aboutsummaryrefslogtreecommitdiffstats
path: root/zfs/lib/libumem/umem.c
diff options
context:
space:
mode:
Diffstat (limited to 'zfs/lib/libumem/umem.c')
-rw-r--r--zfs/lib/libumem/umem.c3257
1 files changed, 0 insertions, 3257 deletions
diff --git a/zfs/lib/libumem/umem.c b/zfs/lib/libumem/umem.c
deleted file mode 100644
index a3eb0b8e6..000000000
--- a/zfs/lib/libumem/umem.c
+++ /dev/null
@@ -1,3257 +0,0 @@
-/*
- * CDDL HEADER START
- *
- * The contents of this file are subject to the terms of the
- * Common Development and Distribution License (the "License").
- * You may not use this file except in compliance with the License.
- *
- * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
- * or http://www.opensolaris.org/os/licensing.
- * See the License for the specific language governing permissions
- * and limitations under the License.
- *
- * When distributing Covered Code, include this CDDL HEADER in each
- * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
- * If applicable, add the following below this CDDL HEADER, with the
- * fields enclosed by brackets "[]" replaced with your own identifying
- * information: Portions Copyright [yyyy] [name of copyright owner]
- *
- * CDDL HEADER END
- */
-
-/*
- * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
- * Use is subject to license terms.
- */
-
-#pragma ident "%Z%%M% %I% %E% SMI"
-
-/*
- * based on usr/src/uts/common/os/kmem.c r1.64 from 2001/12/18
- *
- * The slab allocator, as described in the following two papers:
- *
- * Jeff Bonwick,
- * The Slab Allocator: An Object-Caching Kernel Memory Allocator.
- * Proceedings of the Summer 1994 Usenix Conference.
- * Available as /shared/sac/PSARC/1994/028/materials/kmem.pdf.
- *
- * Jeff Bonwick and Jonathan Adams,
- * Magazines and vmem: Extending the Slab Allocator to Many CPUs and
- * Arbitrary Resources.
- * Proceedings of the 2001 Usenix Conference.
- * Available as /shared/sac/PSARC/2000/550/materials/vmem.pdf.
- *
- * 1. Overview
- * -----------
- * umem is very close to kmem in implementation. There are four major
- * areas of divergence:
- *
- * * Initialization
- *
- * * CPU handling
- *
- * * umem_update()
- *
- * * KM_SLEEP v.s. UMEM_NOFAIL
- *
- * * lock ordering
- *
- * 2. Initialization
- * -----------------
- * kmem is initialized early on in boot, and knows that no one will call
- * into it before it is ready. umem does not have these luxuries. Instead,
- * initialization is divided into two phases:
- *
- * * library initialization, and
- *
- * * first use
- *
- * umem's full initialization happens at the time of the first allocation
- * request (via malloc() and friends, umem_alloc(), or umem_zalloc()),
- * or the first call to umem_cache_create().
- *
- * umem_free(), and umem_cache_alloc() do not require special handling,
- * since the only way to get valid arguments for them is to successfully
- * call a function from the first group.
- *
- * 2.1. Library Initialization: umem_startup()
- * -------------------------------------------
- * umem_startup() is libumem.so's .init section. It calls pthread_atfork()
- * to install the handlers necessary for umem's Fork1-Safety. Because of
- * race condition issues, all other pre-umem_init() initialization is done
- * statically (i.e. by the dynamic linker).
- *
- * For standalone use, umem_startup() returns everything to its initial
- * state.
- *
- * 2.2. First use: umem_init()
- * ------------------------------
- * The first time any memory allocation function is used, we have to
- * create the backing caches and vmem arenas which are needed for it.
- * umem_init() is the central point for that task. When it completes,
- * umem_ready is either UMEM_READY (all set) or UMEM_READY_INIT_FAILED (unable
- * to initialize, probably due to lack of memory).
- *
- * There are four different paths from which umem_init() is called:
- *
- * * from umem_alloc() or umem_zalloc(), with 0 < size < UMEM_MAXBUF,
- *
- * * from umem_alloc() or umem_zalloc(), with size > UMEM_MAXBUF,
- *
- * * from umem_cache_create(), and
- *
- * * from memalign(), with align > UMEM_ALIGN.
- *
- * The last three just check if umem is initialized, and call umem_init()
- * if it is not. For performance reasons, the first case is more complicated.
- *
- * 2.2.1. umem_alloc()/umem_zalloc(), with 0 < size < UMEM_MAXBUF
- * -----------------------------------------------------------------
- * In this case, umem_cache_alloc(&umem_null_cache, ...) is called.
- * There is special case code in which causes any allocation on
- * &umem_null_cache to fail by returning (NULL), regardless of the
- * flags argument.
- *
- * So umem_cache_alloc() returns NULL, and umem_alloc()/umem_zalloc() call
- * umem_alloc_retry(). umem_alloc_retry() sees that the allocation
- * was agains &umem_null_cache, and calls umem_init().
- *
- * If initialization is successful, umem_alloc_retry() returns 1, which
- * causes umem_alloc()/umem_zalloc() to start over, which causes it to load
- * the (now valid) cache pointer from umem_alloc_table.
- *
- * 2.2.2. Dealing with race conditions
- * -----------------------------------
- * There are a couple race conditions resulting from the initialization
- * code that we have to guard against:
- *
- * * In umem_cache_create(), there is a special UMC_INTERNAL cflag
- * that is passed for caches created during initialization. It
- * is illegal for a user to try to create a UMC_INTERNAL cache.
- * This allows initialization to proceed, but any other
- * umem_cache_create()s will block by calling umem_init().
- *
- * * Since umem_null_cache has a 1-element cache_cpu, it's cache_cpu_mask
- * is always zero. umem_cache_alloc uses cp->cache_cpu_mask to
- * mask the cpu number. This prevents a race between grabbing a
- * cache pointer out of umem_alloc_table and growing the cpu array.
- *
- *
- * 3. CPU handling
- * ---------------
- * kmem uses the CPU's sequence number to determine which "cpu cache" to
- * use for an allocation. Currently, there is no way to get the sequence
- * number in userspace.
- *
- * umem keeps track of cpu information in umem_cpus, an array of umem_max_ncpus
- * umem_cpu_t structures. CURCPU() is a a "hint" function, which we then mask
- * with either umem_cpu_mask or cp->cache_cpu_mask to find the actual "cpu" id.
- * The mechanics of this is all in the CPU(mask) macro.
- *
- * Currently, umem uses _lwp_self() as its hint.
- *
- *
- * 4. The update thread
- * --------------------
- * kmem uses a task queue, kmem_taskq, to do periodic maintenance on
- * every kmem cache. vmem has a periodic timeout for hash table resizing.
- * The kmem_taskq also provides a separate context for kmem_cache_reap()'s
- * to be done in, avoiding issues of the context of kmem_reap() callers.
- *
- * Instead, umem has the concept of "updates", which are asynchronous requests
- * for work attached to single caches. All caches with pending work are
- * on a doubly linked list rooted at the umem_null_cache. All update state
- * is protected by the umem_update_lock mutex, and the umem_update_cv is used
- * for notification between threads.
- *
- * 4.1. Cache states with regards to updates
- * -----------------------------------------
- * A given cache is in one of three states:
- *
- * Inactive cache_uflags is zero, cache_u{next,prev} are NULL
- *
- * Work Requested cache_uflags is non-zero (but UMU_ACTIVE is not set),
- * cache_u{next,prev} link the cache onto the global
- * update list
- *
- * Active cache_uflags has UMU_ACTIVE set, cache_u{next,prev}
- * are NULL, and either umem_update_thr or
- * umem_st_update_thr are actively doing work on the
- * cache.
- *
- * An update can be added to any cache in any state -- if the cache is
- * Inactive, it transitions to being Work Requested. If the cache is
- * Active, the worker will notice the new update and act on it before
- * transitioning the cache to the Inactive state.
- *
- * If a cache is in the Active state, UMU_NOTIFY can be set, which asks
- * the worker to broadcast the umem_update_cv when it has finished.
- *
- * 4.2. Update interface
- * ---------------------
- * umem_add_update() adds an update to a particular cache.
- * umem_updateall() adds an update to all caches.
- * umem_remove_updates() returns a cache to the Inactive state.
- *
- * umem_process_updates() process all caches in the Work Requested state.
- *
- * 4.3. Reaping
- * ------------
- * When umem_reap() is called (at the time of heap growth), it schedule
- * UMU_REAP updates on every cache. It then checks to see if the update
- * thread exists (umem_update_thr != 0). If it is, it broadcasts
- * the umem_update_cv to wake the update thread up, and returns.
- *
- * If the update thread does not exist (umem_update_thr == 0), and the
- * program currently has multiple threads, umem_reap() attempts to create
- * a new update thread.
- *
- * If the process is not multithreaded, or the creation fails, umem_reap()
- * calls umem_st_update() to do an inline update.
- *
- * 4.4. The update thread
- * ----------------------
- * The update thread spends most of its time in cond_timedwait() on the
- * umem_update_cv. It wakes up under two conditions:
- *
- * * The timedwait times out, in which case it needs to run a global
- * update, or
- *
- * * someone cond_broadcast(3THR)s the umem_update_cv, in which case
- * it needs to check if there are any caches in the Work Requested
- * state.
- *
- * When it is time for another global update, umem calls umem_cache_update()
- * on every cache, then calls vmem_update(), which tunes the vmem structures.
- * umem_cache_update() can request further work using umem_add_update().
- *
- * After any work from the global update completes, the update timer is
- * reset to umem_reap_interval seconds in the future. This makes the
- * updates self-throttling.
- *
- * Reaps are similarly self-throttling. After a UMU_REAP update has
- * been scheduled on all caches, umem_reap() sets a flag and wakes up the
- * update thread. The update thread notices the flag, and resets the
- * reap state.
- *
- * 4.5. Inline updates
- * -------------------
- * If the update thread is not running, umem_st_update() is used instead. It
- * immediately does a global update (as above), then calls
- * umem_process_updates() to process both the reaps that umem_reap() added and
- * any work generated by the global update. Afterwards, it resets the reap
- * state.
- *
- * While the umem_st_update() is running, umem_st_update_thr holds the thread
- * id of the thread performing the update.
- *
- * 4.6. Updates and fork1()
- * ------------------------
- * umem has fork1() pre- and post-handlers which lock up (and release) every
- * mutex in every cache. They also lock up the umem_update_lock. Since
- * fork1() only copies over a single lwp, other threads (including the update
- * thread) could have been actively using a cache in the parent. This
- * can lead to inconsistencies in the child process.
- *
- * Because we locked all of the mutexes, the only possible inconsistancies are:
- *
- * * a umem_cache_alloc() could leak its buffer.
- *
- * * a caller of umem_depot_alloc() could leak a magazine, and all the
- * buffers contained in it.
- *
- * * a cache could be in the Active update state. In the child, there
- * would be no thread actually working on it.
- *
- * * a umem_hash_rescale() could leak the new hash table.
- *
- * * a umem_magazine_resize() could be in progress.
- *
- * * a umem_reap() could be in progress.
- *
- * The memory leaks we can't do anything about. umem_release_child() resets
- * the update state, moves any caches in the Active state to the Work Requested
- * state. This might cause some updates to be re-run, but UMU_REAP and
- * UMU_HASH_RESCALE are effectively idempotent, and the worst that can
- * happen from umem_magazine_resize() is resizing the magazine twice in close
- * succession.
- *
- * Much of the cleanup in umem_release_child() is skipped if
- * umem_st_update_thr == thr_self(). This is so that applications which call
- * fork1() from a cache callback does not break. Needless to say, any such
- * application is tremendously broken.
- *
- *
- * 5. KM_SLEEP v.s. UMEM_NOFAIL
- * ----------------------------
- * Allocations against kmem and vmem have two basic modes: SLEEP and
- * NOSLEEP. A sleeping allocation is will go to sleep (waiting for
- * more memory) instead of failing (returning NULL).
- *
- * SLEEP allocations presume an extremely multithreaded model, with
- * a lot of allocation and deallocation activity. umem cannot presume
- * that its clients have any particular type of behavior. Instead,
- * it provides two types of allocations:
- *
- * * UMEM_DEFAULT, equivalent to KM_NOSLEEP (i.e. return NULL on
- * failure)
- *
- * * UMEM_NOFAIL, which, on failure, calls an optional callback
- * (registered with umem_nofail_callback()).
- *
- * The callback is invoked with no locks held, and can do an arbitrary
- * amount of work. It then has a choice between:
- *
- * * Returning UMEM_CALLBACK_RETRY, which will cause the allocation
- * to be restarted.
- *
- * * Returning UMEM_CALLBACK_EXIT(status), which will cause exit(2)
- * to be invoked with status. If multiple threads attempt to do
- * this simultaneously, only one will call exit(2).
- *
- * * Doing some kind of non-local exit (thr_exit(3thr), longjmp(3C),
- * etc.)
- *
- * The default callback returns UMEM_CALLBACK_EXIT(255).
- *
- * To have these callbacks without risk of state corruption (in the case of
- * a non-local exit), we have to ensure that the callbacks get invoked
- * close to the original allocation, with no inconsistent state or held
- * locks. The following steps are taken:
- *
- * * All invocations of vmem are VM_NOSLEEP.
- *
- * * All constructor callbacks (which can themselves to allocations)
- * are passed UMEM_DEFAULT as their required allocation argument. This
- * way, the constructor will fail, allowing the highest-level allocation
- * invoke the nofail callback.
- *
- * If a constructor callback _does_ do a UMEM_NOFAIL allocation, and
- * the nofail callback does a non-local exit, we will leak the
- * partially-constructed buffer.
- *
- *
- * 6. Lock Ordering
- * ----------------
- * umem has a few more locks than kmem does, mostly in the update path. The
- * overall lock ordering (earlier locks must be acquired first) is:
- *
- * umem_init_lock
- *
- * vmem_list_lock
- * vmem_nosleep_lock.vmpl_mutex
- * vmem_t's:
- * vm_lock
- * sbrk_lock
- *
- * umem_cache_lock
- * umem_update_lock
- * umem_flags_lock
- * umem_cache_t's:
- * cache_cpu[*].cc_lock
- * cache_depot_lock
- * cache_lock
- * umem_log_header_t's:
- * lh_cpu[*].clh_lock
- * lh_lock
- */
-
-#include <umem_impl.h>
-#include <sys/vmem_impl_user.h>
-#include "umem_base.h"
-#include "vmem_base.h"
-
-#include <sys/processor.h>
-#include <sys/sysmacros.h>
-
-#include <alloca.h>
-#include <errno.h>
-#include <limits.h>
-#include <stdio.h>
-#include <stdlib.h>
-#include <string.h>
-#include <strings.h>
-#include <signal.h>
-#include <unistd.h>
-#include <atomic.h>
-
-#include "misc.h"
-
-#define UMEM_VMFLAGS(umflag) (VM_NOSLEEP)
-
-size_t pagesize;
-
-/*
- * The default set of caches to back umem_alloc().
- * These sizes should be reevaluated periodically.
- *
- * We want allocations that are multiples of the coherency granularity
- * (64 bytes) to be satisfied from a cache which is a multiple of 64
- * bytes, so that it will be 64-byte aligned. For all multiples of 64,
- * the next kmem_cache_size greater than or equal to it must be a
- * multiple of 64.
- *
- * This table must be in sorted order, from smallest to highest. The
- * highest slot must be UMEM_MAXBUF, and every slot afterwards must be
- * zero.
- */
-static int umem_alloc_sizes[] = {
-#ifdef _LP64
- 1 * 8,
- 1 * 16,
- 2 * 16,
- 3 * 16,
-#else
- 1 * 8,
- 2 * 8,
- 3 * 8,
- 4 * 8, 5 * 8, 6 * 8, 7 * 8,
-#endif
- 4 * 16, 5 * 16, 6 * 16, 7 * 16,
- 4 * 32, 5 * 32, 6 * 32, 7 * 32,
- 4 * 64, 5 * 64, 6 * 64, 7 * 64,
- 4 * 128, 5 * 128, 6 * 128, 7 * 128,
- P2ALIGN(8192 / 7, 64),
- P2ALIGN(8192 / 6, 64),
- P2ALIGN(8192 / 5, 64),
- P2ALIGN(8192 / 4, 64), 2304,
- P2ALIGN(8192 / 3, 64),
- P2ALIGN(8192 / 2, 64), 4544,
- P2ALIGN(8192 / 1, 64), 9216,
- 4096 * 3,
- UMEM_MAXBUF, /* = 8192 * 2 */
- /* 24 slots for user expansion */
- 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0,
-};
-#define NUM_ALLOC_SIZES (sizeof (umem_alloc_sizes) / sizeof (*umem_alloc_sizes))
-
-static umem_magtype_t umem_magtype[] = {
- { 1, 8, 3200, 65536 },
- { 3, 16, 256, 32768 },
- { 7, 32, 64, 16384 },
- { 15, 64, 0, 8192 },
- { 31, 64, 0, 4096 },
- { 47, 64, 0, 2048 },
- { 63, 64, 0, 1024 },
- { 95, 64, 0, 512 },
- { 143, 64, 0, 0 },
-};
-
-/*
- * umem tunables
- */
-uint32_t umem_max_ncpus; /* # of CPU caches. */
-
-uint32_t umem_stack_depth = 15; /* # stack frames in a bufctl_audit */
-uint32_t umem_reap_interval = 10; /* max reaping rate (seconds) */
-uint_t umem_depot_contention = 2; /* max failed trylocks per real interval */
-uint_t umem_abort = 1; /* whether to abort on error */
-uint_t umem_output = 0; /* whether to write to standard error */
-uint_t umem_logging = 0; /* umem_log_enter() override */
-uint32_t umem_mtbf = 0; /* mean time between failures [default: off] */
-size_t umem_transaction_log_size; /* size of transaction log */
-size_t umem_content_log_size; /* size of content log */
-size_t umem_failure_log_size; /* failure log [4 pages per CPU] */
-size_t umem_slab_log_size; /* slab create log [4 pages per CPU] */
-size_t umem_content_maxsave = 256; /* UMF_CONTENTS max bytes to log */
-size_t umem_lite_minsize = 0; /* minimum buffer size for UMF_LITE */
-size_t umem_lite_maxalign = 1024; /* maximum buffer alignment for UMF_LITE */
-size_t umem_maxverify; /* maximum bytes to inspect in debug routines */
-size_t umem_minfirewall; /* hardware-enforced redzone threshold */
-
-uint_t umem_flags = 0;
-
-mutex_t umem_init_lock; /* locks initialization */
-cond_t umem_init_cv; /* initialization CV */
-thread_t umem_init_thr; /* thread initializing */
-int umem_init_env_ready; /* environ pre-initted */
-int umem_ready = UMEM_READY_STARTUP;
-
-static umem_nofail_callback_t *nofail_callback;
-static mutex_t umem_nofail_exit_lock;
-static thread_t umem_nofail_exit_thr;
-
-static umem_cache_t *umem_slab_cache;
-static umem_cache_t *umem_bufctl_cache;
-static umem_cache_t *umem_bufctl_audit_cache;
-
-mutex_t umem_flags_lock;
-
-static vmem_t *heap_arena;
-static vmem_alloc_t *heap_alloc;
-static vmem_free_t *heap_free;
-
-static vmem_t *umem_internal_arena;
-static vmem_t *umem_cache_arena;
-static vmem_t *umem_hash_arena;
-static vmem_t *umem_log_arena;
-static vmem_t *umem_oversize_arena;
-static vmem_t *umem_va_arena;
-static vmem_t *umem_default_arena;
-static vmem_t *umem_firewall_va_arena;
-static vmem_t *umem_firewall_arena;
-
-vmem_t *umem_memalign_arena;
-
-umem_log_header_t *umem_transaction_log;
-umem_log_header_t *umem_content_log;
-umem_log_header_t *umem_failure_log;
-umem_log_header_t *umem_slab_log;
-
-#define CPUHINT() (thr_self())
-#define CPUHINT_MAX() INT_MAX
-
-#define CPU(mask) (umem_cpus + (CPUHINT() & (mask)))
-static umem_cpu_t umem_startup_cpu = { /* initial, single, cpu */
- UMEM_CACHE_SIZE(0),
- 0
-};
-
-static uint32_t umem_cpu_mask = 0; /* global cpu mask */
-static umem_cpu_t *umem_cpus = &umem_startup_cpu; /* cpu list */
-
-volatile uint32_t umem_reaping;
-
-thread_t umem_update_thr;
-struct timeval umem_update_next; /* timeofday of next update */
-volatile thread_t umem_st_update_thr; /* only used when single-thd */
-
-#define IN_UPDATE() (thr_self() == umem_update_thr || \
- thr_self() == umem_st_update_thr)
-#define IN_REAP() IN_UPDATE()
-
-mutex_t umem_update_lock; /* cache_u{next,prev,flags} */
-cond_t umem_update_cv;
-
-volatile hrtime_t umem_reap_next; /* min hrtime of next reap */
-
-mutex_t umem_cache_lock; /* inter-cache linkage only */
-
-#ifdef UMEM_STANDALONE
-umem_cache_t umem_null_cache;
-static const umem_cache_t umem_null_cache_template = {
-#else
-umem_cache_t umem_null_cache = {
-#endif
- 0, 0, 0, 0, 0,
- 0, 0,
- 0, 0,
- 0, 0,
- "invalid_cache",
- 0, 0,
- NULL, NULL, NULL, NULL,
- NULL,
- 0, 0, 0, 0,
- &umem_null_cache, &umem_null_cache,
- &umem_null_cache, &umem_null_cache,
- 0,
- DEFAULTMUTEX, /* start of slab layer */
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- &umem_null_cache.cache_nullslab,
- {
- &umem_null_cache,
- NULL,
- &umem_null_cache.cache_nullslab,
- &umem_null_cache.cache_nullslab,
- NULL,
- -1,
- 0
- },
- NULL,
- NULL,
- DEFAULTMUTEX, /* start of depot layer */
- NULL, {
- NULL, 0, 0, 0, 0
- }, {
- NULL, 0, 0, 0, 0
- }, {
- {
- DEFAULTMUTEX, /* start of CPU cache */
- 0, 0, NULL, NULL, -1, -1, 0
- }
- }
-};
-
-#define ALLOC_TABLE_4 \
- &umem_null_cache, &umem_null_cache, &umem_null_cache, &umem_null_cache
-
-#define ALLOC_TABLE_64 \
- ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, \
- ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, \
- ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, \
- ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4
-
-#define ALLOC_TABLE_1024 \
- ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, \
- ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, \
- ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, \
- ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64
-
-static umem_cache_t *umem_alloc_table[UMEM_MAXBUF >> UMEM_ALIGN_SHIFT] = {
- ALLOC_TABLE_1024,
- ALLOC_TABLE_1024
-};
-
-
-/* Used to constrain audit-log stack traces */
-caddr_t umem_min_stack;
-caddr_t umem_max_stack;
-
-
-#define UMERR_MODIFIED 0 /* buffer modified while on freelist */
-#define UMERR_REDZONE 1 /* redzone violation (write past end of buf) */
-#define UMERR_DUPFREE 2 /* freed a buffer twice */
-#define UMERR_BADADDR 3 /* freed a bad (unallocated) address */
-#define UMERR_BADBUFTAG 4 /* buftag corrupted */
-#define UMERR_BADBUFCTL 5 /* bufctl corrupted */
-#define UMERR_BADCACHE 6 /* freed a buffer to the wrong cache */
-#define UMERR_BADSIZE 7 /* alloc size != free size */
-#define UMERR_BADBASE 8 /* buffer base address wrong */
-
-struct {
- hrtime_t ump_timestamp; /* timestamp of error */
- int ump_error; /* type of umem error (UMERR_*) */
- void *ump_buffer; /* buffer that induced abort */
- void *ump_realbuf; /* real start address for buffer */
- umem_cache_t *ump_cache; /* buffer's cache according to client */
- umem_cache_t *ump_realcache; /* actual cache containing buffer */
- umem_slab_t *ump_slab; /* slab accoring to umem_findslab() */
- umem_bufctl_t *ump_bufctl; /* bufctl */
-} umem_abort_info;
-
-static void
-copy_pattern(uint64_t pattern, void *buf_arg, size_t size)
-{
- uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
- uint64_t *buf = buf_arg;
-
- while (buf < bufend)
- *buf++ = pattern;
-}
-
-static void *
-verify_pattern(uint64_t pattern, void *buf_arg, size_t size)
-{
- uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
- uint64_t *buf;
-
- for (buf = buf_arg; buf < bufend; buf++)
- if (*buf != pattern)
- return (buf);
- return (NULL);
-}
-
-static void *
-verify_and_copy_pattern(uint64_t old, uint64_t new, void *buf_arg, size_t size)
-{
- uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
- uint64_t *buf;
-
- for (buf = buf_arg; buf < bufend; buf++) {
- if (*buf != old) {
- copy_pattern(old, buf_arg,
- (char *)buf - (char *)buf_arg);
- return (buf);
- }
- *buf = new;
- }
-
- return (NULL);
-}
-
-void
-umem_cache_applyall(void (*func)(umem_cache_t *))
-{
- umem_cache_t *cp;
-
- (void) mutex_lock(&umem_cache_lock);
- for (cp = umem_null_cache.cache_next; cp != &umem_null_cache;
- cp = cp->cache_next)
- func(cp);
- (void) mutex_unlock(&umem_cache_lock);
-}
-
-static void
-umem_add_update_unlocked(umem_cache_t *cp, int flags)
-{
- umem_cache_t *cnext, *cprev;
-
- flags &= ~UMU_ACTIVE;
-
- if (!flags)
- return;
-
- if (cp->cache_uflags & UMU_ACTIVE) {
- cp->cache_uflags |= flags;
- } else {
- if (cp->cache_unext != NULL) {
- ASSERT(cp->cache_uflags != 0);
- cp->cache_uflags |= flags;
- } else {
- ASSERT(cp->cache_uflags == 0);
- cp->cache_uflags = flags;
- cp->cache_unext = cnext = &umem_null_cache;
- cp->cache_uprev = cprev = umem_null_cache.cache_uprev;
- cnext->cache_uprev = cp;
- cprev->cache_unext = cp;
- }
- }
-}
-
-static void
-umem_add_update(umem_cache_t *cp, int flags)
-{
- (void) mutex_lock(&umem_update_lock);
-
- umem_add_update_unlocked(cp, flags);
-
- if (!IN_UPDATE())
- (void) cond_broadcast(&umem_update_cv);
-
- (void) mutex_unlock(&umem_update_lock);
-}
-
-/*
- * Remove a cache from the update list, waiting for any in-progress work to
- * complete first.
- */
-static void
-umem_remove_updates(umem_cache_t *cp)
-{
- (void) mutex_lock(&umem_update_lock);
-
- /*
- * Get it out of the active state
- */
- while (cp->cache_uflags & UMU_ACTIVE) {
- int cancel_state;
-
- ASSERT(cp->cache_unext == NULL);
-
- cp->cache_uflags |= UMU_NOTIFY;
-
- /*
- * Make sure the update state is sane, before we wait
- */
- ASSERT(umem_update_thr != 0 || umem_st_update_thr != 0);
- ASSERT(umem_update_thr != thr_self() &&
- umem_st_update_thr != thr_self());
-
- (void) pthread_setcancelstate(PTHREAD_CANCEL_DISABLE,
- &cancel_state);
- (void) cond_wait(&umem_update_cv, &umem_update_lock);
- (void) pthread_setcancelstate(cancel_state, NULL);
- }
- /*
- * Get it out of the Work Requested state
- */
- if (cp->cache_unext != NULL) {
- cp->cache_uprev->cache_unext = cp->cache_unext;
- cp->cache_unext->cache_uprev = cp->cache_uprev;
- cp->cache_uprev = cp->cache_unext = NULL;
- cp->cache_uflags = 0;
- }
- /*
- * Make sure it is in the Inactive state
- */
- ASSERT(cp->cache_unext == NULL && cp->cache_uflags == 0);
- (void) mutex_unlock(&umem_update_lock);
-}
-
-static void
-umem_updateall(int flags)
-{
- umem_cache_t *cp;
-
- /*
- * NOTE: To prevent deadlock, umem_cache_lock is always acquired first.
- *
- * (umem_add_update is called from things run via umem_cache_applyall)
- */
- (void) mutex_lock(&umem_cache_lock);
- (void) mutex_lock(&umem_update_lock);
-
- for (cp = umem_null_cache.cache_next; cp != &umem_null_cache;
- cp = cp->cache_next)
- umem_add_update_unlocked(cp, flags);
-
- if (!IN_UPDATE())
- (void) cond_broadcast(&umem_update_cv);
-
- (void) mutex_unlock(&umem_update_lock);
- (void) mutex_unlock(&umem_cache_lock);
-}
-
-/*
- * Debugging support. Given a buffer address, find its slab.
- */
-static umem_slab_t *
-umem_findslab(umem_cache_t *cp, void *buf)
-{
- umem_slab_t *sp;
-
- (void) mutex_lock(&cp->cache_lock);
- for (sp = cp->cache_nullslab.slab_next;
- sp != &cp->cache_nullslab; sp = sp->slab_next) {
- if (UMEM_SLAB_MEMBER(sp, buf)) {
- (void) mutex_unlock(&cp->cache_lock);
- return (sp);
- }
- }
- (void) mutex_unlock(&cp->cache_lock);
-
- return (NULL);
-}
-
-static void
-umem_error(int error, umem_cache_t *cparg, void *bufarg)
-{
- umem_buftag_t *btp = NULL;
- umem_bufctl_t *bcp = NULL;
- umem_cache_t *cp = cparg;
- umem_slab_t *sp;
- uint64_t *off;
- void *buf = bufarg;
-
- int old_logging = umem_logging;
-
- umem_logging = 0; /* stop logging when a bad thing happens */
-
- umem_abort_info.ump_timestamp = gethrtime();
-
- sp = umem_findslab(cp, buf);
- if (sp == NULL) {
- for (cp = umem_null_cache.cache_prev; cp != &umem_null_cache;
- cp = cp->cache_prev) {
- if ((sp = umem_findslab(cp, buf)) != NULL)
- break;
- }
- }
-
- if (sp == NULL) {
- cp = NULL;
- error = UMERR_BADADDR;
- } else {
- if (cp != cparg)
- error = UMERR_BADCACHE;
- else
- buf = (char *)bufarg - ((uintptr_t)bufarg -
- (uintptr_t)sp->slab_base) % cp->cache_chunksize;
- if (buf != bufarg)
- error = UMERR_BADBASE;
- if (cp->cache_flags & UMF_BUFTAG)
- btp = UMEM_BUFTAG(cp, buf);
- if (cp->cache_flags & UMF_HASH) {
- (void) mutex_lock(&cp->cache_lock);
- for (bcp = *UMEM_HASH(cp, buf); bcp; bcp = bcp->bc_next)
- if (bcp->bc_addr == buf)
- break;
- (void) mutex_unlock(&cp->cache_lock);
- if (bcp == NULL && btp != NULL)
- bcp = btp->bt_bufctl;
- if (umem_findslab(cp->cache_bufctl_cache, bcp) ==
- NULL || P2PHASE((uintptr_t)bcp, UMEM_ALIGN) ||
- bcp->bc_addr != buf) {
- error = UMERR_BADBUFCTL;
- bcp = NULL;
- }
- }
- }
-
- umem_abort_info.ump_error = error;
- umem_abort_info.ump_buffer = bufarg;
- umem_abort_info.ump_realbuf = buf;
- umem_abort_info.ump_cache = cparg;
- umem_abort_info.ump_realcache = cp;
- umem_abort_info.ump_slab = sp;
- umem_abort_info.ump_bufctl = bcp;
-
- umem_printf("umem allocator: ");
-
- switch (error) {
-
- case UMERR_MODIFIED:
- umem_printf("buffer modified after being freed\n");
- off = verify_pattern(UMEM_FREE_PATTERN, buf, cp->cache_verify);
- if (off == NULL) /* shouldn't happen */
- off = buf;
- umem_printf("modification occurred at offset 0x%lx "
- "(0x%llx replaced by 0x%llx)\n",
- (uintptr_t)off - (uintptr_t)buf,
- (longlong_t)UMEM_FREE_PATTERN, (longlong_t)*off);
- break;
-
- case UMERR_REDZONE:
- umem_printf("redzone violation: write past end of buffer\n");
- break;
-
- case UMERR_BADADDR:
- umem_printf("invalid free: buffer not in cache\n");
- break;
-
- case UMERR_DUPFREE:
- umem_printf("duplicate free: buffer freed twice\n");
- break;
-
- case UMERR_BADBUFTAG:
- umem_printf("boundary tag corrupted\n");
- umem_printf("bcp ^ bxstat = %lx, should be %lx\n",
- (intptr_t)btp->bt_bufctl ^ btp->bt_bxstat,
- UMEM_BUFTAG_FREE);
- break;
-
- case UMERR_BADBUFCTL:
- umem_printf("bufctl corrupted\n");
- break;
-
- case UMERR_BADCACHE:
- umem_printf("buffer freed to wrong cache\n");
- umem_printf("buffer was allocated from %s,\n", cp->cache_name);
- umem_printf("caller attempting free to %s.\n",
- cparg->cache_name);
- break;
-
- case UMERR_BADSIZE:
- umem_printf("bad free: free size (%u) != alloc size (%u)\n",
- UMEM_SIZE_DECODE(((uint32_t *)btp)[0]),
- UMEM_SIZE_DECODE(((uint32_t *)btp)[1]));
- break;
-
- case UMERR_BADBASE:
- umem_printf("bad free: free address (%p) != alloc address "
- "(%p)\n", bufarg, buf);
- break;
- }
-
- umem_printf("buffer=%p bufctl=%p cache: %s\n",
- bufarg, (void *)bcp, cparg->cache_name);
-
- if (bcp != NULL && (cp->cache_flags & UMF_AUDIT) &&
- error != UMERR_BADBUFCTL) {
- int d;
- timespec_t ts;
- hrtime_t diff;
- umem_bufctl_audit_t *bcap = (umem_bufctl_audit_t *)bcp;
-
- diff = umem_abort_info.ump_timestamp - bcap->bc_timestamp;
- ts.tv_sec = diff / NANOSEC;
- ts.tv_nsec = diff % NANOSEC;
-
- umem_printf("previous transaction on buffer %p:\n", buf);
- umem_printf("thread=%p time=T-%ld.%09ld slab=%p cache: %s\n",
- (void *)(intptr_t)bcap->bc_thread, ts.tv_sec, ts.tv_nsec,
- (void *)sp, cp->cache_name);
- for (d = 0; d < MIN(bcap->bc_depth, umem_stack_depth); d++) {
- (void) print_sym((void *)bcap->bc_stack[d]);
- umem_printf("\n");
- }
- }
-
- umem_err_recoverable("umem: heap corruption detected");
-
- umem_logging = old_logging; /* resume logging */
-}
-
-void
-umem_nofail_callback(umem_nofail_callback_t *cb)
-{
- nofail_callback = cb;
-}
-
-static int
-umem_alloc_retry(umem_cache_t *cp, int umflag)
-{
- if (cp == &umem_null_cache) {
- if (umem_init())
- return (1); /* retry */
- /*
- * Initialization failed. Do normal failure processing.
- */
- }
- if (umflag & UMEM_NOFAIL) {
- int def_result = UMEM_CALLBACK_EXIT(255);
- int result = def_result;
- umem_nofail_callback_t *callback = nofail_callback;
-
- if (callback != NULL)
- result = callback();
-
- if (result == UMEM_CALLBACK_RETRY)
- return (1);
-
- if ((result & ~0xFF) != UMEM_CALLBACK_EXIT(0)) {
- log_message("nofail callback returned %x\n", result);
- result = def_result;
- }
-
- /*
- * only one thread will call exit
- */
- if (umem_nofail_exit_thr == thr_self())
- umem_panic("recursive UMEM_CALLBACK_EXIT()\n");
-
- (void) mutex_lock(&umem_nofail_exit_lock);
- umem_nofail_exit_thr = thr_self();
- exit(result & 0xFF);
- /*NOTREACHED*/
- }
- return (0);
-}
-
-static umem_log_header_t *
-umem_log_init(size_t logsize)
-{
- umem_log_header_t *lhp;
- int nchunks = 4 * umem_max_ncpus;
- size_t lhsize = offsetof(umem_log_header_t, lh_cpu[umem_max_ncpus]);
- int i;
-
- if (logsize == 0)
- return (NULL);
-
- /*
- * Make sure that lhp->lh_cpu[] is nicely aligned
- * to prevent false sharing of cache lines.
- */
- lhsize = P2ROUNDUP(lhsize, UMEM_ALIGN);
- lhp = vmem_xalloc(umem_log_arena, lhsize, 64, P2NPHASE(lhsize, 64), 0,
- NULL, NULL, VM_NOSLEEP);
- if (lhp == NULL)
- goto fail;
-
- bzero(lhp, lhsize);
-
- (void) mutex_init(&lhp->lh_lock, USYNC_THREAD, NULL);
- lhp->lh_nchunks = nchunks;
- lhp->lh_chunksize = P2ROUNDUP(logsize / nchunks, PAGESIZE);
- if (lhp->lh_chunksize == 0)
- lhp->lh_chunksize = PAGESIZE;
-
- lhp->lh_base = vmem_alloc(umem_log_arena,
- lhp->lh_chunksize * nchunks, VM_NOSLEEP);
- if (lhp->lh_base == NULL)
- goto fail;
-
- lhp->lh_free = vmem_alloc(umem_log_arena,
- nchunks * sizeof (int), VM_NOSLEEP);
- if (lhp->lh_free == NULL)
- goto fail;
-
- bzero(lhp->lh_base, lhp->lh_chunksize * nchunks);
-
- for (i = 0; i < umem_max_ncpus; i++) {
- umem_cpu_log_header_t *clhp = &lhp->lh_cpu[i];
- (void) mutex_init(&clhp->clh_lock, USYNC_THREAD, NULL);
- clhp->clh_chunk = i;
- }
-
- for (i = umem_max_ncpus; i < nchunks; i++)
- lhp->lh_free[i] = i;
-
- lhp->lh_head = umem_max_ncpus;
- lhp->lh_tail = 0;
-
- return (lhp);
-
-fail:
- if (lhp != NULL) {
- if (lhp->lh_base != NULL)
- vmem_free(umem_log_arena, lhp->lh_base,
- lhp->lh_chunksize * nchunks);
-
- vmem_xfree(umem_log_arena, lhp, lhsize);
- }
- return (NULL);
-}
-
-static void *
-umem_log_enter(umem_log_header_t *lhp, void *data, size_t size)
-{
- void *logspace;
- umem_cpu_log_header_t *clhp =
- &lhp->lh_cpu[CPU(umem_cpu_mask)->cpu_number];
-
- if (lhp == NULL || umem_logging == 0)
- return (NULL);
-
- (void) mutex_lock(&clhp->clh_lock);
- clhp->clh_hits++;
- if (size > clhp->clh_avail) {
- (void) mutex_lock(&lhp->lh_lock);
- lhp->lh_hits++;
- lhp->lh_free[lhp->lh_tail] = clhp->clh_chunk;
- lhp->lh_tail = (lhp->lh_tail + 1) % lhp->lh_nchunks;
- clhp->clh_chunk = lhp->lh_free[lhp->lh_head];
- lhp->lh_head = (lhp->lh_head + 1) % lhp->lh_nchunks;
- clhp->clh_current = lhp->lh_base +
- clhp->clh_chunk * lhp->lh_chunksize;
- clhp->clh_avail = lhp->lh_chunksize;
- if (size > lhp->lh_chunksize)
- size = lhp->lh_chunksize;
- (void) mutex_unlock(&lhp->lh_lock);
- }
- logspace = clhp->clh_current;
- clhp->clh_current += size;
- clhp->clh_avail -= size;
- bcopy(data, logspace, size);
- (void) mutex_unlock(&clhp->clh_lock);
- return (logspace);
-}
-
-#define UMEM_AUDIT(lp, cp, bcp) \
-{ \
- umem_bufctl_audit_t *_bcp = (umem_bufctl_audit_t *)(bcp); \
- _bcp->bc_timestamp = gethrtime(); \
- _bcp->bc_thread = thr_self(); \
- _bcp->bc_depth = getpcstack(_bcp->bc_stack, umem_stack_depth, \
- (cp != NULL) && (cp->cache_flags & UMF_CHECKSIGNAL)); \
- _bcp->bc_lastlog = umem_log_enter((lp), _bcp, \
- UMEM_BUFCTL_AUDIT_SIZE); \
-}
-
-static void
-umem_log_event(umem_log_header_t *lp, umem_cache_t *cp,
- umem_slab_t *sp, void *addr)
-{
- umem_bufctl_audit_t *bcp;
- UMEM_LOCAL_BUFCTL_AUDIT(&bcp);
-
- bzero(bcp, UMEM_BUFCTL_AUDIT_SIZE);
- bcp->bc_addr = addr;
- bcp->bc_slab = sp;
- bcp->bc_cache = cp;
- UMEM_AUDIT(lp, cp, bcp);
-}
-
-/*
- * Create a new slab for cache cp.
- */
-static umem_slab_t *
-umem_slab_create(umem_cache_t *cp, int umflag)
-{
- size_t slabsize = cp->cache_slabsize;
- size_t chunksize = cp->cache_chunksize;
- int cache_flags = cp->cache_flags;
- size_t color, chunks;
- char *buf, *slab;
- umem_slab_t *sp;
- umem_bufctl_t *bcp;
- vmem_t *vmp = cp->cache_arena;
-
- color = cp->cache_color + cp->cache_align;
- if (color > cp->cache_maxcolor)
- color = cp->cache_mincolor;
- cp->cache_color = color;
-
- slab = vmem_alloc(vmp, slabsize, UMEM_VMFLAGS(umflag));
-
- if (slab == NULL)
- goto vmem_alloc_failure;
-
- ASSERT(P2PHASE((uintptr_t)slab, vmp->vm_quantum) == 0);
-
- if (!(cp->cache_cflags & UMC_NOTOUCH) &&
- (cp->cache_flags & UMF_DEADBEEF))
- copy_pattern(UMEM_UNINITIALIZED_PATTERN, slab, slabsize);
-
- if (cache_flags & UMF_HASH) {
- if ((sp = _umem_cache_alloc(umem_slab_cache, umflag)) == NULL)
- goto slab_alloc_failure;
- chunks = (slabsize - color) / chunksize;
- } else {
- sp = UMEM_SLAB(cp, slab);
- chunks = (slabsize - sizeof (umem_slab_t) - color) / chunksize;
- }
-
- sp->slab_cache = cp;
- sp->slab_head = NULL;
- sp->slab_refcnt = 0;
- sp->slab_base = buf = slab + color;
- sp->slab_chunks = chunks;
-
- ASSERT(chunks > 0);
- while (chunks-- != 0) {
- if (cache_flags & UMF_HASH) {
- bcp = _umem_cache_alloc(cp->cache_bufctl_cache, umflag);
- if (bcp == NULL)
- goto bufctl_alloc_failure;
- if (cache_flags & UMF_AUDIT) {
- umem_bufctl_audit_t *bcap =
- (umem_bufctl_audit_t *)bcp;
- bzero(bcap, UMEM_BUFCTL_AUDIT_SIZE);
- bcap->bc_cache = cp;
- }
- bcp->bc_addr = buf;
- bcp->bc_slab = sp;
- } else {
- bcp = UMEM_BUFCTL(cp, buf);
- }
- if (cache_flags & UMF_BUFTAG) {
- umem_buftag_t *btp = UMEM_BUFTAG(cp, buf);
- btp->bt_redzone = UMEM_REDZONE_PATTERN;
- btp->bt_bufctl = bcp;
- btp->bt_bxstat = (intptr_t)bcp ^ UMEM_BUFTAG_FREE;
- if (cache_flags & UMF_DEADBEEF) {
- copy_pattern(UMEM_FREE_PATTERN, buf,
- cp->cache_verify);
- }
- }
- bcp->bc_next = sp->slab_head;
- sp->slab_head = bcp;
- buf += chunksize;
- }
-
- umem_log_event(umem_slab_log, cp, sp, slab);
-
- return (sp);
-
-bufctl_alloc_failure:
-
- while ((bcp = sp->slab_head) != NULL) {
- sp->slab_head = bcp->bc_next;
- _umem_cache_free(cp->cache_bufctl_cache, bcp);
- }
- _umem_cache_free(umem_slab_cache, sp);
-
-slab_alloc_failure:
-
- vmem_free(vmp, slab, slabsize);
-
-vmem_alloc_failure:
-
- umem_log_event(umem_failure_log, cp, NULL, NULL);
- atomic_add_64(&cp->cache_alloc_fail, 1);
-
- return (NULL);
-}
-
-/*
- * Destroy a slab.
- */
-static void
-umem_slab_destroy(umem_cache_t *cp, umem_slab_t *sp)
-{
- vmem_t *vmp = cp->cache_arena;
- void *slab = (void *)P2ALIGN((uintptr_t)sp->slab_base, vmp->vm_quantum);
-
- if (cp->cache_flags & UMF_HASH) {
- umem_bufctl_t *bcp;
- while ((bcp = sp->slab_head) != NULL) {
- sp->slab_head = bcp->bc_next;
- _umem_cache_free(cp->cache_bufctl_cache, bcp);
- }
- _umem_cache_free(umem_slab_cache, sp);
- }
- vmem_free(vmp, slab, cp->cache_slabsize);
-}
-
-/*
- * Allocate a raw (unconstructed) buffer from cp's slab layer.
- */
-static void *
-umem_slab_alloc(umem_cache_t *cp, int umflag)
-{
- umem_bufctl_t *bcp, **hash_bucket;
- umem_slab_t *sp;
- void *buf;
-
- (void) mutex_lock(&cp->cache_lock);
- cp->cache_slab_alloc++;
- sp = cp->cache_freelist;
- ASSERT(sp->slab_cache == cp);
- if (sp->slab_head == NULL) {
- /*
- * The freelist is empty. Create a new slab.
- */
- (void) mutex_unlock(&cp->cache_lock);
- if (cp == &umem_null_cache)
- return (NULL);
- if ((sp = umem_slab_create(cp, umflag)) == NULL)
- return (NULL);
- (void) mutex_lock(&cp->cache_lock);
- cp->cache_slab_create++;
- if ((cp->cache_buftotal += sp->slab_chunks) > cp->cache_bufmax)
- cp->cache_bufmax = cp->cache_buftotal;
- sp->slab_next = cp->cache_freelist;
- sp->slab_prev = cp->cache_freelist->slab_prev;
- sp->slab_next->slab_prev = sp;
- sp->slab_prev->slab_next = sp;
- cp->cache_freelist = sp;
- }
-
- sp->slab_refcnt++;
- ASSERT(sp->slab_refcnt <= sp->slab_chunks);
-
- /*
- * If we're taking the last buffer in the slab,
- * remove the slab from the cache's freelist.
- */
- bcp = sp->slab_head;
- if ((sp->slab_head = bcp->bc_next) == NULL) {
- cp->cache_freelist = sp->slab_next;
- ASSERT(sp->slab_refcnt == sp->slab_chunks);
- }
-
- if (cp->cache_flags & UMF_HASH) {
- /*
- * Add buffer to allocated-address hash table.
- */
- buf = bcp->bc_addr;
- hash_bucket = UMEM_HASH(cp, buf);
- bcp->bc_next = *hash_bucket;
- *hash_bucket = bcp;
- if ((cp->cache_flags & (UMF_AUDIT | UMF_BUFTAG)) == UMF_AUDIT) {
- UMEM_AUDIT(umem_transaction_log, cp, bcp);
- }
- } else {
- buf = UMEM_BUF(cp, bcp);
- }
-
- ASSERT(UMEM_SLAB_MEMBER(sp, buf));
-
- (void) mutex_unlock(&cp->cache_lock);
-
- return (buf);
-}
-
-/*
- * Free a raw (unconstructed) buffer to cp's slab layer.
- */
-static void
-umem_slab_free(umem_cache_t *cp, void *buf)
-{
- umem_slab_t *sp;
- umem_bufctl_t *bcp, **prev_bcpp;
-
- ASSERT(buf != NULL);
-
- (void) mutex_lock(&cp->cache_lock);
- cp->cache_slab_free++;
-
- if (cp->cache_flags & UMF_HASH) {
- /*
- * Look up buffer in allocated-address hash table.
- */
- prev_bcpp = UMEM_HASH(cp, buf);
- while ((bcp = *prev_bcpp) != NULL) {
- if (bcp->bc_addr == buf) {
- *prev_bcpp = bcp->bc_next;
- sp = bcp->bc_slab;
- break;
- }
- cp->cache_lookup_depth++;
- prev_bcpp = &bcp->bc_next;
- }
- } else {
- bcp = UMEM_BUFCTL(cp, buf);
- sp = UMEM_SLAB(cp, buf);
- }
-
- if (bcp == NULL || sp->slab_cache != cp || !UMEM_SLAB_MEMBER(sp, buf)) {
- (void) mutex_unlock(&cp->cache_lock);
- umem_error(UMERR_BADADDR, cp, buf);
- return;
- }
-
- if ((cp->cache_flags & (UMF_AUDIT | UMF_BUFTAG)) == UMF_AUDIT) {
- if (cp->cache_flags & UMF_CONTENTS)
- ((umem_bufctl_audit_t *)bcp)->bc_contents =
- umem_log_enter(umem_content_log, buf,
- cp->cache_contents);
- UMEM_AUDIT(umem_transaction_log, cp, bcp);
- }
-
- /*
- * If this slab isn't currently on the freelist, put it there.
- */
- if (sp->slab_head == NULL) {
- ASSERT(sp->slab_refcnt == sp->slab_chunks);
- ASSERT(cp->cache_freelist != sp);
- sp->slab_next->slab_prev = sp->slab_prev;
- sp->slab_prev->slab_next = sp->slab_next;
- sp->slab_next = cp->cache_freelist;
- sp->slab_prev = cp->cache_freelist->slab_prev;
- sp->slab_next->slab_prev = sp;
- sp->slab_prev->slab_next = sp;
- cp->cache_freelist = sp;
- }
-
- bcp->bc_next = sp->slab_head;
- sp->slab_head = bcp;
-
- ASSERT(sp->slab_refcnt >= 1);
- if (--sp->slab_refcnt == 0) {
- /*
- * There are no outstanding allocations from this slab,
- * so we can reclaim the memory.
- */
- sp->slab_next->slab_prev = sp->slab_prev;
- sp->slab_prev->slab_next = sp->slab_next;
- if (sp == cp->cache_freelist)
- cp->cache_freelist = sp->slab_next;
- cp->cache_slab_destroy++;
- cp->cache_buftotal -= sp->slab_chunks;
- (void) mutex_unlock(&cp->cache_lock);
- umem_slab_destroy(cp, sp);
- return;
- }
- (void) mutex_unlock(&cp->cache_lock);
-}
-
-static int
-umem_cache_alloc_debug(umem_cache_t *cp, void *buf, int umflag)
-{
- umem_buftag_t *btp = UMEM_BUFTAG(cp, buf);
- umem_bufctl_audit_t *bcp = (umem_bufctl_audit_t *)btp->bt_bufctl;
- uint32_t mtbf;
- int flags_nfatal;
-
- if (btp->bt_bxstat != ((intptr_t)bcp ^ UMEM_BUFTAG_FREE)) {
- umem_error(UMERR_BADBUFTAG, cp, buf);
- return (-1);
- }
-
- btp->bt_bxstat = (intptr_t)bcp ^ UMEM_BUFTAG_ALLOC;
-
- if ((cp->cache_flags & UMF_HASH) && bcp->bc_addr != buf) {
- umem_error(UMERR_BADBUFCTL, cp, buf);
- return (-1);
- }
-
- btp->bt_redzone = UMEM_REDZONE_PATTERN;
-
- if (cp->cache_flags & UMF_DEADBEEF) {
- if (verify_and_copy_pattern(UMEM_FREE_PATTERN,
- UMEM_UNINITIALIZED_PATTERN, buf, cp->cache_verify)) {
- umem_error(UMERR_MODIFIED, cp, buf);
- return (-1);
- }
- }
-
- if ((mtbf = umem_mtbf | cp->cache_mtbf) != 0 &&
- gethrtime() % mtbf == 0 &&
- (umflag & (UMEM_FATAL_FLAGS)) == 0) {
- umem_log_event(umem_failure_log, cp, NULL, NULL);
- } else {
- mtbf = 0;
- }
-
- /*
- * We do not pass fatal flags on to the constructor. This prevents
- * leaking buffers in the event of a subordinate constructor failing.
- */
- flags_nfatal = UMEM_DEFAULT;
- if (mtbf || (cp->cache_constructor != NULL &&
- cp->cache_constructor(buf, cp->cache_private, flags_nfatal) != 0)) {
- atomic_add_64(&cp->cache_alloc_fail, 1);
- btp->bt_bxstat = (intptr_t)bcp ^ UMEM_BUFTAG_FREE;
- copy_pattern(UMEM_FREE_PATTERN, buf, cp->cache_verify);
- umem_slab_free(cp, buf);
- return (-1);
- }
-
- if (cp->cache_flags & UMF_AUDIT) {
- UMEM_AUDIT(umem_transaction_log, cp, bcp);
- }
-
- return (0);
-}
-
-static int
-umem_cache_free_debug(umem_cache_t *cp, void *buf)
-{
- umem_buftag_t *btp = UMEM_BUFTAG(cp, buf);
- umem_bufctl_audit_t *bcp = (umem_bufctl_audit_t *)btp->bt_bufctl;
- umem_slab_t *sp;
-
- if (btp->bt_bxstat != ((intptr_t)bcp ^ UMEM_BUFTAG_ALLOC)) {
- if (btp->bt_bxstat == ((intptr_t)bcp ^ UMEM_BUFTAG_FREE)) {
- umem_error(UMERR_DUPFREE, cp, buf);
- return (-1);
- }
- sp = umem_findslab(cp, buf);
- if (sp == NULL || sp->slab_cache != cp)
- umem_error(UMERR_BADADDR, cp, buf);
- else
- umem_error(UMERR_REDZONE, cp, buf);
- return (-1);
- }
-
- btp->bt_bxstat = (intptr_t)bcp ^ UMEM_BUFTAG_FREE;
-
- if ((cp->cache_flags & UMF_HASH) && bcp->bc_addr != buf) {
- umem_error(UMERR_BADBUFCTL, cp, buf);
- return (-1);
- }
-
- if (btp->bt_redzone != UMEM_REDZONE_PATTERN) {
- umem_error(UMERR_REDZONE, cp, buf);
- return (-1);
- }
-
- if (cp->cache_flags & UMF_AUDIT) {
- if (cp->cache_flags & UMF_CONTENTS)
- bcp->bc_contents = umem_log_enter(umem_content_log,
- buf, cp->cache_contents);
- UMEM_AUDIT(umem_transaction_log, cp, bcp);
- }
-
- if (cp->cache_destructor != NULL)
- cp->cache_destructor(buf, cp->cache_private);
-
- if (cp->cache_flags & UMF_DEADBEEF)
- copy_pattern(UMEM_FREE_PATTERN, buf, cp->cache_verify);
-
- return (0);
-}
-
-/*
- * Free each object in magazine mp to cp's slab layer, and free mp itself.
- */
-static void
-umem_magazine_destroy(umem_cache_t *cp, umem_magazine_t *mp, int nrounds)
-{
- int round;
-
- ASSERT(cp->cache_next == NULL || IN_UPDATE());
-
- for (round = 0; round < nrounds; round++) {
- void *buf = mp->mag_round[round];
-
- if ((cp->cache_flags & UMF_DEADBEEF) &&
- verify_pattern(UMEM_FREE_PATTERN, buf,
- cp->cache_verify) != NULL) {
- umem_error(UMERR_MODIFIED, cp, buf);
- continue;
- }
-
- if (!(cp->cache_flags & UMF_BUFTAG) &&
- cp->cache_destructor != NULL)
- cp->cache_destructor(buf, cp->cache_private);
-
- umem_slab_free(cp, buf);
- }
- ASSERT(UMEM_MAGAZINE_VALID(cp, mp));
- _umem_cache_free(cp->cache_magtype->mt_cache, mp);
-}
-
-/*
- * Allocate a magazine from the depot.
- */
-static umem_magazine_t *
-umem_depot_alloc(umem_cache_t *cp, umem_maglist_t *mlp)
-{
- umem_magazine_t *mp;
-
- /*
- * If we can't get the depot lock without contention,
- * update our contention count. We use the depot
- * contention rate to determine whether we need to
- * increase the magazine size for better scalability.
- */
- if (mutex_trylock(&cp->cache_depot_lock) != 0) {
- (void) mutex_lock(&cp->cache_depot_lock);
- cp->cache_depot_contention++;
- }
-
- if ((mp = mlp->ml_list) != NULL) {
- ASSERT(UMEM_MAGAZINE_VALID(cp, mp));
- mlp->ml_list = mp->mag_next;
- if (--mlp->ml_total < mlp->ml_min)
- mlp->ml_min = mlp->ml_total;
- mlp->ml_alloc++;
- }
-
- (void) mutex_unlock(&cp->cache_depot_lock);
-
- return (mp);
-}
-
-/*
- * Free a magazine to the depot.
- */
-static void
-umem_depot_free(umem_cache_t *cp, umem_maglist_t *mlp, umem_magazine_t *mp)
-{
- (void) mutex_lock(&cp->cache_depot_lock);
- ASSERT(UMEM_MAGAZINE_VALID(cp, mp));
- mp->mag_next = mlp->ml_list;
- mlp->ml_list = mp;
- mlp->ml_total++;
- (void) mutex_unlock(&cp->cache_depot_lock);
-}
-
-/*
- * Update the working set statistics for cp's depot.
- */
-static void
-umem_depot_ws_update(umem_cache_t *cp)
-{
- (void) mutex_lock(&cp->cache_depot_lock);
- cp->cache_full.ml_reaplimit = cp->cache_full.ml_min;
- cp->cache_full.ml_min = cp->cache_full.ml_total;
- cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_min;
- cp->cache_empty.ml_min = cp->cache_empty.ml_total;
- (void) mutex_unlock(&cp->cache_depot_lock);
-}
-
-/*
- * Reap all magazines that have fallen out of the depot's working set.
- */
-static void
-umem_depot_ws_reap(umem_cache_t *cp)
-{
- long reap;
- umem_magazine_t *mp;
-
- ASSERT(cp->cache_next == NULL || IN_REAP());
-
- reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
- while (reap-- && (mp = umem_depot_alloc(cp, &cp->cache_full)) != NULL)
- umem_magazine_destroy(cp, mp, cp->cache_magtype->mt_magsize);
-
- reap = MIN(cp->cache_empty.ml_reaplimit, cp->cache_empty.ml_min);
- while (reap-- && (mp = umem_depot_alloc(cp, &cp->cache_empty)) != NULL)
- umem_magazine_destroy(cp, mp, 0);
-}
-
-static void
-umem_cpu_reload(umem_cpu_cache_t *ccp, umem_magazine_t *mp, int rounds)
-{
- ASSERT((ccp->cc_loaded == NULL && ccp->cc_rounds == -1) ||
- (ccp->cc_loaded && ccp->cc_rounds + rounds == ccp->cc_magsize));
- ASSERT(ccp->cc_magsize > 0);
-
- ccp->cc_ploaded = ccp->cc_loaded;
- ccp->cc_prounds = ccp->cc_rounds;
- ccp->cc_loaded = mp;
- ccp->cc_rounds = rounds;
-}
-
-/*
- * Allocate a constructed object from cache cp.
- */
-#pragma weak umem_cache_alloc = _umem_cache_alloc
-void *
-_umem_cache_alloc(umem_cache_t *cp, int umflag)
-{
- umem_cpu_cache_t *ccp;
- umem_magazine_t *fmp;
- void *buf;
- int flags_nfatal;
-
-retry:
- ccp = UMEM_CPU_CACHE(cp, CPU(cp->cache_cpu_mask));
- (void) mutex_lock(&ccp->cc_lock);
- for (;;) {
- /*
- * If there's an object available in the current CPU's
- * loaded magazine, just take it and return.
- */
- if (ccp->cc_rounds > 0) {
- buf = ccp->cc_loaded->mag_round[--ccp->cc_rounds];
- ccp->cc_alloc++;
- (void) mutex_unlock(&ccp->cc_lock);
- if ((ccp->cc_flags & UMF_BUFTAG) &&
- umem_cache_alloc_debug(cp, buf, umflag) == -1) {
- if (umem_alloc_retry(cp, umflag)) {
- goto retry;
- }
-
- return (NULL);
- }
- return (buf);
- }
-
- /*
- * The loaded magazine is empty. If the previously loaded
- * magazine was full, exchange them and try again.
- */
- if (ccp->cc_prounds > 0) {
- umem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds);
- continue;
- }
-
- /*
- * If the magazine layer is disabled, break out now.
- */
- if (ccp->cc_magsize == 0)
- break;
-
- /*
- * Try to get a full magazine from the depot.
- */
- fmp = umem_depot_alloc(cp, &cp->cache_full);
- if (fmp != NULL) {
- if (ccp->cc_ploaded != NULL)
- umem_depot_free(cp, &cp->cache_empty,
- ccp->cc_ploaded);
- umem_cpu_reload(ccp, fmp, ccp->cc_magsize);
- continue;
- }
-
- /*
- * There are no full magazines in the depot,
- * so fall through to the slab layer.
- */
- break;
- }
- (void) mutex_unlock(&ccp->cc_lock);
-
- /*
- * We couldn't allocate a constructed object from the magazine layer,
- * so get a raw buffer from the slab layer and apply its constructor.
- */
- buf = umem_slab_alloc(cp, umflag);
-
- if (buf == NULL) {
- if (cp == &umem_null_cache)
- return (NULL);
- if (umem_alloc_retry(cp, umflag)) {
- goto retry;
- }
-
- return (NULL);
- }
-
- if (cp->cache_flags & UMF_BUFTAG) {
- /*
- * Let umem_cache_alloc_debug() apply the constructor for us.
- */
- if (umem_cache_alloc_debug(cp, buf, umflag) == -1) {
- if (umem_alloc_retry(cp, umflag)) {
- goto retry;
- }
- return (NULL);
- }
- return (buf);
- }
-
- /*
- * We do not pass fatal flags on to the constructor. This prevents
- * leaking buffers in the event of a subordinate constructor failing.
- */
- flags_nfatal = UMEM_DEFAULT;
- if (cp->cache_constructor != NULL &&
- cp->cache_constructor(buf, cp->cache_private, flags_nfatal) != 0) {
- atomic_add_64(&cp->cache_alloc_fail, 1);
- umem_slab_free(cp, buf);
-
- if (umem_alloc_retry(cp, umflag)) {
- goto retry;
- }
- return (NULL);
- }
-
- return (buf);
-}
-
-/*
- * Free a constructed object to cache cp.
- */
-#pragma weak umem_cache_free = _umem_cache_free
-void
-_umem_cache_free(umem_cache_t *cp, void *buf)
-{
- umem_cpu_cache_t *ccp = UMEM_CPU_CACHE(cp, CPU(cp->cache_cpu_mask));
- umem_magazine_t *emp;
- umem_magtype_t *mtp;
-
- if (ccp->cc_flags & UMF_BUFTAG)
- if (umem_cache_free_debug(cp, buf) == -1)
- return;
-
- (void) mutex_lock(&ccp->cc_lock);
- for (;;) {
- /*
- * If there's a slot available in the current CPU's
- * loaded magazine, just put the object there and return.
- */
- if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) {
- ccp->cc_loaded->mag_round[ccp->cc_rounds++] = buf;
- ccp->cc_free++;
- (void) mutex_unlock(&ccp->cc_lock);
- return;
- }
-
- /*
- * The loaded magazine is full. If the previously loaded
- * magazine was empty, exchange them and try again.
- */
- if (ccp->cc_prounds == 0) {
- umem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds);
- continue;
- }
-
- /*
- * If the magazine layer is disabled, break out now.
- */
- if (ccp->cc_magsize == 0)
- break;
-
- /*
- * Try to get an empty magazine from the depot.
- */
- emp = umem_depot_alloc(cp, &cp->cache_empty);
- if (emp != NULL) {
- if (ccp->cc_ploaded != NULL)
- umem_depot_free(cp, &cp->cache_full,
- ccp->cc_ploaded);
- umem_cpu_reload(ccp, emp, 0);
- continue;
- }
-
- /*
- * There are no empty magazines in the depot,
- * so try to allocate a new one. We must drop all locks
- * across umem_cache_alloc() because lower layers may
- * attempt to allocate from this cache.
- */
- mtp = cp->cache_magtype;
- (void) mutex_unlock(&ccp->cc_lock);
- emp = _umem_cache_alloc(mtp->mt_cache, UMEM_DEFAULT);
- (void) mutex_lock(&ccp->cc_lock);
-
- if (emp != NULL) {
- /*
- * We successfully allocated an empty magazine.
- * However, we had to drop ccp->cc_lock to do it,
- * so the cache's magazine size may have changed.
- * If so, free the magazine and try again.
- */
- if (ccp->cc_magsize != mtp->mt_magsize) {
- (void) mutex_unlock(&ccp->cc_lock);
- _umem_cache_free(mtp->mt_cache, emp);
- (void) mutex_lock(&ccp->cc_lock);
- continue;
- }
-
- /*
- * We got a magazine of the right size. Add it to
- * the depot and try the whole dance again.
- */
- umem_depot_free(cp, &cp->cache_empty, emp);
- continue;
- }
-
- /*
- * We couldn't allocate an empty magazine,
- * so fall through to the slab layer.
- */
- break;
- }
- (void) mutex_unlock(&ccp->cc_lock);
-
- /*
- * We couldn't free our constructed object to the magazine layer,
- * so apply its destructor and free it to the slab layer.
- * Note that if UMF_BUFTAG is in effect, umem_cache_free_debug()
- * will have already applied the destructor.
- */
- if (!(cp->cache_flags & UMF_BUFTAG) && cp->cache_destructor != NULL)
- cp->cache_destructor(buf, cp->cache_private);
-
- umem_slab_free(cp, buf);
-}
-
-#pragma weak umem_zalloc = _umem_zalloc
-void *
-_umem_zalloc(size_t size, int umflag)
-{
- size_t index = (size - 1) >> UMEM_ALIGN_SHIFT;
- void *buf;
-
-retry:
- if (index < UMEM_MAXBUF >> UMEM_ALIGN_SHIFT) {
- umem_cache_t *cp = umem_alloc_table[index];
- buf = _umem_cache_alloc(cp, umflag);
- if (buf != NULL) {
- if (cp->cache_flags & UMF_BUFTAG) {
- umem_buftag_t *btp = UMEM_BUFTAG(cp, buf);
- ((uint8_t *)buf)[size] = UMEM_REDZONE_BYTE;
- ((uint32_t *)btp)[1] = UMEM_SIZE_ENCODE(size);
- }
- bzero(buf, size);
- } else if (umem_alloc_retry(cp, umflag))
- goto retry;
- } else {
- buf = _umem_alloc(size, umflag); /* handles failure */
- if (buf != NULL)
- bzero(buf, size);
- }
- return (buf);
-}
-
-#pragma weak umem_alloc = _umem_alloc
-void *
-_umem_alloc(size_t size, int umflag)
-{
- size_t index = (size - 1) >> UMEM_ALIGN_SHIFT;
- void *buf;
-umem_alloc_retry:
- if (index < UMEM_MAXBUF >> UMEM_ALIGN_SHIFT) {
- umem_cache_t *cp = umem_alloc_table[index];
- buf = _umem_cache_alloc(cp, umflag);
- if ((cp->cache_flags & UMF_BUFTAG) && buf != NULL) {
- umem_buftag_t *btp = UMEM_BUFTAG(cp, buf);
- ((uint8_t *)buf)[size] = UMEM_REDZONE_BYTE;
- ((uint32_t *)btp)[1] = UMEM_SIZE_ENCODE(size);
- }
- if (buf == NULL && umem_alloc_retry(cp, umflag))
- goto umem_alloc_retry;
- return (buf);
- }
- if (size == 0)
- return (NULL);
- if (umem_oversize_arena == NULL) {
- if (umem_init())
- ASSERT(umem_oversize_arena != NULL);
- else
- return (NULL);
- }
- buf = vmem_alloc(umem_oversize_arena, size, UMEM_VMFLAGS(umflag));
- if (buf == NULL) {
- umem_log_event(umem_failure_log, NULL, NULL, (void *)size);
- if (umem_alloc_retry(NULL, umflag))
- goto umem_alloc_retry;
- }
- return (buf);
-}
-
-#pragma weak umem_alloc_align = _umem_alloc_align
-void *
-_umem_alloc_align(size_t size, size_t align, int umflag)
-{
- void *buf;
-
- if (size == 0)
- return (NULL);
- if ((align & (align - 1)) != 0)
- return (NULL);
- if (align < UMEM_ALIGN)
- align = UMEM_ALIGN;
-
-umem_alloc_align_retry:
- if (umem_memalign_arena == NULL) {
- if (umem_init())
- ASSERT(umem_oversize_arena != NULL);
- else
- return (NULL);
- }
- buf = vmem_xalloc(umem_memalign_arena, size, align, 0, 0, NULL, NULL,
- UMEM_VMFLAGS(umflag));
- if (buf == NULL) {
- umem_log_event(umem_failure_log, NULL, NULL, (void *)size);
- if (umem_alloc_retry(NULL, umflag))
- goto umem_alloc_align_retry;
- }
- return (buf);
-}
-
-#pragma weak umem_free = _umem_free
-void
-_umem_free(void *buf, size_t size)
-{
- size_t index = (size - 1) >> UMEM_ALIGN_SHIFT;
-
- if (index < UMEM_MAXBUF >> UMEM_ALIGN_SHIFT) {
- umem_cache_t *cp = umem_alloc_table[index];
- if (cp->cache_flags & UMF_BUFTAG) {
- umem_buftag_t *btp = UMEM_BUFTAG(cp, buf);
- uint32_t *ip = (uint32_t *)btp;
- if (ip[1] != UMEM_SIZE_ENCODE(size)) {
- if (*(uint64_t *)buf == UMEM_FREE_PATTERN) {
- umem_error(UMERR_DUPFREE, cp, buf);
- return;
- }
- if (UMEM_SIZE_VALID(ip[1])) {
- ip[0] = UMEM_SIZE_ENCODE(size);
- umem_error(UMERR_BADSIZE, cp, buf);
- } else {
- umem_error(UMERR_REDZONE, cp, buf);
- }
- return;
- }
- if (((uint8_t *)buf)[size] != UMEM_REDZONE_BYTE) {
- umem_error(UMERR_REDZONE, cp, buf);
- return;
- }
- btp->bt_redzone = UMEM_REDZONE_PATTERN;
- }
- _umem_cache_free(cp, buf);
- } else {
- if (buf == NULL && size == 0)
- return;
- vmem_free(umem_oversize_arena, buf, size);
- }
-}
-
-#pragma weak umem_free_align = _umem_free_align
-void
-_umem_free_align(void *buf, size_t size)
-{
- if (buf == NULL && size == 0)
- return;
- vmem_xfree(umem_memalign_arena, buf, size);
-}
-
-static void *
-umem_firewall_va_alloc(vmem_t *vmp, size_t size, int vmflag)
-{
- size_t realsize = size + vmp->vm_quantum;
-
- /*
- * Annoying edge case: if 'size' is just shy of ULONG_MAX, adding
- * vm_quantum will cause integer wraparound. Check for this, and
- * blow off the firewall page in this case. Note that such a
- * giant allocation (the entire address space) can never be
- * satisfied, so it will either fail immediately (VM_NOSLEEP)
- * or sleep forever (VM_SLEEP). Thus, there is no need for a
- * corresponding check in umem_firewall_va_free().
- */
- if (realsize < size)
- realsize = size;
-
- return (vmem_alloc(vmp, realsize, vmflag | VM_NEXTFIT));
-}
-
-static void
-umem_firewall_va_free(vmem_t *vmp, void *addr, size_t size)
-{
- vmem_free(vmp, addr, size + vmp->vm_quantum);
-}
-
-/*
- * Reclaim all unused memory from a cache.
- */
-static void
-umem_cache_reap(umem_cache_t *cp)
-{
- /*
- * Ask the cache's owner to free some memory if possible.
- * The idea is to handle things like the inode cache, which
- * typically sits on a bunch of memory that it doesn't truly
- * *need*. Reclaim policy is entirely up to the owner; this
- * callback is just an advisory plea for help.
- */
- if (cp->cache_reclaim != NULL)
- cp->cache_reclaim(cp->cache_private);
-
- umem_depot_ws_reap(cp);
-}
-
-/*
- * Purge all magazines from a cache and set its magazine limit to zero.
- * All calls are serialized by being done by the update thread, except for
- * the final call from umem_cache_destroy().
- */
-static void
-umem_cache_magazine_purge(umem_cache_t *cp)
-{
- umem_cpu_cache_t *ccp;
- umem_magazine_t *mp, *pmp;
- int rounds, prounds, cpu_seqid;
-
- ASSERT(cp->cache_next == NULL || IN_UPDATE());
-
- for (cpu_seqid = 0; cpu_seqid < umem_max_ncpus; cpu_seqid++) {
- ccp = &cp->cache_cpu[cpu_seqid];
-
- (void) mutex_lock(&ccp->cc_lock);
- mp = ccp->cc_loaded;
- pmp = ccp->cc_ploaded;
- rounds = ccp->cc_rounds;
- prounds = ccp->cc_prounds;
- ccp->cc_loaded = NULL;
- ccp->cc_ploaded = NULL;
- ccp->cc_rounds = -1;
- ccp->cc_prounds = -1;
- ccp->cc_magsize = 0;
- (void) mutex_unlock(&ccp->cc_lock);
-
- if (mp)
- umem_magazine_destroy(cp, mp, rounds);
- if (pmp)
- umem_magazine_destroy(cp, pmp, prounds);
- }
-
- /*
- * Updating the working set statistics twice in a row has the
- * effect of setting the working set size to zero, so everything
- * is eligible for reaping.
- */
- umem_depot_ws_update(cp);
- umem_depot_ws_update(cp);
-
- umem_depot_ws_reap(cp);
-}
-
-/*
- * Enable per-cpu magazines on a cache.
- */
-static void
-umem_cache_magazine_enable(umem_cache_t *cp)
-{
- int cpu_seqid;
-
- if (cp->cache_flags & UMF_NOMAGAZINE)
- return;
-
- for (cpu_seqid = 0; cpu_seqid < umem_max_ncpus; cpu_seqid++) {
- umem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
- (void) mutex_lock(&ccp->cc_lock);
- ccp->cc_magsize = cp->cache_magtype->mt_magsize;
- (void) mutex_unlock(&ccp->cc_lock);
- }
-
-}
-
-/*
- * Recompute a cache's magazine size. The trade-off is that larger magazines
- * provide a higher transfer rate with the depot, while smaller magazines
- * reduce memory consumption. Magazine resizing is an expensive operation;
- * it should not be done frequently.
- *
- * Changes to the magazine size are serialized by only having one thread
- * doing updates. (the update thread)
- *
- * Note: at present this only grows the magazine size. It might be useful
- * to allow shrinkage too.
- */
-static void
-umem_cache_magazine_resize(umem_cache_t *cp)
-{
- umem_magtype_t *mtp = cp->cache_magtype;
-
- ASSERT(IN_UPDATE());
-
- if (cp->cache_chunksize < mtp->mt_maxbuf) {
- umem_cache_magazine_purge(cp);
- (void) mutex_lock(&cp->cache_depot_lock);
- cp->cache_magtype = ++mtp;
- cp->cache_depot_contention_prev =
- cp->cache_depot_contention + INT_MAX;
- (void) mutex_unlock(&cp->cache_depot_lock);
- umem_cache_magazine_enable(cp);
- }
-}
-
-/*
- * Rescale a cache's hash table, so that the table size is roughly the
- * cache size. We want the average lookup time to be extremely small.
- */
-static void
-umem_hash_rescale(umem_cache_t *cp)
-{
- umem_bufctl_t **old_table, **new_table, *bcp;
- size_t old_size, new_size, h;
-
- ASSERT(IN_UPDATE());
-
- new_size = MAX(UMEM_HASH_INITIAL,
- 1 << (highbit(3 * cp->cache_buftotal + 4) - 2));
- old_size = cp->cache_hash_mask + 1;
-
- if ((old_size >> 1) <= new_size && new_size <= (old_size << 1))
- return;
-
- new_table = vmem_alloc(umem_hash_arena, new_size * sizeof (void *),
- VM_NOSLEEP);
- if (new_table == NULL)
- return;
- bzero(new_table, new_size * sizeof (void *));
-
- (void) mutex_lock(&cp->cache_lock);
-
- old_size = cp->cache_hash_mask + 1;
- old_table = cp->cache_hash_table;
-
- cp->cache_hash_mask = new_size - 1;
- cp->cache_hash_table = new_table;
- cp->cache_rescale++;
-
- for (h = 0; h < old_size; h++) {
- bcp = old_table[h];
- while (bcp != NULL) {
- void *addr = bcp->bc_addr;
- umem_bufctl_t *next_bcp = bcp->bc_next;
- umem_bufctl_t **hash_bucket = UMEM_HASH(cp, addr);
- bcp->bc_next = *hash_bucket;
- *hash_bucket = bcp;
- bcp = next_bcp;
- }
- }
-
- (void) mutex_unlock(&cp->cache_lock);
-
- vmem_free(umem_hash_arena, old_table, old_size * sizeof (void *));
-}
-
-/*
- * Perform periodic maintenance on a cache: hash rescaling,
- * depot working-set update, and magazine resizing.
- */
-void
-umem_cache_update(umem_cache_t *cp)
-{
- int update_flags = 0;
-
- ASSERT(MUTEX_HELD(&umem_cache_lock));
-
- /*
- * If the cache has become much larger or smaller than its hash table,
- * fire off a request to rescale the hash table.
- */
- (void) mutex_lock(&cp->cache_lock);
-
- if ((cp->cache_flags & UMF_HASH) &&
- (cp->cache_buftotal > (cp->cache_hash_mask << 1) ||
- (cp->cache_buftotal < (cp->cache_hash_mask >> 1) &&
- cp->cache_hash_mask > UMEM_HASH_INITIAL)))
- update_flags |= UMU_HASH_RESCALE;
-
- (void) mutex_unlock(&cp->cache_lock);
-
- /*
- * Update the depot working set statistics.
- */
- umem_depot_ws_update(cp);
-
- /*
- * If there's a lot of contention in the depot,
- * increase the magazine size.
- */
- (void) mutex_lock(&cp->cache_depot_lock);
-
- if (cp->cache_chunksize < cp->cache_magtype->mt_maxbuf &&
- (int)(cp->cache_depot_contention -
- cp->cache_depot_contention_prev) > umem_depot_contention)
- update_flags |= UMU_MAGAZINE_RESIZE;
-
- cp->cache_depot_contention_prev = cp->cache_depot_contention;
-
- (void) mutex_unlock(&cp->cache_depot_lock);
-
- if (update_flags)
- umem_add_update(cp, update_flags);
-}
-
-/*
- * Runs all pending updates.
- *
- * The update lock must be held on entrance, and will be held on exit.
- */
-void
-umem_process_updates(void)
-{
- ASSERT(MUTEX_HELD(&umem_update_lock));
-
- while (umem_null_cache.cache_unext != &umem_null_cache) {
- int notify = 0;
- umem_cache_t *cp = umem_null_cache.cache_unext;
-
- cp->cache_uprev->cache_unext = cp->cache_unext;
- cp->cache_unext->cache_uprev = cp->cache_uprev;
- cp->cache_uprev = cp->cache_unext = NULL;
-
- ASSERT(!(cp->cache_uflags & UMU_ACTIVE));
-
- while (cp->cache_uflags) {
- int uflags = (cp->cache_uflags |= UMU_ACTIVE);
- (void) mutex_unlock(&umem_update_lock);
-
- /*
- * The order here is important. Each step can speed up
- * later steps.
- */
-
- if (uflags & UMU_HASH_RESCALE)
- umem_hash_rescale(cp);
-
- if (uflags & UMU_MAGAZINE_RESIZE)
- umem_cache_magazine_resize(cp);
-
- if (uflags & UMU_REAP)
- umem_cache_reap(cp);
-
- (void) mutex_lock(&umem_update_lock);
-
- /*
- * check if anyone has requested notification
- */
- if (cp->cache_uflags & UMU_NOTIFY) {
- uflags |= UMU_NOTIFY;
- notify = 1;
- }
- cp->cache_uflags &= ~uflags;
- }
- if (notify)
- (void) cond_broadcast(&umem_update_cv);
- }
-}
-
-#ifndef UMEM_STANDALONE
-static void
-umem_st_update(void)
-{
- ASSERT(MUTEX_HELD(&umem_update_lock));
- ASSERT(umem_update_thr == 0 && umem_st_update_thr == 0);
-
- umem_st_update_thr = thr_self();
-
- (void) mutex_unlock(&umem_update_lock);
-
- vmem_update(NULL);
- umem_cache_applyall(umem_cache_update);
-
- (void) mutex_lock(&umem_update_lock);
-
- umem_process_updates(); /* does all of the requested work */
-
- umem_reap_next = gethrtime() +
- (hrtime_t)umem_reap_interval * NANOSEC;
-
- umem_reaping = UMEM_REAP_DONE;
-
- umem_st_update_thr = 0;
-}
-#endif
-
-/*
- * Reclaim all unused memory from all caches. Called from vmem when memory
- * gets tight. Must be called with no locks held.
- *
- * This just requests a reap on all caches, and notifies the update thread.
- */
-void
-umem_reap(void)
-{
-#ifndef UMEM_STANDALONE
- extern int __nthreads(void);
-#endif
-
- if (umem_ready != UMEM_READY || umem_reaping != UMEM_REAP_DONE ||
- gethrtime() < umem_reap_next)
- return;
-
- (void) mutex_lock(&umem_update_lock);
-
- if (umem_reaping != UMEM_REAP_DONE || gethrtime() < umem_reap_next) {
- (void) mutex_unlock(&umem_update_lock);
- return;
- }
- umem_reaping = UMEM_REAP_ADDING; /* lock out other reaps */
-
- (void) mutex_unlock(&umem_update_lock);
-
- umem_updateall(UMU_REAP);
-
- (void) mutex_lock(&umem_update_lock);
-
- umem_reaping = UMEM_REAP_ACTIVE;
-
- /* Standalone is single-threaded */
-#ifndef UMEM_STANDALONE
- if (umem_update_thr == 0) {
- /*
- * The update thread does not exist. If the process is
- * multi-threaded, create it. If not, or the creation fails,
- * do the update processing inline.
- */
- ASSERT(umem_st_update_thr == 0);
-
- if (__nthreads() <= 1 || umem_create_update_thread() == 0)
- umem_st_update();
- }
-
- (void) cond_broadcast(&umem_update_cv); /* wake up the update thread */
-#endif
-
- (void) mutex_unlock(&umem_update_lock);
-}
-
-umem_cache_t *
-umem_cache_create(
- char *name, /* descriptive name for this cache */
- size_t bufsize, /* size of the objects it manages */
- size_t align, /* required object alignment */
- umem_constructor_t *constructor, /* object constructor */
- umem_destructor_t *destructor, /* object destructor */
- umem_reclaim_t *reclaim, /* memory reclaim callback */
- void *private, /* pass-thru arg for constr/destr/reclaim */
- vmem_t *vmp, /* vmem source for slab allocation */
- int cflags) /* cache creation flags */
-{
- int cpu_seqid;
- size_t chunksize;
- umem_cache_t *cp, *cnext, *cprev;
- umem_magtype_t *mtp;
- size_t csize;
- size_t phase;
-
- /*
- * The init thread is allowed to create internal and quantum caches.
- *
- * Other threads must wait until until initialization is complete.
- */
- if (umem_init_thr == thr_self())
- ASSERT((cflags & (UMC_INTERNAL | UMC_QCACHE)) != 0);
- else {
- ASSERT(!(cflags & UMC_INTERNAL));
- if (umem_ready != UMEM_READY && umem_init() == 0) {
- errno = EAGAIN;
- return (NULL);
- }
- }
-
- csize = UMEM_CACHE_SIZE(umem_max_ncpus);
- phase = P2NPHASE(csize, UMEM_CPU_CACHE_SIZE);
-
- if (vmp == NULL)
- vmp = umem_default_arena;
-
- ASSERT(P2PHASE(phase, UMEM_ALIGN) == 0);
-
- /*
- * Check that the arguments are reasonable
- */
- if ((align & (align - 1)) != 0 || align > vmp->vm_quantum ||
- ((cflags & UMC_NOHASH) && (cflags & UMC_NOTOUCH)) ||
- name == NULL || bufsize == 0) {
- errno = EINVAL;
- return (NULL);
- }
-
- /*
- * If align == 0, we set it to the minimum required alignment.
- *
- * If align < UMEM_ALIGN, we round it up to UMEM_ALIGN, unless
- * UMC_NOTOUCH was passed.
- */
- if (align == 0) {
- if (P2ROUNDUP(bufsize, UMEM_ALIGN) >= UMEM_SECOND_ALIGN)
- align = UMEM_SECOND_ALIGN;
- else
- align = UMEM_ALIGN;
- } else if (align < UMEM_ALIGN && (cflags & UMC_NOTOUCH) == 0)
- align = UMEM_ALIGN;
-
-
- /*
- * Get a umem_cache structure. We arrange that cp->cache_cpu[]
- * is aligned on a UMEM_CPU_CACHE_SIZE boundary to prevent
- * false sharing of per-CPU data.
- */
- cp = vmem_xalloc(umem_cache_arena, csize, UMEM_CPU_CACHE_SIZE, phase,
- 0, NULL, NULL, VM_NOSLEEP);
-
- if (cp == NULL) {
- errno = EAGAIN;
- return (NULL);
- }
-
- bzero(cp, csize);
-
- (void) mutex_lock(&umem_flags_lock);
- if (umem_flags & UMF_RANDOMIZE)
- umem_flags = (((umem_flags | ~UMF_RANDOM) + 1) & UMF_RANDOM) |
- UMF_RANDOMIZE;
- cp->cache_flags = umem_flags | (cflags & UMF_DEBUG);
- (void) mutex_unlock(&umem_flags_lock);
-
- /*
- * Make sure all the various flags are reasonable.
- */
- if (cp->cache_flags & UMF_LITE) {
- if (bufsize >= umem_lite_minsize &&
- align <= umem_lite_maxalign &&
- P2PHASE(bufsize, umem_lite_maxalign) != 0) {
- cp->cache_flags |= UMF_BUFTAG;
- cp->cache_flags &= ~(UMF_AUDIT | UMF_FIREWALL);
- } else {
- cp->cache_flags &= ~UMF_DEBUG;
- }
- }
-
- if ((cflags & UMC_QCACHE) && (cp->cache_flags & UMF_AUDIT))
- cp->cache_flags |= UMF_NOMAGAZINE;
-
- if (cflags & UMC_NODEBUG)
- cp->cache_flags &= ~UMF_DEBUG;
-
- if (cflags & UMC_NOTOUCH)
- cp->cache_flags &= ~UMF_TOUCH;
-
- if (cflags & UMC_NOHASH)
- cp->cache_flags &= ~(UMF_AUDIT | UMF_FIREWALL);
-
- if (cflags & UMC_NOMAGAZINE)
- cp->cache_flags |= UMF_NOMAGAZINE;
-
- if ((cp->cache_flags & UMF_AUDIT) && !(cflags & UMC_NOTOUCH))
- cp->cache_flags |= UMF_REDZONE;
-
- if ((cp->cache_flags & UMF_BUFTAG) && bufsize >= umem_minfirewall &&
- !(cp->cache_flags & UMF_LITE) && !(cflags & UMC_NOHASH))
- cp->cache_flags |= UMF_FIREWALL;
-
- if (vmp != umem_default_arena || umem_firewall_arena == NULL)
- cp->cache_flags &= ~UMF_FIREWALL;
-
- if (cp->cache_flags & UMF_FIREWALL) {
- cp->cache_flags &= ~UMF_BUFTAG;
- cp->cache_flags |= UMF_NOMAGAZINE;
- ASSERT(vmp == umem_default_arena);
- vmp = umem_firewall_arena;
- }
-
- /*
- * Set cache properties.
- */
- (void) strncpy(cp->cache_name, name, sizeof (cp->cache_name) - 1);
- cp->cache_bufsize = bufsize;
- cp->cache_align = align;
- cp->cache_constructor = constructor;
- cp->cache_destructor = destructor;
- cp->cache_reclaim = reclaim;
- cp->cache_private = private;
- cp->cache_arena = vmp;
- cp->cache_cflags = cflags;
- cp->cache_cpu_mask = umem_cpu_mask;
-
- /*
- * Determine the chunk size.
- */
- chunksize = bufsize;
-
- if (align >= UMEM_ALIGN) {
- chunksize = P2ROUNDUP(chunksize, UMEM_ALIGN);
- cp->cache_bufctl = chunksize - UMEM_ALIGN;
- }
-
- if (cp->cache_flags & UMF_BUFTAG) {
- cp->cache_bufctl = chunksize;
- cp->cache_buftag = chunksize;
- chunksize += sizeof (umem_buftag_t);
- }
-
- if (cp->cache_flags & UMF_DEADBEEF) {
- cp->cache_verify = MIN(cp->cache_buftag, umem_maxverify);
- if (cp->cache_flags & UMF_LITE)
- cp->cache_verify = MIN(cp->cache_verify, UMEM_ALIGN);
- }
-
- cp->cache_contents = MIN(cp->cache_bufctl, umem_content_maxsave);
-
- cp->cache_chunksize = chunksize = P2ROUNDUP(chunksize, align);
-
- if (chunksize < bufsize) {
- errno = ENOMEM;
- goto fail;
- }
-
- /*
- * Now that we know the chunk size, determine the optimal slab size.
- */
- if (vmp == umem_firewall_arena) {
- cp->cache_slabsize = P2ROUNDUP(chunksize, vmp->vm_quantum);
- cp->cache_mincolor = cp->cache_slabsize - chunksize;
- cp->cache_maxcolor = cp->cache_mincolor;
- cp->cache_flags |= UMF_HASH;
- ASSERT(!(cp->cache_flags & UMF_BUFTAG));
- } else if ((cflags & UMC_NOHASH) || (!(cflags & UMC_NOTOUCH) &&
- !(cp->cache_flags & UMF_AUDIT) &&
- chunksize < vmp->vm_quantum / UMEM_VOID_FRACTION)) {
- cp->cache_slabsize = vmp->vm_quantum;
- cp->cache_mincolor = 0;
- cp->cache_maxcolor =
- (cp->cache_slabsize - sizeof (umem_slab_t)) % chunksize;
-
- if (chunksize + sizeof (umem_slab_t) > cp->cache_slabsize) {
- errno = EINVAL;
- goto fail;
- }
- ASSERT(!(cp->cache_flags & UMF_AUDIT));
- } else {
- size_t chunks, bestfit, waste, slabsize;
- size_t minwaste = LONG_MAX;
-
- for (chunks = 1; chunks <= UMEM_VOID_FRACTION; chunks++) {
- slabsize = P2ROUNDUP(chunksize * chunks,
- vmp->vm_quantum);
- /*
- * check for overflow
- */
- if ((slabsize / chunks) < chunksize) {
- errno = ENOMEM;
- goto fail;
- }
- chunks = slabsize / chunksize;
- waste = (slabsize % chunksize) / chunks;
- if (waste < minwaste) {
- minwaste = waste;
- bestfit = slabsize;
- }
- }
- if (cflags & UMC_QCACHE)
- bestfit = MAX(1 << highbit(3 * vmp->vm_qcache_max), 64);
- cp->cache_slabsize = bestfit;
- cp->cache_mincolor = 0;
- cp->cache_maxcolor = bestfit % chunksize;
- cp->cache_flags |= UMF_HASH;
- }
-
- if (cp->cache_flags & UMF_HASH) {
- ASSERT(!(cflags & UMC_NOHASH));
- cp->cache_bufctl_cache = (cp->cache_flags & UMF_AUDIT) ?
- umem_bufctl_audit_cache : umem_bufctl_cache;
- }
-
- if (cp->cache_maxcolor >= vmp->vm_quantum)
- cp->cache_maxcolor = vmp->vm_quantum - 1;
-
- cp->cache_color = cp->cache_mincolor;
-
- /*
- * Initialize the rest of the slab layer.
- */
- (void) mutex_init(&cp->cache_lock, USYNC_THREAD, NULL);
-
- cp->cache_freelist = &cp->cache_nullslab;
- cp->cache_nullslab.slab_cache = cp;
- cp->cache_nullslab.slab_refcnt = -1;
- cp->cache_nullslab.slab_next = &cp->cache_nullslab;
- cp->cache_nullslab.slab_prev = &cp->cache_nullslab;
-
- if (cp->cache_flags & UMF_HASH) {
- cp->cache_hash_table = vmem_alloc(umem_hash_arena,
- UMEM_HASH_INITIAL * sizeof (void *), VM_NOSLEEP);
- if (cp->cache_hash_table == NULL) {
- errno = EAGAIN;
- goto fail_lock;
- }
- bzero(cp->cache_hash_table,
- UMEM_HASH_INITIAL * sizeof (void *));
- cp->cache_hash_mask = UMEM_HASH_INITIAL - 1;
- cp->cache_hash_shift = highbit((ulong_t)chunksize) - 1;
- }
-
- /*
- * Initialize the depot.
- */
- (void) mutex_init(&cp->cache_depot_lock, USYNC_THREAD, NULL);
-
- for (mtp = umem_magtype; chunksize <= mtp->mt_minbuf; mtp++)
- continue;
-
- cp->cache_magtype = mtp;
-
- /*
- * Initialize the CPU layer.
- */
- for (cpu_seqid = 0; cpu_seqid < umem_max_ncpus; cpu_seqid++) {
- umem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
- (void) mutex_init(&ccp->cc_lock, USYNC_THREAD, NULL);
- ccp->cc_flags = cp->cache_flags;
- ccp->cc_rounds = -1;
- ccp->cc_prounds = -1;
- }
-
- /*
- * Add the cache to the global list. This makes it visible
- * to umem_update(), so the cache must be ready for business.
- */
- (void) mutex_lock(&umem_cache_lock);
- cp->cache_next = cnext = &umem_null_cache;
- cp->cache_prev = cprev = umem_null_cache.cache_prev;
- cnext->cache_prev = cp;
- cprev->cache_next = cp;
- (void) mutex_unlock(&umem_cache_lock);
-
- if (umem_ready == UMEM_READY)
- umem_cache_magazine_enable(cp);
-
- return (cp);
-
-fail_lock:
- (void) mutex_destroy(&cp->cache_lock);
-fail:
- vmem_xfree(umem_cache_arena, cp, csize);
- return (NULL);
-}
-
-void
-umem_cache_destroy(umem_cache_t *cp)
-{
- int cpu_seqid;
-
- /*
- * Remove the cache from the global cache list so that no new updates
- * will be scheduled on its behalf, wait for any pending tasks to
- * complete, purge the cache, and then destroy it.
- */
- (void) mutex_lock(&umem_cache_lock);
- cp->cache_prev->cache_next = cp->cache_next;
- cp->cache_next->cache_prev = cp->cache_prev;
- cp->cache_prev = cp->cache_next = NULL;
- (void) mutex_unlock(&umem_cache_lock);
-
- umem_remove_updates(cp);
-
- umem_cache_magazine_purge(cp);
-
- (void) mutex_lock(&cp->cache_lock);
- if (cp->cache_buftotal != 0)
- log_message("umem_cache_destroy: '%s' (%p) not empty\n",
- cp->cache_name, (void *)cp);
- cp->cache_reclaim = NULL;
- /*
- * The cache is now dead. There should be no further activity.
- * We enforce this by setting land mines in the constructor and
- * destructor routines that induce a segmentation fault if invoked.
- */
- cp->cache_constructor = (umem_constructor_t *)1;
- cp->cache_destructor = (umem_destructor_t *)2;
- (void) mutex_unlock(&cp->cache_lock);
-
- if (cp->cache_hash_table != NULL)
- vmem_free(umem_hash_arena, cp->cache_hash_table,
- (cp->cache_hash_mask + 1) * sizeof (void *));
-
- for (cpu_seqid = 0; cpu_seqid < umem_max_ncpus; cpu_seqid++)
- (void) mutex_destroy(&cp->cache_cpu[cpu_seqid].cc_lock);
-
- (void) mutex_destroy(&cp->cache_depot_lock);
- (void) mutex_destroy(&cp->cache_lock);
-
- vmem_free(umem_cache_arena, cp, UMEM_CACHE_SIZE(umem_max_ncpus));
-}
-
-void
-umem_alloc_sizes_clear(void)
-{
- int i;
-
- umem_alloc_sizes[0] = UMEM_MAXBUF;
- for (i = 1; i < NUM_ALLOC_SIZES; i++)
- umem_alloc_sizes[i] = 0;
-}
-
-void
-umem_alloc_sizes_add(size_t size_arg)
-{
- int i, j;
- size_t size = size_arg;
-
- if (size == 0) {
- log_message("size_add: cannot add zero-sized cache\n",
- size, UMEM_MAXBUF);
- return;
- }
-
- if (size > UMEM_MAXBUF) {
- log_message("size_add: %ld > %d, cannot add\n", size,
- UMEM_MAXBUF);
- return;
- }
-
- if (umem_alloc_sizes[NUM_ALLOC_SIZES - 1] != 0) {
- log_message("size_add: no space in alloc_table for %d\n",
- size);
- return;
- }
-
- if (P2PHASE(size, UMEM_ALIGN) != 0) {
- size = P2ROUNDUP(size, UMEM_ALIGN);
- log_message("size_add: rounding %d up to %d\n", size_arg,
- size);
- }
-
- for (i = 0; i < NUM_ALLOC_SIZES; i++) {
- int cur = umem_alloc_sizes[i];
- if (cur == size) {
- log_message("size_add: %ld already in table\n",
- size);
- return;
- }
- if (cur > size)
- break;
- }
-
- for (j = NUM_ALLOC_SIZES - 1; j > i; j--)
- umem_alloc_sizes[j] = umem_alloc_sizes[j-1];
- umem_alloc_sizes[i] = size;
-}
-
-void
-umem_alloc_sizes_remove(size_t size)
-{
- int i;
-
- if (size == UMEM_MAXBUF) {
- log_message("size_remove: cannot remove %ld\n", size);
- return;
- }
-
- for (i = 0; i < NUM_ALLOC_SIZES; i++) {
- int cur = umem_alloc_sizes[i];
- if (cur == size)
- break;
- else if (cur > size || cur == 0) {
- log_message("size_remove: %ld not found in table\n",
- size);
- return;
- }
- }
-
- for (; i + 1 < NUM_ALLOC_SIZES; i++)
- umem_alloc_sizes[i] = umem_alloc_sizes[i+1];
- umem_alloc_sizes[i] = 0;
-}
-
-static int
-umem_cache_init(void)
-{
- int i;
- size_t size, max_size;
- umem_cache_t *cp;
- umem_magtype_t *mtp;
- char name[UMEM_CACHE_NAMELEN + 1];
- umem_cache_t *umem_alloc_caches[NUM_ALLOC_SIZES];
-
- for (i = 0; i < sizeof (umem_magtype) / sizeof (*mtp); i++) {
- mtp = &umem_magtype[i];
- (void) snprintf(name, sizeof (name), "umem_magazine_%d",
- mtp->mt_magsize);
- mtp->mt_cache = umem_cache_create(name,
- (mtp->mt_magsize + 1) * sizeof (void *),
- mtp->mt_align, NULL, NULL, NULL, NULL,
- umem_internal_arena, UMC_NOHASH | UMC_INTERNAL);
- if (mtp->mt_cache == NULL)
- return (0);
- }
-
- umem_slab_cache = umem_cache_create("umem_slab_cache",
- sizeof (umem_slab_t), 0, NULL, NULL, NULL, NULL,
- umem_internal_arena, UMC_NOHASH | UMC_INTERNAL);
-
- if (umem_slab_cache == NULL)
- return (0);
-
- umem_bufctl_cache = umem_cache_create("umem_bufctl_cache",
- sizeof (umem_bufctl_t), 0, NULL, NULL, NULL, NULL,
- umem_internal_arena, UMC_NOHASH | UMC_INTERNAL);
-
- if (umem_bufctl_cache == NULL)
- return (0);
-
- /*
- * The size of the umem_bufctl_audit structure depends upon
- * umem_stack_depth. See umem_impl.h for details on the size
- * restrictions.
- */
-
- size = UMEM_BUFCTL_AUDIT_SIZE_DEPTH(umem_stack_depth);
- max_size = UMEM_BUFCTL_AUDIT_MAX_SIZE;
-
- if (size > max_size) { /* too large -- truncate */
- int max_frames = UMEM_MAX_STACK_DEPTH;
-
- ASSERT(UMEM_BUFCTL_AUDIT_SIZE_DEPTH(max_frames) <= max_size);
-
- umem_stack_depth = max_frames;
- size = UMEM_BUFCTL_AUDIT_SIZE_DEPTH(umem_stack_depth);
- }
-
- umem_bufctl_audit_cache = umem_cache_create("umem_bufctl_audit_cache",
- size, 0, NULL, NULL, NULL, NULL, umem_internal_arena,
- UMC_NOHASH | UMC_INTERNAL);
-
- if (umem_bufctl_audit_cache == NULL)
- return (0);
-
- if (vmem_backend & VMEM_BACKEND_MMAP)
- umem_va_arena = vmem_create("umem_va",
- NULL, 0, pagesize,
- vmem_alloc, vmem_free, heap_arena,
- 8 * pagesize, VM_NOSLEEP);
- else
- umem_va_arena = heap_arena;
-
- if (umem_va_arena == NULL)
- return (0);
-
- umem_default_arena = vmem_create("umem_default",
- NULL, 0, pagesize,
- heap_alloc, heap_free, umem_va_arena,
- 0, VM_NOSLEEP);
-
- if (umem_default_arena == NULL)
- return (0);
-
- /*
- * make sure the umem_alloc table initializer is correct
- */
- i = sizeof (umem_alloc_table) / sizeof (*umem_alloc_table);
- ASSERT(umem_alloc_table[i - 1] == &umem_null_cache);
-
- /*
- * Create the default caches to back umem_alloc()
- */
- for (i = 0; i < NUM_ALLOC_SIZES; i++) {
- size_t cache_size = umem_alloc_sizes[i];
- size_t align = 0;
-
- if (cache_size == 0)
- break; /* 0 terminates the list */
-
- /*
- * If they allocate a multiple of the coherency granularity,
- * they get a coherency-granularity-aligned address.
- */
- if (IS_P2ALIGNED(cache_size, 64))
- align = 64;
- if (IS_P2ALIGNED(cache_size, pagesize))
- align = pagesize;
- (void) snprintf(name, sizeof (name), "umem_alloc_%lu",
- (long)cache_size);
-
- cp = umem_cache_create(name, cache_size, align,
- NULL, NULL, NULL, NULL, NULL, UMC_INTERNAL);
- if (cp == NULL)
- return (0);
-
- umem_alloc_caches[i] = cp;
- }
-
- /*
- * Initialization cannot fail at this point. Make the caches
- * visible to umem_alloc() and friends.
- */
- size = UMEM_ALIGN;
- for (i = 0; i < NUM_ALLOC_SIZES; i++) {
- size_t cache_size = umem_alloc_sizes[i];
-
- if (cache_size == 0)
- break; /* 0 terminates the list */
-
- cp = umem_alloc_caches[i];
-
- while (size <= cache_size) {
- umem_alloc_table[(size - 1) >> UMEM_ALIGN_SHIFT] = cp;
- size += UMEM_ALIGN;
- }
- }
- ASSERT(size - UMEM_ALIGN == UMEM_MAXBUF);
- return (1);
-}
-
-/*
- * umem_startup() is called early on, and must be called explicitly if we're
- * the standalone version.
- */
-#ifdef UMEM_STANDALONE
-void
-#else
-#pragma init(umem_startup)
-static void
-#endif
-umem_startup(caddr_t start, size_t len, size_t pagesize, caddr_t minstack,
- caddr_t maxstack)
-{
-#ifdef UMEM_STANDALONE
- int idx;
- /* Standalone doesn't fork */
-#else
- umem_forkhandler_init(); /* register the fork handler */
-#endif
-
-#ifdef __lint
- /* make lint happy */
- minstack = maxstack;
-#endif
-
-#ifdef UMEM_STANDALONE
- umem_ready = UMEM_READY_STARTUP;
- umem_init_env_ready = 0;
-
- umem_min_stack = minstack;
- umem_max_stack = maxstack;
-
- nofail_callback = NULL;
- umem_slab_cache = NULL;
- umem_bufctl_cache = NULL;
- umem_bufctl_audit_cache = NULL;
- heap_arena = NULL;
- heap_alloc = NULL;
- heap_free = NULL;
- umem_internal_arena = NULL;
- umem_cache_arena = NULL;
- umem_hash_arena = NULL;
- umem_log_arena = NULL;
- umem_oversize_arena = NULL;
- umem_va_arena = NULL;
- umem_default_arena = NULL;
- umem_firewall_va_arena = NULL;
- umem_firewall_arena = NULL;
- umem_memalign_arena = NULL;
- umem_transaction_log = NULL;
- umem_content_log = NULL;
- umem_failure_log = NULL;
- umem_slab_log = NULL;
- umem_cpu_mask = 0;
-
- umem_cpus = &umem_startup_cpu;
- umem_startup_cpu.cpu_cache_offset = UMEM_CACHE_SIZE(0);
- umem_startup_cpu.cpu_number = 0;
-
- bcopy(&umem_null_cache_template, &umem_null_cache,
- sizeof (umem_cache_t));
-
- for (idx = 0; idx < (UMEM_MAXBUF >> UMEM_ALIGN_SHIFT); idx++)
- umem_alloc_table[idx] = &umem_null_cache;
-#endif
-
- /*
- * Perform initialization specific to the way we've been compiled
- * (library or standalone)
- */
- umem_type_init(start, len, pagesize);
-
- vmem_startup();
-}
-
-int
-umem_init(void)
-{
- size_t maxverify, minfirewall;
- size_t size;
- int idx;
- umem_cpu_t *new_cpus;
-
- vmem_t *memalign_arena, *oversize_arena;
-
- if (thr_self() != umem_init_thr) {
- /*
- * The usual case -- non-recursive invocation of umem_init().
- */
- (void) mutex_lock(&umem_init_lock);
- if (umem_ready != UMEM_READY_STARTUP) {
- /*
- * someone else beat us to initializing umem. Wait
- * for them to complete, then return.
- */
- while (umem_ready == UMEM_READY_INITING) {
- int cancel_state;
-
- (void) pthread_setcancelstate(
- PTHREAD_CANCEL_DISABLE, &cancel_state);
- (void) cond_wait(&umem_init_cv,
- &umem_init_lock);
- (void) pthread_setcancelstate(
- cancel_state, NULL);
- }
- ASSERT(umem_ready == UMEM_READY ||
- umem_ready == UMEM_READY_INIT_FAILED);
- (void) mutex_unlock(&umem_init_lock);
- return (umem_ready == UMEM_READY);
- }
-
- ASSERT(umem_ready == UMEM_READY_STARTUP);
- ASSERT(umem_init_env_ready == 0);
-
- umem_ready = UMEM_READY_INITING;
- umem_init_thr = thr_self();
-
- (void) mutex_unlock(&umem_init_lock);
- umem_setup_envvars(0); /* can recurse -- see below */
- if (umem_init_env_ready) {
- /*
- * initialization was completed already
- */
- ASSERT(umem_ready == UMEM_READY ||
- umem_ready == UMEM_READY_INIT_FAILED);
- ASSERT(umem_init_thr == 0);
- return (umem_ready == UMEM_READY);
- }
- } else if (!umem_init_env_ready) {
- /*
- * The umem_setup_envvars() call (above) makes calls into
- * the dynamic linker and directly into user-supplied code.
- * Since we cannot know what that code will do, we could be
- * recursively invoked (by, say, a malloc() call in the code
- * itself, or in a (C++) _init section it causes to be fired).
- *
- * This code is where we end up if such recursion occurs. We
- * first clean up any partial results in the envvar code, then
- * proceed to finish initialization processing in the recursive
- * call. The original call will notice this, and return
- * immediately.
- */
- umem_setup_envvars(1); /* clean up any partial state */
- } else {
- umem_panic(
- "recursive allocation while initializing umem\n");
- }
- umem_init_env_ready = 1;
-
- /*
- * From this point until we finish, recursion into umem_init() will
- * cause a umem_panic().
- */
- maxverify = minfirewall = ULONG_MAX;
-
- /* LINTED constant condition */
- if (sizeof (umem_cpu_cache_t) != UMEM_CPU_CACHE_SIZE) {
- umem_panic("sizeof (umem_cpu_cache_t) = %d, should be %d\n",
- sizeof (umem_cpu_cache_t), UMEM_CPU_CACHE_SIZE);
- }
-
- umem_max_ncpus = umem_get_max_ncpus();
-
- /*
- * load tunables from environment
- */
- umem_process_envvars();
-
- if (issetugid())
- umem_mtbf = 0;
-
- /*
- * set up vmem
- */
- if (!(umem_flags & UMF_AUDIT))
- vmem_no_debug();
-
- heap_arena = vmem_heap_arena(&heap_alloc, &heap_free);
-
- pagesize = heap_arena->vm_quantum;
-
- umem_internal_arena = vmem_create("umem_internal", NULL, 0, pagesize,
- heap_alloc, heap_free, heap_arena, 0, VM_NOSLEEP);
-
- umem_default_arena = umem_internal_arena;
-
- if (umem_internal_arena == NULL)
- goto fail;
-
- umem_cache_arena = vmem_create("umem_cache", NULL, 0, UMEM_ALIGN,
- vmem_alloc, vmem_free, umem_internal_arena, 0, VM_NOSLEEP);
-
- umem_hash_arena = vmem_create("umem_hash", NULL, 0, UMEM_ALIGN,
- vmem_alloc, vmem_free, umem_internal_arena, 0, VM_NOSLEEP);
-
- umem_log_arena = vmem_create("umem_log", NULL, 0, UMEM_ALIGN,
- heap_alloc, heap_free, heap_arena, 0, VM_NOSLEEP);
-
- umem_firewall_va_arena = vmem_create("umem_firewall_va",
- NULL, 0, pagesize,
- umem_firewall_va_alloc, umem_firewall_va_free, heap_arena,
- 0, VM_NOSLEEP);
-
- if (umem_cache_arena == NULL || umem_hash_arena == NULL ||
- umem_log_arena == NULL || umem_firewall_va_arena == NULL)
- goto fail;
-
- umem_firewall_arena = vmem_create("umem_firewall", NULL, 0, pagesize,
- heap_alloc, heap_free, umem_firewall_va_arena, 0,
- VM_NOSLEEP);
-
- if (umem_firewall_arena == NULL)
- goto fail;
-
- oversize_arena = vmem_create("umem_oversize", NULL, 0, pagesize,
- heap_alloc, heap_free, minfirewall < ULONG_MAX ?
- umem_firewall_va_arena : heap_arena, 0, VM_NOSLEEP);
-
- memalign_arena = vmem_create("umem_memalign", NULL, 0, UMEM_ALIGN,
- heap_alloc, heap_free, minfirewall < ULONG_MAX ?
- umem_firewall_va_arena : heap_arena, 0, VM_NOSLEEP);
-
- if (oversize_arena == NULL || memalign_arena == NULL)
- goto fail;
-
- if (umem_max_ncpus > CPUHINT_MAX())
- umem_max_ncpus = CPUHINT_MAX();
-
- while ((umem_max_ncpus & (umem_max_ncpus - 1)) != 0)
- umem_max_ncpus++;
-
- if (umem_max_ncpus == 0)
- umem_max_ncpus = 1;
-
- size = umem_max_ncpus * sizeof (umem_cpu_t);
- new_cpus = vmem_alloc(umem_internal_arena, size, VM_NOSLEEP);
- if (new_cpus == NULL)
- goto fail;
-
- bzero(new_cpus, size);
- for (idx = 0; idx < umem_max_ncpus; idx++) {
- new_cpus[idx].cpu_number = idx;
- new_cpus[idx].cpu_cache_offset = UMEM_CACHE_SIZE(idx);
- }
- umem_cpus = new_cpus;
- umem_cpu_mask = (umem_max_ncpus - 1);
-
- if (umem_maxverify == 0)
- umem_maxverify = maxverify;
-
- if (umem_minfirewall == 0)
- umem_minfirewall = minfirewall;
-
- /*
- * Set up updating and reaping
- */
- umem_reap_next = gethrtime() + NANOSEC;
-
-#ifndef UMEM_STANDALONE
- (void) gettimeofday(&umem_update_next, NULL);
-#endif
-
- /*
- * Set up logging -- failure here is okay, since it will just disable
- * the logs
- */
- if (umem_logging) {
- umem_transaction_log = umem_log_init(umem_transaction_log_size);
- umem_content_log = umem_log_init(umem_content_log_size);
- umem_failure_log = umem_log_init(umem_failure_log_size);
- umem_slab_log = umem_log_init(umem_slab_log_size);
- }
-
- /*
- * Set up caches -- if successful, initialization cannot fail, since
- * allocations from other threads can now succeed.
- */
- if (umem_cache_init() == 0) {
- log_message("unable to create initial caches\n");
- goto fail;
- }
- umem_oversize_arena = oversize_arena;
- umem_memalign_arena = memalign_arena;
-
- umem_cache_applyall(umem_cache_magazine_enable);
-
- /*
- * initialization done, ready to go
- */
- (void) mutex_lock(&umem_init_lock);
- umem_ready = UMEM_READY;
- umem_init_thr = 0;
- (void) cond_broadcast(&umem_init_cv);
- (void) mutex_unlock(&umem_init_lock);
- return (1);
-
-fail:
- log_message("umem initialization failed\n");
-
- (void) mutex_lock(&umem_init_lock);
- umem_ready = UMEM_READY_INIT_FAILED;
- umem_init_thr = 0;
- (void) cond_broadcast(&umem_init_cv);
- (void) mutex_unlock(&umem_init_lock);
- return (0);
-}