returns the new segment.
- *
- * NOTE: this algorithm is linear-time in the number of spans, but is
- * constant-time when you are extending the last (highest-addressed)
- * span.
- */
-static vmem_seg_t *
-vmem_extend_unlocked(vmem_t *vmp, uintptr_t addr, uintptr_t endaddr)
-{
- vmem_seg_t *span;
- vmem_seg_t *vsp;
-
- vmem_seg_t *end = &vmp->vm_seg0;
-
- ASSERT(MUTEX_HELD(&vmp->vm_lock));
-
- /*
- * the second "if" clause below relies on the direction of this search
- */
- for (span = end->vs_kprev; span != end; span = span->vs_kprev) {
- if (span->vs_end == addr || span->vs_start == endaddr)
- break;
- }
-
- if (span == end)
- return (vmem_span_create(vmp, (void *)addr, endaddr - addr, 0));
- if (span->vs_kprev->vs_end == addr && span->vs_start == endaddr) {
- vmem_seg_t *prevspan = span->vs_kprev;
- vmem_seg_t *nextseg = span->vs_anext;
- vmem_seg_t *prevseg = span->vs_aprev;
-
- /*
- * prevspan becomes the span marker for the full range
- */
- prevspan->vs_end = span->vs_end;
-
- /*
- * Notionally, span becomes a free segment representing
- * [addr, endaddr).
- *
- * However, if either of its neighbors are free, we coalesce
- * by destroying span and changing the free segment.
- */
- if (prevseg->vs_type == VMEM_FREE &&
- nextseg->vs_type == VMEM_FREE) {
- /*
- * coalesce both ways
- */
- ASSERT(prevseg->vs_end == addr &&
- nextseg->vs_start == endaddr);
-
- vmem_freelist_delete(vmp, prevseg);
- prevseg->vs_end = nextseg->vs_end;
-
- vmem_freelist_delete(vmp, nextseg);
- VMEM_DELETE(span, k);
- vmem_seg_destroy(vmp, nextseg);
- vmem_seg_destroy(vmp, span);
-
- vsp = prevseg;
- } else if (prevseg->vs_type == VMEM_FREE) {
- /*
- * coalesce left
- */
- ASSERT(prevseg->vs_end == addr);
-
- VMEM_DELETE(span, k);
- vmem_seg_destroy(vmp, span);
-
- vmem_freelist_delete(vmp, prevseg);
- prevseg->vs_end = endaddr;
-
- vsp = prevseg;
- } else if (nextseg->vs_type == VMEM_FREE) {
- /*
- * coalesce right
- */
- ASSERT(nextseg->vs_start == endaddr);
-
- VMEM_DELETE(span, k);
- vmem_seg_destroy(vmp, span);
-
- vmem_freelist_delete(vmp, nextseg);
- nextseg->vs_start = addr;
-
- vsp = nextseg;
- } else {
- /*
- * cannnot coalesce
- */
- VMEM_DELETE(span, k);
- span->vs_start = addr;
- span->vs_end = endaddr;
-
- vsp = span;
- }
- } else if (span->vs_end == addr) {
- vmem_seg_t *oldseg = span->vs_knext->vs_aprev;
- span->vs_end = endaddr;
-
- ASSERT(oldseg->vs_type != VMEM_SPAN);
- if (oldseg->vs_type == VMEM_FREE) {
- ASSERT(oldseg->vs_end == addr);
- vmem_freelist_delete(vmp, oldseg);
- oldseg->vs_end = endaddr;
- vsp = oldseg;
- } else
- vsp = vmem_seg_create(vmp, oldseg, addr, endaddr);
- } else {
- vmem_seg_t *oldseg = span->vs_anext;
- ASSERT(span->vs_start == endaddr);
- span->vs_start = addr;
-
- ASSERT(oldseg->vs_type != VMEM_SPAN);
- if (oldseg->vs_type == VMEM_FREE) {
- ASSERT(oldseg->vs_start == endaddr);
- vmem_freelist_delete(vmp, oldseg);
- oldseg->vs_start = addr;
- vsp = oldseg;
- } else
- vsp = vmem_seg_create(vmp, span, addr, endaddr);
- }
- vmem_freelist_insert(vmp, vsp);
- vmp->vm_kstat.vk_mem_total += (endaddr - addr);
- return (vsp);
-}
-
-/*
- * Does some error checking, calls vmem_extend_unlocked to add
- * [vaddr, vaddr+size) to vmp, then allocates alloc bytes from the
- * newly merged segment.
- */
-void *
-_vmem_extend_alloc(vmem_t *vmp, void *vaddr, size_t size, size_t alloc,
- int vmflag)
-{
- uintptr_t addr = (uintptr_t)vaddr;
- uintptr_t endaddr = addr + size;
- vmem_seg_t *vsp;
-
- ASSERT(vaddr != NULL && size != 0 && endaddr > addr);
- ASSERT(alloc <= size && alloc != 0);
- ASSERT(((addr | size | alloc) & (vmp->vm_quantum - 1)) == 0);
-
- ASSERT(!vmem_contains(vmp, vaddr, size));
-
- (void) mutex_lock(&vmp->vm_lock);
- if (!vmem_populate(vmp, vmflag)) {
- (void) mutex_unlock(&vmp->vm_lock);
- return (NULL);
- }
- /*
- * if there is a source, we can't mess with the spans
- */
- if (vmp->vm_source_alloc != NULL)
- vsp = vmem_span_create(vmp, vaddr, size, 0);
- else
- vsp = vmem_extend_unlocked(vmp, addr, endaddr);
-
- ASSERT(VS_SIZE(vsp) >= alloc);
-
- addr = vsp->vs_start;
- (void) vmem_seg_alloc(vmp, vsp, addr, alloc);
- vaddr = (void *)addr;
-
- (void) cond_broadcast(&vmp->vm_cv);
- (void) mutex_unlock(&vmp->vm_lock);
-
- return (vaddr);
-}
-
-/*
- * Walk the vmp arena, applying func to each segment matching typemask.
- * If VMEM_REENTRANT is specified, the arena lock is dropped across each
- * call to func(); otherwise, it is held for the duration of vmem_walk()
- * to ensure a consistent snapshot. Note that VMEM_REENTRANT callbacks
- * are *not* necessarily consistent, so they may only be used when a hint
- * is adequate.
- */
-void
-vmem_walk(vmem_t *vmp, int typemask,
- void (*func)(void *, void *, size_t), void *arg)
-{
- vmem_seg_t *vsp;
- vmem_seg_t *seg0 = &vmp->vm_seg0;
- vmem_seg_t walker;
-
- if (typemask & VMEM_WALKER)
- return;
-
- bzero(&walker, sizeof (walker));
- walker.vs_type = VMEM_WALKER;
-
- (void) mutex_lock(&vmp->vm_lock);
- VMEM_INSERT(seg0, &walker, a);
- for (vsp = seg0->vs_anext; vsp != seg0; vsp = vsp->vs_anext) {
- if (vsp->vs_type & typemask) {
- void *start = (void *)vsp->vs_start;
- size_t size = VS_SIZE(vsp);
- if (typemask & VMEM_REENTRANT) {
- vmem_advance(vmp, &walker, vsp);
- (void) mutex_unlock(&vmp->vm_lock);
- func(arg, start, size);
- (void) mutex_lock(&vmp->vm_lock);
- vsp = &walker;
- } else {
- func(arg, start, size);
- }
- }
- }
- vmem_advance(vmp, &walker, NULL);
- (void) mutex_unlock(&vmp->vm_lock);
-}
-
-/*
- * Return the total amount of memory whose type matches typemask. Thus:
- *
- * typemask VMEM_ALLOC yields total memory allocated (in use).
- * typemask VMEM_FREE yields total memory free (available).
- * typemask (VMEM_ALLOC | VMEM_FREE) yields total arena size.
- */
-size_t
-vmem_size(vmem_t *vmp, int typemask)
-{
- uint64_t size = 0;
-
- if (typemask & VMEM_ALLOC)
- size += vmp->vm_kstat.vk_mem_inuse;
- if (typemask & VMEM_FREE)
- size += vmp->vm_kstat.vk_mem_total -
- vmp->vm_kstat.vk_mem_inuse;
- return ((size_t)size);
-}
-
-/*
- * Create an arena called name whose initial span is [base, base + size).
- * The arena's natural unit of currency is quantum, so vmem_alloc()
- * guarantees quantum-aligned results. The arena may import new spans
- * by invoking afunc() on source, and may return those spans by invoking
- * ffunc() on source. To make small allocations fast and scalable,
- * the arena offers high-performance caching for each integer multiple
- * of quantum up to qcache_max.
- */
-vmem_t *
-vmem_create(const char *name, void *base, size_t size, size_t quantum,
- vmem_alloc_t *afunc, vmem_free_t *ffunc, vmem_t *source,
- size_t qcache_max, int vmflag)
-{
- int i;
- size_t nqcache;
- vmem_t *vmp, *cur, **vmpp;
- vmem_seg_t *vsp;
- vmem_freelist_t *vfp;
- uint32_t id = atomic_add_32_nv(&vmem_id, 1);
-
- if (vmem_vmem_arena != NULL) {
- vmp = vmem_alloc(vmem_vmem_arena, sizeof (vmem_t),
- vmflag & VM_UMFLAGS);
- } else {
- ASSERT(id <= VMEM_INITIAL);
- vmp = &vmem0[id - 1];
- }
-
- if (vmp == NULL)
- return (NULL);
- bzero(vmp, sizeof (vmem_t));
-
- (void) snprintf(vmp->vm_name, VMEM_NAMELEN, "%s", name);
- (void) mutex_init(&vmp->vm_lock, USYNC_THREAD, NULL);
- (void) cond_init(&vmp->vm_cv, USYNC_THREAD, NULL);
- vmp->vm_cflags = vmflag;
- vmflag &= VM_UMFLAGS;
-
- vmp->vm_quantum = quantum;
- vmp->vm_qshift = highbit(quantum) - 1;
- nqcache = MIN(qcache_max >> vmp->vm_qshift, VMEM_NQCACHE_MAX);
-
- for (i = 0; i <= VMEM_FREELISTS; i++) {
- vfp = &vmp->vm_freelist[i];
- vfp->vs_end = 1UL << i;
- vfp->vs_knext = (vmem_seg_t *)(vfp + 1);
- vfp->vs_kprev = (vmem_seg_t *)(vfp - 1);
- }
-
- vmp->vm_freelist[0].vs_kprev = NULL;
- vmp->vm_freelist[VMEM_FREELISTS].vs_knext = NULL;
- vmp->vm_freelist[VMEM_FREELISTS].vs_end = 0;
- vmp->vm_hash_table = vmp->vm_hash0;
- vmp->vm_hash_mask = VMEM_HASH_INITIAL - 1;
- vmp->vm_hash_shift = highbit(vmp->vm_hash_mask);
-
- vsp = &vmp->vm_seg0;
- vsp->vs_anext = vsp;
- vsp->vs_aprev = vsp;
- vsp->vs_knext = vsp;
- vsp->vs_kprev = vsp;
- vsp->vs_type = VMEM_SPAN;
-
- vsp = &vmp->vm_rotor;
- vsp->vs_type = VMEM_ROTOR;
- VMEM_INSERT(&vmp->vm_seg0, vsp, a);
-
- vmp->vm_id = id;
- if (source != NULL)
- vmp->vm_kstat.vk_source_id = source->vm_id;
- vmp->vm_source = source;
- vmp->vm_source_alloc = afunc;
- vmp->vm_source_free = ffunc;
-
- if (nqcache != 0) {
- vmp->vm_qcache_max = nqcache << vmp->vm_qshift;
- for (i = 0; i < nqcache; i++) {
- char buf[VMEM_NAMELEN + 21];
- (void) snprintf(buf, sizeof (buf), "%s_%lu",
- vmp->vm_name, (long)((i + 1) * quantum));
- vmp->vm_qcache[i] = umem_cache_create(buf,
- (i + 1) * quantum, quantum, NULL, NULL, NULL,
- NULL, vmp, UMC_QCACHE | UMC_NOTOUCH);
- if (vmp->vm_qcache[i] == NULL) {
- vmp->vm_qcache_max = i * quantum;
- break;
- }
- }
- }
-
- (void) mutex_lock(&vmem_list_lock);
- vmpp = &vmem_list;
- while ((cur = *vmpp) != NULL)
- vmpp = &cur->vm_next;
- *vmpp = vmp;
- (void) mutex_unlock(&vmem_list_lock);
-
- if (vmp->vm_cflags & VMC_POPULATOR) {
- uint_t pop_id = atomic_add_32_nv(&vmem_populators, 1);
- ASSERT(pop_id <= VMEM_INITIAL);
- vmem_populator[pop_id - 1] = vmp;
- (void) mutex_lock(&vmp->vm_lock);
- (void) vmem_populate(vmp, vmflag | VM_PANIC);
- (void) mutex_unlock(&vmp->vm_lock);
- }
-
- if ((base || size) && vmem_add(vmp, base, size, vmflag) == NULL) {
- vmem_destroy(vmp);
- return (NULL);
- }
-
- return (vmp);
-}
-
-/*
- * Destroy arena vmp.
- */
-void
-vmem_destroy(vmem_t *vmp)
-{
- vmem_t *cur, **vmpp;
- vmem_seg_t *seg0 = &vmp->vm_seg0;
- vmem_seg_t *vsp;
- size_t leaked;
- int i;
-
- (void) mutex_lock(&vmem_list_lock);
- vmpp = &vmem_list;
- while ((cur = *vmpp) != vmp)
- vmpp = &cur->vm_next;
- *vmpp = vmp->vm_next;
- (void) mutex_unlock(&vmem_list_lock);
-
- for (i = 0; i < VMEM_NQCACHE_MAX; i++)
- if (vmp->vm_qcache[i])
- umem_cache_destroy(vmp->vm_qcache[i]);
-
- leaked = vmem_size(vmp, VMEM_ALLOC);
- if (leaked != 0)
- umem_printf("vmem_destroy('%s'): leaked %lu bytes",
- vmp->vm_name, leaked);
-
- if (vmp->vm_hash_table != vmp->vm_hash0)
- vmem_free(vmem_hash_arena, vmp->vm_hash_table,
- (vmp->vm_hash_mask + 1) * sizeof (void *));
-
- /*
- * Give back the segment structures for anything that's left in the
- * arena, e.g. the primary spans and their free segments.
- */
- VMEM_DELETE(&vmp->vm_rotor, a);
- for (vsp = seg0->vs_anext; vsp != seg0; vsp = vsp->vs_anext)
- vmem_putseg_global(vsp);
-
- while (vmp->vm_nsegfree > 0)
- vmem_putseg_global(vmem_getseg(vmp));
-
- (void) mutex_destroy(&vmp->vm_lock);
- (void) cond_destroy(&vmp->vm_cv);
- vmem_free(vmem_vmem_arena, vmp, sizeof (vmem_t));
-}
-
-/*
- * Resize vmp's hash table to keep the average lookup depth near 1.0.
- */
-static void
-vmem_hash_rescale(vmem_t *vmp)
-{
- vmem_seg_t **old_table, **new_table, *vsp;
- size_t old_size, new_size, h, nseg;
-
- nseg = (size_t)(vmp->vm_kstat.vk_alloc - vmp->vm_kstat.vk_free);
-
- new_size = MAX(VMEM_HASH_INITIAL, 1 << (highbit(3 * nseg + 4) - 2));
- old_size = vmp->vm_hash_mask + 1;
-
- if ((old_size >> 1) <= new_size && new_size <= (old_size << 1))
- return;
-
- new_table = vmem_alloc(vmem_hash_arena, new_size * sizeof (void *),
- VM_NOSLEEP);
- if (new_table == NULL)
- return;
- bzero(new_table, new_size * sizeof (void *));
-
- (void) mutex_lock(&vmp->vm_lock);
-
- old_size = vmp->vm_hash_mask + 1;
- old_table = vmp->vm_hash_table;
-
- vmp->vm_hash_mask = new_size - 1;
- vmp->vm_hash_table = new_table;
- vmp->vm_hash_shift = highbit(vmp->vm_hash_mask);
-
- for (h = 0; h < old_size; h++) {
- vsp = old_table[h];
- while (vsp != NULL) {
- uintptr_t addr = vsp->vs_start;
- vmem_seg_t *next_vsp = vsp->vs_knext;
- vmem_seg_t **hash_bucket = VMEM_HASH(vmp, addr);
- vsp->vs_knext = *hash_bucket;
- *hash_bucket = vsp;
- vsp = next_vsp;
- }
- }
-
- (void) mutex_unlock(&vmp->vm_lock);
-
- if (old_table != vmp->vm_hash0)
- vmem_free(vmem_hash_arena, old_table,
- old_size * sizeof (void *));
-}
-
-/*
- * Perform periodic maintenance on all vmem arenas.
- */
-/*ARGSUSED*/
-void
-vmem_update(void *dummy)
-{
- vmem_t *vmp;
-
- (void) mutex_lock(&vmem_list_lock);
- for (vmp = vmem_list; vmp != NULL; vmp = vmp->vm_next) {
- /*
- * If threads are waiting for resources, wake them up
- * periodically so they can issue another vmem_reap()
- * to reclaim resources cached by the slab allocator.
- */
- (void) cond_broadcast(&vmp->vm_cv);
-
- /*
- * Rescale the hash table to keep the hash chains short.
- */
- vmem_hash_rescale(vmp);
- }
- (void) mutex_unlock(&vmem_list_lock);
-}
-
-/*
- * If vmem_init is called again, we need to be able to reset the world.
- * That includes resetting the statics back to their original values.
- */
-void
-vmem_startup(void)
-{
-#ifdef UMEM_STANDALONE
- vmem_id = 0;
- vmem_populators = 0;
- vmem_segfree = NULL;
- vmem_list = NULL;
- vmem_internal_arena = NULL;
- vmem_seg_arena = NULL;
- vmem_hash_arena = NULL;
- vmem_vmem_arena = NULL;
- vmem_heap = NULL;
- vmem_heap_alloc = NULL;
- vmem_heap_free = NULL;
-
- bzero(vmem0, sizeof (vmem0));
- bzero(vmem_populator, sizeof (vmem_populator));
- bzero(vmem_seg0, sizeof (vmem_seg0));
-#endif
-}
-
-/*
- * Prepare vmem for use.
- */
-vmem_t *
-vmem_init(const char *parent_name, size_t parent_quantum,
- vmem_alloc_t *parent_alloc, vmem_free_t *parent_free,
- const char *heap_name, void *heap_start, size_t heap_size,
- size_t heap_quantum, vmem_alloc_t *heap_alloc, vmem_free_t *heap_free)
-{
- uint32_t id;
- int nseg = VMEM_SEG_INITIAL;
- vmem_t *parent, *heap;
-
- ASSERT(vmem_internal_arena == NULL);
-
- while (--nseg >= 0)
- vmem_putseg_global(&vmem_seg0[nseg]);
-
- if (parent_name != NULL) {
- parent = vmem_create(parent_name,
- heap_start, heap_size, parent_quantum,
- NULL, NULL, NULL, 0,
- VM_SLEEP | VMC_POPULATOR);
- heap_start = NULL;
- heap_size = 0;
- } else {
- ASSERT(parent_alloc == NULL && parent_free == NULL);
- parent = NULL;
- }
-
- heap = vmem_create(heap_name,
- heap_start, heap_size, heap_quantum,
- parent_alloc, parent_free, parent, 0,
- VM_SLEEP | VMC_POPULATOR);
-
- vmem_heap = heap;
- vmem_heap_alloc = heap_alloc;
- vmem_heap_free = heap_free;
-
- vmem_internal_arena = vmem_create("vmem_internal",
- NULL, 0, heap_quantum,
- heap_alloc, heap_free, heap, 0,
- VM_SLEEP | VMC_POPULATOR);
-
- vmem_seg_arena = vmem_create("vmem_seg",
- NULL, 0, heap_quantum,
- vmem_alloc, vmem_free, vmem_internal_arena, 0,
- VM_SLEEP | VMC_POPULATOR);
-
- vmem_hash_arena = vmem_create("vmem_hash",
- NULL, 0, 8,
- vmem_alloc, vmem_free, vmem_internal_arena, 0,
- VM_SLEEP);
-
- vmem_vmem_arena = vmem_create("vmem_vmem",
- vmem0, sizeof (vmem0), 1,
- vmem_alloc, vmem_free, vmem_internal_arena, 0,
- VM_SLEEP);
-
- for (id = 0; id < vmem_id; id++)
- (void) vmem_xalloc(vmem_vmem_arena, sizeof (vmem_t),
- 1, 0, 0, &vmem0[id], &vmem0[id + 1],
- VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
-
- return (heap);
-}
-
-void
-vmem_no_debug(void)
-{
- /*
- * This size must be a multiple of the minimum required alignment,
- * since vmem_populate allocates them compactly.
- */
- vmem_seg_size = P2ROUNDUP(offsetof(vmem_seg_t, vs_thread),
- sizeof (hrtime_t));
-}
-
-/*
- * Lockup and release, for fork1(2) handling.
- */
-void
-vmem_lockup(void)
-{
- vmem_t *cur;
-
- (void) mutex_lock(&vmem_list_lock);
- (void) mutex_lock(&vmem_nosleep_lock.vmpl_mutex);
-
- /*
- * Lock up and broadcast all arenas.
- */
- for (cur = vmem_list; cur != NULL; cur = cur->vm_next) {
- (void) mutex_lock(&cur->vm_lock);
- (void) cond_broadcast(&cur->vm_cv);
- }
-
- (void) mutex_lock(&vmem_segfree_lock);
-}
-
-void
-vmem_release(void)
-{
- vmem_t *cur;
-
- (void) mutex_unlock(&vmem_nosleep_lock.vmpl_mutex);
-
- for (cur = vmem_list; cur != NULL; cur = cur->vm_next)
- (void) mutex_unlock(&cur->vm_lock);
-
- (void) mutex_unlock(&vmem_segfree_lock);
- (void) mutex_unlock(&vmem_list_lock);
-}