diff options
Diffstat (limited to 'module/zfs/metaslab.c')
-rw-r--r-- | module/zfs/metaslab.c | 16 |
1 files changed, 8 insertions, 8 deletions
diff --git a/module/zfs/metaslab.c b/module/zfs/metaslab.c index 11b9ba8e9..1b45e3e33 100644 --- a/module/zfs/metaslab.c +++ b/module/zfs/metaslab.c @@ -112,7 +112,7 @@ int zfs_mg_noalloc_threshold = 0; /* * Metaslab groups are considered eligible for allocations if their - * fragmenation metric (measured as a percentage) is less than or + * fragmentation metric (measured as a percentage) is less than or * equal to zfs_mg_fragmentation_threshold. If a metaslab group * exceeds this threshold then it will be skipped unless all metaslab * groups within the metaslab class have also crossed this threshold. @@ -1285,7 +1285,7 @@ metaslab_largest_unflushed_free(metaslab_t *msp) * deferred. Similar logic applies to the ms_freed tree. See * metaslab_load() for more details. * - * There are two primary sources of innacuracy in this estimate. Both + * There are two primary sources of inaccuracy in this estimate. Both * are tolerated for performance reasons. The first source is that we * only check the largest segment for overlaps. Smaller segments may * have more favorable overlaps with the other trees, resulting in @@ -1874,7 +1874,7 @@ metaslab_verify_weight_and_frag(metaslab_t *msp) * If we're over the zfs_metaslab_mem_limit, select the loaded metaslab from * this class that was used longest ago, and attempt to unload it. We don't * want to spend too much time in this loop to prevent performance - * degredation, and we expect that most of the time this operation will + * degradation, and we expect that most of the time this operation will * succeed. Between that and the normal unloading processing during txg sync, * we expect this to keep the metaslab memory usage under control. */ @@ -3060,7 +3060,7 @@ metaslab_passivate(metaslab_t *msp, uint64_t weight) * we either fail an allocation attempt (similar to space-based metaslabs) * or have exhausted the free space in zfs_metaslab_switch_threshold * buckets since the metaslab was activated. This function checks to see - * if we've exhaused the zfs_metaslab_switch_threshold buckets in the + * if we've exhausted the zfs_metaslab_switch_threshold buckets in the * metaslab and passivates it proactively. This will allow us to select a * metaslab with a larger contiguous region, if any, remaining within this * metaslab group. If we're in sync pass > 1, then we continue using this @@ -4294,7 +4294,7 @@ metaslab_block_alloc(metaslab_t *msp, uint64_t size, uint64_t txg) * have selected, we may not try the newly-activated metaslab, and instead * activate another metaslab. This is not optimal, but generally does not cause * any problems (a possible exception being if every metaslab is completely full - * except for the the newly-activated metaslab which we fail to examine). + * except for the newly-activated metaslab which we fail to examine). */ static metaslab_t * find_valid_metaslab(metaslab_group_t *mg, uint64_t activation_weight, @@ -4441,7 +4441,7 @@ metaslab_group_alloc_normal(metaslab_group_t *mg, zio_alloc_list_t *zal, /* * Even though we don't hold the ms_lock for the * primary metaslab, those fields should not - * change while we hold the mg_lock. Thus is is + * change while we hold the mg_lock. Thus it is * safe to make assertions on them. */ ASSERT(msp->ms_primary); @@ -4879,7 +4879,7 @@ top: /* * If we don't need to try hard, then require that the - * block be on an different metaslab from any other DVAs + * block be on a different metaslab from any other DVAs * in this BP (unique=true). If we are trying hard, then * allow any metaslab to be used (unique=false). */ @@ -5685,7 +5685,7 @@ metaslab_check_free_impl(vdev_t *vd, uint64_t offset, uint64_t size) * * It would intuitively make sense to also check the current allocating * tree since metaslab_unalloc_dva() exists for extents that are - * allocated and freed in the same sync pass withing the same txg. + * allocated and freed in the same sync pass within the same txg. * Unfortunately there are places (e.g. the ZIL) where we allocate a * segment but then we free part of it within the same txg * [see zil_sync()]. Thus, we don't call range_tree_verify() in the |