diff options
Diffstat (limited to 'module/zfs/vdev_queue.c')
-rw-r--r-- | module/zfs/vdev_queue.c | 734 |
1 files changed, 522 insertions, 212 deletions
diff --git a/module/zfs/vdev_queue.c b/module/zfs/vdev_queue.c index 06a641087..2e1f098a1 100644 --- a/module/zfs/vdev_queue.c +++ b/module/zfs/vdev_queue.c @@ -24,7 +24,7 @@ */ /* - * Copyright (c) 2012 by Delphix. All rights reserved. + * Copyright (c) 2013 by Delphix. All rights reserved. */ #include <sys/zfs_context.h> @@ -32,29 +32,134 @@ #include <sys/spa_impl.h> #include <sys/zio.h> #include <sys/avl.h> +#include <sys/dsl_pool.h> +#include <sys/spa.h> +#include <sys/spa_impl.h> #include <sys/kstat.h> /* - * These tunables are for performance analysis. + * ZFS I/O Scheduler + * --------------- + * + * ZFS issues I/O operations to leaf vdevs to satisfy and complete zios. The + * I/O scheduler determines when and in what order those operations are + * issued. The I/O scheduler divides operations into five I/O classes + * prioritized in the following order: sync read, sync write, async read, + * async write, and scrub/resilver. Each queue defines the minimum and + * maximum number of concurrent operations that may be issued to the device. + * In addition, the device has an aggregate maximum. Note that the sum of the + * per-queue minimums must not exceed the aggregate maximum. If the + * sum of the per-queue maximums exceeds the aggregate maximum, then the + * number of active i/os may reach zfs_vdev_max_active, in which case no + * further i/os will be issued regardless of whether all per-queue + * minimums have been met. + * + * For many physical devices, throughput increases with the number of + * concurrent operations, but latency typically suffers. Further, physical + * devices typically have a limit at which more concurrent operations have no + * effect on throughput or can actually cause it to decrease. + * + * The scheduler selects the next operation to issue by first looking for an + * I/O class whose minimum has not been satisfied. Once all are satisfied and + * the aggregate maximum has not been hit, the scheduler looks for classes + * whose maximum has not been satisfied. Iteration through the I/O classes is + * done in the order specified above. No further operations are issued if the + * aggregate maximum number of concurrent operations has been hit or if there + * are no operations queued for an I/O class that has not hit its maximum. + * Every time an i/o is queued or an operation completes, the I/O scheduler + * looks for new operations to issue. + * + * All I/O classes have a fixed maximum number of outstanding operations + * except for the async write class. Asynchronous writes represent the data + * that is committed to stable storage during the syncing stage for + * transaction groups (see txg.c). Transaction groups enter the syncing state + * periodically so the number of queued async writes will quickly burst up and + * then bleed down to zero. Rather than servicing them as quickly as possible, + * the I/O scheduler changes the maximum number of active async write i/os + * according to the amount of dirty data in the pool (see dsl_pool.c). Since + * both throughput and latency typically increase with the number of + * concurrent operations issued to physical devices, reducing the burstiness + * in the number of concurrent operations also stabilizes the response time of + * operations from other -- and in particular synchronous -- queues. In broad + * strokes, the I/O scheduler will issue more concurrent operations from the + * async write queue as there's more dirty data in the pool. + * + * Async Writes + * + * The number of concurrent operations issued for the async write I/O class + * follows a piece-wise linear function defined by a few adjustable points. + * + * | o---------| <-- zfs_vdev_async_write_max_active + * ^ | /^ | + * | | / | | + * active | / | | + * I/O | / | | + * count | / | | + * | / | | + * |------------o | | <-- zfs_vdev_async_write_min_active + * 0|____________^______|_________| + * 0% | | 100% of zfs_dirty_data_max + * | | + * | `-- zfs_vdev_async_write_active_max_dirty_percent + * `--------- zfs_vdev_async_write_active_min_dirty_percent + * + * Until the amount of dirty data exceeds a minimum percentage of the dirty + * data allowed in the pool, the I/O scheduler will limit the number of + * concurrent operations to the minimum. As that threshold is crossed, the + * number of concurrent operations issued increases linearly to the maximum at + * the specified maximum percentage of the dirty data allowed in the pool. + * + * Ideally, the amount of dirty data on a busy pool will stay in the sloped + * part of the function between zfs_vdev_async_write_active_min_dirty_percent + * and zfs_vdev_async_write_active_max_dirty_percent. If it exceeds the + * maximum percentage, this indicates that the rate of incoming data is + * greater than the rate that the backend storage can handle. In this case, we + * must further throttle incoming writes (see dmu_tx_delay() for details). */ -/* The maximum number of I/Os concurrently pending to each device. */ -int zfs_vdev_max_pending = 10; - /* - * The initial number of I/Os pending to each device, before it starts ramping - * up to zfs_vdev_max_pending. + * The maximum number of i/os active to each device. Ideally, this will be >= + * the sum of each queue's max_active. It must be at least the sum of each + * queue's min_active. */ -int zfs_vdev_min_pending = 4; +uint32_t zfs_vdev_max_active = 1000; /* - * The deadlines are grouped into buckets based on zfs_vdev_time_shift: - * deadline = pri + gethrtime() >> time_shift) + * Per-queue limits on the number of i/os active to each device. If the + * number of active i/os is < zfs_vdev_max_active, then the min_active comes + * into play. We will send min_active from each queue, and then select from + * queues in the order defined by zio_priority_t. + * + * In general, smaller max_active's will lead to lower latency of synchronous + * operations. Larger max_active's may lead to higher overall throughput, + * depending on underlying storage. + * + * The ratio of the queues' max_actives determines the balance of performance + * between reads, writes, and scrubs. E.g., increasing + * zfs_vdev_scrub_max_active will cause the scrub or resilver to complete + * more quickly, but reads and writes to have higher latency and lower + * throughput. */ -int zfs_vdev_time_shift = 29; /* each bucket is 0.537 seconds */ +uint32_t zfs_vdev_sync_read_min_active = 10; +uint32_t zfs_vdev_sync_read_max_active = 10; +uint32_t zfs_vdev_sync_write_min_active = 10; +uint32_t zfs_vdev_sync_write_max_active = 10; +uint32_t zfs_vdev_async_read_min_active = 1; +uint32_t zfs_vdev_async_read_max_active = 3; +uint32_t zfs_vdev_async_write_min_active = 1; +uint32_t zfs_vdev_async_write_max_active = 10; +uint32_t zfs_vdev_scrub_min_active = 1; +uint32_t zfs_vdev_scrub_max_active = 2; -/* exponential I/O issue ramp-up rate */ -int zfs_vdev_ramp_rate = 2; +/* + * When the pool has less than zfs_vdev_async_write_active_min_dirty_percent + * dirty data, use zfs_vdev_async_write_min_active. When it has more than + * zfs_vdev_async_write_active_max_dirty_percent, use + * zfs_vdev_async_write_max_active. The value is linearly interpolated + * between min and max. + */ +int zfs_vdev_async_write_active_min_dirty_percent = 30; +int zfs_vdev_async_write_active_max_dirty_percent = 60; /* * To reduce IOPs, we aggregate small adjacent I/Os into one large I/O. @@ -66,20 +171,12 @@ int zfs_vdev_aggregation_limit = SPA_MAXBLOCKSIZE; int zfs_vdev_read_gap_limit = 32 << 10; int zfs_vdev_write_gap_limit = 4 << 10; -/* - * Virtual device vector for disk I/O scheduling. - */ int -vdev_queue_deadline_compare(const void *x1, const void *x2) +vdev_queue_offset_compare(const void *x1, const void *x2) { const zio_t *z1 = x1; const zio_t *z2 = x2; - if (z1->io_deadline < z2->io_deadline) - return (-1); - if (z1->io_deadline > z2->io_deadline) - return (1); - if (z1->io_offset < z2->io_offset) return (-1); if (z1->io_offset > z2->io_offset) @@ -94,14 +191,14 @@ vdev_queue_deadline_compare(const void *x1, const void *x2) } int -vdev_queue_offset_compare(const void *x1, const void *x2) +vdev_queue_timestamp_compare(const void *x1, const void *x2) { const zio_t *z1 = x1; const zio_t *z2 = x2; - if (z1->io_offset < z2->io_offset) + if (z1->io_timestamp < z2->io_timestamp) return (-1); - if (z1->io_offset > z2->io_offset) + if (z1->io_timestamp > z2->io_timestamp) return (1); if (z1 < z2) @@ -112,25 +209,141 @@ vdev_queue_offset_compare(const void *x1, const void *x2) return (0); } +static int +vdev_queue_class_min_active(zio_priority_t p) +{ + switch (p) { + case ZIO_PRIORITY_SYNC_READ: + return (zfs_vdev_sync_read_min_active); + case ZIO_PRIORITY_SYNC_WRITE: + return (zfs_vdev_sync_write_min_active); + case ZIO_PRIORITY_ASYNC_READ: + return (zfs_vdev_async_read_min_active); + case ZIO_PRIORITY_ASYNC_WRITE: + return (zfs_vdev_async_write_min_active); + case ZIO_PRIORITY_SCRUB: + return (zfs_vdev_scrub_min_active); + default: + panic("invalid priority %u", p); + return (0); + } +} + +static int +vdev_queue_max_async_writes(uint64_t dirty) +{ + int writes; + uint64_t min_bytes = zfs_dirty_data_max * + zfs_vdev_async_write_active_min_dirty_percent / 100; + uint64_t max_bytes = zfs_dirty_data_max * + zfs_vdev_async_write_active_max_dirty_percent / 100; + + if (dirty < min_bytes) + return (zfs_vdev_async_write_min_active); + if (dirty > max_bytes) + return (zfs_vdev_async_write_max_active); + + /* + * linear interpolation: + * slope = (max_writes - min_writes) / (max_bytes - min_bytes) + * move right by min_bytes + * move up by min_writes + */ + writes = (dirty - min_bytes) * + (zfs_vdev_async_write_max_active - + zfs_vdev_async_write_min_active) / + (max_bytes - min_bytes) + + zfs_vdev_async_write_min_active; + ASSERT3U(writes, >=, zfs_vdev_async_write_min_active); + ASSERT3U(writes, <=, zfs_vdev_async_write_max_active); + return (writes); +} + +static int +vdev_queue_class_max_active(spa_t *spa, zio_priority_t p) +{ + switch (p) { + case ZIO_PRIORITY_SYNC_READ: + return (zfs_vdev_sync_read_max_active); + case ZIO_PRIORITY_SYNC_WRITE: + return (zfs_vdev_sync_write_max_active); + case ZIO_PRIORITY_ASYNC_READ: + return (zfs_vdev_async_read_max_active); + case ZIO_PRIORITY_ASYNC_WRITE: + return (vdev_queue_max_async_writes( + spa->spa_dsl_pool->dp_dirty_total)); + case ZIO_PRIORITY_SCRUB: + return (zfs_vdev_scrub_max_active); + default: + panic("invalid priority %u", p); + return (0); + } +} + +/* + * Return the i/o class to issue from, or ZIO_PRIORITY_MAX_QUEUEABLE if + * there is no eligible class. + */ +static zio_priority_t +vdev_queue_class_to_issue(vdev_queue_t *vq) +{ + spa_t *spa = vq->vq_vdev->vdev_spa; + zio_priority_t p; + + if (avl_numnodes(&vq->vq_active_tree) >= zfs_vdev_max_active) + return (ZIO_PRIORITY_NUM_QUEUEABLE); + + /* find a queue that has not reached its minimum # outstanding i/os */ + for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) { + if (avl_numnodes(&vq->vq_class[p].vqc_queued_tree) > 0 && + vq->vq_class[p].vqc_active < + vdev_queue_class_min_active(p)) + return (p); + } + + /* + * If we haven't found a queue, look for one that hasn't reached its + * maximum # outstanding i/os. + */ + for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) { + if (avl_numnodes(&vq->vq_class[p].vqc_queued_tree) > 0 && + vq->vq_class[p].vqc_active < + vdev_queue_class_max_active(spa, p)) + return (p); + } + + /* No eligible queued i/os */ + return (ZIO_PRIORITY_NUM_QUEUEABLE); +} + void vdev_queue_init(vdev_t *vd) { vdev_queue_t *vq = &vd->vdev_queue; + int max_active_sum; + zio_priority_t p; int i; mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL); + vq->vq_vdev = vd; - avl_create(&vq->vq_deadline_tree, vdev_queue_deadline_compare, - sizeof (zio_t), offsetof(struct zio, io_deadline_node)); - - avl_create(&vq->vq_read_tree, vdev_queue_offset_compare, - sizeof (zio_t), offsetof(struct zio, io_offset_node)); - - avl_create(&vq->vq_write_tree, vdev_queue_offset_compare, - sizeof (zio_t), offsetof(struct zio, io_offset_node)); + avl_create(&vq->vq_active_tree, vdev_queue_offset_compare, + sizeof (zio_t), offsetof(struct zio, io_queue_node)); - avl_create(&vq->vq_pending_tree, vdev_queue_offset_compare, - sizeof (zio_t), offsetof(struct zio, io_offset_node)); + for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) { + /* + * The synchronous i/o queues are FIFO rather than LBA ordered. + * This provides more consistent latency for these i/os, and + * they tend to not be tightly clustered anyway so there is + * little to no throughput loss. + */ + boolean_t fifo = (p == ZIO_PRIORITY_SYNC_READ || + p == ZIO_PRIORITY_SYNC_WRITE); + avl_create(&vq->vq_class[p].vqc_queued_tree, + fifo ? vdev_queue_timestamp_compare : + vdev_queue_offset_compare, + sizeof (zio_t), offsetof(struct zio, io_queue_node)); + } /* * A list of buffers which can be used for aggregate I/O, this @@ -139,7 +352,10 @@ vdev_queue_init(vdev_t *vd) list_create(&vq->vq_io_list, sizeof (vdev_io_t), offsetof(vdev_io_t, vi_node)); - for (i = 0; i < zfs_vdev_max_pending; i++) + max_active_sum = zfs_vdev_sync_read_max_active + + zfs_vdev_sync_write_max_active + zfs_vdev_async_read_max_active + + zfs_vdev_async_write_max_active + zfs_vdev_scrub_max_active; + for (i = 0; i < max_active_sum; i++) list_insert_tail(&vq->vq_io_list, zio_vdev_alloc()); } @@ -148,11 +364,11 @@ vdev_queue_fini(vdev_t *vd) { vdev_queue_t *vq = &vd->vdev_queue; vdev_io_t *vi; + zio_priority_t p; - avl_destroy(&vq->vq_deadline_tree); - avl_destroy(&vq->vq_read_tree); - avl_destroy(&vq->vq_write_tree); - avl_destroy(&vq->vq_pending_tree); + for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) + avl_destroy(&vq->vq_class[p].vqc_queued_tree); + avl_destroy(&vq->vq_active_tree); while ((vi = list_head(&vq->vq_io_list)) != NULL) { list_remove(&vq->vq_io_list, vi); @@ -170,8 +386,8 @@ vdev_queue_io_add(vdev_queue_t *vq, zio_t *zio) spa_t *spa = zio->io_spa; spa_stats_history_t *ssh = &spa->spa_stats.io_history; - avl_add(&vq->vq_deadline_tree, zio); - avl_add(zio->io_vdev_tree, zio); + ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); + avl_add(&vq->vq_class[zio->io_priority].vqc_queued_tree, zio); if (ssh->kstat != NULL) { mutex_enter(&ssh->lock); @@ -186,8 +402,8 @@ vdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio) spa_t *spa = zio->io_spa; spa_stats_history_t *ssh = &spa->spa_stats.io_history; - avl_remove(&vq->vq_deadline_tree, zio); - avl_remove(zio->io_vdev_tree, zio); + ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); + avl_remove(&vq->vq_class[zio->io_priority].vqc_queued_tree, zio); if (ssh->kstat != NULL) { mutex_enter(&ssh->lock); @@ -202,7 +418,10 @@ vdev_queue_pending_add(vdev_queue_t *vq, zio_t *zio) spa_t *spa = zio->io_spa; spa_stats_history_t *ssh = &spa->spa_stats.io_history; - avl_add(&vq->vq_pending_tree, zio); + ASSERT(MUTEX_HELD(&vq->vq_lock)); + ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); + vq->vq_class[zio->io_priority].vqc_active++; + avl_add(&vq->vq_active_tree, zio); if (ssh->kstat != NULL) { mutex_enter(&ssh->lock); @@ -217,7 +436,10 @@ vdev_queue_pending_remove(vdev_queue_t *vq, zio_t *zio) spa_t *spa = zio->io_spa; spa_stats_history_t *ssh = &spa->spa_stats.io_history; - avl_remove(&vq->vq_pending_tree, zio); + ASSERT(MUTEX_HELD(&vq->vq_lock)); + ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); + vq->vq_class[zio->io_priority].vqc_active--; + avl_remove(&vq->vq_active_tree, zio); if (ssh->kstat != NULL) { kstat_io_t *ksio = ssh->kstat->ks_data; @@ -240,12 +462,14 @@ vdev_queue_agg_io_done(zio_t *aio) { vdev_queue_t *vq = &aio->io_vd->vdev_queue; vdev_io_t *vi = aio->io_data; - zio_t *pio; - while ((pio = zio_walk_parents(aio)) != NULL) - if (aio->io_type == ZIO_TYPE_READ) + if (aio->io_type == ZIO_TYPE_READ) { + zio_t *pio; + while ((pio = zio_walk_parents(aio)) != NULL) { bcopy((char *)aio->io_data + (pio->io_offset - aio->io_offset), pio->io_data, pio->io_size); + } + } mutex_enter(&vq->vq_lock); list_insert_tail(&vq->vq_io_list, vi); @@ -262,28 +486,38 @@ vdev_queue_agg_io_done(zio_t *aio) #define IO_GAP(fio, lio) (-IO_SPAN(lio, fio)) static zio_t * -vdev_queue_io_to_issue(vdev_queue_t *vq, uint64_t pending_limit) +vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio) { - zio_t *fio, *lio, *aio, *dio, *nio, *mio; - avl_tree_t *t; vdev_io_t *vi; - int flags; - uint64_t maxspan = MIN(zfs_vdev_aggregation_limit, SPA_MAXBLOCKSIZE); - uint64_t maxgap; - int stretch; + zio_t *first, *last, *aio, *dio, *mandatory, *nio; + uint64_t maxgap = 0; + uint64_t size; + boolean_t stretch = B_FALSE; + vdev_queue_class_t *vqc = &vq->vq_class[zio->io_priority]; + avl_tree_t *t = &vqc->vqc_queued_tree; + enum zio_flag flags = zio->io_flags & ZIO_FLAG_AGG_INHERIT; + + if (zio->io_flags & ZIO_FLAG_DONT_AGGREGATE) + return (NULL); -again: - ASSERT(MUTEX_HELD(&vq->vq_lock)); + /* Prevent users from setting the zfs_vdev_aggregation_limit + * tuning larger than SPA_MAXBLOCKSIZE. */ + zfs_vdev_aggregation_limit = + MIN(zfs_vdev_aggregation_limit, SPA_MAXBLOCKSIZE); - if (avl_numnodes(&vq->vq_pending_tree) >= pending_limit || - avl_numnodes(&vq->vq_deadline_tree) == 0) + /* + * The synchronous i/o queues are not sorted by LBA, so we can't + * find adjacent i/os. These i/os tend to not be tightly clustered, + * or too large to aggregate, so this has little impact on performance. + */ + if (zio->io_priority == ZIO_PRIORITY_SYNC_READ || + zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) return (NULL); - fio = lio = avl_first(&vq->vq_deadline_tree); + first = last = zio; - t = fio->io_vdev_tree; - flags = fio->io_flags & ZIO_FLAG_AGG_INHERIT; - maxgap = (t == &vq->vq_read_tree) ? zfs_vdev_read_gap_limit : 0; + if (zio->io_type == ZIO_TYPE_READ) + maxgap = zfs_vdev_read_gap_limit; vi = list_head(&vq->vq_io_list); if (vi == NULL) { @@ -291,134 +525,172 @@ again: list_insert_head(&vq->vq_io_list, vi); } - if (!(flags & ZIO_FLAG_DONT_AGGREGATE)) { - /* - * We can aggregate I/Os that are sufficiently adjacent and of - * the same flavor, as expressed by the AGG_INHERIT flags. - * The latter requirement is necessary so that certain - * attributes of the I/O, such as whether it's a normal I/O - * or a scrub/resilver, can be preserved in the aggregate. - * We can include optional I/Os, but don't allow them - * to begin a range as they add no benefit in that situation. - */ + /* + * We can aggregate I/Os that are sufficiently adjacent and of + * the same flavor, as expressed by the AGG_INHERIT flags. + * The latter requirement is necessary so that certain + * attributes of the I/O, such as whether it's a normal I/O + * or a scrub/resilver, can be preserved in the aggregate. + * We can include optional I/Os, but don't allow them + * to begin a range as they add no benefit in that situation. + */ - /* - * We keep track of the last non-optional I/O. - */ - mio = (fio->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : fio; + /* + * We keep track of the last non-optional I/O. + */ + mandatory = (first->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : first; - /* - * Walk backwards through sufficiently contiguous I/Os - * recording the last non-option I/O. - */ - while ((dio = AVL_PREV(t, fio)) != NULL && - (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags && - IO_SPAN(dio, lio) <= maxspan && - IO_GAP(dio, fio) <= maxgap) { - fio = dio; - if (mio == NULL && !(fio->io_flags & ZIO_FLAG_OPTIONAL)) - mio = fio; - } + /* + * Walk backwards through sufficiently contiguous I/Os + * recording the last non-option I/O. + */ + while ((dio = AVL_PREV(t, first)) != NULL && + (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags && + IO_SPAN(dio, last) <= zfs_vdev_aggregation_limit && + IO_GAP(dio, first) <= maxgap) { + first = dio; + if (mandatory == NULL && !(first->io_flags & ZIO_FLAG_OPTIONAL)) + mandatory = first; + } - /* - * Skip any initial optional I/Os. - */ - while ((fio->io_flags & ZIO_FLAG_OPTIONAL) && fio != lio) { - fio = AVL_NEXT(t, fio); - ASSERT(fio != NULL); - } + /* + * Skip any initial optional I/Os. + */ + while ((first->io_flags & ZIO_FLAG_OPTIONAL) && first != last) { + first = AVL_NEXT(t, first); + ASSERT(first != NULL); + } - /* - * Walk forward through sufficiently contiguous I/Os. - */ - while ((dio = AVL_NEXT(t, lio)) != NULL && - (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags && - IO_SPAN(fio, dio) <= maxspan && - IO_GAP(lio, dio) <= maxgap) { - lio = dio; - if (!(lio->io_flags & ZIO_FLAG_OPTIONAL)) - mio = lio; - } - /* - * Now that we've established the range of the I/O aggregation - * we must decide what to do with trailing optional I/Os. - * For reads, there's nothing to do. While we are unable to - * aggregate further, it's possible that a trailing optional - * I/O would allow the underlying device to aggregate with - * subsequent I/Os. We must therefore determine if the next - * non-optional I/O is close enough to make aggregation - * worthwhile. - */ - stretch = B_FALSE; - if (t != &vq->vq_read_tree && mio != NULL) { - nio = lio; - while ((dio = AVL_NEXT(t, nio)) != NULL && - IO_GAP(nio, dio) == 0 && - IO_GAP(mio, dio) <= zfs_vdev_write_gap_limit) { - nio = dio; - if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) { - stretch = B_TRUE; - break; - } + /* + * Walk forward through sufficiently contiguous I/Os. + */ + while ((dio = AVL_NEXT(t, last)) != NULL && + (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags && + IO_SPAN(first, dio) <= zfs_vdev_aggregation_limit && + IO_GAP(last, dio) <= maxgap) { + last = dio; + if (!(last->io_flags & ZIO_FLAG_OPTIONAL)) + mandatory = last; + } + + /* + * Now that we've established the range of the I/O aggregation + * we must decide what to do with trailing optional I/Os. + * For reads, there's nothing to do. While we are unable to + * aggregate further, it's possible that a trailing optional + * I/O would allow the underlying device to aggregate with + * subsequent I/Os. We must therefore determine if the next + * non-optional I/O is close enough to make aggregation + * worthwhile. + */ + if (zio->io_type == ZIO_TYPE_WRITE && mandatory != NULL) { + zio_t *nio = last; + while ((dio = AVL_NEXT(t, nio)) != NULL && + IO_GAP(nio, dio) == 0 && + IO_GAP(mandatory, dio) <= zfs_vdev_write_gap_limit) { + nio = dio; + if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) { + stretch = B_TRUE; + break; } } + } - if (stretch) { - /* This may be a no-op. */ - VERIFY((dio = AVL_NEXT(t, lio)) != NULL); - dio->io_flags &= ~ZIO_FLAG_OPTIONAL; - } else { - while (lio != mio && lio != fio) { - ASSERT(lio->io_flags & ZIO_FLAG_OPTIONAL); - lio = AVL_PREV(t, lio); - ASSERT(lio != NULL); - } + if (stretch) { + /* This may be a no-op. */ + dio = AVL_NEXT(t, last); + dio->io_flags &= ~ZIO_FLAG_OPTIONAL; + } else { + while (last != mandatory && last != first) { + ASSERT(last->io_flags & ZIO_FLAG_OPTIONAL); + last = AVL_PREV(t, last); + ASSERT(last != NULL); } } - if (fio != lio) { - uint64_t size = IO_SPAN(fio, lio); - ASSERT(size <= maxspan); - ASSERT(vi != NULL); - - aio = zio_vdev_delegated_io(fio->io_vd, fio->io_offset, - vi, size, fio->io_type, ZIO_PRIORITY_AGG, - flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE, - vdev_queue_agg_io_done, NULL); - aio->io_timestamp = fio->io_timestamp; - - nio = fio; - do { - dio = nio; - nio = AVL_NEXT(t, dio); - ASSERT(dio->io_type == aio->io_type); - ASSERT(dio->io_vdev_tree == t); - - if (dio->io_flags & ZIO_FLAG_NODATA) { - ASSERT(dio->io_type == ZIO_TYPE_WRITE); - bzero((char *)aio->io_data + (dio->io_offset - - aio->io_offset), dio->io_size); - } else if (dio->io_type == ZIO_TYPE_WRITE) { - bcopy(dio->io_data, (char *)aio->io_data + - (dio->io_offset - aio->io_offset), - dio->io_size); - } + if (first == last) + return (NULL); + + ASSERT(vi != NULL); + + size = IO_SPAN(first, last); + ASSERT3U(size, <=, zfs_vdev_aggregation_limit); + + aio = zio_vdev_delegated_io(first->io_vd, first->io_offset, + vi, size, first->io_type, zio->io_priority, + flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE, + vdev_queue_agg_io_done, NULL); + aio->io_timestamp = first->io_timestamp; + + nio = first; + do { + dio = nio; + nio = AVL_NEXT(t, dio); + ASSERT3U(dio->io_type, ==, aio->io_type); + + if (dio->io_flags & ZIO_FLAG_NODATA) { + ASSERT3U(dio->io_type, ==, ZIO_TYPE_WRITE); + bzero((char *)aio->io_data + (dio->io_offset - + aio->io_offset), dio->io_size); + } else if (dio->io_type == ZIO_TYPE_WRITE) { + bcopy(dio->io_data, (char *)aio->io_data + + (dio->io_offset - aio->io_offset), + dio->io_size); + } - zio_add_child(dio, aio); - vdev_queue_io_remove(vq, dio); - zio_vdev_io_bypass(dio); - zio_execute(dio); - } while (dio != lio); + zio_add_child(dio, aio); + vdev_queue_io_remove(vq, dio); + zio_vdev_io_bypass(dio); + zio_execute(dio); + } while (dio != last); - vdev_queue_pending_add(vq, aio); - list_remove(&vq->vq_io_list, vi); + list_remove(&vq->vq_io_list, vi); + + return (aio); +} + +static zio_t * +vdev_queue_io_to_issue(vdev_queue_t *vq) +{ + zio_t *zio, *aio; + zio_priority_t p; + avl_index_t idx; + vdev_queue_class_t *vqc; + zio_t *search; + +again: + ASSERT(MUTEX_HELD(&vq->vq_lock)); + + p = vdev_queue_class_to_issue(vq); - return (aio); + if (p == ZIO_PRIORITY_NUM_QUEUEABLE) { + /* No eligible queued i/os */ + return (NULL); } - ASSERT(fio->io_vdev_tree == t); - vdev_queue_io_remove(vq, fio); + /* + * For LBA-ordered queues (async / scrub), issue the i/o which follows + * the most recently issued i/o in LBA (offset) order. + * + * For FIFO queues (sync), issue the i/o with the lowest timestamp. + */ + vqc = &vq->vq_class[p]; + search = zio_buf_alloc(sizeof(*search)); + search->io_timestamp = 0; + search->io_offset = vq->vq_last_offset + 1; + VERIFY3P(avl_find(&vqc->vqc_queued_tree, search, &idx), ==, NULL); + zio_buf_free(search, sizeof(*search)); + zio = avl_nearest(&vqc->vqc_queued_tree, idx, AVL_AFTER); + if (zio == NULL) + zio = avl_first(&vqc->vqc_queued_tree); + ASSERT3U(zio->io_priority, ==, p); + + aio = vdev_queue_aggregate(vq, zio); + if (aio != NULL) + zio = aio; + else + vdev_queue_io_remove(vq, zio); /* * If the I/O is or was optional and therefore has no data, we need to @@ -426,17 +698,18 @@ again: * deadlock that we could encounter since this I/O will complete * immediately. */ - if (fio->io_flags & ZIO_FLAG_NODATA) { + if (zio->io_flags & ZIO_FLAG_NODATA) { mutex_exit(&vq->vq_lock); - zio_vdev_io_bypass(fio); - zio_execute(fio); + zio_vdev_io_bypass(zio); + zio_execute(zio); mutex_enter(&vq->vq_lock); goto again; } - vdev_queue_pending_add(vq, fio); + vdev_queue_pending_add(vq, zio); + vq->vq_last_offset = zio->io_offset; - return (fio); + return (zio); } zio_t * @@ -445,28 +718,31 @@ vdev_queue_io(zio_t *zio) vdev_queue_t *vq = &zio->io_vd->vdev_queue; zio_t *nio; - ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE); - if (zio->io_flags & ZIO_FLAG_DONT_QUEUE) return (zio); - zio->io_flags |= ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE; + /* + * Children i/os inherent their parent's priority, which might + * not match the child's i/o type. Fix it up here. + */ + if (zio->io_type == ZIO_TYPE_READ) { + if (zio->io_priority != ZIO_PRIORITY_SYNC_READ && + zio->io_priority != ZIO_PRIORITY_ASYNC_READ && + zio->io_priority != ZIO_PRIORITY_SCRUB) + zio->io_priority = ZIO_PRIORITY_ASYNC_READ; + } else { + ASSERT(zio->io_type == ZIO_TYPE_WRITE); + if (zio->io_priority != ZIO_PRIORITY_SYNC_WRITE && + zio->io_priority != ZIO_PRIORITY_ASYNC_WRITE) + zio->io_priority = ZIO_PRIORITY_ASYNC_WRITE; + } - if (zio->io_type == ZIO_TYPE_READ) - zio->io_vdev_tree = &vq->vq_read_tree; - else - zio->io_vdev_tree = &vq->vq_write_tree; + zio->io_flags |= ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE; mutex_enter(&vq->vq_lock); - zio->io_timestamp = gethrtime(); - zio->io_deadline = (zio->io_timestamp >> zfs_vdev_time_shift) + - zio->io_priority; - vdev_queue_io_add(vq, zio); - - nio = vdev_queue_io_to_issue(vq, zfs_vdev_min_pending); - + nio = vdev_queue_io_to_issue(vq); mutex_exit(&vq->vq_lock); if (nio == NULL) @@ -484,7 +760,7 @@ void vdev_queue_io_done(zio_t *zio) { vdev_queue_t *vq = &zio->io_vd->vdev_queue; - int i; + zio_t *nio; if (zio_injection_enabled) delay(SEC_TO_TICK(zio_handle_io_delay(zio))); @@ -497,10 +773,7 @@ vdev_queue_io_done(zio_t *zio) vq->vq_io_complete_ts = gethrtime(); vq->vq_io_delta_ts = vq->vq_io_complete_ts - zio->io_timestamp; - for (i = 0; i < zfs_vdev_ramp_rate; i++) { - zio_t *nio = vdev_queue_io_to_issue(vq, zfs_vdev_max_pending); - if (nio == NULL) - break; + while ((nio = vdev_queue_io_to_issue(vq)) != NULL) { mutex_exit(&vq->vq_lock); if (nio->io_done == vdev_queue_agg_io_done) { zio_nowait(nio); @@ -515,24 +788,61 @@ vdev_queue_io_done(zio_t *zio) } #if defined(_KERNEL) && defined(HAVE_SPL) -module_param(zfs_vdev_max_pending, int, 0644); -MODULE_PARM_DESC(zfs_vdev_max_pending, "Max pending per-vdev I/Os"); - -module_param(zfs_vdev_min_pending, int, 0644); -MODULE_PARM_DESC(zfs_vdev_min_pending, "Min pending per-vdev I/Os"); - module_param(zfs_vdev_aggregation_limit, int, 0644); MODULE_PARM_DESC(zfs_vdev_aggregation_limit, "Max vdev I/O aggregation size"); -module_param(zfs_vdev_time_shift, int, 0644); -MODULE_PARM_DESC(zfs_vdev_time_shift, "Deadline time shift for vdev I/O"); - -module_param(zfs_vdev_ramp_rate, int, 0644); -MODULE_PARM_DESC(zfs_vdev_ramp_rate, "Exponential I/O issue ramp-up rate"); - module_param(zfs_vdev_read_gap_limit, int, 0644); MODULE_PARM_DESC(zfs_vdev_read_gap_limit, "Aggregate read I/O over gap"); module_param(zfs_vdev_write_gap_limit, int, 0644); MODULE_PARM_DESC(zfs_vdev_write_gap_limit, "Aggregate write I/O over gap"); + +module_param(zfs_vdev_max_active, int, 0644); +MODULE_PARM_DESC(zfs_vdev_max_active, "Maximum number of active I/Os per vdev"); + +module_param(zfs_vdev_async_write_active_max_dirty_percent, int, 0644); +MODULE_PARM_DESC(zfs_vdev_async_write_active_max_dirty_percent, + "Async write concurrency max threshold"); + +module_param(zfs_vdev_async_write_active_min_dirty_percent, int, 0644); +MODULE_PARM_DESC(zfs_vdev_async_write_active_min_dirty_percent, + "Async write concurrency min threshold"); + +module_param(zfs_vdev_async_read_max_active, int, 0644); +MODULE_PARM_DESC(zfs_vdev_async_read_max_active, + "Max active async read I/Os per vdev"); + +module_param(zfs_vdev_async_read_min_active, int, 0644); +MODULE_PARM_DESC(zfs_vdev_async_read_min_active, + "Min active async read I/Os per vdev"); + +module_param(zfs_vdev_async_write_max_active, int, 0644); +MODULE_PARM_DESC(zfs_vdev_async_write_max_active, + "Max active async write I/Os per vdev"); + +module_param(zfs_vdev_async_write_min_active, int, 0644); +MODULE_PARM_DESC(zfs_vdev_async_write_min_active, + "Min active async write I/Os per vdev"); + +module_param(zfs_vdev_scrub_max_active, int, 0644); +MODULE_PARM_DESC(zfs_vdev_scrub_max_active, "Max active scrub I/Os per vdev"); + +module_param(zfs_vdev_scrub_min_active, int, 0644); +MODULE_PARM_DESC(zfs_vdev_scrub_min_active, "Min active scrub I/Os per vdev"); + +module_param(zfs_vdev_sync_read_max_active, int, 0644); +MODULE_PARM_DESC(zfs_vdev_sync_read_max_active, + "Max active sync read I/Os per vdev"); + +module_param(zfs_vdev_sync_read_min_active, int, 0644); +MODULE_PARM_DESC(zfs_vdev_sync_read_min_active, + "Min active sync read I/Os per vdev"); + +module_param(zfs_vdev_sync_write_max_active, int, 0644); +MODULE_PARM_DESC(zfs_vdev_sync_write_max_active, + "Max active sync write I/Os per vdev"); + +module_param(zfs_vdev_sync_write_min_active, int, 0644); +MODULE_PARM_DESC(zfs_vdev_sync_write_min_active, + "Min active sync write I/Osper vdev"); #endif |