diff options
Diffstat (limited to 'zfs/lib/libumem/vmem.c')
-rw-r--r-- | zfs/lib/libumem/vmem.c | 1807 |
1 files changed, 1807 insertions, 0 deletions
diff --git a/zfs/lib/libumem/vmem.c b/zfs/lib/libumem/vmem.c new file mode 100644 index 000000000..1b8981a91 --- /dev/null +++ b/zfs/lib/libumem/vmem.c @@ -0,0 +1,1807 @@ +/* + * CDDL HEADER START + * + * The contents of this file are subject to the terms of the + * Common Development and Distribution License, Version 1.0 only + * (the "License"). You may not use this file except in compliance + * with the License. + * + * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE + * or http://www.opensolaris.org/os/licensing. + * See the License for the specific language governing permissions + * and limitations under the License. + * + * When distributing Covered Code, include this CDDL HEADER in each + * file and include the License file at usr/src/OPENSOLARIS.LICENSE. + * If applicable, add the following below this CDDL HEADER, with the + * fields enclosed by brackets "[]" replaced with your own identifying + * information: Portions Copyright [yyyy] [name of copyright owner] + * + * CDDL HEADER END + */ +/* + * Copyright 2005 Sun Microsystems, Inc. All rights reserved. + * Use is subject to license terms. + */ + +/* #pragma ident "@(#)vmem.c 1.10 05/06/08 SMI" */ + +/* + * For a more complete description of the main ideas, see: + * + * Jeff Bonwick and Jonathan Adams, + * + * Magazines and vmem: Extending the Slab Allocator to Many CPUs and + * Arbitrary Resources. + * + * Proceedings of the 2001 Usenix Conference. + * Available as /shared/sac/PSARC/2000/550/materials/vmem.pdf. + * + * For the "Big Theory Statement", see usr/src/common/os/vmem.c + * + * 1. Overview of changes + * ------------------------------ + * There have been a few changes to vmem in order to support umem. The + * main areas are: + * + * * VM_SLEEP unsupported + * + * * Reaping changes + * + * * initialization changes + * + * * _vmem_extend_alloc + * + * + * 2. VM_SLEEP Removed + * ------------------- + * Since VM_SLEEP allocations can hold locks (in vmem_populate()) for + * possibly infinite amounts of time, they are not supported in this + * version of vmem. Sleep-like behavior can be achieved through + * UMEM_NOFAIL umem allocations. + * + * + * 3. Reaping changes + * ------------------ + * Unlike kmem_reap(), which just asynchronously schedules work, umem_reap() + * can do allocations and frees synchronously. This is a problem if it + * occurs during a vmem_populate() allocation. + * + * Instead, we delay reaps while populates are active. + * + * + * 4. Initialization changes + * ------------------------- + * In the kernel, vmem_init() allows you to create a single, top-level arena, + * which has vmem_internal_arena as a child. For umem, we want to be able + * to extend arenas dynamically. It is much easier to support this if we + * allow a two-level "heap" arena: + * + * +----------+ + * | "fake" | + * +----------+ + * | + * +----------+ + * | "heap" | + * +----------+ + * | \ \ + * | +-+-- ... <other children> + * | + * +---------------+ + * | vmem_internal | + * +---------------+ + * | | | | + * <children> + * + * The new vmem_init() allows you to specify a "parent" of the heap, along + * with allocation functions. + * + * + * 5. _vmem_extend_alloc + * --------------------- + * The other part of extending is _vmem_extend_alloc. This function allows + * you to extend (expand current spans, if possible) an arena and allocate + * a chunk of the newly extened span atomically. This is needed to support + * extending the heap while vmem_populate()ing it. + * + * In order to increase the usefulness of extending, non-imported spans are + * sorted in address order. + */ + +#include "config.h" +/* #include "mtlib.h" */ +#include <sys/vmem_impl_user.h> +#if HAVE_ALLOCA_H +#include <alloca.h> +#endif +#ifdef HAVE_SYS_SYSMACROS_H +#include <sys/sysmacros.h> +#endif +#include <stdio.h> +#if HAVE_STRINGS_H +#include <strings.h> +#endif +#if HAVE_ATOMIC_H +#include <atomic.h> +#endif + +#include "vmem_base.h" +#include "umem_base.h" + +#define VMEM_INITIAL 6 /* early vmem arenas */ +#define VMEM_SEG_INITIAL 100 /* early segments */ + +/* + * Adding a new span to an arena requires two segment structures: one to + * represent the span, and one to represent the free segment it contains. + */ +#define VMEM_SEGS_PER_SPAN_CREATE 2 + +/* + * Allocating a piece of an existing segment requires 0-2 segment structures + * depending on how much of the segment we're allocating. + * + * To allocate the entire segment, no new segment structures are needed; we + * simply move the existing segment structure from the freelist to the + * allocation hash table. + * + * To allocate a piece from the left or right end of the segment, we must + * split the segment into two pieces (allocated part and remainder), so we + * need one new segment structure to represent the remainder. + * + * To allocate from the middle of a segment, we need two new segment strucures + * to represent the remainders on either side of the allocated part. + */ +#define VMEM_SEGS_PER_EXACT_ALLOC 0 +#define VMEM_SEGS_PER_LEFT_ALLOC 1 +#define VMEM_SEGS_PER_RIGHT_ALLOC 1 +#define VMEM_SEGS_PER_MIDDLE_ALLOC 2 + +/* + * vmem_populate() preallocates segment structures for vmem to do its work. + * It must preallocate enough for the worst case, which is when we must import + * a new span and then allocate from the middle of it. + */ +#define VMEM_SEGS_PER_ALLOC_MAX \ + (VMEM_SEGS_PER_SPAN_CREATE + VMEM_SEGS_PER_MIDDLE_ALLOC) + +/* + * The segment structures themselves are allocated from vmem_seg_arena, so + * we have a recursion problem when vmem_seg_arena needs to populate itself. + * We address this by working out the maximum number of segment structures + * this act will require, and multiplying by the maximum number of threads + * that we'll allow to do it simultaneously. + * + * The worst-case segment consumption to populate vmem_seg_arena is as + * follows (depicted as a stack trace to indicate why events are occurring): + * + * vmem_alloc(vmem_seg_arena) -> 2 segs (span create + exact alloc) + * vmem_alloc(vmem_internal_arena) -> 2 segs (span create + exact alloc) + * heap_alloc(heap_arena) + * vmem_alloc(heap_arena) -> 4 seg (span create + alloc) + * parent_alloc(parent_arena) + * _vmem_extend_alloc(parent_arena) -> 3 seg (span create + left alloc) + * + * Note: The reservation for heap_arena must be 4, since vmem_xalloc() + * is overly pessimistic on allocations where parent_arena has a stricter + * alignment than heap_arena. + * + * The worst-case consumption for any arena is 4 segment structures. + * For now, we only support VM_NOSLEEP allocations, so as long as we + * serialize all vmem_populates, a 4-seg reserve is sufficient. + */ +#define VMEM_POPULATE_SEGS_PER_ARENA 4 +#define VMEM_POPULATE_LOCKS 1 + +#define VMEM_POPULATE_RESERVE \ + (VMEM_POPULATE_SEGS_PER_ARENA * VMEM_POPULATE_LOCKS) + +/* + * vmem_populate() ensures that each arena has VMEM_MINFREE seg structures + * so that it can satisfy the worst-case allocation *and* participate in + * worst-case allocation from vmem_seg_arena. + */ +#define VMEM_MINFREE (VMEM_POPULATE_RESERVE + VMEM_SEGS_PER_ALLOC_MAX) + +/* Don't assume new statics are zeroed - see vmem_startup() */ +static vmem_t vmem0[VMEM_INITIAL]; +static vmem_t *vmem_populator[VMEM_INITIAL]; +static uint32_t vmem_id; +static uint32_t vmem_populators; +static vmem_seg_t vmem_seg0[VMEM_SEG_INITIAL]; +static vmem_seg_t *vmem_segfree; +static mutex_t vmem_list_lock = DEFAULTMUTEX; +static mutex_t vmem_segfree_lock = DEFAULTMUTEX; +static vmem_populate_lock_t vmem_nosleep_lock = { + DEFAULTMUTEX, + 0 +}; +#define IN_POPULATE() (vmem_nosleep_lock.vmpl_thr == thr_self()) +static vmem_t *vmem_list; +static vmem_t *vmem_internal_arena; +static vmem_t *vmem_seg_arena; +static vmem_t *vmem_hash_arena; +static vmem_t *vmem_vmem_arena; + +vmem_t *vmem_heap; +vmem_alloc_t *vmem_heap_alloc; +vmem_free_t *vmem_heap_free; + +uint32_t vmem_mtbf; /* mean time between failures [default: off] */ +size_t vmem_seg_size = sizeof (vmem_seg_t); + +/* + * we use the _ version, since we don't want to be cancelled. + * Actually, this is automatically taken care of by including "mtlib.h". + */ +extern int _cond_wait(cond_t *cv, mutex_t *mutex); + +/* + * Insert/delete from arena list (type 'a') or next-of-kin list (type 'k'). + */ +#define VMEM_INSERT(vprev, vsp, type) \ +{ \ + vmem_seg_t *vnext = (vprev)->vs_##type##next; \ + (vsp)->vs_##type##next = (vnext); \ + (vsp)->vs_##type##prev = (vprev); \ + (vprev)->vs_##type##next = (vsp); \ + (vnext)->vs_##type##prev = (vsp); \ +} + +#define VMEM_DELETE(vsp, type) \ +{ \ + vmem_seg_t *vprev = (vsp)->vs_##type##prev; \ + vmem_seg_t *vnext = (vsp)->vs_##type##next; \ + (vprev)->vs_##type##next = (vnext); \ + (vnext)->vs_##type##prev = (vprev); \ +} + +/* + * Get a vmem_seg_t from the global segfree list. + */ +static vmem_seg_t * +vmem_getseg_global(void) +{ + vmem_seg_t *vsp; + + (void) mutex_lock(&vmem_segfree_lock); + if ((vsp = vmem_segfree) != NULL) + vmem_segfree = vsp->vs_knext; + (void) mutex_unlock(&vmem_segfree_lock); + + return (vsp); +} + +/* + * Put a vmem_seg_t on the global segfree list. + */ +static void +vmem_putseg_global(vmem_seg_t *vsp) +{ + (void) mutex_lock(&vmem_segfree_lock); + vsp->vs_knext = vmem_segfree; + vmem_segfree = vsp; + (void) mutex_unlock(&vmem_segfree_lock); +} + +/* + * Get a vmem_seg_t from vmp's segfree list. + */ +static vmem_seg_t * +vmem_getseg(vmem_t *vmp) +{ + vmem_seg_t *vsp; + + ASSERT(vmp->vm_nsegfree > 0); + + vsp = vmp->vm_segfree; + vmp->vm_segfree = vsp->vs_knext; + vmp->vm_nsegfree--; + + return (vsp); +} + +/* + * Put a vmem_seg_t on vmp's segfree list. + */ +static void +vmem_putseg(vmem_t *vmp, vmem_seg_t *vsp) +{ + vsp->vs_knext = vmp->vm_segfree; + vmp->vm_segfree = vsp; + vmp->vm_nsegfree++; +} + +/* + * Add vsp to the appropriate freelist. + */ +static void +vmem_freelist_insert(vmem_t *vmp, vmem_seg_t *vsp) +{ + vmem_seg_t *vprev; + + ASSERT(*VMEM_HASH(vmp, vsp->vs_start) != vsp); + + vprev = (vmem_seg_t *)&vmp->vm_freelist[highbit(VS_SIZE(vsp)) - 1]; + vsp->vs_type = VMEM_FREE; + vmp->vm_freemap |= VS_SIZE(vprev); + VMEM_INSERT(vprev, vsp, k); + + (void) cond_broadcast(&vmp->vm_cv); +} + +/* + * Take vsp from the freelist. + */ +static void +vmem_freelist_delete(vmem_t *vmp, vmem_seg_t *vsp) +{ + ASSERT(*VMEM_HASH(vmp, vsp->vs_start) != vsp); + ASSERT(vsp->vs_type == VMEM_FREE); + + if (vsp->vs_knext->vs_start == 0 && vsp->vs_kprev->vs_start == 0) { + /* + * The segments on both sides of 'vsp' are freelist heads, + * so taking vsp leaves the freelist at vsp->vs_kprev empty. + */ + ASSERT(vmp->vm_freemap & VS_SIZE(vsp->vs_kprev)); + vmp->vm_freemap ^= VS_SIZE(vsp->vs_kprev); + } + VMEM_DELETE(vsp, k); +} + +/* + * Add vsp to the allocated-segment hash table and update kstats. + */ +static void +vmem_hash_insert(vmem_t *vmp, vmem_seg_t *vsp) +{ + vmem_seg_t **bucket; + + vsp->vs_type = VMEM_ALLOC; + bucket = VMEM_HASH(vmp, vsp->vs_start); + vsp->vs_knext = *bucket; + *bucket = vsp; + + if (vmem_seg_size == sizeof (vmem_seg_t)) { + vsp->vs_depth = (uint8_t)getpcstack(vsp->vs_stack, + VMEM_STACK_DEPTH, 0); + vsp->vs_thread = thr_self(); + vsp->vs_timestamp = gethrtime(); + } else { + vsp->vs_depth = 0; + } + + vmp->vm_kstat.vk_alloc++; + vmp->vm_kstat.vk_mem_inuse += VS_SIZE(vsp); +} + +/* + * Remove vsp from the allocated-segment hash table and update kstats. + */ +static vmem_seg_t * +vmem_hash_delete(vmem_t *vmp, uintptr_t addr, size_t size) +{ + vmem_seg_t *vsp, **prev_vspp; + + prev_vspp = VMEM_HASH(vmp, addr); + while ((vsp = *prev_vspp) != NULL) { + if (vsp->vs_start == addr) { + *prev_vspp = vsp->vs_knext; + break; + } + vmp->vm_kstat.vk_lookup++; + prev_vspp = &vsp->vs_knext; + } + + if (vsp == NULL) { + umem_panic("vmem_hash_delete(%p, %lx, %lu): bad free", + vmp, addr, size); + } + if (VS_SIZE(vsp) != size) { + umem_panic("vmem_hash_delete(%p, %lx, %lu): wrong size " + "(expect %lu)", vmp, addr, size, VS_SIZE(vsp)); + } + + vmp->vm_kstat.vk_free++; + vmp->vm_kstat.vk_mem_inuse -= size; + + return (vsp); +} + +/* + * Create a segment spanning the range [start, end) and add it to the arena. + */ +static vmem_seg_t * +vmem_seg_create(vmem_t *vmp, vmem_seg_t *vprev, uintptr_t start, uintptr_t end) +{ + vmem_seg_t *newseg = vmem_getseg(vmp); + + newseg->vs_start = start; + newseg->vs_end = end; + newseg->vs_type = 0; + newseg->vs_import = 0; + + VMEM_INSERT(vprev, newseg, a); + + return (newseg); +} + +/* + * Remove segment vsp from the arena. + */ +static void +vmem_seg_destroy(vmem_t *vmp, vmem_seg_t *vsp) +{ + ASSERT(vsp->vs_type != VMEM_ROTOR); + VMEM_DELETE(vsp, a); + + vmem_putseg(vmp, vsp); +} + +/* + * Add the span [vaddr, vaddr + size) to vmp and update kstats. + */ +static vmem_seg_t * +vmem_span_create(vmem_t *vmp, void *vaddr, size_t size, uint8_t import) +{ + vmem_seg_t *knext; + vmem_seg_t *newseg, *span; + uintptr_t start = (uintptr_t)vaddr; + uintptr_t end = start + size; + + knext = &vmp->vm_seg0; + if (!import && vmp->vm_source_alloc == NULL) { + vmem_seg_t *kend, *kprev; + /* + * non-imported spans are sorted in address order. This + * makes vmem_extend_unlocked() much more effective. + * + * We search in reverse order, since new spans are + * generally at higher addresses. + */ + kend = &vmp->vm_seg0; + for (kprev = kend->vs_kprev; kprev != kend; + kprev = kprev->vs_kprev) { + if (!kprev->vs_import && (kprev->vs_end - 1) < start) + break; + } + knext = kprev->vs_knext; + } + + ASSERT(MUTEX_HELD(&vmp->vm_lock)); + + if ((start | end) & (vmp->vm_quantum - 1)) { + umem_panic("vmem_span_create(%p, %p, %lu): misaligned", + vmp, vaddr, size); + } + + span = vmem_seg_create(vmp, knext->vs_aprev, start, end); + span->vs_type = VMEM_SPAN; + VMEM_INSERT(knext->vs_kprev, span, k); + + newseg = vmem_seg_create(vmp, span, start, end); + vmem_freelist_insert(vmp, newseg); + + newseg->vs_import = import; + if (import) + vmp->vm_kstat.vk_mem_import += size; + vmp->vm_kstat.vk_mem_total += size; + + return (newseg); +} + +/* + * Remove span vsp from vmp and update kstats. + */ +static void +vmem_span_destroy(vmem_t *vmp, vmem_seg_t *vsp) +{ + vmem_seg_t *span = vsp->vs_aprev; + size_t size = VS_SIZE(vsp); + + ASSERT(MUTEX_HELD(&vmp->vm_lock)); + ASSERT(span->vs_type == VMEM_SPAN); + + if (vsp->vs_import) + vmp->vm_kstat.vk_mem_import -= size; + vmp->vm_kstat.vk_mem_total -= size; + + VMEM_DELETE(span, k); + + vmem_seg_destroy(vmp, vsp); + vmem_seg_destroy(vmp, span); +} + +/* + * Allocate the subrange [addr, addr + size) from segment vsp. + * If there are leftovers on either side, place them on the freelist. + * Returns a pointer to the segment representing [addr, addr + size). + */ +static vmem_seg_t * +vmem_seg_alloc(vmem_t *vmp, vmem_seg_t *vsp, uintptr_t addr, size_t size) +{ + uintptr_t vs_start = vsp->vs_start; + uintptr_t vs_end = vsp->vs_end; + size_t vs_size = vs_end - vs_start; + size_t realsize = P2ROUNDUP(size, vmp->vm_quantum); + uintptr_t addr_end = addr + realsize; + + ASSERT(P2PHASE(vs_start, vmp->vm_quantum) == 0); + ASSERT(P2PHASE(addr, vmp->vm_quantum) == 0); + ASSERT(vsp->vs_type == VMEM_FREE); + ASSERT(addr >= vs_start && addr_end - 1 <= vs_end - 1); + ASSERT(addr - 1 <= addr_end - 1); + + /* + * If we're allocating from the start of the segment, and the + * remainder will be on the same freelist, we can save quite + * a bit of work. + */ + if (P2SAMEHIGHBIT(vs_size, vs_size - realsize) && addr == vs_start) { + ASSERT(highbit(vs_size) == highbit(vs_size - realsize)); + vsp->vs_start = addr_end; + vsp = vmem_seg_create(vmp, vsp->vs_aprev, addr, addr + size); + vmem_hash_insert(vmp, vsp); + return (vsp); + } + + vmem_freelist_delete(vmp, vsp); + + if (vs_end != addr_end) + vmem_freelist_insert(vmp, + vmem_seg_create(vmp, vsp, addr_end, vs_end)); + + if (vs_start != addr) + vmem_freelist_insert(vmp, + vmem_seg_create(vmp, vsp->vs_aprev, vs_start, addr)); + + vsp->vs_start = addr; + vsp->vs_end = addr + size; + + vmem_hash_insert(vmp, vsp); + return (vsp); +} + +/* + * We cannot reap if we are in the middle of a vmem_populate(). + */ +void +vmem_reap(void) +{ + if (!IN_POPULATE()) + umem_reap(); +} + +/* + * Populate vmp's segfree list with VMEM_MINFREE vmem_seg_t structures. + */ +static int +vmem_populate(vmem_t *vmp, int vmflag) +{ + char *p; + vmem_seg_t *vsp; + ssize_t nseg; + size_t size; + vmem_populate_lock_t *lp; + int i; + + while (vmp->vm_nsegfree < VMEM_MINFREE && + (vsp = vmem_getseg_global()) != NULL) + vmem_putseg(vmp, vsp); + + if (vmp->vm_nsegfree >= VMEM_MINFREE) + return (1); + + /* + * If we're already populating, tap the reserve. + */ + if (vmem_nosleep_lock.vmpl_thr == thr_self()) { + ASSERT(vmp->vm_cflags & VMC_POPULATOR); + return (1); + } + + (void) mutex_unlock(&vmp->vm_lock); + + ASSERT(vmflag & VM_NOSLEEP); /* we do not allow sleep allocations */ + lp = &vmem_nosleep_lock; + + /* + * Cannot be just a mutex_lock(), since that has no effect if + * libthread is not linked. + */ + (void) mutex_lock(&lp->vmpl_mutex); + ASSERT(lp->vmpl_thr == 0); + lp->vmpl_thr = thr_self(); + + nseg = VMEM_MINFREE + vmem_populators * VMEM_POPULATE_RESERVE; + size = P2ROUNDUP(nseg * vmem_seg_size, vmem_seg_arena->vm_quantum); + nseg = size / vmem_seg_size; + + /* + * The following vmem_alloc() may need to populate vmem_seg_arena + * and all the things it imports from. When doing so, it will tap + * each arena's reserve to prevent recursion (see the block comment + * above the definition of VMEM_POPULATE_RESERVE). + * + * During this allocation, vmem_reap() is a no-op. If the allocation + * fails, we call vmem_reap() after dropping the population lock. + */ + p = vmem_alloc(vmem_seg_arena, size, vmflag & VM_UMFLAGS); + if (p == NULL) { + lp->vmpl_thr = 0; + (void) mutex_unlock(&lp->vmpl_mutex); + vmem_reap(); + + (void) mutex_lock(&vmp->vm_lock); + vmp->vm_kstat.vk_populate_fail++; + return (0); + } + /* + * Restock the arenas that may have been depleted during population. + */ + for (i = 0; i < vmem_populators; i++) { + (void) mutex_lock(&vmem_populator[i]->vm_lock); + while (vmem_populator[i]->vm_nsegfree < VMEM_POPULATE_RESERVE) + vmem_putseg(vmem_populator[i], + (vmem_seg_t *)(p + --nseg * vmem_seg_size)); + (void) mutex_unlock(&vmem_populator[i]->vm_lock); + } + + lp->vmpl_thr = 0; + (void) mutex_unlock(&lp->vmpl_mutex); + (void) mutex_lock(&vmp->vm_lock); + + /* + * Now take our own segments. + */ + ASSERT(nseg >= VMEM_MINFREE); + while (vmp->vm_nsegfree < VMEM_MINFREE) + vmem_putseg(vmp, (vmem_seg_t *)(p + --nseg * vmem_seg_size)); + + /* + * Give the remainder to charity. + */ + while (nseg > 0) + vmem_putseg_global((vmem_seg_t *)(p + --nseg * vmem_seg_size)); + + return (1); +} + +/* + * Advance a walker from its previous position to 'afterme'. + * Note: may drop and reacquire vmp->vm_lock. + */ +static void +vmem_advance(vmem_t *vmp, vmem_seg_t *walker, vmem_seg_t *afterme) +{ + vmem_seg_t *vprev = walker->vs_aprev; + vmem_seg_t *vnext = walker->vs_anext; + vmem_seg_t *vsp = NULL; + + VMEM_DELETE(walker, a); + + if (afterme != NULL) + VMEM_INSERT(afterme, walker, a); + + /* + * The walker segment's presence may have prevented its neighbors + * from coalescing. If so, coalesce them now. + */ + if (vprev->vs_type == VMEM_FREE) { + if (vnext->vs_type == VMEM_FREE) { + ASSERT(vprev->vs_end == vnext->vs_start); + vmem_freelist_delete(vmp, vnext); + vmem_freelist_delete(vmp, vprev); + vprev->vs_end = vnext->vs_end; + vmem_freelist_insert(vmp, vprev); + vmem_seg_destroy(vmp, vnext); + } + vsp = vprev; + } else if (vnext->vs_type == VMEM_FREE) { + vsp = vnext; + } + + /* + * vsp could represent a complete imported span, + * in which case we must return it to the source. + */ + if (vsp != NULL && vsp->vs_import && vmp->vm_source_free != NULL && + vsp->vs_aprev->vs_type == VMEM_SPAN && + vsp->vs_anext->vs_type == VMEM_SPAN) { + void *vaddr = (void *)vsp->vs_start; + size_t size = VS_SIZE(vsp); + ASSERT(size == VS_SIZE(vsp->vs_aprev)); + vmem_freelist_delete(vmp, vsp); + vmem_span_destroy(vmp, vsp); + (void) mutex_unlock(&vmp->vm_lock); + vmp->vm_source_free(vmp->vm_source, vaddr, size); + (void) mutex_lock(&vmp->vm_lock); + } +} + +/* + * VM_NEXTFIT allocations deliberately cycle through all virtual addresses + * in an arena, so that we avoid reusing addresses for as long as possible. + * This helps to catch used-after-freed bugs. It's also the perfect policy + * for allocating things like process IDs, where we want to cycle through + * all values in order. + */ +static void * +vmem_nextfit_alloc(vmem_t *vmp, size_t size, int vmflag) +{ + vmem_seg_t *vsp, *rotor; + uintptr_t addr; + size_t realsize = P2ROUNDUP(size, vmp->vm_quantum); + size_t vs_size; + + (void) mutex_lock(&vmp->vm_lock); + + if (vmp->vm_nsegfree < VMEM_MINFREE && !vmem_populate(vmp, vmflag)) { + (void) mutex_unlock(&vmp->vm_lock); + return (NULL); + } + + /* + * The common case is that the segment right after the rotor is free, + * and large enough that extracting 'size' bytes won't change which + * freelist it's on. In this case we can avoid a *lot* of work. + * Instead of the normal vmem_seg_alloc(), we just advance the start + * address of the victim segment. Instead of moving the rotor, we + * create the new segment structure *behind the rotor*, which has + * the same effect. And finally, we know we don't have to coalesce + * the rotor's neighbors because the new segment lies between them. + */ + rotor = &vmp->vm_rotor; + vsp = rotor->vs_anext; + if (vsp->vs_type == VMEM_FREE && (vs_size = VS_SIZE(vsp)) > realsize && + P2SAMEHIGHBIT(vs_size, vs_size - realsize)) { + ASSERT(highbit(vs_size) == highbit(vs_size - realsize)); + addr = vsp->vs_start; + vsp->vs_start = addr + realsize; + vmem_hash_insert(vmp, + vmem_seg_create(vmp, rotor->vs_aprev, addr, addr + size)); + (void) mutex_unlock(&vmp->vm_lock); + return ((void *)addr); + } + + /* + * Starting at the rotor, look for a segment large enough to + * satisfy the allocation. + */ + for (;;) { + vmp->vm_kstat.vk_search++; + if (vsp->vs_type == VMEM_FREE && VS_SIZE(vsp) >= size) + break; + vsp = vsp->vs_anext; + if (vsp == rotor) { + /* + * We've come full circle. One possibility is that the + * there's actually enough space, but the rotor itself + * is preventing the allocation from succeeding because + * it's sitting between two free segments. Therefore, + * we advance the rotor and see if that liberates a + * suitable segment. + */ + vmem_advance(vmp, rotor, rotor->vs_anext); + vsp = rotor->vs_aprev; + if (vsp->vs_type == VMEM_FREE && VS_SIZE(vsp) >= size) + break; + /* + * If there's a lower arena we can import from, or it's + * a VM_NOSLEEP allocation, let vmem_xalloc() handle it. + * Otherwise, wait until another thread frees something. + */ + if (vmp->vm_source_alloc != NULL || + (vmflag & VM_NOSLEEP)) { + (void) mutex_unlock(&vmp->vm_lock); + return (vmem_xalloc(vmp, size, vmp->vm_quantum, + 0, 0, NULL, NULL, vmflag & VM_UMFLAGS)); + } + vmp->vm_kstat.vk_wait++; + (void) _cond_wait(&vmp->vm_cv, &vmp->vm_lock); + vsp = rotor->vs_anext; + } + } + + /* + * We found a segment. Extract enough space to satisfy the allocation. + */ + addr = vsp->vs_start; + vsp = vmem_seg_alloc(vmp, vsp, addr, size); + ASSERT(vsp->vs_type == VMEM_ALLOC && + vsp->vs_start == addr && vsp->vs_end == addr + size); + + /* + * Advance the rotor to right after the newly-allocated segment. + * That's where the next VM_NEXTFIT allocation will begin searching. + */ + vmem_advance(vmp, rotor, vsp); + (void) mutex_unlock(&vmp->vm_lock); + return ((void *)addr); +} + +/* + * Allocate size bytes at offset phase from an align boundary such that the + * resulting segment [addr, addr + size) is a subset of [minaddr, maxaddr) + * that does not straddle a nocross-aligned boundary. + */ +void * +vmem_xalloc(vmem_t *vmp, size_t size, size_t align, size_t phase, + size_t nocross, void *minaddr, void *maxaddr, int vmflag) +{ + vmem_seg_t *vsp; + vmem_seg_t *vbest = NULL; + uintptr_t addr, taddr, start, end; + void *vaddr; + int hb, flist, resv; + uint32_t mtbf; + + if (phase > 0 && phase >= align) + umem_panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): " + "invalid phase", + (void *)vmp, size, align, phase, nocross, + minaddr, maxaddr, vmflag); + + if (align == 0) + align = vmp->vm_quantum; + + if ((align | phase | nocross) & (vmp->vm_quantum - 1)) { + umem_panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): " + "parameters not vm_quantum aligned", + (void *)vmp, size, align, phase, nocross, + minaddr, maxaddr, vmflag); + } + + if (nocross != 0 && + (align > nocross || P2ROUNDUP(phase + size, align) > nocross)) { + umem_panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): " + "overconstrained allocation", + (void *)vmp, size, align, phase, nocross, + minaddr, maxaddr, vmflag); + } + + if ((mtbf = vmem_mtbf | vmp->vm_mtbf) != 0 && gethrtime() % mtbf == 0 && + (vmflag & (VM_NOSLEEP | VM_PANIC)) == VM_NOSLEEP) + return (NULL); + + (void) mutex_lock(&vmp->vm_lock); + for (;;) { + if (vmp->vm_nsegfree < VMEM_MINFREE && + !vmem_populate(vmp, vmflag)) + break; + + /* + * highbit() returns the highest bit + 1, which is exactly + * what we want: we want to search the first freelist whose + * members are *definitely* large enough to satisfy our + * allocation. However, there are certain cases in which we + * want to look at the next-smallest freelist (which *might* + * be able to satisfy the allocation): + * + * (1) The size is exactly a power of 2, in which case + * the smaller freelist is always big enough; + * + * (2) All other freelists are empty; + * + * (3) We're in the highest possible freelist, which is + * always empty (e.g. the 4GB freelist on 32-bit systems); + * + * (4) We're doing a best-fit or first-fit allocation. + */ + if ((size & (size - 1)) == 0) { + flist = lowbit(P2ALIGN(vmp->vm_freemap, size)); + } else { + hb = highbit(size); + if ((vmp->vm_freemap >> hb) == 0 || + hb == VMEM_FREELISTS || + (vmflag & (VM_BESTFIT | VM_FIRSTFIT))) + hb--; + flist = lowbit(P2ALIGN(vmp->vm_freemap, 1UL << hb)); + } + + for (vbest = NULL, vsp = (flist == 0) ? NULL : + vmp->vm_freelist[flist - 1].vs_knext; + vsp != NULL; vsp = vsp->vs_knext) { + vmp->vm_kstat.vk_search++; + if (vsp->vs_start == 0) { + /* + * We're moving up to a larger freelist, + * so if we've already found a candidate, + * the fit can't possibly get any better. + */ + if (vbest != NULL) + break; + /* + * Find the next non-empty freelist. + */ + flist = lowbit(P2ALIGN(vmp->vm_freemap, + VS_SIZE(vsp))); + if (flist-- == 0) + break; + vsp = (vmem_seg_t *)&vmp->vm_freelist[flist]; + ASSERT(vsp->vs_knext->vs_type == VMEM_FREE); + continue; + } + if (vsp->vs_end - 1 < (uintptr_t)minaddr) + continue; + if (vsp->vs_start > (uintptr_t)maxaddr - 1) + continue; + start = MAX(vsp->vs_start, (uintptr_t)minaddr); + end = MIN(vsp->vs_end - 1, (uintptr_t)maxaddr - 1) + 1; + taddr = P2PHASEUP(start, align, phase); + if (P2CROSS(taddr, taddr + size - 1, nocross)) + taddr += + P2ROUNDUP(P2NPHASE(taddr, nocross), align); + if ((taddr - start) + size > end - start || + (vbest != NULL && VS_SIZE(vsp) >= VS_SIZE(vbest))) + continue; + vbest = vsp; + addr = taddr; + if (!(vmflag & VM_BESTFIT) || VS_SIZE(vbest) == size) + break; + } + if (vbest != NULL) + break; + if (size == 0) + umem_panic("vmem_xalloc(): size == 0"); + if (vmp->vm_source_alloc != NULL && nocross == 0 && + minaddr == NULL && maxaddr == NULL) { + size_t asize = P2ROUNDUP(size + phase, + MAX(align, vmp->vm_source->vm_quantum)); + if (asize < size) { /* overflow */ + (void) mutex_unlock(&vmp->vm_lock); + if (vmflag & VM_NOSLEEP) + return (NULL); + + umem_panic("vmem_xalloc(): " + "overflow on VM_SLEEP allocation"); + } + /* + * Determine how many segment structures we'll consume. + * The calculation must be presise because if we're + * here on behalf of vmem_populate(), we are taking + * segments from a very limited reserve. + */ + resv = (size == asize) ? + VMEM_SEGS_PER_SPAN_CREATE + + VMEM_SEGS_PER_EXACT_ALLOC : + VMEM_SEGS_PER_ALLOC_MAX; + ASSERT(vmp->vm_nsegfree >= resv); + vmp->vm_nsegfree -= resv; /* reserve our segs */ + (void) mutex_unlock(&vmp->vm_lock); + vaddr = vmp->vm_source_alloc(vmp->vm_source, asize, + vmflag & VM_UMFLAGS); + (void) mutex_lock(&vmp->vm_lock); + vmp->vm_nsegfree += resv; /* claim reservation */ + if (vaddr != NULL) { + vbest = vmem_span_create(vmp, vaddr, asize, 1); + addr = P2PHASEUP(vbest->vs_start, align, phase); + break; + } + } + (void) mutex_unlock(&vmp->vm_lock); + vmem_reap(); + (void) mutex_lock(&vmp->vm_lock); + if (vmflag & VM_NOSLEEP) + break; + vmp->vm_kstat.vk_wait++; + (void) _cond_wait(&vmp->vm_cv, &vmp->vm_lock); + } + if (vbest != NULL) { + ASSERT(vbest->vs_type == VMEM_FREE); + ASSERT(vbest->vs_knext != vbest); + (void) vmem_seg_alloc(vmp, vbest, addr, size); + (void) mutex_unlock(&vmp->vm_lock); + ASSERT(P2PHASE(addr, align) == phase); + ASSERT(!P2CROSS(addr, addr + size - 1, nocross)); + ASSERT(addr >= (uintptr_t)minaddr); + ASSERT(addr + size - 1 <= (uintptr_t)maxaddr - 1); + return ((void *)addr); + } + vmp->vm_kstat.vk_fail++; + (void) mutex_unlock(&vmp->vm_lock); + if (vmflag & VM_PANIC) + umem_panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): " + "cannot satisfy mandatory allocation", + (void *)vmp, size, align, phase, nocross, + minaddr, maxaddr, vmflag); + return (NULL); +} + +/* + * Free the segment [vaddr, vaddr + size), where vaddr was a constrained + * allocation. vmem_xalloc() and vmem_xfree() must always be paired because + * both routines bypass the quantum caches. + */ +void +vmem_xfree(vmem_t *vmp, void *vaddr, size_t size) +{ + vmem_seg_t *vsp, *vnext, *vprev; + + (void) mutex_lock(&vmp->vm_lock); + + vsp = vmem_hash_delete(vmp, (uintptr_t)vaddr, size); + vsp->vs_end = P2ROUNDUP(vsp->vs_end, vmp->vm_quantum); + + /* + * Attempt to coalesce with the next segment. + */ + vnext = vsp->vs_anext; + if (vnext->vs_type == VMEM_FREE) { + ASSERT(vsp->vs_end == vnext->vs_start); + vmem_freelist_delete(vmp, vnext); + vsp->vs_end = vnext->vs_end; + vmem_seg_destroy(vmp, vnext); + } + + /* + * Attempt to coalesce with the previous segment. + */ + vprev = vsp->vs_aprev; + if (vprev->vs_type == VMEM_FREE) { + ASSERT(vprev->vs_end == vsp->vs_start); + vmem_freelist_delete(vmp, vprev); + vprev->vs_end = vsp->vs_end; + vmem_seg_destroy(vmp, vsp); + vsp = vprev; + } + + /* + * If the entire span is free, return it to the source. + */ + if (vsp->vs_import && vmp->vm_source_free != NULL && + vsp->vs_aprev->vs_type == VMEM_SPAN && + vsp->vs_anext->vs_type == VMEM_SPAN) { + vaddr = (void *)vsp->vs_start; + size = VS_SIZE(vsp); + ASSERT(size == VS_SIZE(vsp->vs_aprev)); + vmem_span_destroy(vmp, vsp); + (void) mutex_unlock(&vmp->vm_lock); + vmp->vm_source_free(vmp->vm_source, vaddr, size); + } else { + vmem_freelist_insert(vmp, vsp); + (void) mutex_unlock(&vmp->vm_lock); + } +} + +/* + * Allocate size bytes from arena vmp. Returns the allocated address + * on success, NULL on failure. vmflag specifies VM_SLEEP or VM_NOSLEEP, + * and may also specify best-fit, first-fit, or next-fit allocation policy + * instead of the default instant-fit policy. VM_SLEEP allocations are + * guaranteed to succeed. + */ +void * +vmem_alloc(vmem_t *vmp, size_t size, int vmflag) +{ + vmem_seg_t *vsp; + uintptr_t addr; + int hb; + int flist = 0; + uint32_t mtbf; + + if (size - 1 < vmp->vm_qcache_max) { + ASSERT(vmflag & VM_NOSLEEP); + return (_umem_cache_alloc(vmp->vm_qcache[(size - 1) >> + vmp->vm_qshift], UMEM_DEFAULT)); + } + + if ((mtbf = vmem_mtbf | vmp->vm_mtbf) != 0 && gethrtime() % mtbf == 0 && + (vmflag & (VM_NOSLEEP | VM_PANIC)) == VM_NOSLEEP) + return (NULL); + + if (vmflag & VM_NEXTFIT) + return (vmem_nextfit_alloc(vmp, size, vmflag)); + + if (vmflag & (VM_BESTFIT | VM_FIRSTFIT)) + return (vmem_xalloc(vmp, size, vmp->vm_quantum, 0, 0, + NULL, NULL, vmflag)); + + /* + * Unconstrained instant-fit allocation from the segment list. + */ + (void) mutex_lock(&vmp->vm_lock); + + if (vmp->vm_nsegfree >= VMEM_MINFREE || vmem_populate(vmp, vmflag)) { + if ((size & (size - 1)) == 0) + flist = lowbit(P2ALIGN(vmp->vm_freemap, size)); + else if ((hb = highbit(size)) < VMEM_FREELISTS) + flist = lowbit(P2ALIGN(vmp->vm_freemap, 1UL << hb)); + } + + if (flist-- == 0) { + (void) mutex_unlock(&vmp->vm_lock); + return (vmem_xalloc(vmp, size, vmp->vm_quantum, + 0, 0, NULL, NULL, vmflag)); + } + + ASSERT(size <= (1UL << flist)); + vsp = vmp->vm_freelist[flist].vs_knext; + addr = vsp->vs_start; + (void) vmem_seg_alloc(vmp, vsp, addr, size); + (void) mutex_unlock(&vmp->vm_lock); + return ((void *)addr); +} + +/* + * Free the segment [vaddr, vaddr + size). + */ +void +vmem_free(vmem_t *vmp, void *vaddr, size_t size) +{ + if (size - 1 < vmp->vm_qcache_max) + _umem_cache_free(vmp->vm_qcache[(size - 1) >> vmp->vm_qshift], + vaddr); + else + vmem_xfree(vmp, vaddr, size); +} + +/* + * Determine whether arena vmp contains the segment [vaddr, vaddr + size). + */ +int +vmem_contains(vmem_t *vmp, void *vaddr, size_t size) +{ + uintptr_t start = (uintptr_t)vaddr; + uintptr_t end = start + size; + vmem_seg_t *vsp; + vmem_seg_t *seg0 = &vmp->vm_seg0; + + (void) mutex_lock(&vmp->vm_lock); + vmp->vm_kstat.vk_contains++; + for (vsp = seg0->vs_knext; vsp != seg0; vsp = vsp->vs_knext) { + vmp->vm_kstat.vk_contains_search++; + ASSERT(vsp->vs_type == VMEM_SPAN); + if (start >= vsp->vs_start && end - 1 <= vsp->vs_end - 1) + break; + } + (void) mutex_unlock(&vmp->vm_lock); + return (vsp != seg0); +} + +/* + * Add the span [vaddr, vaddr + size) to arena vmp. + */ +void * +vmem_add(vmem_t *vmp, void *vaddr, size_t size, int vmflag) +{ + if (vaddr == NULL || size == 0) { + umem_panic("vmem_add(%p, %p, %lu): bad arguments", + vmp, vaddr, size); + } + + ASSERT(!vmem_contains(vmp, vaddr, size)); + + (void) mutex_lock(&vmp->vm_lock); + if (vmem_populate(vmp, vmflag)) + (void) vmem_span_create(vmp, vaddr, size, 0); + else + vaddr = NULL; + (void) cond_broadcast(&vmp->vm_cv); + (void) mutex_unlock(&vmp->vm_lock); + return (vaddr); +} + +/* + * Adds the address range [addr, endaddr) to arena vmp, by either: + * 1. joining two existing spans, [x, addr), and [endaddr, y) (which + * are in that order) into a single [x, y) span, + * 2. expanding an existing [x, addr) span to [x, endaddr), + * 3. expanding an existing [endaddr, x) span to [addr, x), or + * 4. creating a new [addr, endaddr) span. + * + * Called with vmp->vm_lock held, and a successful vmem_populate() completed. + * Cannot fail. Returns the new segment. + * + * NOTE: this algorithm is linear-time in the number of spans, but is + * constant-time when you are extending the last (highest-addressed) + * span. + */ +static vmem_seg_t * +vmem_extend_unlocked(vmem_t *vmp, uintptr_t addr, uintptr_t endaddr) +{ + vmem_seg_t *span; + vmem_seg_t *vsp; + + vmem_seg_t *end = &vmp->vm_seg0; + + ASSERT(MUTEX_HELD(&vmp->vm_lock)); + + /* + * the second "if" clause below relies on the direction of this search + */ + for (span = end->vs_kprev; span != end; span = span->vs_kprev) { + if (span->vs_end == addr || span->vs_start == endaddr) + break; + } + + if (span == end) + return (vmem_span_create(vmp, (void *)addr, endaddr - addr, 0)); + if (span->vs_kprev->vs_end == addr && span->vs_start == endaddr) { + vmem_seg_t *prevspan = span->vs_kprev; + vmem_seg_t *nextseg = span->vs_anext; + vmem_seg_t *prevseg = span->vs_aprev; + + /* + * prevspan becomes the span marker for the full range + */ + prevspan->vs_end = span->vs_end; + + /* + * Notionally, span becomes a free segment representing + * [addr, endaddr). + * + * However, if either of its neighbors are free, we coalesce + * by destroying span and changing the free segment. + */ + if (prevseg->vs_type == VMEM_FREE && + nextseg->vs_type == VMEM_FREE) { + /* + * coalesce both ways + */ + ASSERT(prevseg->vs_end == addr && + nextseg->vs_start == endaddr); + + vmem_freelist_delete(vmp, prevseg); + prevseg->vs_end = nextseg->vs_end; + + vmem_freelist_delete(vmp, nextseg); + VMEM_DELETE(span, k); + vmem_seg_destroy(vmp, nextseg); + vmem_seg_destroy(vmp, span); + + vsp = prevseg; + } else if (prevseg->vs_type == VMEM_FREE) { + /* + * coalesce left + */ + ASSERT(prevseg->vs_end == addr); + + VMEM_DELETE(span, k); + vmem_seg_destroy(vmp, span); + + vmem_freelist_delete(vmp, prevseg); + prevseg->vs_end = endaddr; + + vsp = prevseg; + } else if (nextseg->vs_type == VMEM_FREE) { + /* + * coalesce right + */ + ASSERT(nextseg->vs_start == endaddr); + + VMEM_DELETE(span, k); + vmem_seg_destroy(vmp, span); + + vmem_freelist_delete(vmp, nextseg); + nextseg->vs_start = addr; + + vsp = nextseg; + } else { + /* + * cannnot coalesce + */ + VMEM_DELETE(span, k); + span->vs_start = addr; + span->vs_end = endaddr; + + vsp = span; + } + } else if (span->vs_end == addr) { + vmem_seg_t *oldseg = span->vs_knext->vs_aprev; + span->vs_end = endaddr; + + ASSERT(oldseg->vs_type != VMEM_SPAN); + if (oldseg->vs_type == VMEM_FREE) { + ASSERT(oldseg->vs_end == addr); + vmem_freelist_delete(vmp, oldseg); + oldseg->vs_end = endaddr; + vsp = oldseg; + } else + vsp = vmem_seg_create(vmp, oldseg, addr, endaddr); + } else { + vmem_seg_t *oldseg = span->vs_anext; + ASSERT(span->vs_start == endaddr); + span->vs_start = addr; + + ASSERT(oldseg->vs_type != VMEM_SPAN); + if (oldseg->vs_type == VMEM_FREE) { + ASSERT(oldseg->vs_start == endaddr); + vmem_freelist_delete(vmp, oldseg); + oldseg->vs_start = addr; + vsp = oldseg; + } else + vsp = vmem_seg_create(vmp, span, addr, endaddr); + } + vmem_freelist_insert(vmp, vsp); + vmp->vm_kstat.vk_mem_total += (endaddr - addr); + return (vsp); +} + +/* + * Does some error checking, calls vmem_extend_unlocked to add + * [vaddr, vaddr+size) to vmp, then allocates alloc bytes from the + * newly merged segment. + */ +void * +_vmem_extend_alloc(vmem_t *vmp, void *vaddr, size_t size, size_t alloc, + int vmflag) +{ + uintptr_t addr = (uintptr_t)vaddr; + uintptr_t endaddr = addr + size; + vmem_seg_t *vsp; + + ASSERT(vaddr != NULL && size != 0 && endaddr > addr); + ASSERT(alloc <= size && alloc != 0); + ASSERT(((addr | size | alloc) & (vmp->vm_quantum - 1)) == 0); + + ASSERT(!vmem_contains(vmp, vaddr, size)); + + (void) mutex_lock(&vmp->vm_lock); + if (!vmem_populate(vmp, vmflag)) { + (void) mutex_unlock(&vmp->vm_lock); + return (NULL); + } + /* + * if there is a source, we can't mess with the spans + */ + if (vmp->vm_source_alloc != NULL) + vsp = vmem_span_create(vmp, vaddr, size, 0); + else + vsp = vmem_extend_unlocked(vmp, addr, endaddr); + + ASSERT(VS_SIZE(vsp) >= alloc); + + addr = vsp->vs_start; + (void) vmem_seg_alloc(vmp, vsp, addr, alloc); + vaddr = (void *)addr; + + (void) cond_broadcast(&vmp->vm_cv); + (void) mutex_unlock(&vmp->vm_lock); + + return (vaddr); +} + +/* + * Walk the vmp arena, applying func to each segment matching typemask. + * If VMEM_REENTRANT is specified, the arena lock is dropped across each + * call to func(); otherwise, it is held for the duration of vmem_walk() + * to ensure a consistent snapshot. Note that VMEM_REENTRANT callbacks + * are *not* necessarily consistent, so they may only be used when a hint + * is adequate. + */ +void +vmem_walk(vmem_t *vmp, int typemask, + void (*func)(void *, void *, size_t), void *arg) +{ + vmem_seg_t *vsp; + vmem_seg_t *seg0 = &vmp->vm_seg0; + vmem_seg_t walker; + + if (typemask & VMEM_WALKER) + return; + + bzero(&walker, sizeof (walker)); + walker.vs_type = VMEM_WALKER; + + (void) mutex_lock(&vmp->vm_lock); + VMEM_INSERT(seg0, &walker, a); + for (vsp = seg0->vs_anext; vsp != seg0; vsp = vsp->vs_anext) { + if (vsp->vs_type & typemask) { + void *start = (void *)vsp->vs_start; + size_t size = VS_SIZE(vsp); + if (typemask & VMEM_REENTRANT) { + vmem_advance(vmp, &walker, vsp); + (void) mutex_unlock(&vmp->vm_lock); + func(arg, start, size); + (void) mutex_lock(&vmp->vm_lock); + vsp = &walker; + } else { + func(arg, start, size); + } + } + } + vmem_advance(vmp, &walker, NULL); + (void) mutex_unlock(&vmp->vm_lock); +} + +/* + * Return the total amount of memory whose type matches typemask. Thus: + * + * typemask VMEM_ALLOC yields total memory allocated (in use). + * typemask VMEM_FREE yields total memory free (available). + * typemask (VMEM_ALLOC | VMEM_FREE) yields total arena size. + */ +size_t +vmem_size(vmem_t *vmp, int typemask) +{ + uint64_t size = 0; + + if (typemask & VMEM_ALLOC) + size += vmp->vm_kstat.vk_mem_inuse; + if (typemask & VMEM_FREE) + size += vmp->vm_kstat.vk_mem_total - + vmp->vm_kstat.vk_mem_inuse; + return ((size_t)size); +} + +/* + * Create an arena called name whose initial span is [base, base + size). + * The arena's natural unit of currency is quantum, so vmem_alloc() + * guarantees quantum-aligned results. The arena may import new spans + * by invoking afunc() on source, and may return those spans by invoking + * ffunc() on source. To make small allocations fast and scalable, + * the arena offers high-performance caching for each integer multiple + * of quantum up to qcache_max. + */ +vmem_t * +vmem_create(const char *name, void *base, size_t size, size_t quantum, + vmem_alloc_t *afunc, vmem_free_t *ffunc, vmem_t *source, + size_t qcache_max, int vmflag) +{ + int i; + size_t nqcache; + vmem_t *vmp, *cur, **vmpp; + vmem_seg_t *vsp; + vmem_freelist_t *vfp; + uint32_t id = atomic_add_32_nv(&vmem_id, 1); + + if (vmem_vmem_arena != NULL) { + vmp = vmem_alloc(vmem_vmem_arena, sizeof (vmem_t), + vmflag & VM_UMFLAGS); + } else { + ASSERT(id <= VMEM_INITIAL); + vmp = &vmem0[id - 1]; + } + + if (vmp == NULL) + return (NULL); + bzero(vmp, sizeof (vmem_t)); + + (void) snprintf(vmp->vm_name, VMEM_NAMELEN, "%s", name); + (void) mutex_init(&vmp->vm_lock, USYNC_THREAD, NULL); + (void) cond_init(&vmp->vm_cv, USYNC_THREAD, NULL); + vmp->vm_cflags = vmflag; + vmflag &= VM_UMFLAGS; + + vmp->vm_quantum = quantum; + vmp->vm_qshift = highbit(quantum) - 1; + nqcache = MIN(qcache_max >> vmp->vm_qshift, VMEM_NQCACHE_MAX); + + for (i = 0; i <= VMEM_FREELISTS; i++) { + vfp = &vmp->vm_freelist[i]; + vfp->vs_end = 1UL << i; + vfp->vs_knext = (vmem_seg_t *)(vfp + 1); + vfp->vs_kprev = (vmem_seg_t *)(vfp - 1); + } + + vmp->vm_freelist[0].vs_kprev = NULL; + vmp->vm_freelist[VMEM_FREELISTS].vs_knext = NULL; + vmp->vm_freelist[VMEM_FREELISTS].vs_end = 0; + vmp->vm_hash_table = vmp->vm_hash0; + vmp->vm_hash_mask = VMEM_HASH_INITIAL - 1; + vmp->vm_hash_shift = highbit(vmp->vm_hash_mask); + + vsp = &vmp->vm_seg0; + vsp->vs_anext = vsp; + vsp->vs_aprev = vsp; + vsp->vs_knext = vsp; + vsp->vs_kprev = vsp; + vsp->vs_type = VMEM_SPAN; + + vsp = &vmp->vm_rotor; + vsp->vs_type = VMEM_ROTOR; + VMEM_INSERT(&vmp->vm_seg0, vsp, a); + + vmp->vm_id = id; + if (source != NULL) + vmp->vm_kstat.vk_source_id = source->vm_id; + vmp->vm_source = source; + vmp->vm_source_alloc = afunc; + vmp->vm_source_free = ffunc; + + if (nqcache != 0) { + vmp->vm_qcache_max = nqcache << vmp->vm_qshift; + for (i = 0; i < nqcache; i++) { + char buf[VMEM_NAMELEN + 21]; + (void) snprintf(buf, sizeof (buf), "%s_%lu", + vmp->vm_name, (long)((i + 1) * quantum)); + vmp->vm_qcache[i] = umem_cache_create(buf, + (i + 1) * quantum, quantum, NULL, NULL, NULL, + NULL, vmp, UMC_QCACHE | UMC_NOTOUCH); + if (vmp->vm_qcache[i] == NULL) { + vmp->vm_qcache_max = i * quantum; + break; + } + } + } + + (void) mutex_lock(&vmem_list_lock); + vmpp = &vmem_list; + while ((cur = *vmpp) != NULL) + vmpp = &cur->vm_next; + *vmpp = vmp; + (void) mutex_unlock(&vmem_list_lock); + + if (vmp->vm_cflags & VMC_POPULATOR) { + uint_t pop_id = atomic_add_32_nv(&vmem_populators, 1); + ASSERT(pop_id <= VMEM_INITIAL); + vmem_populator[pop_id - 1] = vmp; + (void) mutex_lock(&vmp->vm_lock); + (void) vmem_populate(vmp, vmflag | VM_PANIC); + (void) mutex_unlock(&vmp->vm_lock); + } + + if ((base || size) && vmem_add(vmp, base, size, vmflag) == NULL) { + vmem_destroy(vmp); + return (NULL); + } + + return (vmp); +} + +/* + * Destroy arena vmp. + */ +void +vmem_destroy(vmem_t *vmp) +{ + vmem_t *cur, **vmpp; + vmem_seg_t *seg0 = &vmp->vm_seg0; + vmem_seg_t *vsp; + size_t leaked; + int i; + + (void) mutex_lock(&vmem_list_lock); + vmpp = &vmem_list; + while ((cur = *vmpp) != vmp) + vmpp = &cur->vm_next; + *vmpp = vmp->vm_next; + (void) mutex_unlock(&vmem_list_lock); + + for (i = 0; i < VMEM_NQCACHE_MAX; i++) + if (vmp->vm_qcache[i]) + umem_cache_destroy(vmp->vm_qcache[i]); + + leaked = vmem_size(vmp, VMEM_ALLOC); + if (leaked != 0) + umem_printf("vmem_destroy('%s'): leaked %lu bytes", + vmp->vm_name, leaked); + + if (vmp->vm_hash_table != vmp->vm_hash0) + vmem_free(vmem_hash_arena, vmp->vm_hash_table, + (vmp->vm_hash_mask + 1) * sizeof (void *)); + + /* + * Give back the segment structures for anything that's left in the + * arena, e.g. the primary spans and their free segments. + */ + VMEM_DELETE(&vmp->vm_rotor, a); + for (vsp = seg0->vs_anext; vsp != seg0; vsp = vsp->vs_anext) + vmem_putseg_global(vsp); + + while (vmp->vm_nsegfree > 0) + vmem_putseg_global(vmem_getseg(vmp)); + + (void) mutex_destroy(&vmp->vm_lock); + (void) cond_destroy(&vmp->vm_cv); + vmem_free(vmem_vmem_arena, vmp, sizeof (vmem_t)); +} + +/* + * Resize vmp's hash table to keep the average lookup depth near 1.0. + */ +static void +vmem_hash_rescale(vmem_t *vmp) +{ + vmem_seg_t **old_table, **new_table, *vsp; + size_t old_size, new_size, h, nseg; + + nseg = (size_t)(vmp->vm_kstat.vk_alloc - vmp->vm_kstat.vk_free); + + new_size = MAX(VMEM_HASH_INITIAL, 1 << (highbit(3 * nseg + 4) - 2)); + old_size = vmp->vm_hash_mask + 1; + + if ((old_size >> 1) <= new_size && new_size <= (old_size << 1)) + return; + + new_table = vmem_alloc(vmem_hash_arena, new_size * sizeof (void *), + VM_NOSLEEP); + if (new_table == NULL) + return; + bzero(new_table, new_size * sizeof (void *)); + + (void) mutex_lock(&vmp->vm_lock); + + old_size = vmp->vm_hash_mask + 1; + old_table = vmp->vm_hash_table; + + vmp->vm_hash_mask = new_size - 1; + vmp->vm_hash_table = new_table; + vmp->vm_hash_shift = highbit(vmp->vm_hash_mask); + + for (h = 0; h < old_size; h++) { + vsp = old_table[h]; + while (vsp != NULL) { + uintptr_t addr = vsp->vs_start; + vmem_seg_t *next_vsp = vsp->vs_knext; + vmem_seg_t **hash_bucket = VMEM_HASH(vmp, addr); + vsp->vs_knext = *hash_bucket; + *hash_bucket = vsp; + vsp = next_vsp; + } + } + + (void) mutex_unlock(&vmp->vm_lock); + + if (old_table != vmp->vm_hash0) + vmem_free(vmem_hash_arena, old_table, + old_size * sizeof (void *)); +} + +/* + * Perform periodic maintenance on all vmem arenas. + */ +/*ARGSUSED*/ +void +vmem_update(void *dummy) +{ + vmem_t *vmp; + + (void) mutex_lock(&vmem_list_lock); + for (vmp = vmem_list; vmp != NULL; vmp = vmp->vm_next) { + /* + * If threads are waiting for resources, wake them up + * periodically so they can issue another vmem_reap() + * to reclaim resources cached by the slab allocator. + */ + (void) cond_broadcast(&vmp->vm_cv); + + /* + * Rescale the hash table to keep the hash chains short. + */ + vmem_hash_rescale(vmp); + } + (void) mutex_unlock(&vmem_list_lock); +} + +/* + * If vmem_init is called again, we need to be able to reset the world. + * That includes resetting the statics back to their original values. + */ +void +vmem_startup(void) +{ +#ifdef UMEM_STANDALONE + vmem_id = 0; + vmem_populators = 0; + vmem_segfree = NULL; + vmem_list = NULL; + vmem_internal_arena = NULL; + vmem_seg_arena = NULL; + vmem_hash_arena = NULL; + vmem_vmem_arena = NULL; + vmem_heap = NULL; + vmem_heap_alloc = NULL; + vmem_heap_free = NULL; + + bzero(vmem0, sizeof (vmem0)); + bzero(vmem_populator, sizeof (vmem_populator)); + bzero(vmem_seg0, sizeof (vmem_seg0)); +#endif +} + +/* + * Prepare vmem for use. + */ +vmem_t * +vmem_init(const char *parent_name, size_t parent_quantum, + vmem_alloc_t *parent_alloc, vmem_free_t *parent_free, + const char *heap_name, void *heap_start, size_t heap_size, + size_t heap_quantum, vmem_alloc_t *heap_alloc, vmem_free_t *heap_free) +{ + uint32_t id; + int nseg = VMEM_SEG_INITIAL; + vmem_t *parent, *heap; + + ASSERT(vmem_internal_arena == NULL); + + while (--nseg >= 0) + vmem_putseg_global(&vmem_seg0[nseg]); + + if (parent_name != NULL) { + parent = vmem_create(parent_name, + heap_start, heap_size, parent_quantum, + NULL, NULL, NULL, 0, + VM_SLEEP | VMC_POPULATOR); + heap_start = NULL; + heap_size = 0; + } else { + ASSERT(parent_alloc == NULL && parent_free == NULL); + parent = NULL; + } + + heap = vmem_create(heap_name, + heap_start, heap_size, heap_quantum, + parent_alloc, parent_free, parent, 0, + VM_SLEEP | VMC_POPULATOR); + + vmem_heap = heap; + vmem_heap_alloc = heap_alloc; + vmem_heap_free = heap_free; + + vmem_internal_arena = vmem_create("vmem_internal", + NULL, 0, heap_quantum, + heap_alloc, heap_free, heap, 0, + VM_SLEEP | VMC_POPULATOR); + + vmem_seg_arena = vmem_create("vmem_seg", + NULL, 0, heap_quantum, + vmem_alloc, vmem_free, vmem_internal_arena, 0, + VM_SLEEP | VMC_POPULATOR); + + vmem_hash_arena = vmem_create("vmem_hash", + NULL, 0, 8, + vmem_alloc, vmem_free, vmem_internal_arena, 0, + VM_SLEEP); + + vmem_vmem_arena = vmem_create("vmem_vmem", + vmem0, sizeof (vmem0), 1, + vmem_alloc, vmem_free, vmem_internal_arena, 0, + VM_SLEEP); + + for (id = 0; id < vmem_id; id++) + (void) vmem_xalloc(vmem_vmem_arena, sizeof (vmem_t), + 1, 0, 0, &vmem0[id], &vmem0[id + 1], + VM_NOSLEEP | VM_BESTFIT | VM_PANIC); + + return (heap); +} + +void +vmem_no_debug(void) +{ + /* + * This size must be a multiple of the minimum required alignment, + * since vmem_populate allocates them compactly. + */ + vmem_seg_size = P2ROUNDUP(offsetof(vmem_seg_t, vs_thread), + sizeof (hrtime_t)); +} + +/* + * Lockup and release, for fork1(2) handling. + */ +void +vmem_lockup(void) +{ + vmem_t *cur; + + (void) mutex_lock(&vmem_list_lock); + (void) mutex_lock(&vmem_nosleep_lock.vmpl_mutex); + + /* + * Lock up and broadcast all arenas. + */ + for (cur = vmem_list; cur != NULL; cur = cur->vm_next) { + (void) mutex_lock(&cur->vm_lock); + (void) cond_broadcast(&cur->vm_cv); + } + + (void) mutex_lock(&vmem_segfree_lock); +} + +void +vmem_release(void) +{ + vmem_t *cur; + + (void) mutex_unlock(&vmem_nosleep_lock.vmpl_mutex); + + for (cur = vmem_list; cur != NULL; cur = cur->vm_next) + (void) mutex_unlock(&cur->vm_lock); + + (void) mutex_unlock(&vmem_segfree_lock); + (void) mutex_unlock(&vmem_list_lock); +} |