summaryrefslogtreecommitdiffstats
path: root/module/zfs/zio_crypt.c
diff options
context:
space:
mode:
Diffstat (limited to 'module/zfs/zio_crypt.c')
-rw-r--r--module/zfs/zio_crypt.c2036
1 files changed, 0 insertions, 2036 deletions
diff --git a/module/zfs/zio_crypt.c b/module/zfs/zio_crypt.c
deleted file mode 100644
index 7cf20f413..000000000
--- a/module/zfs/zio_crypt.c
+++ /dev/null
@@ -1,2036 +0,0 @@
-/*
- * CDDL HEADER START
- *
- * This file and its contents are supplied under the terms of the
- * Common Development and Distribution License ("CDDL"), version 1.0.
- * You may only use this file in accordance with the terms of version
- * 1.0 of the CDDL.
- *
- * A full copy of the text of the CDDL should have accompanied this
- * source. A copy of the CDDL is also available via the Internet at
- * http://www.illumos.org/license/CDDL.
- *
- * CDDL HEADER END
- */
-
-/*
- * Copyright (c) 2017, Datto, Inc. All rights reserved.
- */
-
-#include <sys/zio_crypt.h>
-#include <sys/dmu.h>
-#include <sys/dmu_objset.h>
-#include <sys/dnode.h>
-#include <sys/fs/zfs.h>
-#include <sys/zio.h>
-#include <sys/zil.h>
-#include <sys/sha2.h>
-#include <sys/hkdf.h>
-#include "qat.h"
-
-/*
- * This file is responsible for handling all of the details of generating
- * encryption parameters and performing encryption and authentication.
- *
- * BLOCK ENCRYPTION PARAMETERS:
- * Encryption /Authentication Algorithm Suite (crypt):
- * The encryption algorithm, mode, and key length we are going to use. We
- * currently support AES in either GCM or CCM modes with 128, 192, and 256 bit
- * keys. All authentication is currently done with SHA512-HMAC.
- *
- * Plaintext:
- * The unencrypted data that we want to encrypt.
- *
- * Initialization Vector (IV):
- * An initialization vector for the encryption algorithms. This is used to
- * "tweak" the encryption algorithms so that two blocks of the same data are
- * encrypted into different ciphertext outputs, thus obfuscating block patterns.
- * The supported encryption modes (AES-GCM and AES-CCM) require that an IV is
- * never reused with the same encryption key. This value is stored unencrypted
- * and must simply be provided to the decryption function. We use a 96 bit IV
- * (as recommended by NIST) for all block encryption. For non-dedup blocks we
- * derive the IV randomly. The first 64 bits of the IV are stored in the second
- * word of DVA[2] and the remaining 32 bits are stored in the upper 32 bits of
- * blk_fill. This is safe because encrypted blocks can't use the upper 32 bits
- * of blk_fill. We only encrypt level 0 blocks, which normally have a fill count
- * of 1. The only exception is for DMU_OT_DNODE objects, where the fill count of
- * level 0 blocks is the number of allocated dnodes in that block. The on-disk
- * format supports at most 2^15 slots per L0 dnode block, because the maximum
- * block size is 16MB (2^24). In either case, for level 0 blocks this number
- * will still be smaller than UINT32_MAX so it is safe to store the IV in the
- * top 32 bits of blk_fill, while leaving the bottom 32 bits of the fill count
- * for the dnode code.
- *
- * Master key:
- * This is the most important secret data of an encrypted dataset. It is used
- * along with the salt to generate that actual encryption keys via HKDF. We
- * do not use the master key to directly encrypt any data because there are
- * theoretical limits on how much data can actually be safely encrypted with
- * any encryption mode. The master key is stored encrypted on disk with the
- * user's wrapping key. Its length is determined by the encryption algorithm.
- * For details on how this is stored see the block comment in dsl_crypt.c
- *
- * Salt:
- * Used as an input to the HKDF function, along with the master key. We use a
- * 64 bit salt, stored unencrypted in the first word of DVA[2]. Any given salt
- * can be used for encrypting many blocks, so we cache the current salt and the
- * associated derived key in zio_crypt_t so we do not need to derive it again
- * needlessly.
- *
- * Encryption Key:
- * A secret binary key, generated from an HKDF function used to encrypt and
- * decrypt data.
- *
- * Message Authentication Code (MAC)
- * The MAC is an output of authenticated encryption modes such as AES-GCM and
- * AES-CCM. Its purpose is to ensure that an attacker cannot modify encrypted
- * data on disk and return garbage to the application. Effectively, it is a
- * checksum that can not be reproduced by an attacker. We store the MAC in the
- * second 128 bits of blk_cksum, leaving the first 128 bits for a truncated
- * regular checksum of the ciphertext which can be used for scrubbing.
- *
- * OBJECT AUTHENTICATION:
- * Some object types, such as DMU_OT_MASTER_NODE cannot be encrypted because
- * they contain some info that always needs to be readable. To prevent this
- * data from being altered, we authenticate this data using SHA512-HMAC. This
- * will produce a MAC (similar to the one produced via encryption) which can
- * be used to verify the object was not modified. HMACs do not require key
- * rotation or IVs, so we can keep up to the full 3 copies of authenticated
- * data.
- *
- * ZIL ENCRYPTION:
- * ZIL blocks have their bp written to disk ahead of the associated data, so we
- * cannot store the MAC there as we normally do. For these blocks the MAC is
- * stored in the embedded checksum within the zil_chain_t header. The salt and
- * IV are generated for the block on bp allocation instead of at encryption
- * time. In addition, ZIL blocks have some pieces that must be left in plaintext
- * for claiming even though all of the sensitive user data still needs to be
- * encrypted. The function zio_crypt_init_uios_zil() handles parsing which
- * pieces of the block need to be encrypted. All data that is not encrypted is
- * authenticated using the AAD mechanisms that the supported encryption modes
- * provide for. In order to preserve the semantics of the ZIL for encrypted
- * datasets, the ZIL is not protected at the objset level as described below.
- *
- * DNODE ENCRYPTION:
- * Similarly to ZIL blocks, the core part of each dnode_phys_t needs to be left
- * in plaintext for scrubbing and claiming, but the bonus buffers might contain
- * sensitive user data. The function zio_crypt_init_uios_dnode() handles parsing
- * which which pieces of the block need to be encrypted. For more details about
- * dnode authentication and encryption, see zio_crypt_init_uios_dnode().
- *
- * OBJECT SET AUTHENTICATION:
- * Up to this point, everything we have encrypted and authenticated has been
- * at level 0 (or -2 for the ZIL). If we did not do any further work the
- * on-disk format would be susceptible to attacks that deleted or rearranged
- * the order of level 0 blocks. Ideally, the cleanest solution would be to
- * maintain a tree of authentication MACs going up the bp tree. However, this
- * presents a problem for raw sends. Send files do not send information about
- * indirect blocks so there would be no convenient way to transfer the MACs and
- * they cannot be recalculated on the receive side without the master key which
- * would defeat one of the purposes of raw sends in the first place. Instead,
- * for the indirect levels of the bp tree, we use a regular SHA512 of the MACs
- * from the level below. We also include some portable fields from blk_prop such
- * as the lsize and compression algorithm to prevent the data from being
- * misinterpreted.
- *
- * At the objset level, we maintain 2 separate 256 bit MACs in the
- * objset_phys_t. The first one is "portable" and is the logical root of the
- * MAC tree maintained in the metadnode's bps. The second, is "local" and is
- * used as the root MAC for the user accounting objects, which are also not
- * transferred via "zfs send". The portable MAC is sent in the DRR_BEGIN payload
- * of the send file. The useraccounting code ensures that the useraccounting
- * info is not present upon a receive, so the local MAC can simply be cleared
- * out at that time. For more info about objset_phys_t authentication, see
- * zio_crypt_do_objset_hmacs().
- *
- * CONSIDERATIONS FOR DEDUP:
- * In order for dedup to work, blocks that we want to dedup with one another
- * need to use the same IV and encryption key, so that they will have the same
- * ciphertext. Normally, one should never reuse an IV with the same encryption
- * key or else AES-GCM and AES-CCM can both actually leak the plaintext of both
- * blocks. In this case, however, since we are using the same plaintext as
- * well all that we end up with is a duplicate of the original ciphertext we
- * already had. As a result, an attacker with read access to the raw disk will
- * be able to tell which blocks are the same but this information is given away
- * by dedup anyway. In order to get the same IVs and encryption keys for
- * equivalent blocks of data we use an HMAC of the plaintext. We use an HMAC
- * here so that a reproducible checksum of the plaintext is never available to
- * the attacker. The HMAC key is kept alongside the master key, encrypted on
- * disk. The first 64 bits of the HMAC are used in place of the random salt, and
- * the next 96 bits are used as the IV. As a result of this mechanism, dedup
- * will only work within a clone family since encrypted dedup requires use of
- * the same master and HMAC keys.
- */
-
-/*
- * After encrypting many blocks with the same key we may start to run up
- * against the theoretical limits of how much data can securely be encrypted
- * with a single key using the supported encryption modes. The most obvious
- * limitation is that our risk of generating 2 equivalent 96 bit IVs increases
- * the more IVs we generate (which both GCM and CCM modes strictly forbid).
- * This risk actually grows surprisingly quickly over time according to the
- * Birthday Problem. With a total IV space of 2^(96 bits), and assuming we have
- * generated n IVs with a cryptographically secure RNG, the approximate
- * probability p(n) of a collision is given as:
- *
- * p(n) ~= e^(-n*(n-1)/(2*(2^96)))
- *
- * [http://www.math.cornell.edu/~mec/2008-2009/TianyiZheng/Birthday.html]
- *
- * Assuming that we want to ensure that p(n) never goes over 1 / 1 trillion
- * we must not write more than 398,065,730 blocks with the same encryption key.
- * Therefore, we rotate our keys after 400,000,000 blocks have been written by
- * generating a new random 64 bit salt for our HKDF encryption key generation
- * function.
- */
-#define ZFS_KEY_MAX_SALT_USES_DEFAULT 400000000
-#define ZFS_CURRENT_MAX_SALT_USES \
- (MIN(zfs_key_max_salt_uses, ZFS_KEY_MAX_SALT_USES_DEFAULT))
-unsigned long zfs_key_max_salt_uses = ZFS_KEY_MAX_SALT_USES_DEFAULT;
-
-typedef struct blkptr_auth_buf {
- uint64_t bab_prop; /* blk_prop - portable mask */
- uint8_t bab_mac[ZIO_DATA_MAC_LEN]; /* MAC from blk_cksum */
- uint64_t bab_pad; /* reserved for future use */
-} blkptr_auth_buf_t;
-
-zio_crypt_info_t zio_crypt_table[ZIO_CRYPT_FUNCTIONS] = {
- {"", ZC_TYPE_NONE, 0, "inherit"},
- {"", ZC_TYPE_NONE, 0, "on"},
- {"", ZC_TYPE_NONE, 0, "off"},
- {SUN_CKM_AES_CCM, ZC_TYPE_CCM, 16, "aes-128-ccm"},
- {SUN_CKM_AES_CCM, ZC_TYPE_CCM, 24, "aes-192-ccm"},
- {SUN_CKM_AES_CCM, ZC_TYPE_CCM, 32, "aes-256-ccm"},
- {SUN_CKM_AES_GCM, ZC_TYPE_GCM, 16, "aes-128-gcm"},
- {SUN_CKM_AES_GCM, ZC_TYPE_GCM, 24, "aes-192-gcm"},
- {SUN_CKM_AES_GCM, ZC_TYPE_GCM, 32, "aes-256-gcm"}
-};
-
-void
-zio_crypt_key_destroy(zio_crypt_key_t *key)
-{
- rw_destroy(&key->zk_salt_lock);
-
- /* free crypto templates */
- crypto_destroy_ctx_template(key->zk_current_tmpl);
- crypto_destroy_ctx_template(key->zk_hmac_tmpl);
-
- /* zero out sensitive data */
- bzero(key, sizeof (zio_crypt_key_t));
-}
-
-int
-zio_crypt_key_init(uint64_t crypt, zio_crypt_key_t *key)
-{
- int ret;
- crypto_mechanism_t mech;
- uint_t keydata_len;
-
- ASSERT(key != NULL);
- ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
-
- keydata_len = zio_crypt_table[crypt].ci_keylen;
- bzero(key, sizeof (zio_crypt_key_t));
-
- /* fill keydata buffers and salt with random data */
- ret = random_get_bytes((uint8_t *)&key->zk_guid, sizeof (uint64_t));
- if (ret != 0)
- goto error;
-
- ret = random_get_bytes(key->zk_master_keydata, keydata_len);
- if (ret != 0)
- goto error;
-
- ret = random_get_bytes(key->zk_hmac_keydata, SHA512_HMAC_KEYLEN);
- if (ret != 0)
- goto error;
-
- ret = random_get_bytes(key->zk_salt, ZIO_DATA_SALT_LEN);
- if (ret != 0)
- goto error;
-
- /* derive the current key from the master key */
- ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0,
- key->zk_salt, ZIO_DATA_SALT_LEN, key->zk_current_keydata,
- keydata_len);
- if (ret != 0)
- goto error;
-
- /* initialize keys for the ICP */
- key->zk_current_key.ck_format = CRYPTO_KEY_RAW;
- key->zk_current_key.ck_data = key->zk_current_keydata;
- key->zk_current_key.ck_length = CRYPTO_BYTES2BITS(keydata_len);
-
- key->zk_hmac_key.ck_format = CRYPTO_KEY_RAW;
- key->zk_hmac_key.ck_data = &key->zk_hmac_key;
- key->zk_hmac_key.ck_length = CRYPTO_BYTES2BITS(SHA512_HMAC_KEYLEN);
-
- /*
- * Initialize the crypto templates. It's ok if this fails because
- * this is just an optimization.
- */
- mech.cm_type = crypto_mech2id(zio_crypt_table[crypt].ci_mechname);
- ret = crypto_create_ctx_template(&mech, &key->zk_current_key,
- &key->zk_current_tmpl, KM_SLEEP);
- if (ret != CRYPTO_SUCCESS)
- key->zk_current_tmpl = NULL;
-
- mech.cm_type = crypto_mech2id(SUN_CKM_SHA512_HMAC);
- ret = crypto_create_ctx_template(&mech, &key->zk_hmac_key,
- &key->zk_hmac_tmpl, KM_SLEEP);
- if (ret != CRYPTO_SUCCESS)
- key->zk_hmac_tmpl = NULL;
-
- key->zk_crypt = crypt;
- key->zk_version = ZIO_CRYPT_KEY_CURRENT_VERSION;
- key->zk_salt_count = 0;
- rw_init(&key->zk_salt_lock, NULL, RW_DEFAULT, NULL);
-
- return (0);
-
-error:
- zio_crypt_key_destroy(key);
- return (ret);
-}
-
-static int
-zio_crypt_key_change_salt(zio_crypt_key_t *key)
-{
- int ret = 0;
- uint8_t salt[ZIO_DATA_SALT_LEN];
- crypto_mechanism_t mech;
- uint_t keydata_len = zio_crypt_table[key->zk_crypt].ci_keylen;
-
- /* generate a new salt */
- ret = random_get_bytes(salt, ZIO_DATA_SALT_LEN);
- if (ret != 0)
- goto error;
-
- rw_enter(&key->zk_salt_lock, RW_WRITER);
-
- /* someone beat us to the salt rotation, just unlock and return */
- if (key->zk_salt_count < ZFS_CURRENT_MAX_SALT_USES)
- goto out_unlock;
-
- /* derive the current key from the master key and the new salt */
- ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0,
- salt, ZIO_DATA_SALT_LEN, key->zk_current_keydata, keydata_len);
- if (ret != 0)
- goto out_unlock;
-
- /* assign the salt and reset the usage count */
- bcopy(salt, key->zk_salt, ZIO_DATA_SALT_LEN);
- key->zk_salt_count = 0;
-
- /* destroy the old context template and create the new one */
- crypto_destroy_ctx_template(key->zk_current_tmpl);
- ret = crypto_create_ctx_template(&mech, &key->zk_current_key,
- &key->zk_current_tmpl, KM_SLEEP);
- if (ret != CRYPTO_SUCCESS)
- key->zk_current_tmpl = NULL;
-
- rw_exit(&key->zk_salt_lock);
-
- return (0);
-
-out_unlock:
- rw_exit(&key->zk_salt_lock);
-error:
- return (ret);
-}
-
-/* See comment above zfs_key_max_salt_uses definition for details */
-int
-zio_crypt_key_get_salt(zio_crypt_key_t *key, uint8_t *salt)
-{
- int ret;
- boolean_t salt_change;
-
- rw_enter(&key->zk_salt_lock, RW_READER);
-
- bcopy(key->zk_salt, salt, ZIO_DATA_SALT_LEN);
- salt_change = (atomic_inc_64_nv(&key->zk_salt_count) >=
- ZFS_CURRENT_MAX_SALT_USES);
-
- rw_exit(&key->zk_salt_lock);
-
- if (salt_change) {
- ret = zio_crypt_key_change_salt(key);
- if (ret != 0)
- goto error;
- }
-
- return (0);
-
-error:
- return (ret);
-}
-
-/*
- * This function handles all encryption and decryption in zfs. When
- * encrypting it expects puio to reference the plaintext and cuio to
- * reference the ciphertext. cuio must have enough space for the
- * ciphertext + room for a MAC. datalen should be the length of the
- * plaintext / ciphertext alone.
- */
-static int
-zio_do_crypt_uio(boolean_t encrypt, uint64_t crypt, crypto_key_t *key,
- crypto_ctx_template_t tmpl, uint8_t *ivbuf, uint_t datalen,
- uio_t *puio, uio_t *cuio, uint8_t *authbuf, uint_t auth_len)
-{
- int ret;
- crypto_data_t plaindata, cipherdata;
- CK_AES_CCM_PARAMS ccmp;
- CK_AES_GCM_PARAMS gcmp;
- crypto_mechanism_t mech;
- zio_crypt_info_t crypt_info;
- uint_t plain_full_len, maclen;
-
- ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
- ASSERT3U(key->ck_format, ==, CRYPTO_KEY_RAW);
-
- /* lookup the encryption info */
- crypt_info = zio_crypt_table[crypt];
-
- /* the mac will always be the last iovec_t in the cipher uio */
- maclen = cuio->uio_iov[cuio->uio_iovcnt - 1].iov_len;
-
- ASSERT(maclen <= ZIO_DATA_MAC_LEN);
-
- /* setup encryption mechanism (same as crypt) */
- mech.cm_type = crypto_mech2id(crypt_info.ci_mechname);
-
- /*
- * Strangely, the ICP requires that plain_full_len must include
- * the MAC length when decrypting, even though the UIO does not
- * need to have the extra space allocated.
- */
- if (encrypt) {
- plain_full_len = datalen;
- } else {
- plain_full_len = datalen + maclen;
- }
-
- /*
- * setup encryption params (currently only AES CCM and AES GCM
- * are supported)
- */
- if (crypt_info.ci_crypt_type == ZC_TYPE_CCM) {
- ccmp.ulNonceSize = ZIO_DATA_IV_LEN;
- ccmp.ulAuthDataSize = auth_len;
- ccmp.authData = authbuf;
- ccmp.ulMACSize = maclen;
- ccmp.nonce = ivbuf;
- ccmp.ulDataSize = plain_full_len;
-
- mech.cm_param = (char *)(&ccmp);
- mech.cm_param_len = sizeof (CK_AES_CCM_PARAMS);
- } else {
- gcmp.ulIvLen = ZIO_DATA_IV_LEN;
- gcmp.ulIvBits = CRYPTO_BYTES2BITS(ZIO_DATA_IV_LEN);
- gcmp.ulAADLen = auth_len;
- gcmp.pAAD = authbuf;
- gcmp.ulTagBits = CRYPTO_BYTES2BITS(maclen);
- gcmp.pIv = ivbuf;
-
- mech.cm_param = (char *)(&gcmp);
- mech.cm_param_len = sizeof (CK_AES_GCM_PARAMS);
- }
-
- /* populate the cipher and plain data structs. */
- plaindata.cd_format = CRYPTO_DATA_UIO;
- plaindata.cd_offset = 0;
- plaindata.cd_uio = puio;
- plaindata.cd_miscdata = NULL;
- plaindata.cd_length = plain_full_len;
-
- cipherdata.cd_format = CRYPTO_DATA_UIO;
- cipherdata.cd_offset = 0;
- cipherdata.cd_uio = cuio;
- cipherdata.cd_miscdata = NULL;
- cipherdata.cd_length = datalen + maclen;
-
- /* perform the actual encryption */
- if (encrypt) {
- ret = crypto_encrypt(&mech, &plaindata, key, tmpl, &cipherdata,
- NULL);
- if (ret != CRYPTO_SUCCESS) {
- ret = SET_ERROR(EIO);
- goto error;
- }
- } else {
- ret = crypto_decrypt(&mech, &cipherdata, key, tmpl, &plaindata,
- NULL);
- if (ret != CRYPTO_SUCCESS) {
- ASSERT3U(ret, ==, CRYPTO_INVALID_MAC);
- ret = SET_ERROR(ECKSUM);
- goto error;
- }
- }
-
- return (0);
-
-error:
- return (ret);
-}
-
-int
-zio_crypt_key_wrap(crypto_key_t *cwkey, zio_crypt_key_t *key, uint8_t *iv,
- uint8_t *mac, uint8_t *keydata_out, uint8_t *hmac_keydata_out)
-{
- int ret;
- uio_t puio, cuio;
- uint64_t aad[3];
- iovec_t plain_iovecs[2], cipher_iovecs[3];
- uint64_t crypt = key->zk_crypt;
- uint_t enc_len, keydata_len, aad_len;
-
- ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
- ASSERT3U(cwkey->ck_format, ==, CRYPTO_KEY_RAW);
-
- keydata_len = zio_crypt_table[crypt].ci_keylen;
-
- /* generate iv for wrapping the master and hmac key */
- ret = random_get_pseudo_bytes(iv, WRAPPING_IV_LEN);
- if (ret != 0)
- goto error;
-
- /* initialize uio_ts */
- plain_iovecs[0].iov_base = key->zk_master_keydata;
- plain_iovecs[0].iov_len = keydata_len;
- plain_iovecs[1].iov_base = key->zk_hmac_keydata;
- plain_iovecs[1].iov_len = SHA512_HMAC_KEYLEN;
-
- cipher_iovecs[0].iov_base = keydata_out;
- cipher_iovecs[0].iov_len = keydata_len;
- cipher_iovecs[1].iov_base = hmac_keydata_out;
- cipher_iovecs[1].iov_len = SHA512_HMAC_KEYLEN;
- cipher_iovecs[2].iov_base = mac;
- cipher_iovecs[2].iov_len = WRAPPING_MAC_LEN;
-
- /*
- * Although we don't support writing to the old format, we do
- * support rewrapping the key so that the user can move and
- * quarantine datasets on the old format.
- */
- if (key->zk_version == 0) {
- aad_len = sizeof (uint64_t);
- aad[0] = LE_64(key->zk_guid);
- } else {
- ASSERT3U(key->zk_version, ==, ZIO_CRYPT_KEY_CURRENT_VERSION);
- aad_len = sizeof (uint64_t) * 3;
- aad[0] = LE_64(key->zk_guid);
- aad[1] = LE_64(crypt);
- aad[2] = LE_64(key->zk_version);
- }
-
- enc_len = zio_crypt_table[crypt].ci_keylen + SHA512_HMAC_KEYLEN;
- puio.uio_iov = plain_iovecs;
- puio.uio_iovcnt = 2;
- puio.uio_segflg = UIO_SYSSPACE;
- cuio.uio_iov = cipher_iovecs;
- cuio.uio_iovcnt = 3;
- cuio.uio_segflg = UIO_SYSSPACE;
-
- /* encrypt the keys and store the resulting ciphertext and mac */
- ret = zio_do_crypt_uio(B_TRUE, crypt, cwkey, NULL, iv, enc_len,
- &puio, &cuio, (uint8_t *)aad, aad_len);
- if (ret != 0)
- goto error;
-
- return (0);
-
-error:
- return (ret);
-}
-
-int
-zio_crypt_key_unwrap(crypto_key_t *cwkey, uint64_t crypt, uint64_t version,
- uint64_t guid, uint8_t *keydata, uint8_t *hmac_keydata, uint8_t *iv,
- uint8_t *mac, zio_crypt_key_t *key)
-{
- int ret;
- crypto_mechanism_t mech;
- uio_t puio, cuio;
- uint64_t aad[3];
- iovec_t plain_iovecs[2], cipher_iovecs[3];
- uint_t enc_len, keydata_len, aad_len;
-
- ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
- ASSERT3U(cwkey->ck_format, ==, CRYPTO_KEY_RAW);
-
- rw_init(&key->zk_salt_lock, NULL, RW_DEFAULT, NULL);
-
- keydata_len = zio_crypt_table[crypt].ci_keylen;
-
- /* initialize uio_ts */
- plain_iovecs[0].iov_base = key->zk_master_keydata;
- plain_iovecs[0].iov_len = keydata_len;
- plain_iovecs[1].iov_base = key->zk_hmac_keydata;
- plain_iovecs[1].iov_len = SHA512_HMAC_KEYLEN;
-
- cipher_iovecs[0].iov_base = keydata;
- cipher_iovecs[0].iov_len = keydata_len;
- cipher_iovecs[1].iov_base = hmac_keydata;
- cipher_iovecs[1].iov_len = SHA512_HMAC_KEYLEN;
- cipher_iovecs[2].iov_base = mac;
- cipher_iovecs[2].iov_len = WRAPPING_MAC_LEN;
-
- if (version == 0) {
- aad_len = sizeof (uint64_t);
- aad[0] = LE_64(guid);
- } else {
- ASSERT3U(version, ==, ZIO_CRYPT_KEY_CURRENT_VERSION);
- aad_len = sizeof (uint64_t) * 3;
- aad[0] = LE_64(guid);
- aad[1] = LE_64(crypt);
- aad[2] = LE_64(version);
- }
-
- enc_len = keydata_len + SHA512_HMAC_KEYLEN;
- puio.uio_iov = plain_iovecs;
- puio.uio_segflg = UIO_SYSSPACE;
- puio.uio_iovcnt = 2;
- cuio.uio_iov = cipher_iovecs;
- cuio.uio_iovcnt = 3;
- cuio.uio_segflg = UIO_SYSSPACE;
-
- /* decrypt the keys and store the result in the output buffers */
- ret = zio_do_crypt_uio(B_FALSE, crypt, cwkey, NULL, iv, enc_len,
- &puio, &cuio, (uint8_t *)aad, aad_len);
- if (ret != 0)
- goto error;
-
- /* generate a fresh salt */
- ret = random_get_bytes(key->zk_salt, ZIO_DATA_SALT_LEN);
- if (ret != 0)
- goto error;
-
- /* derive the current key from the master key */
- ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0,
- key->zk_salt, ZIO_DATA_SALT_LEN, key->zk_current_keydata,
- keydata_len);
- if (ret != 0)
- goto error;
-
- /* initialize keys for ICP */
- key->zk_current_key.ck_format = CRYPTO_KEY_RAW;
- key->zk_current_key.ck_data = key->zk_current_keydata;
- key->zk_current_key.ck_length = CRYPTO_BYTES2BITS(keydata_len);
-
- key->zk_hmac_key.ck_format = CRYPTO_KEY_RAW;
- key->zk_hmac_key.ck_data = key->zk_hmac_keydata;
- key->zk_hmac_key.ck_length = CRYPTO_BYTES2BITS(SHA512_HMAC_KEYLEN);
-
- /*
- * Initialize the crypto templates. It's ok if this fails because
- * this is just an optimization.
- */
- mech.cm_type = crypto_mech2id(zio_crypt_table[crypt].ci_mechname);
- ret = crypto_create_ctx_template(&mech, &key->zk_current_key,
- &key->zk_current_tmpl, KM_SLEEP);
- if (ret != CRYPTO_SUCCESS)
- key->zk_current_tmpl = NULL;
-
- mech.cm_type = crypto_mech2id(SUN_CKM_SHA512_HMAC);
- ret = crypto_create_ctx_template(&mech, &key->zk_hmac_key,
- &key->zk_hmac_tmpl, KM_SLEEP);
- if (ret != CRYPTO_SUCCESS)
- key->zk_hmac_tmpl = NULL;
-
- key->zk_crypt = crypt;
- key->zk_version = version;
- key->zk_guid = guid;
- key->zk_salt_count = 0;
-
- return (0);
-
-error:
- zio_crypt_key_destroy(key);
- return (ret);
-}
-
-int
-zio_crypt_generate_iv(uint8_t *ivbuf)
-{
- int ret;
-
- /* randomly generate the IV */
- ret = random_get_pseudo_bytes(ivbuf, ZIO_DATA_IV_LEN);
- if (ret != 0)
- goto error;
-
- return (0);
-
-error:
- bzero(ivbuf, ZIO_DATA_IV_LEN);
- return (ret);
-}
-
-int
-zio_crypt_do_hmac(zio_crypt_key_t *key, uint8_t *data, uint_t datalen,
- uint8_t *digestbuf, uint_t digestlen)
-{
- int ret;
- crypto_mechanism_t mech;
- crypto_data_t in_data, digest_data;
- uint8_t raw_digestbuf[SHA512_DIGEST_LENGTH];
-
- ASSERT3U(digestlen, <=, SHA512_DIGEST_LENGTH);
-
- /* initialize sha512-hmac mechanism and crypto data */
- mech.cm_type = crypto_mech2id(SUN_CKM_SHA512_HMAC);
- mech.cm_param = NULL;
- mech.cm_param_len = 0;
-
- /* initialize the crypto data */
- in_data.cd_format = CRYPTO_DATA_RAW;
- in_data.cd_offset = 0;
- in_data.cd_length = datalen;
- in_data.cd_raw.iov_base = (char *)data;
- in_data.cd_raw.iov_len = in_data.cd_length;
-
- digest_data.cd_format = CRYPTO_DATA_RAW;
- digest_data.cd_offset = 0;
- digest_data.cd_length = SHA512_DIGEST_LENGTH;
- digest_data.cd_raw.iov_base = (char *)raw_digestbuf;
- digest_data.cd_raw.iov_len = digest_data.cd_length;
-
- /* generate the hmac */
- ret = crypto_mac(&mech, &in_data, &key->zk_hmac_key, key->zk_hmac_tmpl,
- &digest_data, NULL);
- if (ret != CRYPTO_SUCCESS) {
- ret = SET_ERROR(EIO);
- goto error;
- }
-
- bcopy(raw_digestbuf, digestbuf, digestlen);
-
- return (0);
-
-error:
- bzero(digestbuf, digestlen);
- return (ret);
-}
-
-int
-zio_crypt_generate_iv_salt_dedup(zio_crypt_key_t *key, uint8_t *data,
- uint_t datalen, uint8_t *ivbuf, uint8_t *salt)
-{
- int ret;
- uint8_t digestbuf[SHA512_DIGEST_LENGTH];
-
- ret = zio_crypt_do_hmac(key, data, datalen,
- digestbuf, SHA512_DIGEST_LENGTH);
- if (ret != 0)
- return (ret);
-
- bcopy(digestbuf, salt, ZIO_DATA_SALT_LEN);
- bcopy(digestbuf + ZIO_DATA_SALT_LEN, ivbuf, ZIO_DATA_IV_LEN);
-
- return (0);
-}
-
-/*
- * The following functions are used to encode and decode encryption parameters
- * into blkptr_t and zil_header_t. The ICP wants to use these parameters as
- * byte strings, which normally means that these strings would not need to deal
- * with byteswapping at all. However, both blkptr_t and zil_header_t may be
- * byteswapped by lower layers and so we must "undo" that byteswap here upon
- * decoding and encoding in a non-native byteorder. These functions require
- * that the byteorder bit is correct before being called.
- */
-void
-zio_crypt_encode_params_bp(blkptr_t *bp, uint8_t *salt, uint8_t *iv)
-{
- uint64_t val64;
- uint32_t val32;
-
- ASSERT(BP_IS_ENCRYPTED(bp));
-
- if (!BP_SHOULD_BYTESWAP(bp)) {
- bcopy(salt, &bp->blk_dva[2].dva_word[0], sizeof (uint64_t));
- bcopy(iv, &bp->blk_dva[2].dva_word[1], sizeof (uint64_t));
- bcopy(iv + sizeof (uint64_t), &val32, sizeof (uint32_t));
- BP_SET_IV2(bp, val32);
- } else {
- bcopy(salt, &val64, sizeof (uint64_t));
- bp->blk_dva[2].dva_word[0] = BSWAP_64(val64);
-
- bcopy(iv, &val64, sizeof (uint64_t));
- bp->blk_dva[2].dva_word[1] = BSWAP_64(val64);
-
- bcopy(iv + sizeof (uint64_t), &val32, sizeof (uint32_t));
- BP_SET_IV2(bp, BSWAP_32(val32));
- }
-}
-
-void
-zio_crypt_decode_params_bp(const blkptr_t *bp, uint8_t *salt, uint8_t *iv)
-{
- uint64_t val64;
- uint32_t val32;
-
- ASSERT(BP_IS_PROTECTED(bp));
-
- /* for convenience, so callers don't need to check */
- if (BP_IS_AUTHENTICATED(bp)) {
- bzero(salt, ZIO_DATA_SALT_LEN);
- bzero(iv, ZIO_DATA_IV_LEN);
- return;
- }
-
- if (!BP_SHOULD_BYTESWAP(bp)) {
- bcopy(&bp->blk_dva[2].dva_word[0], salt, sizeof (uint64_t));
- bcopy(&bp->blk_dva[2].dva_word[1], iv, sizeof (uint64_t));
-
- val32 = (uint32_t)BP_GET_IV2(bp);
- bcopy(&val32, iv + sizeof (uint64_t), sizeof (uint32_t));
- } else {
- val64 = BSWAP_64(bp->blk_dva[2].dva_word[0]);
- bcopy(&val64, salt, sizeof (uint64_t));
-
- val64 = BSWAP_64(bp->blk_dva[2].dva_word[1]);
- bcopy(&val64, iv, sizeof (uint64_t));
-
- val32 = BSWAP_32((uint32_t)BP_GET_IV2(bp));
- bcopy(&val32, iv + sizeof (uint64_t), sizeof (uint32_t));
- }
-}
-
-void
-zio_crypt_encode_mac_bp(blkptr_t *bp, uint8_t *mac)
-{
- uint64_t val64;
-
- ASSERT(BP_USES_CRYPT(bp));
- ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_OBJSET);
-
- if (!BP_SHOULD_BYTESWAP(bp)) {
- bcopy(mac, &bp->blk_cksum.zc_word[2], sizeof (uint64_t));
- bcopy(mac + sizeof (uint64_t), &bp->blk_cksum.zc_word[3],
- sizeof (uint64_t));
- } else {
- bcopy(mac, &val64, sizeof (uint64_t));
- bp->blk_cksum.zc_word[2] = BSWAP_64(val64);
-
- bcopy(mac + sizeof (uint64_t), &val64, sizeof (uint64_t));
- bp->blk_cksum.zc_word[3] = BSWAP_64(val64);
- }
-}
-
-void
-zio_crypt_decode_mac_bp(const blkptr_t *bp, uint8_t *mac)
-{
- uint64_t val64;
-
- ASSERT(BP_USES_CRYPT(bp) || BP_IS_HOLE(bp));
-
- /* for convenience, so callers don't need to check */
- if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
- bzero(mac, ZIO_DATA_MAC_LEN);
- return;
- }
-
- if (!BP_SHOULD_BYTESWAP(bp)) {
- bcopy(&bp->blk_cksum.zc_word[2], mac, sizeof (uint64_t));
- bcopy(&bp->blk_cksum.zc_word[3], mac + sizeof (uint64_t),
- sizeof (uint64_t));
- } else {
- val64 = BSWAP_64(bp->blk_cksum.zc_word[2]);
- bcopy(&val64, mac, sizeof (uint64_t));
-
- val64 = BSWAP_64(bp->blk_cksum.zc_word[3]);
- bcopy(&val64, mac + sizeof (uint64_t), sizeof (uint64_t));
- }
-}
-
-void
-zio_crypt_encode_mac_zil(void *data, uint8_t *mac)
-{
- zil_chain_t *zilc = data;
-
- bcopy(mac, &zilc->zc_eck.zec_cksum.zc_word[2], sizeof (uint64_t));
- bcopy(mac + sizeof (uint64_t), &zilc->zc_eck.zec_cksum.zc_word[3],
- sizeof (uint64_t));
-}
-
-void
-zio_crypt_decode_mac_zil(const void *data, uint8_t *mac)
-{
- /*
- * The ZIL MAC is embedded in the block it protects, which will
- * not have been byteswapped by the time this function has been called.
- * As a result, we don't need to worry about byteswapping the MAC.
- */
- const zil_chain_t *zilc = data;
-
- bcopy(&zilc->zc_eck.zec_cksum.zc_word[2], mac, sizeof (uint64_t));
- bcopy(&zilc->zc_eck.zec_cksum.zc_word[3], mac + sizeof (uint64_t),
- sizeof (uint64_t));
-}
-
-/*
- * This routine takes a block of dnodes (src_abd) and copies only the bonus
- * buffers to the same offsets in the dst buffer. datalen should be the size
- * of both the src_abd and the dst buffer (not just the length of the bonus
- * buffers).
- */
-void
-zio_crypt_copy_dnode_bonus(abd_t *src_abd, uint8_t *dst, uint_t datalen)
-{
- uint_t i, max_dnp = datalen >> DNODE_SHIFT;
- uint8_t *src;
- dnode_phys_t *dnp, *sdnp, *ddnp;
-
- src = abd_borrow_buf_copy(src_abd, datalen);
-
- sdnp = (dnode_phys_t *)src;
- ddnp = (dnode_phys_t *)dst;
-
- for (i = 0; i < max_dnp; i += sdnp[i].dn_extra_slots + 1) {
- dnp = &sdnp[i];
- if (dnp->dn_type != DMU_OT_NONE &&
- DMU_OT_IS_ENCRYPTED(dnp->dn_bonustype) &&
- dnp->dn_bonuslen != 0) {
- bcopy(DN_BONUS(dnp), DN_BONUS(&ddnp[i]),
- DN_MAX_BONUS_LEN(dnp));
- }
- }
-
- abd_return_buf(src_abd, src, datalen);
-}
-
-/*
- * This function decides what fields from blk_prop are included in
- * the on-disk various MAC algorithms.
- */
-static void
-zio_crypt_bp_zero_nonportable_blkprop(blkptr_t *bp, uint64_t version)
-{
- /*
- * Version 0 did not properly zero out all non-portable fields
- * as it should have done. We maintain this code so that we can
- * do read-only imports of pools on this version.
- */
- if (version == 0) {
- BP_SET_DEDUP(bp, 0);
- BP_SET_CHECKSUM(bp, 0);
- BP_SET_PSIZE(bp, SPA_MINBLOCKSIZE);
- return;
- }
-
- ASSERT3U(version, ==, ZIO_CRYPT_KEY_CURRENT_VERSION);
-
- /*
- * The hole_birth feature might set these fields even if this bp
- * is a hole. We zero them out here to guarantee that raw sends
- * will function with or without the feature.
- */
- if (BP_IS_HOLE(bp)) {
- bp->blk_prop = 0ULL;
- return;
- }
-
- /*
- * At L0 we want to verify these fields to ensure that data blocks
- * can not be reinterpreted. For instance, we do not want an attacker
- * to trick us into returning raw lz4 compressed data to the user
- * by modifying the compression bits. At higher levels, we cannot
- * enforce this policy since raw sends do not convey any information
- * about indirect blocks, so these values might be different on the
- * receive side. Fortunately, this does not open any new attack
- * vectors, since any alterations that can be made to a higher level
- * bp must still verify the correct order of the layer below it.
- */
- if (BP_GET_LEVEL(bp) != 0) {
- BP_SET_BYTEORDER(bp, 0);
- BP_SET_COMPRESS(bp, 0);
-
- /*
- * psize cannot be set to zero or it will trigger
- * asserts, but the value doesn't really matter as
- * long as it is constant.
- */
- BP_SET_PSIZE(bp, SPA_MINBLOCKSIZE);
- }
-
- BP_SET_DEDUP(bp, 0);
- BP_SET_CHECKSUM(bp, 0);
-}
-
-static void
-zio_crypt_bp_auth_init(uint64_t version, boolean_t should_bswap, blkptr_t *bp,
- blkptr_auth_buf_t *bab, uint_t *bab_len)
-{
- blkptr_t tmpbp = *bp;
-
- if (should_bswap)
- byteswap_uint64_array(&tmpbp, sizeof (blkptr_t));
-
- ASSERT(BP_USES_CRYPT(&tmpbp) || BP_IS_HOLE(&tmpbp));
- ASSERT0(BP_IS_EMBEDDED(&tmpbp));
-
- zio_crypt_decode_mac_bp(&tmpbp, bab->bab_mac);
-
- /*
- * We always MAC blk_prop in LE to ensure portability. This
- * must be done after decoding the mac, since the endianness
- * will get zero'd out here.
- */
- zio_crypt_bp_zero_nonportable_blkprop(&tmpbp, version);
- bab->bab_prop = LE_64(tmpbp.blk_prop);
- bab->bab_pad = 0ULL;
-
- /* version 0 did not include the padding */
- *bab_len = sizeof (blkptr_auth_buf_t);
- if (version == 0)
- *bab_len -= sizeof (uint64_t);
-}
-
-static int
-zio_crypt_bp_do_hmac_updates(crypto_context_t ctx, uint64_t version,
- boolean_t should_bswap, blkptr_t *bp)
-{
- int ret;
- uint_t bab_len;
- blkptr_auth_buf_t bab;
- crypto_data_t cd;
-
- zio_crypt_bp_auth_init(version, should_bswap, bp, &bab, &bab_len);
- cd.cd_format = CRYPTO_DATA_RAW;
- cd.cd_offset = 0;
- cd.cd_length = bab_len;
- cd.cd_raw.iov_base = (char *)&bab;
- cd.cd_raw.iov_len = cd.cd_length;
-
- ret = crypto_mac_update(ctx, &cd, NULL);
- if (ret != CRYPTO_SUCCESS) {
- ret = SET_ERROR(EIO);
- goto error;
- }
-
- return (0);
-
-error:
- return (ret);
-}
-
-static void
-zio_crypt_bp_do_indrect_checksum_updates(SHA2_CTX *ctx, uint64_t version,
- boolean_t should_bswap, blkptr_t *bp)
-{
- uint_t bab_len;
- blkptr_auth_buf_t bab;
-
- zio_crypt_bp_auth_init(version, should_bswap, bp, &bab, &bab_len);
- SHA2Update(ctx, &bab, bab_len);
-}
-
-static void
-zio_crypt_bp_do_aad_updates(uint8_t **aadp, uint_t *aad_len, uint64_t version,
- boolean_t should_bswap, blkptr_t *bp)
-{
- uint_t bab_len;
- blkptr_auth_buf_t bab;
-
- zio_crypt_bp_auth_init(version, should_bswap, bp, &bab, &bab_len);
- bcopy(&bab, *aadp, bab_len);
- *aadp += bab_len;
- *aad_len += bab_len;
-}
-
-static int
-zio_crypt_do_dnode_hmac_updates(crypto_context_t ctx, uint64_t version,
- boolean_t should_bswap, dnode_phys_t *dnp)
-{
- int ret, i;
- dnode_phys_t *adnp;
- boolean_t le_bswap = (should_bswap == ZFS_HOST_BYTEORDER);
- crypto_data_t cd;
- uint8_t tmp_dncore[offsetof(dnode_phys_t, dn_blkptr)];
-
- cd.cd_format = CRYPTO_DATA_RAW;
- cd.cd_offset = 0;
-
- /* authenticate the core dnode (masking out non-portable bits) */
- bcopy(dnp, tmp_dncore, sizeof (tmp_dncore));
- adnp = (dnode_phys_t *)tmp_dncore;
- if (le_bswap) {
- adnp->dn_datablkszsec = BSWAP_16(adnp->dn_datablkszsec);
- adnp->dn_bonuslen = BSWAP_16(adnp->dn_bonuslen);
- adnp->dn_maxblkid = BSWAP_64(adnp->dn_maxblkid);
- adnp->dn_used = BSWAP_64(adnp->dn_used);
- }
- adnp->dn_flags &= DNODE_CRYPT_PORTABLE_FLAGS_MASK;
- adnp->dn_used = 0;
-
- cd.cd_length = sizeof (tmp_dncore);
- cd.cd_raw.iov_base = (char *)adnp;
- cd.cd_raw.iov_len = cd.cd_length;
-
- ret = crypto_mac_update(ctx, &cd, NULL);
- if (ret != CRYPTO_SUCCESS) {
- ret = SET_ERROR(EIO);
- goto error;
- }
-
- for (i = 0; i < dnp->dn_nblkptr; i++) {
- ret = zio_crypt_bp_do_hmac_updates(ctx, version,
- should_bswap, &dnp->dn_blkptr[i]);
- if (ret != 0)
- goto error;
- }
-
- if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
- ret = zio_crypt_bp_do_hmac_updates(ctx, version,
- should_bswap, DN_SPILL_BLKPTR(dnp));
- if (ret != 0)
- goto error;
- }
-
- return (0);
-
-error:
- return (ret);
-}
-
-/*
- * objset_phys_t blocks introduce a number of exceptions to the normal
- * authentication process. objset_phys_t's contain 2 separate HMACS for
- * protecting the integrity of their data. The portable_mac protects the
- * metadnode. This MAC can be sent with a raw send and protects against
- * reordering of data within the metadnode. The local_mac protects the user
- * accounting objects which are not sent from one system to another.
- *
- * In addition, objset blocks are the only blocks that can be modified and
- * written to disk without the key loaded under certain circumstances. During
- * zil_claim() we need to be able to update the zil_header_t to complete
- * claiming log blocks and during raw receives we need to write out the
- * portable_mac from the send file. Both of these actions are possible
- * because these fields are not protected by either MAC so neither one will
- * need to modify the MACs without the key. However, when the modified blocks
- * are written out they will be byteswapped into the host machine's native
- * endianness which will modify fields protected by the MAC. As a result, MAC
- * calculation for objset blocks works slightly differently from other block
- * types. Where other block types MAC the data in whatever endianness is
- * written to disk, objset blocks always MAC little endian version of their
- * values. In the code, should_bswap is the value from BP_SHOULD_BYTESWAP()
- * and le_bswap indicates whether a byteswap is needed to get this block
- * into little endian format.
- */
-int
-zio_crypt_do_objset_hmacs(zio_crypt_key_t *key, void *data, uint_t datalen,
- boolean_t should_bswap, uint8_t *portable_mac, uint8_t *local_mac)
-{
- int ret;
- crypto_mechanism_t mech;
- crypto_context_t ctx;
- crypto_data_t cd;
- objset_phys_t *osp = data;
- uint64_t intval;
- boolean_t le_bswap = (should_bswap == ZFS_HOST_BYTEORDER);
- uint8_t raw_portable_mac[SHA512_DIGEST_LENGTH];
- uint8_t raw_local_mac[SHA512_DIGEST_LENGTH];
-
- /* initialize HMAC mechanism */
- mech.cm_type = crypto_mech2id(SUN_CKM_SHA512_HMAC);
- mech.cm_param = NULL;
- mech.cm_param_len = 0;
-
- cd.cd_format = CRYPTO_DATA_RAW;
- cd.cd_offset = 0;
-
- /* calculate the portable MAC from the portable fields and metadnode */
- ret = crypto_mac_init(&mech, &key->zk_hmac_key, NULL, &ctx, NULL);
- if (ret != CRYPTO_SUCCESS) {
- ret = SET_ERROR(EIO);
- goto error;
- }
-
- /* add in the os_type */
- intval = (le_bswap) ? osp->os_type : BSWAP_64(osp->os_type);
- cd.cd_length = sizeof (uint64_t);
- cd.cd_raw.iov_base = (char *)&intval;
- cd.cd_raw.iov_len = cd.cd_length;
-
- ret = crypto_mac_update(ctx, &cd, NULL);
- if (ret != CRYPTO_SUCCESS) {
- ret = SET_ERROR(EIO);
- goto error;
- }
-
- /* add in the portable os_flags */
- intval = osp->os_flags;
- if (should_bswap)
- intval = BSWAP_64(intval);
- intval &= OBJSET_CRYPT_PORTABLE_FLAGS_MASK;
- if (!ZFS_HOST_BYTEORDER)
- intval = BSWAP_64(intval);
-
- cd.cd_length = sizeof (uint64_t);
- cd.cd_raw.iov_base = (char *)&intval;
- cd.cd_raw.iov_len = cd.cd_length;
-
- ret = crypto_mac_update(ctx, &cd, NULL);
- if (ret != CRYPTO_SUCCESS) {
- ret = SET_ERROR(EIO);
- goto error;
- }
-
- /* add in fields from the metadnode */
- ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version,
- should_bswap, &osp->os_meta_dnode);
- if (ret)
- goto error;
-
- /* store the final digest in a temporary buffer and copy what we need */
- cd.cd_length = SHA512_DIGEST_LENGTH;
- cd.cd_raw.iov_base = (char *)raw_portable_mac;
- cd.cd_raw.iov_len = cd.cd_length;
-
- ret = crypto_mac_final(ctx, &cd, NULL);
- if (ret != CRYPTO_SUCCESS) {
- ret = SET_ERROR(EIO);
- goto error;
- }
-
- bcopy(raw_portable_mac, portable_mac, ZIO_OBJSET_MAC_LEN);
-
- /*
- * The local MAC protects the user, group and project accounting.
- * If these objects are not present, the local MAC is zeroed out.
- */
- if ((datalen >= OBJSET_PHYS_SIZE_V3 &&
- osp->os_userused_dnode.dn_type == DMU_OT_NONE &&
- osp->os_groupused_dnode.dn_type == DMU_OT_NONE &&
- osp->os_projectused_dnode.dn_type == DMU_OT_NONE) ||
- (datalen >= OBJSET_PHYS_SIZE_V2 &&
- osp->os_userused_dnode.dn_type == DMU_OT_NONE &&
- osp->os_groupused_dnode.dn_type == DMU_OT_NONE) ||
- (datalen <= OBJSET_PHYS_SIZE_V1)) {
- bzero(local_mac, ZIO_OBJSET_MAC_LEN);
- return (0);
- }
-
- /* calculate the local MAC from the userused and groupused dnodes */
- ret = crypto_mac_init(&mech, &key->zk_hmac_key, NULL, &ctx, NULL);
- if (ret != CRYPTO_SUCCESS) {
- ret = SET_ERROR(EIO);
- goto error;
- }
-
- /* add in the non-portable os_flags */
- intval = osp->os_flags;
- if (should_bswap)
- intval = BSWAP_64(intval);
- intval &= ~OBJSET_CRYPT_PORTABLE_FLAGS_MASK;
- if (!ZFS_HOST_BYTEORDER)
- intval = BSWAP_64(intval);
-
- cd.cd_length = sizeof (uint64_t);
- cd.cd_raw.iov_base = (char *)&intval;
- cd.cd_raw.iov_len = cd.cd_length;
-
- ret = crypto_mac_update(ctx, &cd, NULL);
- if (ret != CRYPTO_SUCCESS) {
- ret = SET_ERROR(EIO);
- goto error;
- }
-
- /* add in fields from the user accounting dnodes */
- if (osp->os_userused_dnode.dn_type != DMU_OT_NONE) {
- ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version,
- should_bswap, &osp->os_userused_dnode);
- if (ret)
- goto error;
- }
-
- if (osp->os_groupused_dnode.dn_type != DMU_OT_NONE) {
- ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version,
- should_bswap, &osp->os_groupused_dnode);
- if (ret)
- goto error;
- }
-
- if (osp->os_projectused_dnode.dn_type != DMU_OT_NONE &&
- datalen >= OBJSET_PHYS_SIZE_V3) {
- ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version,
- should_bswap, &osp->os_projectused_dnode);
- if (ret)
- goto error;
- }
-
- /* store the final digest in a temporary buffer and copy what we need */
- cd.cd_length = SHA512_DIGEST_LENGTH;
- cd.cd_raw.iov_base = (char *)raw_local_mac;
- cd.cd_raw.iov_len = cd.cd_length;
-
- ret = crypto_mac_final(ctx, &cd, NULL);
- if (ret != CRYPTO_SUCCESS) {
- ret = SET_ERROR(EIO);
- goto error;
- }
-
- bcopy(raw_local_mac, local_mac, ZIO_OBJSET_MAC_LEN);
-
- return (0);
-
-error:
- bzero(portable_mac, ZIO_OBJSET_MAC_LEN);
- bzero(local_mac, ZIO_OBJSET_MAC_LEN);
- return (ret);
-}
-
-static void
-zio_crypt_destroy_uio(uio_t *uio)
-{
- if (uio->uio_iov)
- kmem_free(uio->uio_iov, uio->uio_iovcnt * sizeof (iovec_t));
-}
-
-/*
- * This function parses an uncompressed indirect block and returns a checksum
- * of all the portable fields from all of the contained bps. The portable
- * fields are the MAC and all of the fields from blk_prop except for the dedup,
- * checksum, and psize bits. For an explanation of the purpose of this, see
- * the comment block on object set authentication.
- */
-static int
-zio_crypt_do_indirect_mac_checksum_impl(boolean_t generate, void *buf,
- uint_t datalen, uint64_t version, boolean_t byteswap, uint8_t *cksum)
-{
- blkptr_t *bp;
- int i, epb = datalen >> SPA_BLKPTRSHIFT;
- SHA2_CTX ctx;
- uint8_t digestbuf[SHA512_DIGEST_LENGTH];
-
- /* checksum all of the MACs from the layer below */
- SHA2Init(SHA512, &ctx);
- for (i = 0, bp = buf; i < epb; i++, bp++) {
- zio_crypt_bp_do_indrect_checksum_updates(&ctx, version,
- byteswap, bp);
- }
- SHA2Final(digestbuf, &ctx);
-
- if (generate) {
- bcopy(digestbuf, cksum, ZIO_DATA_MAC_LEN);
- return (0);
- }
-
- if (bcmp(digestbuf, cksum, ZIO_DATA_MAC_LEN) != 0)
- return (SET_ERROR(ECKSUM));
-
- return (0);
-}
-
-int
-zio_crypt_do_indirect_mac_checksum(boolean_t generate, void *buf,
- uint_t datalen, boolean_t byteswap, uint8_t *cksum)
-{
- int ret;
-
- /*
- * Unfortunately, callers of this function will not always have
- * easy access to the on-disk format version. This info is
- * normally found in the DSL Crypto Key, but the checksum-of-MACs
- * is expected to be verifiable even when the key isn't loaded.
- * Here, instead of doing a ZAP lookup for the version for each
- * zio, we simply try both existing formats.
- */
- ret = zio_crypt_do_indirect_mac_checksum_impl(generate, buf,
- datalen, ZIO_CRYPT_KEY_CURRENT_VERSION, byteswap, cksum);
- if (ret == ECKSUM) {
- ASSERT(!generate);
- ret = zio_crypt_do_indirect_mac_checksum_impl(generate,
- buf, datalen, 0, byteswap, cksum);
- }
-
- return (ret);
-}
-
-int
-zio_crypt_do_indirect_mac_checksum_abd(boolean_t generate, abd_t *abd,
- uint_t datalen, boolean_t byteswap, uint8_t *cksum)
-{
- int ret;
- void *buf;
-
- buf = abd_borrow_buf_copy(abd, datalen);
- ret = zio_crypt_do_indirect_mac_checksum(generate, buf, datalen,
- byteswap, cksum);
- abd_return_buf(abd, buf, datalen);
-
- return (ret);
-}
-
-/*
- * Special case handling routine for encrypting / decrypting ZIL blocks.
- * We do not check for the older ZIL chain because the encryption feature
- * was not available before the newer ZIL chain was introduced. The goal
- * here is to encrypt everything except the blkptr_t of a lr_write_t and
- * the zil_chain_t header. Everything that is not encrypted is authenticated.
- */
-static int
-zio_crypt_init_uios_zil(boolean_t encrypt, uint8_t *plainbuf,
- uint8_t *cipherbuf, uint_t datalen, boolean_t byteswap, uio_t *puio,
- uio_t *cuio, uint_t *enc_len, uint8_t **authbuf, uint_t *auth_len,
- boolean_t *no_crypt)
-{
- int ret;
- uint64_t txtype, lr_len;
- uint_t nr_src, nr_dst, crypt_len;
- uint_t aad_len = 0, nr_iovecs = 0, total_len = 0;
- iovec_t *src_iovecs = NULL, *dst_iovecs = NULL;
- uint8_t *src, *dst, *slrp, *dlrp, *blkend, *aadp;
- zil_chain_t *zilc;
- lr_t *lr;
- uint8_t *aadbuf = zio_buf_alloc(datalen);
-
- /* cipherbuf always needs an extra iovec for the MAC */
- if (encrypt) {
- src = plainbuf;
- dst = cipherbuf;
- nr_src = 0;
- nr_dst = 1;
- } else {
- src = cipherbuf;
- dst = plainbuf;
- nr_src = 1;
- nr_dst = 0;
- }
-
- /* find the start and end record of the log block */
- zilc = (zil_chain_t *)src;
- slrp = src + sizeof (zil_chain_t);
- aadp = aadbuf;
- blkend = src + ((byteswap) ? BSWAP_64(zilc->zc_nused) : zilc->zc_nused);
-
- /* calculate the number of encrypted iovecs we will need */
- for (; slrp < blkend; slrp += lr_len) {
- lr = (lr_t *)slrp;
-
- if (!byteswap) {
- txtype = lr->lrc_txtype;
- lr_len = lr->lrc_reclen;
- } else {
- txtype = BSWAP_64(lr->lrc_txtype);
- lr_len = BSWAP_64(lr->lrc_reclen);
- }
-
- nr_iovecs++;
- if (txtype == TX_WRITE && lr_len != sizeof (lr_write_t))
- nr_iovecs++;
- }
-
- nr_src += nr_iovecs;
- nr_dst += nr_iovecs;
-
- /* allocate the iovec arrays */
- if (nr_src != 0) {
- src_iovecs = kmem_alloc(nr_src * sizeof (iovec_t), KM_SLEEP);
- if (src_iovecs == NULL) {
- ret = SET_ERROR(ENOMEM);
- goto error;
- }
- }
-
- if (nr_dst != 0) {
- dst_iovecs = kmem_alloc(nr_dst * sizeof (iovec_t), KM_SLEEP);
- if (dst_iovecs == NULL) {
- ret = SET_ERROR(ENOMEM);
- goto error;
- }
- }
-
- /*
- * Copy the plain zil header over and authenticate everything except
- * the checksum that will store our MAC. If we are writing the data
- * the embedded checksum will not have been calculated yet, so we don't
- * authenticate that.
- */
- bcopy(src, dst, sizeof (zil_chain_t));
- bcopy(src, aadp, sizeof (zil_chain_t) - sizeof (zio_eck_t));
- aadp += sizeof (zil_chain_t) - sizeof (zio_eck_t);
- aad_len += sizeof (zil_chain_t) - sizeof (zio_eck_t);
-
- /* loop over records again, filling in iovecs */
- nr_iovecs = 0;
- slrp = src + sizeof (zil_chain_t);
- dlrp = dst + sizeof (zil_chain_t);
-
- for (; slrp < blkend; slrp += lr_len, dlrp += lr_len) {
- lr = (lr_t *)slrp;
-
- if (!byteswap) {
- txtype = lr->lrc_txtype;
- lr_len = lr->lrc_reclen;
- } else {
- txtype = BSWAP_64(lr->lrc_txtype);
- lr_len = BSWAP_64(lr->lrc_reclen);
- }
-
- /* copy the common lr_t */
- bcopy(slrp, dlrp, sizeof (lr_t));
- bcopy(slrp, aadp, sizeof (lr_t));
- aadp += sizeof (lr_t);
- aad_len += sizeof (lr_t);
-
- ASSERT3P(src_iovecs, !=, NULL);
- ASSERT3P(dst_iovecs, !=, NULL);
-
- /*
- * If this is a TX_WRITE record we want to encrypt everything
- * except the bp if exists. If the bp does exist we want to
- * authenticate it.
- */
- if (txtype == TX_WRITE) {
- crypt_len = sizeof (lr_write_t) -
- sizeof (lr_t) - sizeof (blkptr_t);
- src_iovecs[nr_iovecs].iov_base = slrp + sizeof (lr_t);
- src_iovecs[nr_iovecs].iov_len = crypt_len;
- dst_iovecs[nr_iovecs].iov_base = dlrp + sizeof (lr_t);
- dst_iovecs[nr_iovecs].iov_len = crypt_len;
-
- /* copy the bp now since it will not be encrypted */
- bcopy(slrp + sizeof (lr_write_t) - sizeof (blkptr_t),
- dlrp + sizeof (lr_write_t) - sizeof (blkptr_t),
- sizeof (blkptr_t));
- bcopy(slrp + sizeof (lr_write_t) - sizeof (blkptr_t),
- aadp, sizeof (blkptr_t));
- aadp += sizeof (blkptr_t);
- aad_len += sizeof (blkptr_t);
- nr_iovecs++;
- total_len += crypt_len;
-
- if (lr_len != sizeof (lr_write_t)) {
- crypt_len = lr_len - sizeof (lr_write_t);
- src_iovecs[nr_iovecs].iov_base =
- slrp + sizeof (lr_write_t);
- src_iovecs[nr_iovecs].iov_len = crypt_len;
- dst_iovecs[nr_iovecs].iov_base =
- dlrp + sizeof (lr_write_t);
- dst_iovecs[nr_iovecs].iov_len = crypt_len;
- nr_iovecs++;
- total_len += crypt_len;
- }
- } else {
- crypt_len = lr_len - sizeof (lr_t);
- src_iovecs[nr_iovecs].iov_base = slrp + sizeof (lr_t);
- src_iovecs[nr_iovecs].iov_len = crypt_len;
- dst_iovecs[nr_iovecs].iov_base = dlrp + sizeof (lr_t);
- dst_iovecs[nr_iovecs].iov_len = crypt_len;
- nr_iovecs++;
- total_len += crypt_len;
- }
- }
-
- *no_crypt = (nr_iovecs == 0);
- *enc_len = total_len;
- *authbuf = aadbuf;
- *auth_len = aad_len;
-
- if (encrypt) {
- puio->uio_iov = src_iovecs;
- puio->uio_iovcnt = nr_src;
- cuio->uio_iov = dst_iovecs;
- cuio->uio_iovcnt = nr_dst;
- } else {
- puio->uio_iov = dst_iovecs;
- puio->uio_iovcnt = nr_dst;
- cuio->uio_iov = src_iovecs;
- cuio->uio_iovcnt = nr_src;
- }
-
- return (0);
-
-error:
- zio_buf_free(aadbuf, datalen);
- if (src_iovecs != NULL)
- kmem_free(src_iovecs, nr_src * sizeof (iovec_t));
- if (dst_iovecs != NULL)
- kmem_free(dst_iovecs, nr_dst * sizeof (iovec_t));
-
- *enc_len = 0;
- *authbuf = NULL;
- *auth_len = 0;
- *no_crypt = B_FALSE;
- puio->uio_iov = NULL;
- puio->uio_iovcnt = 0;
- cuio->uio_iov = NULL;
- cuio->uio_iovcnt = 0;
- return (ret);
-}
-
-/*
- * Special case handling routine for encrypting / decrypting dnode blocks.
- */
-static int
-zio_crypt_init_uios_dnode(boolean_t encrypt, uint64_t version,
- uint8_t *plainbuf, uint8_t *cipherbuf, uint_t datalen, boolean_t byteswap,
- uio_t *puio, uio_t *cuio, uint_t *enc_len, uint8_t **authbuf,
- uint_t *auth_len, boolean_t *no_crypt)
-{
- int ret;
- uint_t nr_src, nr_dst, crypt_len;
- uint_t aad_len = 0, nr_iovecs = 0, total_len = 0;
- uint_t i, j, max_dnp = datalen >> DNODE_SHIFT;
- iovec_t *src_iovecs = NULL, *dst_iovecs = NULL;
- uint8_t *src, *dst, *aadp;
- dnode_phys_t *dnp, *adnp, *sdnp, *ddnp;
- uint8_t *aadbuf = zio_buf_alloc(datalen);
-
- if (encrypt) {
- src = plainbuf;
- dst = cipherbuf;
- nr_src = 0;
- nr_dst = 1;
- } else {
- src = cipherbuf;
- dst = plainbuf;
- nr_src = 1;
- nr_dst = 0;
- }
-
- sdnp = (dnode_phys_t *)src;
- ddnp = (dnode_phys_t *)dst;
- aadp = aadbuf;
-
- /*
- * Count the number of iovecs we will need to do the encryption by
- * counting the number of bonus buffers that need to be encrypted.
- */
- for (i = 0; i < max_dnp; i += sdnp[i].dn_extra_slots + 1) {
- /*
- * This block may still be byteswapped. However, all of the
- * values we use are either uint8_t's (for which byteswapping
- * is a noop) or a * != 0 check, which will work regardless
- * of whether or not we byteswap.
- */
- if (sdnp[i].dn_type != DMU_OT_NONE &&
- DMU_OT_IS_ENCRYPTED(sdnp[i].dn_bonustype) &&
- sdnp[i].dn_bonuslen != 0) {
- nr_iovecs++;
- }
- }
-
- nr_src += nr_iovecs;
- nr_dst += nr_iovecs;
-
- if (nr_src != 0) {
- src_iovecs = kmem_alloc(nr_src * sizeof (iovec_t), KM_SLEEP);
- if (src_iovecs == NULL) {
- ret = SET_ERROR(ENOMEM);
- goto error;
- }
- }
-
- if (nr_dst != 0) {
- dst_iovecs = kmem_alloc(nr_dst * sizeof (iovec_t), KM_SLEEP);
- if (dst_iovecs == NULL) {
- ret = SET_ERROR(ENOMEM);
- goto error;
- }
- }
-
- nr_iovecs = 0;
-
- /*
- * Iterate through the dnodes again, this time filling in the uios
- * we allocated earlier. We also concatenate any data we want to
- * authenticate onto aadbuf.
- */
- for (i = 0; i < max_dnp; i += sdnp[i].dn_extra_slots + 1) {
- dnp = &sdnp[i];
-
- /* copy over the core fields and blkptrs (kept as plaintext) */
- bcopy(dnp, &ddnp[i], (uint8_t *)DN_BONUS(dnp) - (uint8_t *)dnp);
-
- if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
- bcopy(DN_SPILL_BLKPTR(dnp), DN_SPILL_BLKPTR(&ddnp[i]),
- sizeof (blkptr_t));
- }
-
- /*
- * Handle authenticated data. We authenticate everything in
- * the dnode that can be brought over when we do a raw send.
- * This includes all of the core fields as well as the MACs
- * stored in the bp checksums and all of the portable bits
- * from blk_prop. We include the dnode padding here in case it
- * ever gets used in the future. Some dn_flags and dn_used are
- * not portable so we mask those out values out of the
- * authenticated data.
- */
- crypt_len = offsetof(dnode_phys_t, dn_blkptr);
- bcopy(dnp, aadp, crypt_len);
- adnp = (dnode_phys_t *)aadp;
- adnp->dn_flags &= DNODE_CRYPT_PORTABLE_FLAGS_MASK;
- adnp->dn_used = 0;
- aadp += crypt_len;
- aad_len += crypt_len;
-
- for (j = 0; j < dnp->dn_nblkptr; j++) {
- zio_crypt_bp_do_aad_updates(&aadp, &aad_len,
- version, byteswap, &dnp->dn_blkptr[j]);
- }
-
- if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
- zio_crypt_bp_do_aad_updates(&aadp, &aad_len,
- version, byteswap, DN_SPILL_BLKPTR(dnp));
- }
-
- /*
- * If this bonus buffer needs to be encrypted, we prepare an
- * iovec_t. The encryption / decryption functions will fill
- * this in for us with the encrypted or decrypted data.
- * Otherwise we add the bonus buffer to the authenticated
- * data buffer and copy it over to the destination. The
- * encrypted iovec extends to DN_MAX_BONUS_LEN(dnp) so that
- * we can guarantee alignment with the AES block size
- * (128 bits).
- */
- crypt_len = DN_MAX_BONUS_LEN(dnp);
- if (dnp->dn_type != DMU_OT_NONE &&
- DMU_OT_IS_ENCRYPTED(dnp->dn_bonustype) &&
- dnp->dn_bonuslen != 0) {
- ASSERT3U(nr_iovecs, <, nr_src);
- ASSERT3U(nr_iovecs, <, nr_dst);
- ASSERT3P(src_iovecs, !=, NULL);
- ASSERT3P(dst_iovecs, !=, NULL);
- src_iovecs[nr_iovecs].iov_base = DN_BONUS(dnp);
- src_iovecs[nr_iovecs].iov_len = crypt_len;
- dst_iovecs[nr_iovecs].iov_base = DN_BONUS(&ddnp[i]);
- dst_iovecs[nr_iovecs].iov_len = crypt_len;
-
- nr_iovecs++;
- total_len += crypt_len;
- } else {
- bcopy(DN_BONUS(dnp), DN_BONUS(&ddnp[i]), crypt_len);
- bcopy(DN_BONUS(dnp), aadp, crypt_len);
- aadp += crypt_len;
- aad_len += crypt_len;
- }
- }
-
- *no_crypt = (nr_iovecs == 0);
- *enc_len = total_len;
- *authbuf = aadbuf;
- *auth_len = aad_len;
-
- if (encrypt) {
- puio->uio_iov = src_iovecs;
- puio->uio_iovcnt = nr_src;
- cuio->uio_iov = dst_iovecs;
- cuio->uio_iovcnt = nr_dst;
- } else {
- puio->uio_iov = dst_iovecs;
- puio->uio_iovcnt = nr_dst;
- cuio->uio_iov = src_iovecs;
- cuio->uio_iovcnt = nr_src;
- }
-
- return (0);
-
-error:
- zio_buf_free(aadbuf, datalen);
- if (src_iovecs != NULL)
- kmem_free(src_iovecs, nr_src * sizeof (iovec_t));
- if (dst_iovecs != NULL)
- kmem_free(dst_iovecs, nr_dst * sizeof (iovec_t));
-
- *enc_len = 0;
- *authbuf = NULL;
- *auth_len = 0;
- *no_crypt = B_FALSE;
- puio->uio_iov = NULL;
- puio->uio_iovcnt = 0;
- cuio->uio_iov = NULL;
- cuio->uio_iovcnt = 0;
- return (ret);
-}
-
-static int
-zio_crypt_init_uios_normal(boolean_t encrypt, uint8_t *plainbuf,
- uint8_t *cipherbuf, uint_t datalen, uio_t *puio, uio_t *cuio,
- uint_t *enc_len)
-{
- int ret;
- uint_t nr_plain = 1, nr_cipher = 2;
- iovec_t *plain_iovecs = NULL, *cipher_iovecs = NULL;
-
- /* allocate the iovecs for the plain and cipher data */
- plain_iovecs = kmem_alloc(nr_plain * sizeof (iovec_t),
- KM_SLEEP);
- if (!plain_iovecs) {
- ret = SET_ERROR(ENOMEM);
- goto error;
- }
-
- cipher_iovecs = kmem_alloc(nr_cipher * sizeof (iovec_t),
- KM_SLEEP);
- if (!cipher_iovecs) {
- ret = SET_ERROR(ENOMEM);
- goto error;
- }
-
- plain_iovecs[0].iov_base = plainbuf;
- plain_iovecs[0].iov_len = datalen;
- cipher_iovecs[0].iov_base = cipherbuf;
- cipher_iovecs[0].iov_len = datalen;
-
- *enc_len = datalen;
- puio->uio_iov = plain_iovecs;
- puio->uio_iovcnt = nr_plain;
- cuio->uio_iov = cipher_iovecs;
- cuio->uio_iovcnt = nr_cipher;
-
- return (0);
-
-error:
- if (plain_iovecs != NULL)
- kmem_free(plain_iovecs, nr_plain * sizeof (iovec_t));
- if (cipher_iovecs != NULL)
- kmem_free(cipher_iovecs, nr_cipher * sizeof (iovec_t));
-
- *enc_len = 0;
- puio->uio_iov = NULL;
- puio->uio_iovcnt = 0;
- cuio->uio_iov = NULL;
- cuio->uio_iovcnt = 0;
- return (ret);
-}
-
-/*
- * This function builds up the plaintext (puio) and ciphertext (cuio) uios so
- * that they can be used for encryption and decryption by zio_do_crypt_uio().
- * Most blocks will use zio_crypt_init_uios_normal(), with ZIL and dnode blocks
- * requiring special handling to parse out pieces that are to be encrypted. The
- * authbuf is used by these special cases to store additional authenticated
- * data (AAD) for the encryption modes.
- */
-static int
-zio_crypt_init_uios(boolean_t encrypt, uint64_t version, dmu_object_type_t ot,
- uint8_t *plainbuf, uint8_t *cipherbuf, uint_t datalen, boolean_t byteswap,
- uint8_t *mac, uio_t *puio, uio_t *cuio, uint_t *enc_len, uint8_t **authbuf,
- uint_t *auth_len, boolean_t *no_crypt)
-{
- int ret;
- iovec_t *mac_iov;
-
- ASSERT(DMU_OT_IS_ENCRYPTED(ot) || ot == DMU_OT_NONE);
-
- /* route to handler */
- switch (ot) {
- case DMU_OT_INTENT_LOG:
- ret = zio_crypt_init_uios_zil(encrypt, plainbuf, cipherbuf,
- datalen, byteswap, puio, cuio, enc_len, authbuf, auth_len,
- no_crypt);
- break;
- case DMU_OT_DNODE:
- ret = zio_crypt_init_uios_dnode(encrypt, version, plainbuf,
- cipherbuf, datalen, byteswap, puio, cuio, enc_len, authbuf,
- auth_len, no_crypt);
- break;
- default:
- ret = zio_crypt_init_uios_normal(encrypt, plainbuf, cipherbuf,
- datalen, puio, cuio, enc_len);
- *authbuf = NULL;
- *auth_len = 0;
- *no_crypt = B_FALSE;
- break;
- }
-
- if (ret != 0)
- goto error;
-
- /* populate the uios */
- puio->uio_segflg = UIO_SYSSPACE;
- cuio->uio_segflg = UIO_SYSSPACE;
-
- mac_iov = ((iovec_t *)&cuio->uio_iov[cuio->uio_iovcnt - 1]);
- mac_iov->iov_base = mac;
- mac_iov->iov_len = ZIO_DATA_MAC_LEN;
-
- return (0);
-
-error:
- return (ret);
-}
-
-/*
- * Primary encryption / decryption entrypoint for zio data.
- */
-int
-zio_do_crypt_data(boolean_t encrypt, zio_crypt_key_t *key,
- dmu_object_type_t ot, boolean_t byteswap, uint8_t *salt, uint8_t *iv,
- uint8_t *mac, uint_t datalen, uint8_t *plainbuf, uint8_t *cipherbuf,
- boolean_t *no_crypt)
-{
- int ret;
- boolean_t locked = B_FALSE;
- uint64_t crypt = key->zk_crypt;
- uint_t keydata_len = zio_crypt_table[crypt].ci_keylen;
- uint_t enc_len, auth_len;
- uio_t puio, cuio;
- uint8_t enc_keydata[MASTER_KEY_MAX_LEN];
- crypto_key_t tmp_ckey, *ckey = NULL;
- crypto_ctx_template_t tmpl;
- uint8_t *authbuf = NULL;
-
- /*
- * If the needed key is the current one, just use it. Otherwise we
- * need to generate a temporary one from the given salt + master key.
- * If we are encrypting, we must return a copy of the current salt
- * so that it can be stored in the blkptr_t.
- */
- rw_enter(&key->zk_salt_lock, RW_READER);
- locked = B_TRUE;
-
- if (bcmp(salt, key->zk_salt, ZIO_DATA_SALT_LEN) == 0) {
- ckey = &key->zk_current_key;
- tmpl = key->zk_current_tmpl;
- } else {
- rw_exit(&key->zk_salt_lock);
- locked = B_FALSE;
-
- ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0,
- salt, ZIO_DATA_SALT_LEN, enc_keydata, keydata_len);
- if (ret != 0)
- goto error;
-
- tmp_ckey.ck_format = CRYPTO_KEY_RAW;
- tmp_ckey.ck_data = enc_keydata;
- tmp_ckey.ck_length = CRYPTO_BYTES2BITS(keydata_len);
-
- ckey = &tmp_ckey;
- tmpl = NULL;
- }
-
- /*
- * Attempt to use QAT acceleration if we can. We currently don't
- * do this for metadnode and ZIL blocks, since they have a much
- * more involved buffer layout and the qat_crypt() function only
- * works in-place.
- */
- if (qat_crypt_use_accel(datalen) &&
- ot != DMU_OT_INTENT_LOG && ot != DMU_OT_DNODE) {
- uint8_t *srcbuf, *dstbuf;
-
- if (encrypt) {
- srcbuf = plainbuf;
- dstbuf = cipherbuf;
- } else {
- srcbuf = cipherbuf;
- dstbuf = plainbuf;
- }
-
- ret = qat_crypt((encrypt) ? QAT_ENCRYPT : QAT_DECRYPT, srcbuf,
- dstbuf, NULL, 0, iv, mac, ckey, key->zk_crypt, datalen);
- if (ret == CPA_STATUS_SUCCESS) {
- if (locked) {
- rw_exit(&key->zk_salt_lock);
- locked = B_FALSE;
- }
-
- return (0);
- }
- /* If the hardware implementation fails fall back to software */
- }
-
- bzero(&puio, sizeof (uio_t));
- bzero(&cuio, sizeof (uio_t));
-
- /* create uios for encryption */
- ret = zio_crypt_init_uios(encrypt, key->zk_version, ot, plainbuf,
- cipherbuf, datalen, byteswap, mac, &puio, &cuio, &enc_len,
- &authbuf, &auth_len, no_crypt);
- if (ret != 0)
- goto error;
-
- /* perform the encryption / decryption in software */
- ret = zio_do_crypt_uio(encrypt, key->zk_crypt, ckey, tmpl, iv, enc_len,
- &puio, &cuio, authbuf, auth_len);
- if (ret != 0)
- goto error;
-
- if (locked) {
- rw_exit(&key->zk_salt_lock);
- locked = B_FALSE;
- }
-
- if (authbuf != NULL)
- zio_buf_free(authbuf, datalen);
- if (ckey == &tmp_ckey)
- bzero(enc_keydata, keydata_len);
- zio_crypt_destroy_uio(&puio);
- zio_crypt_destroy_uio(&cuio);
-
- return (0);
-
-error:
- if (locked)
- rw_exit(&key->zk_salt_lock);
- if (authbuf != NULL)
- zio_buf_free(authbuf, datalen);
- if (ckey == &tmp_ckey)
- bzero(enc_keydata, keydata_len);
- zio_crypt_destroy_uio(&puio);
- zio_crypt_destroy_uio(&cuio);
-
- return (ret);
-}
-
-/*
- * Simple wrapper around zio_do_crypt_data() to work with abd's instead of
- * linear buffers.
- */
-int
-zio_do_crypt_abd(boolean_t encrypt, zio_crypt_key_t *key, dmu_object_type_t ot,
- boolean_t byteswap, uint8_t *salt, uint8_t *iv, uint8_t *mac,
- uint_t datalen, abd_t *pabd, abd_t *cabd, boolean_t *no_crypt)
-{
- int ret;
- void *ptmp, *ctmp;
-
- if (encrypt) {
- ptmp = abd_borrow_buf_copy(pabd, datalen);
- ctmp = abd_borrow_buf(cabd, datalen);
- } else {
- ptmp = abd_borrow_buf(pabd, datalen);
- ctmp = abd_borrow_buf_copy(cabd, datalen);
- }
-
- ret = zio_do_crypt_data(encrypt, key, ot, byteswap, salt, iv, mac,
- datalen, ptmp, ctmp, no_crypt);
- if (ret != 0)
- goto error;
-
- if (encrypt) {
- abd_return_buf(pabd, ptmp, datalen);
- abd_return_buf_copy(cabd, ctmp, datalen);
- } else {
- abd_return_buf_copy(pabd, ptmp, datalen);
- abd_return_buf(cabd, ctmp, datalen);
- }
-
- return (0);
-
-error:
- if (encrypt) {
- abd_return_buf(pabd, ptmp, datalen);
- abd_return_buf_copy(cabd, ctmp, datalen);
- } else {
- abd_return_buf_copy(pabd, ptmp, datalen);
- abd_return_buf(cabd, ctmp, datalen);
- }
-
- return (ret);
-}
-
-#if defined(_KERNEL)
-/* BEGIN CSTYLED */
-module_param(zfs_key_max_salt_uses, ulong, 0644);
-MODULE_PARM_DESC(zfs_key_max_salt_uses, "Max number of times a salt value "
- "can be used for generating encryption keys before it is rotated");
-/* END CSTYLED */
-#endif