summaryrefslogtreecommitdiffstats
path: root/zfs/lib/libumem/vmem.c
diff options
context:
space:
mode:
Diffstat (limited to 'zfs/lib/libumem/vmem.c')
-rw-r--r--zfs/lib/libumem/vmem.c1807
1 files changed, 1807 insertions, 0 deletions
diff --git a/zfs/lib/libumem/vmem.c b/zfs/lib/libumem/vmem.c
new file mode 100644
index 000000000..1b8981a91
--- /dev/null
+++ b/zfs/lib/libumem/vmem.c
@@ -0,0 +1,1807 @@
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License, Version 1.0 only
+ * (the "License"). You may not use this file except in compliance
+ * with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+/*
+ * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms.
+ */
+
+/* #pragma ident "@(#)vmem.c 1.10 05/06/08 SMI" */
+
+/*
+ * For a more complete description of the main ideas, see:
+ *
+ * Jeff Bonwick and Jonathan Adams,
+ *
+ * Magazines and vmem: Extending the Slab Allocator to Many CPUs and
+ * Arbitrary Resources.
+ *
+ * Proceedings of the 2001 Usenix Conference.
+ * Available as /shared/sac/PSARC/2000/550/materials/vmem.pdf.
+ *
+ * For the "Big Theory Statement", see usr/src/common/os/vmem.c
+ *
+ * 1. Overview of changes
+ * ------------------------------
+ * There have been a few changes to vmem in order to support umem. The
+ * main areas are:
+ *
+ * * VM_SLEEP unsupported
+ *
+ * * Reaping changes
+ *
+ * * initialization changes
+ *
+ * * _vmem_extend_alloc
+ *
+ *
+ * 2. VM_SLEEP Removed
+ * -------------------
+ * Since VM_SLEEP allocations can hold locks (in vmem_populate()) for
+ * possibly infinite amounts of time, they are not supported in this
+ * version of vmem. Sleep-like behavior can be achieved through
+ * UMEM_NOFAIL umem allocations.
+ *
+ *
+ * 3. Reaping changes
+ * ------------------
+ * Unlike kmem_reap(), which just asynchronously schedules work, umem_reap()
+ * can do allocations and frees synchronously. This is a problem if it
+ * occurs during a vmem_populate() allocation.
+ *
+ * Instead, we delay reaps while populates are active.
+ *
+ *
+ * 4. Initialization changes
+ * -------------------------
+ * In the kernel, vmem_init() allows you to create a single, top-level arena,
+ * which has vmem_internal_arena as a child. For umem, we want to be able
+ * to extend arenas dynamically. It is much easier to support this if we
+ * allow a two-level "heap" arena:
+ *
+ * +----------+
+ * | "fake" |
+ * +----------+
+ * |
+ * +----------+
+ * | "heap" |
+ * +----------+
+ * | \ \
+ * | +-+-- ... <other children>
+ * |
+ * +---------------+
+ * | vmem_internal |
+ * +---------------+
+ * | | | |
+ * <children>
+ *
+ * The new vmem_init() allows you to specify a "parent" of the heap, along
+ * with allocation functions.
+ *
+ *
+ * 5. _vmem_extend_alloc
+ * ---------------------
+ * The other part of extending is _vmem_extend_alloc. This function allows
+ * you to extend (expand current spans, if possible) an arena and allocate
+ * a chunk of the newly extened span atomically. This is needed to support
+ * extending the heap while vmem_populate()ing it.
+ *
+ * In order to increase the usefulness of extending, non-imported spans are
+ * sorted in address order.
+ */
+
+#include "config.h"
+/* #include "mtlib.h" */
+#include <sys/vmem_impl_user.h>
+#if HAVE_ALLOCA_H
+#include <alloca.h>
+#endif
+#ifdef HAVE_SYS_SYSMACROS_H
+#include <sys/sysmacros.h>
+#endif
+#include <stdio.h>
+#if HAVE_STRINGS_H
+#include <strings.h>
+#endif
+#if HAVE_ATOMIC_H
+#include <atomic.h>
+#endif
+
+#include "vmem_base.h"
+#include "umem_base.h"
+
+#define VMEM_INITIAL 6 /* early vmem arenas */
+#define VMEM_SEG_INITIAL 100 /* early segments */
+
+/*
+ * Adding a new span to an arena requires two segment structures: one to
+ * represent the span, and one to represent the free segment it contains.
+ */
+#define VMEM_SEGS_PER_SPAN_CREATE 2
+
+/*
+ * Allocating a piece of an existing segment requires 0-2 segment structures
+ * depending on how much of the segment we're allocating.
+ *
+ * To allocate the entire segment, no new segment structures are needed; we
+ * simply move the existing segment structure from the freelist to the
+ * allocation hash table.
+ *
+ * To allocate a piece from the left or right end of the segment, we must
+ * split the segment into two pieces (allocated part and remainder), so we
+ * need one new segment structure to represent the remainder.
+ *
+ * To allocate from the middle of a segment, we need two new segment strucures
+ * to represent the remainders on either side of the allocated part.
+ */
+#define VMEM_SEGS_PER_EXACT_ALLOC 0
+#define VMEM_SEGS_PER_LEFT_ALLOC 1
+#define VMEM_SEGS_PER_RIGHT_ALLOC 1
+#define VMEM_SEGS_PER_MIDDLE_ALLOC 2
+
+/*
+ * vmem_populate() preallocates segment structures for vmem to do its work.
+ * It must preallocate enough for the worst case, which is when we must import
+ * a new span and then allocate from the middle of it.
+ */
+#define VMEM_SEGS_PER_ALLOC_MAX \
+ (VMEM_SEGS_PER_SPAN_CREATE + VMEM_SEGS_PER_MIDDLE_ALLOC)
+
+/*
+ * The segment structures themselves are allocated from vmem_seg_arena, so
+ * we have a recursion problem when vmem_seg_arena needs to populate itself.
+ * We address this by working out the maximum number of segment structures
+ * this act will require, and multiplying by the maximum number of threads
+ * that we'll allow to do it simultaneously.
+ *
+ * The worst-case segment consumption to populate vmem_seg_arena is as
+ * follows (depicted as a stack trace to indicate why events are occurring):
+ *
+ * vmem_alloc(vmem_seg_arena) -> 2 segs (span create + exact alloc)
+ * vmem_alloc(vmem_internal_arena) -> 2 segs (span create + exact alloc)
+ * heap_alloc(heap_arena)
+ * vmem_alloc(heap_arena) -> 4 seg (span create + alloc)
+ * parent_alloc(parent_arena)
+ * _vmem_extend_alloc(parent_arena) -> 3 seg (span create + left alloc)
+ *
+ * Note: The reservation for heap_arena must be 4, since vmem_xalloc()
+ * is overly pessimistic on allocations where parent_arena has a stricter
+ * alignment than heap_arena.
+ *
+ * The worst-case consumption for any arena is 4 segment structures.
+ * For now, we only support VM_NOSLEEP allocations, so as long as we
+ * serialize all vmem_populates, a 4-seg reserve is sufficient.
+ */
+#define VMEM_POPULATE_SEGS_PER_ARENA 4
+#define VMEM_POPULATE_LOCKS 1
+
+#define VMEM_POPULATE_RESERVE \
+ (VMEM_POPULATE_SEGS_PER_ARENA * VMEM_POPULATE_LOCKS)
+
+/*
+ * vmem_populate() ensures that each arena has VMEM_MINFREE seg structures
+ * so that it can satisfy the worst-case allocation *and* participate in
+ * worst-case allocation from vmem_seg_arena.
+ */
+#define VMEM_MINFREE (VMEM_POPULATE_RESERVE + VMEM_SEGS_PER_ALLOC_MAX)
+
+/* Don't assume new statics are zeroed - see vmem_startup() */
+static vmem_t vmem0[VMEM_INITIAL];
+static vmem_t *vmem_populator[VMEM_INITIAL];
+static uint32_t vmem_id;
+static uint32_t vmem_populators;
+static vmem_seg_t vmem_seg0[VMEM_SEG_INITIAL];
+static vmem_seg_t *vmem_segfree;
+static mutex_t vmem_list_lock = DEFAULTMUTEX;
+static mutex_t vmem_segfree_lock = DEFAULTMUTEX;
+static vmem_populate_lock_t vmem_nosleep_lock = {
+ DEFAULTMUTEX,
+ 0
+};
+#define IN_POPULATE() (vmem_nosleep_lock.vmpl_thr == thr_self())
+static vmem_t *vmem_list;
+static vmem_t *vmem_internal_arena;
+static vmem_t *vmem_seg_arena;
+static vmem_t *vmem_hash_arena;
+static vmem_t *vmem_vmem_arena;
+
+vmem_t *vmem_heap;
+vmem_alloc_t *vmem_heap_alloc;
+vmem_free_t *vmem_heap_free;
+
+uint32_t vmem_mtbf; /* mean time between failures [default: off] */
+size_t vmem_seg_size = sizeof (vmem_seg_t);
+
+/*
+ * we use the _ version, since we don't want to be cancelled.
+ * Actually, this is automatically taken care of by including "mtlib.h".
+ */
+extern int _cond_wait(cond_t *cv, mutex_t *mutex);
+
+/*
+ * Insert/delete from arena list (type 'a') or next-of-kin list (type 'k').
+ */
+#define VMEM_INSERT(vprev, vsp, type) \
+{ \
+ vmem_seg_t *vnext = (vprev)->vs_##type##next; \
+ (vsp)->vs_##type##next = (vnext); \
+ (vsp)->vs_##type##prev = (vprev); \
+ (vprev)->vs_##type##next = (vsp); \
+ (vnext)->vs_##type##prev = (vsp); \
+}
+
+#define VMEM_DELETE(vsp, type) \
+{ \
+ vmem_seg_t *vprev = (vsp)->vs_##type##prev; \
+ vmem_seg_t *vnext = (vsp)->vs_##type##next; \
+ (vprev)->vs_##type##next = (vnext); \
+ (vnext)->vs_##type##prev = (vprev); \
+}
+
+/*
+ * Get a vmem_seg_t from the global segfree list.
+ */
+static vmem_seg_t *
+vmem_getseg_global(void)
+{
+ vmem_seg_t *vsp;
+
+ (void) mutex_lock(&vmem_segfree_lock);
+ if ((vsp = vmem_segfree) != NULL)
+ vmem_segfree = vsp->vs_knext;
+ (void) mutex_unlock(&vmem_segfree_lock);
+
+ return (vsp);
+}
+
+/*
+ * Put a vmem_seg_t on the global segfree list.
+ */
+static void
+vmem_putseg_global(vmem_seg_t *vsp)
+{
+ (void) mutex_lock(&vmem_segfree_lock);
+ vsp->vs_knext = vmem_segfree;
+ vmem_segfree = vsp;
+ (void) mutex_unlock(&vmem_segfree_lock);
+}
+
+/*
+ * Get a vmem_seg_t from vmp's segfree list.
+ */
+static vmem_seg_t *
+vmem_getseg(vmem_t *vmp)
+{
+ vmem_seg_t *vsp;
+
+ ASSERT(vmp->vm_nsegfree > 0);
+
+ vsp = vmp->vm_segfree;
+ vmp->vm_segfree = vsp->vs_knext;
+ vmp->vm_nsegfree--;
+
+ return (vsp);
+}
+
+/*
+ * Put a vmem_seg_t on vmp's segfree list.
+ */
+static void
+vmem_putseg(vmem_t *vmp, vmem_seg_t *vsp)
+{
+ vsp->vs_knext = vmp->vm_segfree;
+ vmp->vm_segfree = vsp;
+ vmp->vm_nsegfree++;
+}
+
+/*
+ * Add vsp to the appropriate freelist.
+ */
+static void
+vmem_freelist_insert(vmem_t *vmp, vmem_seg_t *vsp)
+{
+ vmem_seg_t *vprev;
+
+ ASSERT(*VMEM_HASH(vmp, vsp->vs_start) != vsp);
+
+ vprev = (vmem_seg_t *)&vmp->vm_freelist[highbit(VS_SIZE(vsp)) - 1];
+ vsp->vs_type = VMEM_FREE;
+ vmp->vm_freemap |= VS_SIZE(vprev);
+ VMEM_INSERT(vprev, vsp, k);
+
+ (void) cond_broadcast(&vmp->vm_cv);
+}
+
+/*
+ * Take vsp from the freelist.
+ */
+static void
+vmem_freelist_delete(vmem_t *vmp, vmem_seg_t *vsp)
+{
+ ASSERT(*VMEM_HASH(vmp, vsp->vs_start) != vsp);
+ ASSERT(vsp->vs_type == VMEM_FREE);
+
+ if (vsp->vs_knext->vs_start == 0 && vsp->vs_kprev->vs_start == 0) {
+ /*
+ * The segments on both sides of 'vsp' are freelist heads,
+ * so taking vsp leaves the freelist at vsp->vs_kprev empty.
+ */
+ ASSERT(vmp->vm_freemap & VS_SIZE(vsp->vs_kprev));
+ vmp->vm_freemap ^= VS_SIZE(vsp->vs_kprev);
+ }
+ VMEM_DELETE(vsp, k);
+}
+
+/*
+ * Add vsp to the allocated-segment hash table and update kstats.
+ */
+static void
+vmem_hash_insert(vmem_t *vmp, vmem_seg_t *vsp)
+{
+ vmem_seg_t **bucket;
+
+ vsp->vs_type = VMEM_ALLOC;
+ bucket = VMEM_HASH(vmp, vsp->vs_start);
+ vsp->vs_knext = *bucket;
+ *bucket = vsp;
+
+ if (vmem_seg_size == sizeof (vmem_seg_t)) {
+ vsp->vs_depth = (uint8_t)getpcstack(vsp->vs_stack,
+ VMEM_STACK_DEPTH, 0);
+ vsp->vs_thread = thr_self();
+ vsp->vs_timestamp = gethrtime();
+ } else {
+ vsp->vs_depth = 0;
+ }
+
+ vmp->vm_kstat.vk_alloc++;
+ vmp->vm_kstat.vk_mem_inuse += VS_SIZE(vsp);
+}
+
+/*
+ * Remove vsp from the allocated-segment hash table and update kstats.
+ */
+static vmem_seg_t *
+vmem_hash_delete(vmem_t *vmp, uintptr_t addr, size_t size)
+{
+ vmem_seg_t *vsp, **prev_vspp;
+
+ prev_vspp = VMEM_HASH(vmp, addr);
+ while ((vsp = *prev_vspp) != NULL) {
+ if (vsp->vs_start == addr) {
+ *prev_vspp = vsp->vs_knext;
+ break;
+ }
+ vmp->vm_kstat.vk_lookup++;
+ prev_vspp = &vsp->vs_knext;
+ }
+
+ if (vsp == NULL) {
+ umem_panic("vmem_hash_delete(%p, %lx, %lu): bad free",
+ vmp, addr, size);
+ }
+ if (VS_SIZE(vsp) != size) {
+ umem_panic("vmem_hash_delete(%p, %lx, %lu): wrong size "
+ "(expect %lu)", vmp, addr, size, VS_SIZE(vsp));
+ }
+
+ vmp->vm_kstat.vk_free++;
+ vmp->vm_kstat.vk_mem_inuse -= size;
+
+ return (vsp);
+}
+
+/*
+ * Create a segment spanning the range [start, end) and add it to the arena.
+ */
+static vmem_seg_t *
+vmem_seg_create(vmem_t *vmp, vmem_seg_t *vprev, uintptr_t start, uintptr_t end)
+{
+ vmem_seg_t *newseg = vmem_getseg(vmp);
+
+ newseg->vs_start = start;
+ newseg->vs_end = end;
+ newseg->vs_type = 0;
+ newseg->vs_import = 0;
+
+ VMEM_INSERT(vprev, newseg, a);
+
+ return (newseg);
+}
+
+/*
+ * Remove segment vsp from the arena.
+ */
+static void
+vmem_seg_destroy(vmem_t *vmp, vmem_seg_t *vsp)
+{
+ ASSERT(vsp->vs_type != VMEM_ROTOR);
+ VMEM_DELETE(vsp, a);
+
+ vmem_putseg(vmp, vsp);
+}
+
+/*
+ * Add the span [vaddr, vaddr + size) to vmp and update kstats.
+ */
+static vmem_seg_t *
+vmem_span_create(vmem_t *vmp, void *vaddr, size_t size, uint8_t import)
+{
+ vmem_seg_t *knext;
+ vmem_seg_t *newseg, *span;
+ uintptr_t start = (uintptr_t)vaddr;
+ uintptr_t end = start + size;
+
+ knext = &vmp->vm_seg0;
+ if (!import && vmp->vm_source_alloc == NULL) {
+ vmem_seg_t *kend, *kprev;
+ /*
+ * non-imported spans are sorted in address order. This
+ * makes vmem_extend_unlocked() much more effective.
+ *
+ * We search in reverse order, since new spans are
+ * generally at higher addresses.
+ */
+ kend = &vmp->vm_seg0;
+ for (kprev = kend->vs_kprev; kprev != kend;
+ kprev = kprev->vs_kprev) {
+ if (!kprev->vs_import && (kprev->vs_end - 1) < start)
+ break;
+ }
+ knext = kprev->vs_knext;
+ }
+
+ ASSERT(MUTEX_HELD(&vmp->vm_lock));
+
+ if ((start | end) & (vmp->vm_quantum - 1)) {
+ umem_panic("vmem_span_create(%p, %p, %lu): misaligned",
+ vmp, vaddr, size);
+ }
+
+ span = vmem_seg_create(vmp, knext->vs_aprev, start, end);
+ span->vs_type = VMEM_SPAN;
+ VMEM_INSERT(knext->vs_kprev, span, k);
+
+ newseg = vmem_seg_create(vmp, span, start, end);
+ vmem_freelist_insert(vmp, newseg);
+
+ newseg->vs_import = import;
+ if (import)
+ vmp->vm_kstat.vk_mem_import += size;
+ vmp->vm_kstat.vk_mem_total += size;
+
+ return (newseg);
+}
+
+/*
+ * Remove span vsp from vmp and update kstats.
+ */
+static void
+vmem_span_destroy(vmem_t *vmp, vmem_seg_t *vsp)
+{
+ vmem_seg_t *span = vsp->vs_aprev;
+ size_t size = VS_SIZE(vsp);
+
+ ASSERT(MUTEX_HELD(&vmp->vm_lock));
+ ASSERT(span->vs_type == VMEM_SPAN);
+
+ if (vsp->vs_import)
+ vmp->vm_kstat.vk_mem_import -= size;
+ vmp->vm_kstat.vk_mem_total -= size;
+
+ VMEM_DELETE(span, k);
+
+ vmem_seg_destroy(vmp, vsp);
+ vmem_seg_destroy(vmp, span);
+}
+
+/*
+ * Allocate the subrange [addr, addr + size) from segment vsp.
+ * If there are leftovers on either side, place them on the freelist.
+ * Returns a pointer to the segment representing [addr, addr + size).
+ */
+static vmem_seg_t *
+vmem_seg_alloc(vmem_t *vmp, vmem_seg_t *vsp, uintptr_t addr, size_t size)
+{
+ uintptr_t vs_start = vsp->vs_start;
+ uintptr_t vs_end = vsp->vs_end;
+ size_t vs_size = vs_end - vs_start;
+ size_t realsize = P2ROUNDUP(size, vmp->vm_quantum);
+ uintptr_t addr_end = addr + realsize;
+
+ ASSERT(P2PHASE(vs_start, vmp->vm_quantum) == 0);
+ ASSERT(P2PHASE(addr, vmp->vm_quantum) == 0);
+ ASSERT(vsp->vs_type == VMEM_FREE);
+ ASSERT(addr >= vs_start && addr_end - 1 <= vs_end - 1);
+ ASSERT(addr - 1 <= addr_end - 1);
+
+ /*
+ * If we're allocating from the start of the segment, and the
+ * remainder will be on the same freelist, we can save quite
+ * a bit of work.
+ */
+ if (P2SAMEHIGHBIT(vs_size, vs_size - realsize) && addr == vs_start) {
+ ASSERT(highbit(vs_size) == highbit(vs_size - realsize));
+ vsp->vs_start = addr_end;
+ vsp = vmem_seg_create(vmp, vsp->vs_aprev, addr, addr + size);
+ vmem_hash_insert(vmp, vsp);
+ return (vsp);
+ }
+
+ vmem_freelist_delete(vmp, vsp);
+
+ if (vs_end != addr_end)
+ vmem_freelist_insert(vmp,
+ vmem_seg_create(vmp, vsp, addr_end, vs_end));
+
+ if (vs_start != addr)
+ vmem_freelist_insert(vmp,
+ vmem_seg_create(vmp, vsp->vs_aprev, vs_start, addr));
+
+ vsp->vs_start = addr;
+ vsp->vs_end = addr + size;
+
+ vmem_hash_insert(vmp, vsp);
+ return (vsp);
+}
+
+/*
+ * We cannot reap if we are in the middle of a vmem_populate().
+ */
+void
+vmem_reap(void)
+{
+ if (!IN_POPULATE())
+ umem_reap();
+}
+
+/*
+ * Populate vmp's segfree list with VMEM_MINFREE vmem_seg_t structures.
+ */
+static int
+vmem_populate(vmem_t *vmp, int vmflag)
+{
+ char *p;
+ vmem_seg_t *vsp;
+ ssize_t nseg;
+ size_t size;
+ vmem_populate_lock_t *lp;
+ int i;
+
+ while (vmp->vm_nsegfree < VMEM_MINFREE &&
+ (vsp = vmem_getseg_global()) != NULL)
+ vmem_putseg(vmp, vsp);
+
+ if (vmp->vm_nsegfree >= VMEM_MINFREE)
+ return (1);
+
+ /*
+ * If we're already populating, tap the reserve.
+ */
+ if (vmem_nosleep_lock.vmpl_thr == thr_self()) {
+ ASSERT(vmp->vm_cflags & VMC_POPULATOR);
+ return (1);
+ }
+
+ (void) mutex_unlock(&vmp->vm_lock);
+
+ ASSERT(vmflag & VM_NOSLEEP); /* we do not allow sleep allocations */
+ lp = &vmem_nosleep_lock;
+
+ /*
+ * Cannot be just a mutex_lock(), since that has no effect if
+ * libthread is not linked.
+ */
+ (void) mutex_lock(&lp->vmpl_mutex);
+ ASSERT(lp->vmpl_thr == 0);
+ lp->vmpl_thr = thr_self();
+
+ nseg = VMEM_MINFREE + vmem_populators * VMEM_POPULATE_RESERVE;
+ size = P2ROUNDUP(nseg * vmem_seg_size, vmem_seg_arena->vm_quantum);
+ nseg = size / vmem_seg_size;
+
+ /*
+ * The following vmem_alloc() may need to populate vmem_seg_arena
+ * and all the things it imports from. When doing so, it will tap
+ * each arena's reserve to prevent recursion (see the block comment
+ * above the definition of VMEM_POPULATE_RESERVE).
+ *
+ * During this allocation, vmem_reap() is a no-op. If the allocation
+ * fails, we call vmem_reap() after dropping the population lock.
+ */
+ p = vmem_alloc(vmem_seg_arena, size, vmflag & VM_UMFLAGS);
+ if (p == NULL) {
+ lp->vmpl_thr = 0;
+ (void) mutex_unlock(&lp->vmpl_mutex);
+ vmem_reap();
+
+ (void) mutex_lock(&vmp->vm_lock);
+ vmp->vm_kstat.vk_populate_fail++;
+ return (0);
+ }
+ /*
+ * Restock the arenas that may have been depleted during population.
+ */
+ for (i = 0; i < vmem_populators; i++) {
+ (void) mutex_lock(&vmem_populator[i]->vm_lock);
+ while (vmem_populator[i]->vm_nsegfree < VMEM_POPULATE_RESERVE)
+ vmem_putseg(vmem_populator[i],
+ (vmem_seg_t *)(p + --nseg * vmem_seg_size));
+ (void) mutex_unlock(&vmem_populator[i]->vm_lock);
+ }
+
+ lp->vmpl_thr = 0;
+ (void) mutex_unlock(&lp->vmpl_mutex);
+ (void) mutex_lock(&vmp->vm_lock);
+
+ /*
+ * Now take our own segments.
+ */
+ ASSERT(nseg >= VMEM_MINFREE);
+ while (vmp->vm_nsegfree < VMEM_MINFREE)
+ vmem_putseg(vmp, (vmem_seg_t *)(p + --nseg * vmem_seg_size));
+
+ /*
+ * Give the remainder to charity.
+ */
+ while (nseg > 0)
+ vmem_putseg_global((vmem_seg_t *)(p + --nseg * vmem_seg_size));
+
+ return (1);
+}
+
+/*
+ * Advance a walker from its previous position to 'afterme'.
+ * Note: may drop and reacquire vmp->vm_lock.
+ */
+static void
+vmem_advance(vmem_t *vmp, vmem_seg_t *walker, vmem_seg_t *afterme)
+{
+ vmem_seg_t *vprev = walker->vs_aprev;
+ vmem_seg_t *vnext = walker->vs_anext;
+ vmem_seg_t *vsp = NULL;
+
+ VMEM_DELETE(walker, a);
+
+ if (afterme != NULL)
+ VMEM_INSERT(afterme, walker, a);
+
+ /*
+ * The walker segment's presence may have prevented its neighbors
+ * from coalescing. If so, coalesce them now.
+ */
+ if (vprev->vs_type == VMEM_FREE) {
+ if (vnext->vs_type == VMEM_FREE) {
+ ASSERT(vprev->vs_end == vnext->vs_start);
+ vmem_freelist_delete(vmp, vnext);
+ vmem_freelist_delete(vmp, vprev);
+ vprev->vs_end = vnext->vs_end;
+ vmem_freelist_insert(vmp, vprev);
+ vmem_seg_destroy(vmp, vnext);
+ }
+ vsp = vprev;
+ } else if (vnext->vs_type == VMEM_FREE) {
+ vsp = vnext;
+ }
+
+ /*
+ * vsp could represent a complete imported span,
+ * in which case we must return it to the source.
+ */
+ if (vsp != NULL && vsp->vs_import && vmp->vm_source_free != NULL &&
+ vsp->vs_aprev->vs_type == VMEM_SPAN &&
+ vsp->vs_anext->vs_type == VMEM_SPAN) {
+ void *vaddr = (void *)vsp->vs_start;
+ size_t size = VS_SIZE(vsp);
+ ASSERT(size == VS_SIZE(vsp->vs_aprev));
+ vmem_freelist_delete(vmp, vsp);
+ vmem_span_destroy(vmp, vsp);
+ (void) mutex_unlock(&vmp->vm_lock);
+ vmp->vm_source_free(vmp->vm_source, vaddr, size);
+ (void) mutex_lock(&vmp->vm_lock);
+ }
+}
+
+/*
+ * VM_NEXTFIT allocations deliberately cycle through all virtual addresses
+ * in an arena, so that we avoid reusing addresses for as long as possible.
+ * This helps to catch used-after-freed bugs. It's also the perfect policy
+ * for allocating things like process IDs, where we want to cycle through
+ * all values in order.
+ */
+static void *
+vmem_nextfit_alloc(vmem_t *vmp, size_t size, int vmflag)
+{
+ vmem_seg_t *vsp, *rotor;
+ uintptr_t addr;
+ size_t realsize = P2ROUNDUP(size, vmp->vm_quantum);
+ size_t vs_size;
+
+ (void) mutex_lock(&vmp->vm_lock);
+
+ if (vmp->vm_nsegfree < VMEM_MINFREE && !vmem_populate(vmp, vmflag)) {
+ (void) mutex_unlock(&vmp->vm_lock);
+ return (NULL);
+ }
+
+ /*
+ * The common case is that the segment right after the rotor is free,
+ * and large enough that extracting 'size' bytes won't change which
+ * freelist it's on. In this case we can avoid a *lot* of work.
+ * Instead of the normal vmem_seg_alloc(), we just advance the start
+ * address of the victim segment. Instead of moving the rotor, we
+ * create the new segment structure *behind the rotor*, which has
+ * the same effect. And finally, we know we don't have to coalesce
+ * the rotor's neighbors because the new segment lies between them.
+ */
+ rotor = &vmp->vm_rotor;
+ vsp = rotor->vs_anext;
+ if (vsp->vs_type == VMEM_FREE && (vs_size = VS_SIZE(vsp)) > realsize &&
+ P2SAMEHIGHBIT(vs_size, vs_size - realsize)) {
+ ASSERT(highbit(vs_size) == highbit(vs_size - realsize));
+ addr = vsp->vs_start;
+ vsp->vs_start = addr + realsize;
+ vmem_hash_insert(vmp,
+ vmem_seg_create(vmp, rotor->vs_aprev, addr, addr + size));
+ (void) mutex_unlock(&vmp->vm_lock);
+ return ((void *)addr);
+ }
+
+ /*
+ * Starting at the rotor, look for a segment large enough to
+ * satisfy the allocation.
+ */
+ for (;;) {
+ vmp->vm_kstat.vk_search++;
+ if (vsp->vs_type == VMEM_FREE && VS_SIZE(vsp) >= size)
+ break;
+ vsp = vsp->vs_anext;
+ if (vsp == rotor) {
+ /*
+ * We've come full circle. One possibility is that the
+ * there's actually enough space, but the rotor itself
+ * is preventing the allocation from succeeding because
+ * it's sitting between two free segments. Therefore,
+ * we advance the rotor and see if that liberates a
+ * suitable segment.
+ */
+ vmem_advance(vmp, rotor, rotor->vs_anext);
+ vsp = rotor->vs_aprev;
+ if (vsp->vs_type == VMEM_FREE && VS_SIZE(vsp) >= size)
+ break;
+ /*
+ * If there's a lower arena we can import from, or it's
+ * a VM_NOSLEEP allocation, let vmem_xalloc() handle it.
+ * Otherwise, wait until another thread frees something.
+ */
+ if (vmp->vm_source_alloc != NULL ||
+ (vmflag & VM_NOSLEEP)) {
+ (void) mutex_unlock(&vmp->vm_lock);
+ return (vmem_xalloc(vmp, size, vmp->vm_quantum,
+ 0, 0, NULL, NULL, vmflag & VM_UMFLAGS));
+ }
+ vmp->vm_kstat.vk_wait++;
+ (void) _cond_wait(&vmp->vm_cv, &vmp->vm_lock);
+ vsp = rotor->vs_anext;
+ }
+ }
+
+ /*
+ * We found a segment. Extract enough space to satisfy the allocation.
+ */
+ addr = vsp->vs_start;
+ vsp = vmem_seg_alloc(vmp, vsp, addr, size);
+ ASSERT(vsp->vs_type == VMEM_ALLOC &&
+ vsp->vs_start == addr && vsp->vs_end == addr + size);
+
+ /*
+ * Advance the rotor to right after the newly-allocated segment.
+ * That's where the next VM_NEXTFIT allocation will begin searching.
+ */
+ vmem_advance(vmp, rotor, vsp);
+ (void) mutex_unlock(&vmp->vm_lock);
+ return ((void *)addr);
+}
+
+/*
+ * Allocate size bytes at offset phase from an align boundary such that the
+ * resulting segment [addr, addr + size) is a subset of [minaddr, maxaddr)
+ * that does not straddle a nocross-aligned boundary.
+ */
+void *
+vmem_xalloc(vmem_t *vmp, size_t size, size_t align, size_t phase,
+ size_t nocross, void *minaddr, void *maxaddr, int vmflag)
+{
+ vmem_seg_t *vsp;
+ vmem_seg_t *vbest = NULL;
+ uintptr_t addr, taddr, start, end;
+ void *vaddr;
+ int hb, flist, resv;
+ uint32_t mtbf;
+
+ if (phase > 0 && phase >= align)
+ umem_panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): "
+ "invalid phase",
+ (void *)vmp, size, align, phase, nocross,
+ minaddr, maxaddr, vmflag);
+
+ if (align == 0)
+ align = vmp->vm_quantum;
+
+ if ((align | phase | nocross) & (vmp->vm_quantum - 1)) {
+ umem_panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): "
+ "parameters not vm_quantum aligned",
+ (void *)vmp, size, align, phase, nocross,
+ minaddr, maxaddr, vmflag);
+ }
+
+ if (nocross != 0 &&
+ (align > nocross || P2ROUNDUP(phase + size, align) > nocross)) {
+ umem_panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): "
+ "overconstrained allocation",
+ (void *)vmp, size, align, phase, nocross,
+ minaddr, maxaddr, vmflag);
+ }
+
+ if ((mtbf = vmem_mtbf | vmp->vm_mtbf) != 0 && gethrtime() % mtbf == 0 &&
+ (vmflag & (VM_NOSLEEP | VM_PANIC)) == VM_NOSLEEP)
+ return (NULL);
+
+ (void) mutex_lock(&vmp->vm_lock);
+ for (;;) {
+ if (vmp->vm_nsegfree < VMEM_MINFREE &&
+ !vmem_populate(vmp, vmflag))
+ break;
+
+ /*
+ * highbit() returns the highest bit + 1, which is exactly
+ * what we want: we want to search the first freelist whose
+ * members are *definitely* large enough to satisfy our
+ * allocation. However, there are certain cases in which we
+ * want to look at the next-smallest freelist (which *might*
+ * be able to satisfy the allocation):
+ *
+ * (1) The size is exactly a power of 2, in which case
+ * the smaller freelist is always big enough;
+ *
+ * (2) All other freelists are empty;
+ *
+ * (3) We're in the highest possible freelist, which is
+ * always empty (e.g. the 4GB freelist on 32-bit systems);
+ *
+ * (4) We're doing a best-fit or first-fit allocation.
+ */
+ if ((size & (size - 1)) == 0) {
+ flist = lowbit(P2ALIGN(vmp->vm_freemap, size));
+ } else {
+ hb = highbit(size);
+ if ((vmp->vm_freemap >> hb) == 0 ||
+ hb == VMEM_FREELISTS ||
+ (vmflag & (VM_BESTFIT | VM_FIRSTFIT)))
+ hb--;
+ flist = lowbit(P2ALIGN(vmp->vm_freemap, 1UL << hb));
+ }
+
+ for (vbest = NULL, vsp = (flist == 0) ? NULL :
+ vmp->vm_freelist[flist - 1].vs_knext;
+ vsp != NULL; vsp = vsp->vs_knext) {
+ vmp->vm_kstat.vk_search++;
+ if (vsp->vs_start == 0) {
+ /*
+ * We're moving up to a larger freelist,
+ * so if we've already found a candidate,
+ * the fit can't possibly get any better.
+ */
+ if (vbest != NULL)
+ break;
+ /*
+ * Find the next non-empty freelist.
+ */
+ flist = lowbit(P2ALIGN(vmp->vm_freemap,
+ VS_SIZE(vsp)));
+ if (flist-- == 0)
+ break;
+ vsp = (vmem_seg_t *)&vmp->vm_freelist[flist];
+ ASSERT(vsp->vs_knext->vs_type == VMEM_FREE);
+ continue;
+ }
+ if (vsp->vs_end - 1 < (uintptr_t)minaddr)
+ continue;
+ if (vsp->vs_start > (uintptr_t)maxaddr - 1)
+ continue;
+ start = MAX(vsp->vs_start, (uintptr_t)minaddr);
+ end = MIN(vsp->vs_end - 1, (uintptr_t)maxaddr - 1) + 1;
+ taddr = P2PHASEUP(start, align, phase);
+ if (P2CROSS(taddr, taddr + size - 1, nocross))
+ taddr +=
+ P2ROUNDUP(P2NPHASE(taddr, nocross), align);
+ if ((taddr - start) + size > end - start ||
+ (vbest != NULL && VS_SIZE(vsp) >= VS_SIZE(vbest)))
+ continue;
+ vbest = vsp;
+ addr = taddr;
+ if (!(vmflag & VM_BESTFIT) || VS_SIZE(vbest) == size)
+ break;
+ }
+ if (vbest != NULL)
+ break;
+ if (size == 0)
+ umem_panic("vmem_xalloc(): size == 0");
+ if (vmp->vm_source_alloc != NULL && nocross == 0 &&
+ minaddr == NULL && maxaddr == NULL) {
+ size_t asize = P2ROUNDUP(size + phase,
+ MAX(align, vmp->vm_source->vm_quantum));
+ if (asize < size) { /* overflow */
+ (void) mutex_unlock(&vmp->vm_lock);
+ if (vmflag & VM_NOSLEEP)
+ return (NULL);
+
+ umem_panic("vmem_xalloc(): "
+ "overflow on VM_SLEEP allocation");
+ }
+ /*
+ * Determine how many segment structures we'll consume.
+ * The calculation must be presise because if we're
+ * here on behalf of vmem_populate(), we are taking
+ * segments from a very limited reserve.
+ */
+ resv = (size == asize) ?
+ VMEM_SEGS_PER_SPAN_CREATE +
+ VMEM_SEGS_PER_EXACT_ALLOC :
+ VMEM_SEGS_PER_ALLOC_MAX;
+ ASSERT(vmp->vm_nsegfree >= resv);
+ vmp->vm_nsegfree -= resv; /* reserve our segs */
+ (void) mutex_unlock(&vmp->vm_lock);
+ vaddr = vmp->vm_source_alloc(vmp->vm_source, asize,
+ vmflag & VM_UMFLAGS);
+ (void) mutex_lock(&vmp->vm_lock);
+ vmp->vm_nsegfree += resv; /* claim reservation */
+ if (vaddr != NULL) {
+ vbest = vmem_span_create(vmp, vaddr, asize, 1);
+ addr = P2PHASEUP(vbest->vs_start, align, phase);
+ break;
+ }
+ }
+ (void) mutex_unlock(&vmp->vm_lock);
+ vmem_reap();
+ (void) mutex_lock(&vmp->vm_lock);
+ if (vmflag & VM_NOSLEEP)
+ break;
+ vmp->vm_kstat.vk_wait++;
+ (void) _cond_wait(&vmp->vm_cv, &vmp->vm_lock);
+ }
+ if (vbest != NULL) {
+ ASSERT(vbest->vs_type == VMEM_FREE);
+ ASSERT(vbest->vs_knext != vbest);
+ (void) vmem_seg_alloc(vmp, vbest, addr, size);
+ (void) mutex_unlock(&vmp->vm_lock);
+ ASSERT(P2PHASE(addr, align) == phase);
+ ASSERT(!P2CROSS(addr, addr + size - 1, nocross));
+ ASSERT(addr >= (uintptr_t)minaddr);
+ ASSERT(addr + size - 1 <= (uintptr_t)maxaddr - 1);
+ return ((void *)addr);
+ }
+ vmp->vm_kstat.vk_fail++;
+ (void) mutex_unlock(&vmp->vm_lock);
+ if (vmflag & VM_PANIC)
+ umem_panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): "
+ "cannot satisfy mandatory allocation",
+ (void *)vmp, size, align, phase, nocross,
+ minaddr, maxaddr, vmflag);
+ return (NULL);
+}
+
+/*
+ * Free the segment [vaddr, vaddr + size), where vaddr was a constrained
+ * allocation. vmem_xalloc() and vmem_xfree() must always be paired because
+ * both routines bypass the quantum caches.
+ */
+void
+vmem_xfree(vmem_t *vmp, void *vaddr, size_t size)
+{
+ vmem_seg_t *vsp, *vnext, *vprev;
+
+ (void) mutex_lock(&vmp->vm_lock);
+
+ vsp = vmem_hash_delete(vmp, (uintptr_t)vaddr, size);
+ vsp->vs_end = P2ROUNDUP(vsp->vs_end, vmp->vm_quantum);
+
+ /*
+ * Attempt to coalesce with the next segment.
+ */
+ vnext = vsp->vs_anext;
+ if (vnext->vs_type == VMEM_FREE) {
+ ASSERT(vsp->vs_end == vnext->vs_start);
+ vmem_freelist_delete(vmp, vnext);
+ vsp->vs_end = vnext->vs_end;
+ vmem_seg_destroy(vmp, vnext);
+ }
+
+ /*
+ * Attempt to coalesce with the previous segment.
+ */
+ vprev = vsp->vs_aprev;
+ if (vprev->vs_type == VMEM_FREE) {
+ ASSERT(vprev->vs_end == vsp->vs_start);
+ vmem_freelist_delete(vmp, vprev);
+ vprev->vs_end = vsp->vs_end;
+ vmem_seg_destroy(vmp, vsp);
+ vsp = vprev;
+ }
+
+ /*
+ * If the entire span is free, return it to the source.
+ */
+ if (vsp->vs_import && vmp->vm_source_free != NULL &&
+ vsp->vs_aprev->vs_type == VMEM_SPAN &&
+ vsp->vs_anext->vs_type == VMEM_SPAN) {
+ vaddr = (void *)vsp->vs_start;
+ size = VS_SIZE(vsp);
+ ASSERT(size == VS_SIZE(vsp->vs_aprev));
+ vmem_span_destroy(vmp, vsp);
+ (void) mutex_unlock(&vmp->vm_lock);
+ vmp->vm_source_free(vmp->vm_source, vaddr, size);
+ } else {
+ vmem_freelist_insert(vmp, vsp);
+ (void) mutex_unlock(&vmp->vm_lock);
+ }
+}
+
+/*
+ * Allocate size bytes from arena vmp. Returns the allocated address
+ * on success, NULL on failure. vmflag specifies VM_SLEEP or VM_NOSLEEP,
+ * and may also specify best-fit, first-fit, or next-fit allocation policy
+ * instead of the default instant-fit policy. VM_SLEEP allocations are
+ * guaranteed to succeed.
+ */
+void *
+vmem_alloc(vmem_t *vmp, size_t size, int vmflag)
+{
+ vmem_seg_t *vsp;
+ uintptr_t addr;
+ int hb;
+ int flist = 0;
+ uint32_t mtbf;
+
+ if (size - 1 < vmp->vm_qcache_max) {
+ ASSERT(vmflag & VM_NOSLEEP);
+ return (_umem_cache_alloc(vmp->vm_qcache[(size - 1) >>
+ vmp->vm_qshift], UMEM_DEFAULT));
+ }
+
+ if ((mtbf = vmem_mtbf | vmp->vm_mtbf) != 0 && gethrtime() % mtbf == 0 &&
+ (vmflag & (VM_NOSLEEP | VM_PANIC)) == VM_NOSLEEP)
+ return (NULL);
+
+ if (vmflag & VM_NEXTFIT)
+ return (vmem_nextfit_alloc(vmp, size, vmflag));
+
+ if (vmflag & (VM_BESTFIT | VM_FIRSTFIT))
+ return (vmem_xalloc(vmp, size, vmp->vm_quantum, 0, 0,
+ NULL, NULL, vmflag));
+
+ /*
+ * Unconstrained instant-fit allocation from the segment list.
+ */
+ (void) mutex_lock(&vmp->vm_lock);
+
+ if (vmp->vm_nsegfree >= VMEM_MINFREE || vmem_populate(vmp, vmflag)) {
+ if ((size & (size - 1)) == 0)
+ flist = lowbit(P2ALIGN(vmp->vm_freemap, size));
+ else if ((hb = highbit(size)) < VMEM_FREELISTS)
+ flist = lowbit(P2ALIGN(vmp->vm_freemap, 1UL << hb));
+ }
+
+ if (flist-- == 0) {
+ (void) mutex_unlock(&vmp->vm_lock);
+ return (vmem_xalloc(vmp, size, vmp->vm_quantum,
+ 0, 0, NULL, NULL, vmflag));
+ }
+
+ ASSERT(size <= (1UL << flist));
+ vsp = vmp->vm_freelist[flist].vs_knext;
+ addr = vsp->vs_start;
+ (void) vmem_seg_alloc(vmp, vsp, addr, size);
+ (void) mutex_unlock(&vmp->vm_lock);
+ return ((void *)addr);
+}
+
+/*
+ * Free the segment [vaddr, vaddr + size).
+ */
+void
+vmem_free(vmem_t *vmp, void *vaddr, size_t size)
+{
+ if (size - 1 < vmp->vm_qcache_max)
+ _umem_cache_free(vmp->vm_qcache[(size - 1) >> vmp->vm_qshift],
+ vaddr);
+ else
+ vmem_xfree(vmp, vaddr, size);
+}
+
+/*
+ * Determine whether arena vmp contains the segment [vaddr, vaddr + size).
+ */
+int
+vmem_contains(vmem_t *vmp, void *vaddr, size_t size)
+{
+ uintptr_t start = (uintptr_t)vaddr;
+ uintptr_t end = start + size;
+ vmem_seg_t *vsp;
+ vmem_seg_t *seg0 = &vmp->vm_seg0;
+
+ (void) mutex_lock(&vmp->vm_lock);
+ vmp->vm_kstat.vk_contains++;
+ for (vsp = seg0->vs_knext; vsp != seg0; vsp = vsp->vs_knext) {
+ vmp->vm_kstat.vk_contains_search++;
+ ASSERT(vsp->vs_type == VMEM_SPAN);
+ if (start >= vsp->vs_start && end - 1 <= vsp->vs_end - 1)
+ break;
+ }
+ (void) mutex_unlock(&vmp->vm_lock);
+ return (vsp != seg0);
+}
+
+/*
+ * Add the span [vaddr, vaddr + size) to arena vmp.
+ */
+void *
+vmem_add(vmem_t *vmp, void *vaddr, size_t size, int vmflag)
+{
+ if (vaddr == NULL || size == 0) {
+ umem_panic("vmem_add(%p, %p, %lu): bad arguments",
+ vmp, vaddr, size);
+ }
+
+ ASSERT(!vmem_contains(vmp, vaddr, size));
+
+ (void) mutex_lock(&vmp->vm_lock);
+ if (vmem_populate(vmp, vmflag))
+ (void) vmem_span_create(vmp, vaddr, size, 0);
+ else
+ vaddr = NULL;
+ (void) cond_broadcast(&vmp->vm_cv);
+ (void) mutex_unlock(&vmp->vm_lock);
+ return (vaddr);
+}
+
+/*
+ * Adds the address range [addr, endaddr) to arena vmp, by either:
+ * 1. joining two existing spans, [x, addr), and [endaddr, y) (which
+ * are in that order) into a single [x, y) span,
+ * 2. expanding an existing [x, addr) span to [x, endaddr),
+ * 3. expanding an existing [endaddr, x) span to [addr, x), or
+ * 4. creating a new [addr, endaddr) span.
+ *
+ * Called with vmp->vm_lock held, and a successful vmem_populate() completed.
+ * Cannot fail. Returns the new segment.
+ *
+ * NOTE: this algorithm is linear-time in the number of spans, but is
+ * constant-time when you are extending the last (highest-addressed)
+ * span.
+ */
+static vmem_seg_t *
+vmem_extend_unlocked(vmem_t *vmp, uintptr_t addr, uintptr_t endaddr)
+{
+ vmem_seg_t *span;
+ vmem_seg_t *vsp;
+
+ vmem_seg_t *end = &vmp->vm_seg0;
+
+ ASSERT(MUTEX_HELD(&vmp->vm_lock));
+
+ /*
+ * the second "if" clause below relies on the direction of this search
+ */
+ for (span = end->vs_kprev; span != end; span = span->vs_kprev) {
+ if (span->vs_end == addr || span->vs_start == endaddr)
+ break;
+ }
+
+ if (span == end)
+ return (vmem_span_create(vmp, (void *)addr, endaddr - addr, 0));
+ if (span->vs_kprev->vs_end == addr && span->vs_start == endaddr) {
+ vmem_seg_t *prevspan = span->vs_kprev;
+ vmem_seg_t *nextseg = span->vs_anext;
+ vmem_seg_t *prevseg = span->vs_aprev;
+
+ /*
+ * prevspan becomes the span marker for the full range
+ */
+ prevspan->vs_end = span->vs_end;
+
+ /*
+ * Notionally, span becomes a free segment representing
+ * [addr, endaddr).
+ *
+ * However, if either of its neighbors are free, we coalesce
+ * by destroying span and changing the free segment.
+ */
+ if (prevseg->vs_type == VMEM_FREE &&
+ nextseg->vs_type == VMEM_FREE) {
+ /*
+ * coalesce both ways
+ */
+ ASSERT(prevseg->vs_end == addr &&
+ nextseg->vs_start == endaddr);
+
+ vmem_freelist_delete(vmp, prevseg);
+ prevseg->vs_end = nextseg->vs_end;
+
+ vmem_freelist_delete(vmp, nextseg);
+ VMEM_DELETE(span, k);
+ vmem_seg_destroy(vmp, nextseg);
+ vmem_seg_destroy(vmp, span);
+
+ vsp = prevseg;
+ } else if (prevseg->vs_type == VMEM_FREE) {
+ /*
+ * coalesce left
+ */
+ ASSERT(prevseg->vs_end == addr);
+
+ VMEM_DELETE(span, k);
+ vmem_seg_destroy(vmp, span);
+
+ vmem_freelist_delete(vmp, prevseg);
+ prevseg->vs_end = endaddr;
+
+ vsp = prevseg;
+ } else if (nextseg->vs_type == VMEM_FREE) {
+ /*
+ * coalesce right
+ */
+ ASSERT(nextseg->vs_start == endaddr);
+
+ VMEM_DELETE(span, k);
+ vmem_seg_destroy(vmp, span);
+
+ vmem_freelist_delete(vmp, nextseg);
+ nextseg->vs_start = addr;
+
+ vsp = nextseg;
+ } else {
+ /*
+ * cannnot coalesce
+ */
+ VMEM_DELETE(span, k);
+ span->vs_start = addr;
+ span->vs_end = endaddr;
+
+ vsp = span;
+ }
+ } else if (span->vs_end == addr) {
+ vmem_seg_t *oldseg = span->vs_knext->vs_aprev;
+ span->vs_end = endaddr;
+
+ ASSERT(oldseg->vs_type != VMEM_SPAN);
+ if (oldseg->vs_type == VMEM_FREE) {
+ ASSERT(oldseg->vs_end == addr);
+ vmem_freelist_delete(vmp, oldseg);
+ oldseg->vs_end = endaddr;
+ vsp = oldseg;
+ } else
+ vsp = vmem_seg_create(vmp, oldseg, addr, endaddr);
+ } else {
+ vmem_seg_t *oldseg = span->vs_anext;
+ ASSERT(span->vs_start == endaddr);
+ span->vs_start = addr;
+
+ ASSERT(oldseg->vs_type != VMEM_SPAN);
+ if (oldseg->vs_type == VMEM_FREE) {
+ ASSERT(oldseg->vs_start == endaddr);
+ vmem_freelist_delete(vmp, oldseg);
+ oldseg->vs_start = addr;
+ vsp = oldseg;
+ } else
+ vsp = vmem_seg_create(vmp, span, addr, endaddr);
+ }
+ vmem_freelist_insert(vmp, vsp);
+ vmp->vm_kstat.vk_mem_total += (endaddr - addr);
+ return (vsp);
+}
+
+/*
+ * Does some error checking, calls vmem_extend_unlocked to add
+ * [vaddr, vaddr+size) to vmp, then allocates alloc bytes from the
+ * newly merged segment.
+ */
+void *
+_vmem_extend_alloc(vmem_t *vmp, void *vaddr, size_t size, size_t alloc,
+ int vmflag)
+{
+ uintptr_t addr = (uintptr_t)vaddr;
+ uintptr_t endaddr = addr + size;
+ vmem_seg_t *vsp;
+
+ ASSERT(vaddr != NULL && size != 0 && endaddr > addr);
+ ASSERT(alloc <= size && alloc != 0);
+ ASSERT(((addr | size | alloc) & (vmp->vm_quantum - 1)) == 0);
+
+ ASSERT(!vmem_contains(vmp, vaddr, size));
+
+ (void) mutex_lock(&vmp->vm_lock);
+ if (!vmem_populate(vmp, vmflag)) {
+ (void) mutex_unlock(&vmp->vm_lock);
+ return (NULL);
+ }
+ /*
+ * if there is a source, we can't mess with the spans
+ */
+ if (vmp->vm_source_alloc != NULL)
+ vsp = vmem_span_create(vmp, vaddr, size, 0);
+ else
+ vsp = vmem_extend_unlocked(vmp, addr, endaddr);
+
+ ASSERT(VS_SIZE(vsp) >= alloc);
+
+ addr = vsp->vs_start;
+ (void) vmem_seg_alloc(vmp, vsp, addr, alloc);
+ vaddr = (void *)addr;
+
+ (void) cond_broadcast(&vmp->vm_cv);
+ (void) mutex_unlock(&vmp->vm_lock);
+
+ return (vaddr);
+}
+
+/*
+ * Walk the vmp arena, applying func to each segment matching typemask.
+ * If VMEM_REENTRANT is specified, the arena lock is dropped across each
+ * call to func(); otherwise, it is held for the duration of vmem_walk()
+ * to ensure a consistent snapshot. Note that VMEM_REENTRANT callbacks
+ * are *not* necessarily consistent, so they may only be used when a hint
+ * is adequate.
+ */
+void
+vmem_walk(vmem_t *vmp, int typemask,
+ void (*func)(void *, void *, size_t), void *arg)
+{
+ vmem_seg_t *vsp;
+ vmem_seg_t *seg0 = &vmp->vm_seg0;
+ vmem_seg_t walker;
+
+ if (typemask & VMEM_WALKER)
+ return;
+
+ bzero(&walker, sizeof (walker));
+ walker.vs_type = VMEM_WALKER;
+
+ (void) mutex_lock(&vmp->vm_lock);
+ VMEM_INSERT(seg0, &walker, a);
+ for (vsp = seg0->vs_anext; vsp != seg0; vsp = vsp->vs_anext) {
+ if (vsp->vs_type & typemask) {
+ void *start = (void *)vsp->vs_start;
+ size_t size = VS_SIZE(vsp);
+ if (typemask & VMEM_REENTRANT) {
+ vmem_advance(vmp, &walker, vsp);
+ (void) mutex_unlock(&vmp->vm_lock);
+ func(arg, start, size);
+ (void) mutex_lock(&vmp->vm_lock);
+ vsp = &walker;
+ } else {
+ func(arg, start, size);
+ }
+ }
+ }
+ vmem_advance(vmp, &walker, NULL);
+ (void) mutex_unlock(&vmp->vm_lock);
+}
+
+/*
+ * Return the total amount of memory whose type matches typemask. Thus:
+ *
+ * typemask VMEM_ALLOC yields total memory allocated (in use).
+ * typemask VMEM_FREE yields total memory free (available).
+ * typemask (VMEM_ALLOC | VMEM_FREE) yields total arena size.
+ */
+size_t
+vmem_size(vmem_t *vmp, int typemask)
+{
+ uint64_t size = 0;
+
+ if (typemask & VMEM_ALLOC)
+ size += vmp->vm_kstat.vk_mem_inuse;
+ if (typemask & VMEM_FREE)
+ size += vmp->vm_kstat.vk_mem_total -
+ vmp->vm_kstat.vk_mem_inuse;
+ return ((size_t)size);
+}
+
+/*
+ * Create an arena called name whose initial span is [base, base + size).
+ * The arena's natural unit of currency is quantum, so vmem_alloc()
+ * guarantees quantum-aligned results. The arena may import new spans
+ * by invoking afunc() on source, and may return those spans by invoking
+ * ffunc() on source. To make small allocations fast and scalable,
+ * the arena offers high-performance caching for each integer multiple
+ * of quantum up to qcache_max.
+ */
+vmem_t *
+vmem_create(const char *name, void *base, size_t size, size_t quantum,
+ vmem_alloc_t *afunc, vmem_free_t *ffunc, vmem_t *source,
+ size_t qcache_max, int vmflag)
+{
+ int i;
+ size_t nqcache;
+ vmem_t *vmp, *cur, **vmpp;
+ vmem_seg_t *vsp;
+ vmem_freelist_t *vfp;
+ uint32_t id = atomic_add_32_nv(&vmem_id, 1);
+
+ if (vmem_vmem_arena != NULL) {
+ vmp = vmem_alloc(vmem_vmem_arena, sizeof (vmem_t),
+ vmflag & VM_UMFLAGS);
+ } else {
+ ASSERT(id <= VMEM_INITIAL);
+ vmp = &vmem0[id - 1];
+ }
+
+ if (vmp == NULL)
+ return (NULL);
+ bzero(vmp, sizeof (vmem_t));
+
+ (void) snprintf(vmp->vm_name, VMEM_NAMELEN, "%s", name);
+ (void) mutex_init(&vmp->vm_lock, USYNC_THREAD, NULL);
+ (void) cond_init(&vmp->vm_cv, USYNC_THREAD, NULL);
+ vmp->vm_cflags = vmflag;
+ vmflag &= VM_UMFLAGS;
+
+ vmp->vm_quantum = quantum;
+ vmp->vm_qshift = highbit(quantum) - 1;
+ nqcache = MIN(qcache_max >> vmp->vm_qshift, VMEM_NQCACHE_MAX);
+
+ for (i = 0; i <= VMEM_FREELISTS; i++) {
+ vfp = &vmp->vm_freelist[i];
+ vfp->vs_end = 1UL << i;
+ vfp->vs_knext = (vmem_seg_t *)(vfp + 1);
+ vfp->vs_kprev = (vmem_seg_t *)(vfp - 1);
+ }
+
+ vmp->vm_freelist[0].vs_kprev = NULL;
+ vmp->vm_freelist[VMEM_FREELISTS].vs_knext = NULL;
+ vmp->vm_freelist[VMEM_FREELISTS].vs_end = 0;
+ vmp->vm_hash_table = vmp->vm_hash0;
+ vmp->vm_hash_mask = VMEM_HASH_INITIAL - 1;
+ vmp->vm_hash_shift = highbit(vmp->vm_hash_mask);
+
+ vsp = &vmp->vm_seg0;
+ vsp->vs_anext = vsp;
+ vsp->vs_aprev = vsp;
+ vsp->vs_knext = vsp;
+ vsp->vs_kprev = vsp;
+ vsp->vs_type = VMEM_SPAN;
+
+ vsp = &vmp->vm_rotor;
+ vsp->vs_type = VMEM_ROTOR;
+ VMEM_INSERT(&vmp->vm_seg0, vsp, a);
+
+ vmp->vm_id = id;
+ if (source != NULL)
+ vmp->vm_kstat.vk_source_id = source->vm_id;
+ vmp->vm_source = source;
+ vmp->vm_source_alloc = afunc;
+ vmp->vm_source_free = ffunc;
+
+ if (nqcache != 0) {
+ vmp->vm_qcache_max = nqcache << vmp->vm_qshift;
+ for (i = 0; i < nqcache; i++) {
+ char buf[VMEM_NAMELEN + 21];
+ (void) snprintf(buf, sizeof (buf), "%s_%lu",
+ vmp->vm_name, (long)((i + 1) * quantum));
+ vmp->vm_qcache[i] = umem_cache_create(buf,
+ (i + 1) * quantum, quantum, NULL, NULL, NULL,
+ NULL, vmp, UMC_QCACHE | UMC_NOTOUCH);
+ if (vmp->vm_qcache[i] == NULL) {
+ vmp->vm_qcache_max = i * quantum;
+ break;
+ }
+ }
+ }
+
+ (void) mutex_lock(&vmem_list_lock);
+ vmpp = &vmem_list;
+ while ((cur = *vmpp) != NULL)
+ vmpp = &cur->vm_next;
+ *vmpp = vmp;
+ (void) mutex_unlock(&vmem_list_lock);
+
+ if (vmp->vm_cflags & VMC_POPULATOR) {
+ uint_t pop_id = atomic_add_32_nv(&vmem_populators, 1);
+ ASSERT(pop_id <= VMEM_INITIAL);
+ vmem_populator[pop_id - 1] = vmp;
+ (void) mutex_lock(&vmp->vm_lock);
+ (void) vmem_populate(vmp, vmflag | VM_PANIC);
+ (void) mutex_unlock(&vmp->vm_lock);
+ }
+
+ if ((base || size) && vmem_add(vmp, base, size, vmflag) == NULL) {
+ vmem_destroy(vmp);
+ return (NULL);
+ }
+
+ return (vmp);
+}
+
+/*
+ * Destroy arena vmp.
+ */
+void
+vmem_destroy(vmem_t *vmp)
+{
+ vmem_t *cur, **vmpp;
+ vmem_seg_t *seg0 = &vmp->vm_seg0;
+ vmem_seg_t *vsp;
+ size_t leaked;
+ int i;
+
+ (void) mutex_lock(&vmem_list_lock);
+ vmpp = &vmem_list;
+ while ((cur = *vmpp) != vmp)
+ vmpp = &cur->vm_next;
+ *vmpp = vmp->vm_next;
+ (void) mutex_unlock(&vmem_list_lock);
+
+ for (i = 0; i < VMEM_NQCACHE_MAX; i++)
+ if (vmp->vm_qcache[i])
+ umem_cache_destroy(vmp->vm_qcache[i]);
+
+ leaked = vmem_size(vmp, VMEM_ALLOC);
+ if (leaked != 0)
+ umem_printf("vmem_destroy('%s'): leaked %lu bytes",
+ vmp->vm_name, leaked);
+
+ if (vmp->vm_hash_table != vmp->vm_hash0)
+ vmem_free(vmem_hash_arena, vmp->vm_hash_table,
+ (vmp->vm_hash_mask + 1) * sizeof (void *));
+
+ /*
+ * Give back the segment structures for anything that's left in the
+ * arena, e.g. the primary spans and their free segments.
+ */
+ VMEM_DELETE(&vmp->vm_rotor, a);
+ for (vsp = seg0->vs_anext; vsp != seg0; vsp = vsp->vs_anext)
+ vmem_putseg_global(vsp);
+
+ while (vmp->vm_nsegfree > 0)
+ vmem_putseg_global(vmem_getseg(vmp));
+
+ (void) mutex_destroy(&vmp->vm_lock);
+ (void) cond_destroy(&vmp->vm_cv);
+ vmem_free(vmem_vmem_arena, vmp, sizeof (vmem_t));
+}
+
+/*
+ * Resize vmp's hash table to keep the average lookup depth near 1.0.
+ */
+static void
+vmem_hash_rescale(vmem_t *vmp)
+{
+ vmem_seg_t **old_table, **new_table, *vsp;
+ size_t old_size, new_size, h, nseg;
+
+ nseg = (size_t)(vmp->vm_kstat.vk_alloc - vmp->vm_kstat.vk_free);
+
+ new_size = MAX(VMEM_HASH_INITIAL, 1 << (highbit(3 * nseg + 4) - 2));
+ old_size = vmp->vm_hash_mask + 1;
+
+ if ((old_size >> 1) <= new_size && new_size <= (old_size << 1))
+ return;
+
+ new_table = vmem_alloc(vmem_hash_arena, new_size * sizeof (void *),
+ VM_NOSLEEP);
+ if (new_table == NULL)
+ return;
+ bzero(new_table, new_size * sizeof (void *));
+
+ (void) mutex_lock(&vmp->vm_lock);
+
+ old_size = vmp->vm_hash_mask + 1;
+ old_table = vmp->vm_hash_table;
+
+ vmp->vm_hash_mask = new_size - 1;
+ vmp->vm_hash_table = new_table;
+ vmp->vm_hash_shift = highbit(vmp->vm_hash_mask);
+
+ for (h = 0; h < old_size; h++) {
+ vsp = old_table[h];
+ while (vsp != NULL) {
+ uintptr_t addr = vsp->vs_start;
+ vmem_seg_t *next_vsp = vsp->vs_knext;
+ vmem_seg_t **hash_bucket = VMEM_HASH(vmp, addr);
+ vsp->vs_knext = *hash_bucket;
+ *hash_bucket = vsp;
+ vsp = next_vsp;
+ }
+ }
+
+ (void) mutex_unlock(&vmp->vm_lock);
+
+ if (old_table != vmp->vm_hash0)
+ vmem_free(vmem_hash_arena, old_table,
+ old_size * sizeof (void *));
+}
+
+/*
+ * Perform periodic maintenance on all vmem arenas.
+ */
+/*ARGSUSED*/
+void
+vmem_update(void *dummy)
+{
+ vmem_t *vmp;
+
+ (void) mutex_lock(&vmem_list_lock);
+ for (vmp = vmem_list; vmp != NULL; vmp = vmp->vm_next) {
+ /*
+ * If threads are waiting for resources, wake them up
+ * periodically so they can issue another vmem_reap()
+ * to reclaim resources cached by the slab allocator.
+ */
+ (void) cond_broadcast(&vmp->vm_cv);
+
+ /*
+ * Rescale the hash table to keep the hash chains short.
+ */
+ vmem_hash_rescale(vmp);
+ }
+ (void) mutex_unlock(&vmem_list_lock);
+}
+
+/*
+ * If vmem_init is called again, we need to be able to reset the world.
+ * That includes resetting the statics back to their original values.
+ */
+void
+vmem_startup(void)
+{
+#ifdef UMEM_STANDALONE
+ vmem_id = 0;
+ vmem_populators = 0;
+ vmem_segfree = NULL;
+ vmem_list = NULL;
+ vmem_internal_arena = NULL;
+ vmem_seg_arena = NULL;
+ vmem_hash_arena = NULL;
+ vmem_vmem_arena = NULL;
+ vmem_heap = NULL;
+ vmem_heap_alloc = NULL;
+ vmem_heap_free = NULL;
+
+ bzero(vmem0, sizeof (vmem0));
+ bzero(vmem_populator, sizeof (vmem_populator));
+ bzero(vmem_seg0, sizeof (vmem_seg0));
+#endif
+}
+
+/*
+ * Prepare vmem for use.
+ */
+vmem_t *
+vmem_init(const char *parent_name, size_t parent_quantum,
+ vmem_alloc_t *parent_alloc, vmem_free_t *parent_free,
+ const char *heap_name, void *heap_start, size_t heap_size,
+ size_t heap_quantum, vmem_alloc_t *heap_alloc, vmem_free_t *heap_free)
+{
+ uint32_t id;
+ int nseg = VMEM_SEG_INITIAL;
+ vmem_t *parent, *heap;
+
+ ASSERT(vmem_internal_arena == NULL);
+
+ while (--nseg >= 0)
+ vmem_putseg_global(&vmem_seg0[nseg]);
+
+ if (parent_name != NULL) {
+ parent = vmem_create(parent_name,
+ heap_start, heap_size, parent_quantum,
+ NULL, NULL, NULL, 0,
+ VM_SLEEP | VMC_POPULATOR);
+ heap_start = NULL;
+ heap_size = 0;
+ } else {
+ ASSERT(parent_alloc == NULL && parent_free == NULL);
+ parent = NULL;
+ }
+
+ heap = vmem_create(heap_name,
+ heap_start, heap_size, heap_quantum,
+ parent_alloc, parent_free, parent, 0,
+ VM_SLEEP | VMC_POPULATOR);
+
+ vmem_heap = heap;
+ vmem_heap_alloc = heap_alloc;
+ vmem_heap_free = heap_free;
+
+ vmem_internal_arena = vmem_create("vmem_internal",
+ NULL, 0, heap_quantum,
+ heap_alloc, heap_free, heap, 0,
+ VM_SLEEP | VMC_POPULATOR);
+
+ vmem_seg_arena = vmem_create("vmem_seg",
+ NULL, 0, heap_quantum,
+ vmem_alloc, vmem_free, vmem_internal_arena, 0,
+ VM_SLEEP | VMC_POPULATOR);
+
+ vmem_hash_arena = vmem_create("vmem_hash",
+ NULL, 0, 8,
+ vmem_alloc, vmem_free, vmem_internal_arena, 0,
+ VM_SLEEP);
+
+ vmem_vmem_arena = vmem_create("vmem_vmem",
+ vmem0, sizeof (vmem0), 1,
+ vmem_alloc, vmem_free, vmem_internal_arena, 0,
+ VM_SLEEP);
+
+ for (id = 0; id < vmem_id; id++)
+ (void) vmem_xalloc(vmem_vmem_arena, sizeof (vmem_t),
+ 1, 0, 0, &vmem0[id], &vmem0[id + 1],
+ VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
+
+ return (heap);
+}
+
+void
+vmem_no_debug(void)
+{
+ /*
+ * This size must be a multiple of the minimum required alignment,
+ * since vmem_populate allocates them compactly.
+ */
+ vmem_seg_size = P2ROUNDUP(offsetof(vmem_seg_t, vs_thread),
+ sizeof (hrtime_t));
+}
+
+/*
+ * Lockup and release, for fork1(2) handling.
+ */
+void
+vmem_lockup(void)
+{
+ vmem_t *cur;
+
+ (void) mutex_lock(&vmem_list_lock);
+ (void) mutex_lock(&vmem_nosleep_lock.vmpl_mutex);
+
+ /*
+ * Lock up and broadcast all arenas.
+ */
+ for (cur = vmem_list; cur != NULL; cur = cur->vm_next) {
+ (void) mutex_lock(&cur->vm_lock);
+ (void) cond_broadcast(&cur->vm_cv);
+ }
+
+ (void) mutex_lock(&vmem_segfree_lock);
+}
+
+void
+vmem_release(void)
+{
+ vmem_t *cur;
+
+ (void) mutex_unlock(&vmem_nosleep_lock.vmpl_mutex);
+
+ for (cur = vmem_list; cur != NULL; cur = cur->vm_next)
+ (void) mutex_unlock(&cur->vm_lock);
+
+ (void) mutex_unlock(&vmem_segfree_lock);
+ (void) mutex_unlock(&vmem_list_lock);
+}