diff options
Diffstat (limited to 'module/zfs/zfs_rlock.c')
-rw-r--r-- | module/zfs/zfs_rlock.c | 602 |
1 files changed, 602 insertions, 0 deletions
diff --git a/module/zfs/zfs_rlock.c b/module/zfs/zfs_rlock.c new file mode 100644 index 000000000..f0a75b5fa --- /dev/null +++ b/module/zfs/zfs_rlock.c @@ -0,0 +1,602 @@ +/* + * CDDL HEADER START + * + * The contents of this file are subject to the terms of the + * Common Development and Distribution License (the "License"). + * You may not use this file except in compliance with the License. + * + * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE + * or http://www.opensolaris.org/os/licensing. + * See the License for the specific language governing permissions + * and limitations under the License. + * + * When distributing Covered Code, include this CDDL HEADER in each + * file and include the License file at usr/src/OPENSOLARIS.LICENSE. + * If applicable, add the following below this CDDL HEADER, with the + * fields enclosed by brackets "[]" replaced with your own identifying + * information: Portions Copyright [yyyy] [name of copyright owner] + * + * CDDL HEADER END + */ +/* + * Copyright 2007 Sun Microsystems, Inc. All rights reserved. + * Use is subject to license terms. + */ + +#pragma ident "%Z%%M% %I% %E% SMI" + +/* + * This file contains the code to implement file range locking in + * ZFS, although there isn't much specific to ZFS (all that comes to mind + * support for growing the blocksize). + * + * Interface + * --------- + * Defined in zfs_rlock.h but essentially: + * rl = zfs_range_lock(zp, off, len, lock_type); + * zfs_range_unlock(rl); + * zfs_range_reduce(rl, off, len); + * + * AVL tree + * -------- + * An AVL tree is used to maintain the state of the existing ranges + * that are locked for exclusive (writer) or shared (reader) use. + * The starting range offset is used for searching and sorting the tree. + * + * Common case + * ----------- + * The (hopefully) usual case is of no overlaps or contention for + * locks. On entry to zfs_lock_range() a rl_t is allocated; the tree + * searched that finds no overlap, and *this* rl_t is placed in the tree. + * + * Overlaps/Reference counting/Proxy locks + * --------------------------------------- + * The avl code only allows one node at a particular offset. Also it's very + * inefficient to search through all previous entries looking for overlaps + * (because the very 1st in the ordered list might be at offset 0 but + * cover the whole file). + * So this implementation uses reference counts and proxy range locks. + * Firstly, only reader locks use reference counts and proxy locks, + * because writer locks are exclusive. + * When a reader lock overlaps with another then a proxy lock is created + * for that range and replaces the original lock. If the overlap + * is exact then the reference count of the proxy is simply incremented. + * Otherwise, the proxy lock is split into smaller lock ranges and + * new proxy locks created for non overlapping ranges. + * The reference counts are adjusted accordingly. + * Meanwhile, the orginal lock is kept around (this is the callers handle) + * and its offset and length are used when releasing the lock. + * + * Thread coordination + * ------------------- + * In order to make wakeups efficient and to ensure multiple continuous + * readers on a range don't starve a writer for the same range lock, + * two condition variables are allocated in each rl_t. + * If a writer (or reader) can't get a range it initialises the writer + * (or reader) cv; sets a flag saying there's a writer (or reader) waiting; + * and waits on that cv. When a thread unlocks that range it wakes up all + * writers then all readers before destroying the lock. + * + * Append mode writes + * ------------------ + * Append mode writes need to lock a range at the end of a file. + * The offset of the end of the file is determined under the + * range locking mutex, and the lock type converted from RL_APPEND to + * RL_WRITER and the range locked. + * + * Grow block handling + * ------------------- + * ZFS supports multiple block sizes currently upto 128K. The smallest + * block size is used for the file which is grown as needed. During this + * growth all other writers and readers must be excluded. + * So if the block size needs to be grown then the whole file is + * exclusively locked, then later the caller will reduce the lock + * range to just the range to be written using zfs_reduce_range. + */ + +#include <sys/zfs_rlock.h> + +/* + * Check if a write lock can be grabbed, or wait and recheck until available. + */ +static void +zfs_range_lock_writer(znode_t *zp, rl_t *new) +{ + avl_tree_t *tree = &zp->z_range_avl; + rl_t *rl; + avl_index_t where; + uint64_t end_size; + uint64_t off = new->r_off; + uint64_t len = new->r_len; + + for (;;) { + /* + * Range locking is also used by zvol and uses a + * dummied up znode. However, for zvol, we don't need to + * append or grow blocksize, and besides we don't have + * a z_phys or z_zfsvfs - so skip that processing. + * + * Yes, this is ugly, and would be solved by not handling + * grow or append in range lock code. If that was done then + * we could make the range locking code generically available + * to other non-zfs consumers. + */ + if (zp->z_vnode) { /* caller is ZPL */ + /* + * If in append mode pick up the current end of file. + * This is done under z_range_lock to avoid races. + */ + if (new->r_type == RL_APPEND) + new->r_off = zp->z_phys->zp_size; + + /* + * If we need to grow the block size then grab the whole + * file range. This is also done under z_range_lock to + * avoid races. + */ + end_size = MAX(zp->z_phys->zp_size, new->r_off + len); + if (end_size > zp->z_blksz && (!ISP2(zp->z_blksz) || + zp->z_blksz < zp->z_zfsvfs->z_max_blksz)) { + new->r_off = 0; + new->r_len = UINT64_MAX; + } + } + + /* + * First check for the usual case of no locks + */ + if (avl_numnodes(tree) == 0) { + new->r_type = RL_WRITER; /* convert to writer */ + avl_add(tree, new); + return; + } + + /* + * Look for any locks in the range. + */ + rl = avl_find(tree, new, &where); + if (rl) + goto wait; /* already locked at same offset */ + + rl = (rl_t *)avl_nearest(tree, where, AVL_AFTER); + if (rl && (rl->r_off < new->r_off + new->r_len)) + goto wait; + + rl = (rl_t *)avl_nearest(tree, where, AVL_BEFORE); + if (rl && rl->r_off + rl->r_len > new->r_off) + goto wait; + + new->r_type = RL_WRITER; /* convert possible RL_APPEND */ + avl_insert(tree, new, where); + return; +wait: + if (!rl->r_write_wanted) { + cv_init(&rl->r_wr_cv, NULL, CV_DEFAULT, NULL); + rl->r_write_wanted = B_TRUE; + } + cv_wait(&rl->r_wr_cv, &zp->z_range_lock); + + /* reset to original */ + new->r_off = off; + new->r_len = len; + } +} + +/* + * If this is an original (non-proxy) lock then replace it by + * a proxy and return the proxy. + */ +static rl_t * +zfs_range_proxify(avl_tree_t *tree, rl_t *rl) +{ + rl_t *proxy; + + if (rl->r_proxy) + return (rl); /* already a proxy */ + + ASSERT3U(rl->r_cnt, ==, 1); + ASSERT(rl->r_write_wanted == B_FALSE); + ASSERT(rl->r_read_wanted == B_FALSE); + avl_remove(tree, rl); + rl->r_cnt = 0; + + /* create a proxy range lock */ + proxy = kmem_alloc(sizeof (rl_t), KM_SLEEP); + proxy->r_off = rl->r_off; + proxy->r_len = rl->r_len; + proxy->r_cnt = 1; + proxy->r_type = RL_READER; + proxy->r_proxy = B_TRUE; + proxy->r_write_wanted = B_FALSE; + proxy->r_read_wanted = B_FALSE; + avl_add(tree, proxy); + + return (proxy); +} + +/* + * Split the range lock at the supplied offset + * returning the *front* proxy. + */ +static rl_t * +zfs_range_split(avl_tree_t *tree, rl_t *rl, uint64_t off) +{ + rl_t *front, *rear; + + ASSERT3U(rl->r_len, >, 1); + ASSERT3U(off, >, rl->r_off); + ASSERT3U(off, <, rl->r_off + rl->r_len); + ASSERT(rl->r_write_wanted == B_FALSE); + ASSERT(rl->r_read_wanted == B_FALSE); + + /* create the rear proxy range lock */ + rear = kmem_alloc(sizeof (rl_t), KM_SLEEP); + rear->r_off = off; + rear->r_len = rl->r_off + rl->r_len - off; + rear->r_cnt = rl->r_cnt; + rear->r_type = RL_READER; + rear->r_proxy = B_TRUE; + rear->r_write_wanted = B_FALSE; + rear->r_read_wanted = B_FALSE; + + front = zfs_range_proxify(tree, rl); + front->r_len = off - rl->r_off; + + avl_insert_here(tree, rear, front, AVL_AFTER); + return (front); +} + +/* + * Create and add a new proxy range lock for the supplied range. + */ +static void +zfs_range_new_proxy(avl_tree_t *tree, uint64_t off, uint64_t len) +{ + rl_t *rl; + + ASSERT(len); + rl = kmem_alloc(sizeof (rl_t), KM_SLEEP); + rl->r_off = off; + rl->r_len = len; + rl->r_cnt = 1; + rl->r_type = RL_READER; + rl->r_proxy = B_TRUE; + rl->r_write_wanted = B_FALSE; + rl->r_read_wanted = B_FALSE; + avl_add(tree, rl); +} + +static void +zfs_range_add_reader(avl_tree_t *tree, rl_t *new, rl_t *prev, avl_index_t where) +{ + rl_t *next; + uint64_t off = new->r_off; + uint64_t len = new->r_len; + + /* + * prev arrives either: + * - pointing to an entry at the same offset + * - pointing to the entry with the closest previous offset whose + * range may overlap with the new range + * - null, if there were no ranges starting before the new one + */ + if (prev) { + if (prev->r_off + prev->r_len <= off) { + prev = NULL; + } else if (prev->r_off != off) { + /* + * convert to proxy if needed then + * split this entry and bump ref count + */ + prev = zfs_range_split(tree, prev, off); + prev = AVL_NEXT(tree, prev); /* move to rear range */ + } + } + ASSERT((prev == NULL) || (prev->r_off == off)); + + if (prev) + next = prev; + else + next = (rl_t *)avl_nearest(tree, where, AVL_AFTER); + + if (next == NULL || off + len <= next->r_off) { + /* no overlaps, use the original new rl_t in the tree */ + avl_insert(tree, new, where); + return; + } + + if (off < next->r_off) { + /* Add a proxy for initial range before the overlap */ + zfs_range_new_proxy(tree, off, next->r_off - off); + } + + new->r_cnt = 0; /* will use proxies in tree */ + /* + * We now search forward through the ranges, until we go past the end + * of the new range. For each entry we make it a proxy if it + * isn't already, then bump its reference count. If there's any + * gaps between the ranges then we create a new proxy range. + */ + for (prev = NULL; next; prev = next, next = AVL_NEXT(tree, next)) { + if (off + len <= next->r_off) + break; + if (prev && prev->r_off + prev->r_len < next->r_off) { + /* there's a gap */ + ASSERT3U(next->r_off, >, prev->r_off + prev->r_len); + zfs_range_new_proxy(tree, prev->r_off + prev->r_len, + next->r_off - (prev->r_off + prev->r_len)); + } + if (off + len == next->r_off + next->r_len) { + /* exact overlap with end */ + next = zfs_range_proxify(tree, next); + next->r_cnt++; + return; + } + if (off + len < next->r_off + next->r_len) { + /* new range ends in the middle of this block */ + next = zfs_range_split(tree, next, off + len); + next->r_cnt++; + return; + } + ASSERT3U(off + len, >, next->r_off + next->r_len); + next = zfs_range_proxify(tree, next); + next->r_cnt++; + } + + /* Add the remaining end range. */ + zfs_range_new_proxy(tree, prev->r_off + prev->r_len, + (off + len) - (prev->r_off + prev->r_len)); +} + +/* + * Check if a reader lock can be grabbed, or wait and recheck until available. + */ +static void +zfs_range_lock_reader(znode_t *zp, rl_t *new) +{ + avl_tree_t *tree = &zp->z_range_avl; + rl_t *prev, *next; + avl_index_t where; + uint64_t off = new->r_off; + uint64_t len = new->r_len; + + /* + * Look for any writer locks in the range. + */ +retry: + prev = avl_find(tree, new, &where); + if (prev == NULL) + prev = (rl_t *)avl_nearest(tree, where, AVL_BEFORE); + + /* + * Check the previous range for a writer lock overlap. + */ + if (prev && (off < prev->r_off + prev->r_len)) { + if ((prev->r_type == RL_WRITER) || (prev->r_write_wanted)) { + if (!prev->r_read_wanted) { + cv_init(&prev->r_rd_cv, NULL, CV_DEFAULT, NULL); + prev->r_read_wanted = B_TRUE; + } + cv_wait(&prev->r_rd_cv, &zp->z_range_lock); + goto retry; + } + if (off + len < prev->r_off + prev->r_len) + goto got_lock; + } + + /* + * Search through the following ranges to see if there's + * write lock any overlap. + */ + if (prev) + next = AVL_NEXT(tree, prev); + else + next = (rl_t *)avl_nearest(tree, where, AVL_AFTER); + for (; next; next = AVL_NEXT(tree, next)) { + if (off + len <= next->r_off) + goto got_lock; + if ((next->r_type == RL_WRITER) || (next->r_write_wanted)) { + if (!next->r_read_wanted) { + cv_init(&next->r_rd_cv, NULL, CV_DEFAULT, NULL); + next->r_read_wanted = B_TRUE; + } + cv_wait(&next->r_rd_cv, &zp->z_range_lock); + goto retry; + } + if (off + len <= next->r_off + next->r_len) + goto got_lock; + } + +got_lock: + /* + * Add the read lock, which may involve splitting existing + * locks and bumping ref counts (r_cnt). + */ + zfs_range_add_reader(tree, new, prev, where); +} + +/* + * Lock a range (offset, length) as either shared (RL_READER) + * or exclusive (RL_WRITER). Returns the range lock structure + * for later unlocking or reduce range (if entire file + * previously locked as RL_WRITER). + */ +rl_t * +zfs_range_lock(znode_t *zp, uint64_t off, uint64_t len, rl_type_t type) +{ + rl_t *new; + + ASSERT(type == RL_READER || type == RL_WRITER || type == RL_APPEND); + + new = kmem_alloc(sizeof (rl_t), KM_SLEEP); + new->r_zp = zp; + new->r_off = off; + new->r_len = len; + new->r_cnt = 1; /* assume it's going to be in the tree */ + new->r_type = type; + new->r_proxy = B_FALSE; + new->r_write_wanted = B_FALSE; + new->r_read_wanted = B_FALSE; + + mutex_enter(&zp->z_range_lock); + if (type == RL_READER) { + /* + * First check for the usual case of no locks + */ + if (avl_numnodes(&zp->z_range_avl) == 0) + avl_add(&zp->z_range_avl, new); + else + zfs_range_lock_reader(zp, new); + } else + zfs_range_lock_writer(zp, new); /* RL_WRITER or RL_APPEND */ + mutex_exit(&zp->z_range_lock); + return (new); +} + +/* + * Unlock a reader lock + */ +static void +zfs_range_unlock_reader(znode_t *zp, rl_t *remove) +{ + avl_tree_t *tree = &zp->z_range_avl; + rl_t *rl, *next; + uint64_t len; + + /* + * The common case is when the remove entry is in the tree + * (cnt == 1) meaning there's been no other reader locks overlapping + * with this one. Otherwise the remove entry will have been + * removed from the tree and replaced by proxies (one or + * more ranges mapping to the entire range). + */ + if (remove->r_cnt == 1) { + avl_remove(tree, remove); + if (remove->r_write_wanted) { + cv_broadcast(&remove->r_wr_cv); + cv_destroy(&remove->r_wr_cv); + } + if (remove->r_read_wanted) { + cv_broadcast(&remove->r_rd_cv); + cv_destroy(&remove->r_rd_cv); + } + } else { + ASSERT3U(remove->r_cnt, ==, 0); + ASSERT3U(remove->r_write_wanted, ==, 0); + ASSERT3U(remove->r_read_wanted, ==, 0); + /* + * Find start proxy representing this reader lock, + * then decrement ref count on all proxies + * that make up this range, freeing them as needed. + */ + rl = avl_find(tree, remove, NULL); + ASSERT(rl); + ASSERT(rl->r_cnt); + ASSERT(rl->r_type == RL_READER); + for (len = remove->r_len; len != 0; rl = next) { + len -= rl->r_len; + if (len) { + next = AVL_NEXT(tree, rl); + ASSERT(next); + ASSERT(rl->r_off + rl->r_len == next->r_off); + ASSERT(next->r_cnt); + ASSERT(next->r_type == RL_READER); + } + rl->r_cnt--; + if (rl->r_cnt == 0) { + avl_remove(tree, rl); + if (rl->r_write_wanted) { + cv_broadcast(&rl->r_wr_cv); + cv_destroy(&rl->r_wr_cv); + } + if (rl->r_read_wanted) { + cv_broadcast(&rl->r_rd_cv); + cv_destroy(&rl->r_rd_cv); + } + kmem_free(rl, sizeof (rl_t)); + } + } + } + kmem_free(remove, sizeof (rl_t)); +} + +/* + * Unlock range and destroy range lock structure. + */ +void +zfs_range_unlock(rl_t *rl) +{ + znode_t *zp = rl->r_zp; + + ASSERT(rl->r_type == RL_WRITER || rl->r_type == RL_READER); + ASSERT(rl->r_cnt == 1 || rl->r_cnt == 0); + ASSERT(!rl->r_proxy); + + mutex_enter(&zp->z_range_lock); + if (rl->r_type == RL_WRITER) { + /* writer locks can't be shared or split */ + avl_remove(&zp->z_range_avl, rl); + mutex_exit(&zp->z_range_lock); + if (rl->r_write_wanted) { + cv_broadcast(&rl->r_wr_cv); + cv_destroy(&rl->r_wr_cv); + } + if (rl->r_read_wanted) { + cv_broadcast(&rl->r_rd_cv); + cv_destroy(&rl->r_rd_cv); + } + kmem_free(rl, sizeof (rl_t)); + } else { + /* + * lock may be shared, let zfs_range_unlock_reader() + * release the lock and free the rl_t + */ + zfs_range_unlock_reader(zp, rl); + mutex_exit(&zp->z_range_lock); + } +} + +/* + * Reduce range locked as RL_WRITER from whole file to specified range. + * Asserts the whole file is exclusivly locked and so there's only one + * entry in the tree. + */ +void +zfs_range_reduce(rl_t *rl, uint64_t off, uint64_t len) +{ + znode_t *zp = rl->r_zp; + + /* Ensure there are no other locks */ + ASSERT(avl_numnodes(&zp->z_range_avl) == 1); + ASSERT(rl->r_off == 0); + ASSERT(rl->r_type == RL_WRITER); + ASSERT(!rl->r_proxy); + ASSERT3U(rl->r_len, ==, UINT64_MAX); + ASSERT3U(rl->r_cnt, ==, 1); + + mutex_enter(&zp->z_range_lock); + rl->r_off = off; + rl->r_len = len; + mutex_exit(&zp->z_range_lock); + if (rl->r_write_wanted) + cv_broadcast(&rl->r_wr_cv); + if (rl->r_read_wanted) + cv_broadcast(&rl->r_rd_cv); +} + +/* + * AVL comparison function used to order range locks + * Locks are ordered on the start offset of the range. + */ +int +zfs_range_compare(const void *arg1, const void *arg2) +{ + const rl_t *rl1 = arg1; + const rl_t *rl2 = arg2; + + if (rl1->r_off > rl2->r_off) + return (1); + if (rl1->r_off < rl2->r_off) + return (-1); + return (0); +} |