aboutsummaryrefslogtreecommitdiffstats
path: root/module/zfs/btree.c
diff options
context:
space:
mode:
Diffstat (limited to 'module/zfs/btree.c')
-rw-r--r--module/zfs/btree.c2124
1 files changed, 2124 insertions, 0 deletions
diff --git a/module/zfs/btree.c b/module/zfs/btree.c
new file mode 100644
index 000000000..8f514caab
--- /dev/null
+++ b/module/zfs/btree.c
@@ -0,0 +1,2124 @@
+/*
+ * CDDL HEADER START
+ *
+ * This file and its contents are supplied under the terms of the
+ * Common Development and Distribution License ("CDDL"), version 1.0.
+ * You may only use this file in accordance with the terms of version
+ * 1.0 of the CDDL.
+ *
+ * A full copy of the text of the CDDL should have accompanied this
+ * source. A copy of the CDDL is also available via the Internet at
+ * http://www.illumos.org/license/CDDL.
+ *
+ * CDDL HEADER END
+ */
+/*
+ * Copyright (c) 2019 by Delphix. All rights reserved.
+ */
+
+#include <sys/btree.h>
+#include <sys/bitops.h>
+#include <sys/zfs_context.h>
+
+kmem_cache_t *zfs_btree_leaf_cache;
+
+/*
+ * Control the extent of the verification that occurs when zfs_btree_verify is
+ * called. Primarily used for debugging when extending the btree logic and
+ * functionality. As the intensity is increased, new verification steps are
+ * added. These steps are cumulative; intensity = 3 includes the intensity = 1
+ * and intensity = 2 steps as well.
+ *
+ * Intensity 1: Verify that the tree's height is consistent throughout.
+ * Intensity 2: Verify that a core node's children's parent pointers point
+ * to the core node.
+ * Intensity 3: Verify that the total number of elements in the tree matches the
+ * sum of the number of elements in each node. Also verifies that each node's
+ * count obeys the invariants (less than or equal to maximum value, greater than
+ * or equal to half the maximum minus one).
+ * Intensity 4: Verify that each element compares less than the element
+ * immediately after it and greater than the one immediately before it using the
+ * comparator function. For core nodes, also checks that each element is greater
+ * than the last element in the first of the two nodes it separates, and less
+ * than the first element in the second of the two nodes.
+ * Intensity 5: Verifies, if ZFS_DEBUG is defined, that all unused memory inside
+ * of each node is poisoned appropriately. Note that poisoning always occurs if
+ * ZFS_DEBUG is set, so it is safe to set the intensity to 5 during normal
+ * operation.
+ *
+ * Intensity 4 and 5 are particularly expensive to perform; the previous levels
+ * are a few memory operations per node, while these levels require multiple
+ * operations per element. In addition, when creating large btrees, these
+ * operations are called at every step, resulting in extremely slow operation
+ * (while the asymptotic complexity of the other steps is the same, the
+ * importance of the constant factors cannot be denied).
+ */
+int zfs_btree_verify_intensity = 0;
+
+/*
+ * A convenience function to silence warnings from memmove's return value and
+ * change argument order to src, dest.
+ */
+void
+bmov(const void *src, void *dest, size_t size)
+{
+ (void) memmove(dest, src, size);
+}
+
+#ifdef _ILP32
+#define BTREE_POISON 0xabadb10c
+#else
+#define BTREE_POISON 0xabadb10cdeadbeef
+#endif
+
+static void
+zfs_btree_poison_node(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
+{
+#ifdef ZFS_DEBUG
+ size_t size = tree->bt_elem_size;
+ if (!hdr->bth_core) {
+ zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr;
+ (void) memset(leaf->btl_elems + hdr->bth_count * size, 0x0f,
+ BTREE_LEAF_SIZE - sizeof (zfs_btree_hdr_t) -
+ hdr->bth_count * size);
+ } else {
+ zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
+ for (int i = hdr->bth_count + 1; i <= BTREE_CORE_ELEMS; i++) {
+ node->btc_children[i] =
+ (zfs_btree_hdr_t *)BTREE_POISON;
+ }
+ (void) memset(node->btc_elems + hdr->bth_count * size, 0x0f,
+ (BTREE_CORE_ELEMS - hdr->bth_count) * size);
+ }
+#endif
+}
+
+static inline void
+zfs_btree_poison_node_at(zfs_btree_t *tree, zfs_btree_hdr_t *hdr,
+ uint64_t offset)
+{
+#ifdef ZFS_DEBUG
+ size_t size = tree->bt_elem_size;
+ ASSERT3U(offset, >=, hdr->bth_count);
+ if (!hdr->bth_core) {
+ zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr;
+ (void) memset(leaf->btl_elems + offset * size, 0x0f, size);
+ } else {
+ zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
+ node->btc_children[offset + 1] =
+ (zfs_btree_hdr_t *)BTREE_POISON;
+ (void) memset(node->btc_elems + offset * size, 0x0f, size);
+ }
+#endif
+}
+
+static inline void
+zfs_btree_verify_poison_at(zfs_btree_t *tree, zfs_btree_hdr_t *hdr,
+ uint64_t offset)
+{
+#ifdef ZFS_DEBUG
+ size_t size = tree->bt_elem_size;
+ uint8_t eval = 0x0f;
+ if (hdr->bth_core) {
+ zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
+ zfs_btree_hdr_t *cval = (zfs_btree_hdr_t *)BTREE_POISON;
+ VERIFY3P(node->btc_children[offset + 1], ==, cval);
+ for (int i = 0; i < size; i++)
+ VERIFY3U(node->btc_elems[offset * size + i], ==, eval);
+ } else {
+ zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr;
+ for (int i = 0; i < size; i++)
+ VERIFY3U(leaf->btl_elems[offset * size + i], ==, eval);
+ }
+#endif
+}
+
+void
+zfs_btree_init(void)
+{
+ zfs_btree_leaf_cache = kmem_cache_create("zfs_btree_leaf_cache",
+ BTREE_LEAF_SIZE, 0, NULL, NULL, NULL, NULL,
+ NULL, 0);
+}
+
+void
+zfs_btree_fini(void)
+{
+ kmem_cache_destroy(zfs_btree_leaf_cache);
+}
+
+void
+zfs_btree_create(zfs_btree_t *tree, int (*compar) (const void *, const void *),
+ size_t size)
+{
+ /*
+ * We need a minimmum of 4 elements so that when we split a node we
+ * always have at least two elements in each node. This simplifies the
+ * logic in zfs_btree_bulk_finish, since it means the last leaf will
+ * always have a left sibling to share with (unless it's the root).
+ */
+ ASSERT3U(size, <=, (BTREE_LEAF_SIZE - sizeof (zfs_btree_hdr_t)) / 4);
+
+ bzero(tree, sizeof (*tree));
+ tree->bt_compar = compar;
+ tree->bt_elem_size = size;
+ tree->bt_height = -1;
+ tree->bt_bulk = NULL;
+}
+
+/*
+ * Find value in the array of elements provided. Uses a simple binary search.
+ */
+static void *
+zfs_btree_find_in_buf(zfs_btree_t *tree, uint8_t *buf, uint64_t nelems,
+ const void *value, zfs_btree_index_t *where)
+{
+ uint64_t max = nelems;
+ uint64_t min = 0;
+ while (max > min) {
+ uint64_t idx = (min + max) / 2;
+ uint8_t *cur = buf + idx * tree->bt_elem_size;
+ int comp = tree->bt_compar(cur, value);
+ if (comp == -1) {
+ min = idx + 1;
+ } else if (comp == 1) {
+ max = idx;
+ } else {
+ ASSERT0(comp);
+ where->bti_offset = idx;
+ where->bti_before = B_FALSE;
+ return (cur);
+ }
+ }
+
+ where->bti_offset = max;
+ where->bti_before = B_TRUE;
+ return (NULL);
+}
+
+/*
+ * Find the given value in the tree. where may be passed as null to use as a
+ * membership test or if the btree is being used as a map.
+ */
+void *
+zfs_btree_find(zfs_btree_t *tree, const void *value, zfs_btree_index_t *where)
+{
+ if (tree->bt_height == -1) {
+ if (where != NULL) {
+ where->bti_node = NULL;
+ where->bti_offset = 0;
+ }
+ ASSERT0(tree->bt_num_elems);
+ return (NULL);
+ }
+
+ /*
+ * If we're in bulk-insert mode, we check the last spot in the tree
+ * and the last leaf in the tree before doing the normal search,
+ * because for most workloads the vast majority of finds in
+ * bulk-insert mode are to insert new elements.
+ */
+ zfs_btree_index_t idx;
+ if (tree->bt_bulk != NULL) {
+ zfs_btree_leaf_t *last_leaf = tree->bt_bulk;
+ int compar = tree->bt_compar(last_leaf->btl_elems +
+ ((last_leaf->btl_hdr.bth_count - 1) * tree->bt_elem_size),
+ value);
+ if (compar < 0) {
+ /*
+ * If what they're looking for is after the last
+ * element, it's not in the tree.
+ */
+ if (where != NULL) {
+ where->bti_node = (zfs_btree_hdr_t *)last_leaf;
+ where->bti_offset =
+ last_leaf->btl_hdr.bth_count;
+ where->bti_before = B_TRUE;
+ }
+ return (NULL);
+ } else if (compar == 0) {
+ if (where != NULL) {
+ where->bti_node = (zfs_btree_hdr_t *)last_leaf;
+ where->bti_offset =
+ last_leaf->btl_hdr.bth_count - 1;
+ where->bti_before = B_FALSE;
+ }
+ return (last_leaf->btl_elems +
+ ((last_leaf->btl_hdr.bth_count - 1) *
+ tree->bt_elem_size));
+ }
+ if (tree->bt_compar(last_leaf->btl_elems, value) <= 0) {
+ /*
+ * If what they're looking for is after the first
+ * element in the last leaf, it's in the last leaf or
+ * it's not in the tree.
+ */
+ void *d = zfs_btree_find_in_buf(tree,
+ last_leaf->btl_elems, last_leaf->btl_hdr.bth_count,
+ value, &idx);
+
+ if (where != NULL) {
+ idx.bti_node = (zfs_btree_hdr_t *)last_leaf;
+ *where = idx;
+ }
+ return (d);
+ }
+ }
+
+ zfs_btree_core_t *node = NULL;
+ uint64_t child = 0;
+ uint64_t depth = 0;
+
+ /*
+ * Iterate down the tree, finding which child the value should be in
+ * by comparing with the separators.
+ */
+ for (node = (zfs_btree_core_t *)tree->bt_root; depth < tree->bt_height;
+ node = (zfs_btree_core_t *)node->btc_children[child], depth++) {
+ ASSERT3P(node, !=, NULL);
+ void *d = zfs_btree_find_in_buf(tree, node->btc_elems,
+ node->btc_hdr.bth_count, value, &idx);
+ EQUIV(d != NULL, !idx.bti_before);
+ if (d != NULL) {
+ if (where != NULL) {
+ idx.bti_node = (zfs_btree_hdr_t *)node;
+ *where = idx;
+ }
+ return (d);
+ }
+ ASSERT(idx.bti_before);
+ child = idx.bti_offset;
+ }
+
+ /*
+ * The value is in this leaf, or it would be if it were in the
+ * tree. Find its proper location and return it.
+ */
+ zfs_btree_leaf_t *leaf = (depth == 0 ?
+ (zfs_btree_leaf_t *)tree->bt_root : (zfs_btree_leaf_t *)node);
+ void *d = zfs_btree_find_in_buf(tree, leaf->btl_elems,
+ leaf->btl_hdr.bth_count, value, &idx);
+
+ if (where != NULL) {
+ idx.bti_node = (zfs_btree_hdr_t *)leaf;
+ *where = idx;
+ }
+
+ return (d);
+}
+
+/*
+ * To explain the following functions, it is useful to understand the four
+ * kinds of shifts used in btree operation. First, a shift is a movement of
+ * elements within a node. It is used to create gaps for inserting new
+ * elements and children, or cover gaps created when things are removed. A
+ * shift has two fundamental properties, each of which can be one of two
+ * values, making four types of shifts. There is the direction of the shift
+ * (left or right) and the shape of the shift (parallelogram or isoceles
+ * trapezoid (shortened to trapezoid hereafter)). The shape distinction only
+ * applies to shifts of core nodes.
+ *
+ * The names derive from the following imagining of the layout of a node:
+ *
+ * Elements: * * * * * * * ... * * *
+ * Children: * * * * * * * * ... * * *
+ *
+ * This layout follows from the fact that the elements act as separators
+ * between pairs of children, and that children root subtrees "below" the
+ * current node. A left and right shift are fairly self-explanatory; a left
+ * shift moves things to the left, while a right shift moves things to the
+ * right. A parallelogram shift is a shift with the same number of elements
+ * and children being moved, while a trapezoid shift is a shift that moves one
+ * more children than elements. An example follows:
+ *
+ * A parallelogram shift could contain the following:
+ * _______________
+ * \* * * * \ * * * ... * * *
+ * * \ * * * *\ * * * ... * * *
+ * ---------------
+ * A trapezoid shift could contain the following:
+ * ___________
+ * * / * * * \ * * * ... * * *
+ * * / * * * *\ * * * ... * * *
+ * ---------------
+ *
+ * Note that a parellelogram shift is always shaped like a "left-leaning"
+ * parallelogram, where the starting index of the children being moved is
+ * always one higher than the starting index of the elements being moved. No
+ * "right-leaning" parallelogram shifts are needed (shifts where the starting
+ * element index and starting child index being moved are the same) to achieve
+ * any btree operations, so we ignore them.
+ */
+
+enum bt_shift_shape {
+ BSS_TRAPEZOID,
+ BSS_PARALLELOGRAM
+};
+
+enum bt_shift_direction {
+ BSD_LEFT,
+ BSD_RIGHT
+};
+
+/*
+ * Shift elements and children in the provided core node by off spots. The
+ * first element moved is idx, and count elements are moved. The shape of the
+ * shift is determined by shape. The direction is determined by dir.
+ */
+static inline void
+bt_shift_core(zfs_btree_t *tree, zfs_btree_core_t *node, uint64_t idx,
+ uint64_t count, uint64_t off, enum bt_shift_shape shape,
+ enum bt_shift_direction dir)
+{
+ size_t size = tree->bt_elem_size;
+ ASSERT(node->btc_hdr.bth_core);
+
+ uint8_t *e_start = node->btc_elems + idx * size;
+ int sign = (dir == BSD_LEFT ? -1 : +1);
+ uint8_t *e_out = e_start + sign * off * size;
+ uint64_t e_count = count;
+ bmov(e_start, e_out, e_count * size);
+
+ zfs_btree_hdr_t **c_start = node->btc_children + idx +
+ (shape == BSS_TRAPEZOID ? 0 : 1);
+ zfs_btree_hdr_t **c_out = (dir == BSD_LEFT ? c_start - off :
+ c_start + off);
+ uint64_t c_count = count + (shape == BSS_TRAPEZOID ? 1 : 0);
+ bmov(c_start, c_out, c_count * sizeof (*c_start));
+}
+
+/*
+ * Shift elements and children in the provided core node left by one spot.
+ * The first element moved is idx, and count elements are moved. The
+ * shape of the shift is determined by trap; true if the shift is a trapezoid,
+ * false if it is a parallelogram.
+ */
+static inline void
+bt_shift_core_left(zfs_btree_t *tree, zfs_btree_core_t *node, uint64_t idx,
+ uint64_t count, enum bt_shift_shape shape)
+{
+ bt_shift_core(tree, node, idx, count, 1, shape, BSD_LEFT);
+}
+
+/*
+ * Shift elements and children in the provided core node right by one spot.
+ * Starts with elements[idx] and children[idx] and one more child than element.
+ */
+static inline void
+bt_shift_core_right(zfs_btree_t *tree, zfs_btree_core_t *node, uint64_t idx,
+ uint64_t count, enum bt_shift_shape shape)
+{
+ bt_shift_core(tree, node, idx, count, 1, shape, BSD_RIGHT);
+}
+
+/*
+ * Shift elements and children in the provided leaf node by off spots.
+ * The first element moved is idx, and count elements are moved. The direction
+ * is determined by left.
+ */
+static inline void
+bt_shift_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *node, uint64_t idx,
+ uint64_t count, uint64_t off, enum bt_shift_direction dir)
+{
+ size_t size = tree->bt_elem_size;
+ ASSERT(!node->btl_hdr.bth_core);
+
+ uint8_t *start = node->btl_elems + idx * size;
+ int sign = (dir == BSD_LEFT ? -1 : +1);
+ uint8_t *out = start + sign * off * size;
+ bmov(start, out, count * size);
+}
+
+static inline void
+bt_shift_leaf_right(zfs_btree_t *tree, zfs_btree_leaf_t *leaf, uint64_t idx,
+ uint64_t count)
+{
+ bt_shift_leaf(tree, leaf, idx, count, 1, BSD_RIGHT);
+}
+
+static inline void
+bt_shift_leaf_left(zfs_btree_t *tree, zfs_btree_leaf_t *leaf, uint64_t idx,
+ uint64_t count)
+{
+ bt_shift_leaf(tree, leaf, idx, count, 1, BSD_LEFT);
+}
+
+/*
+ * Move children and elements from one core node to another. The shape
+ * parameter behaves the same as it does in the shift logic.
+ */
+static inline void
+bt_transfer_core(zfs_btree_t *tree, zfs_btree_core_t *source, uint64_t sidx,
+ uint64_t count, zfs_btree_core_t *dest, uint64_t didx,
+ enum bt_shift_shape shape)
+{
+ size_t size = tree->bt_elem_size;
+ ASSERT(source->btc_hdr.bth_core);
+ ASSERT(dest->btc_hdr.bth_core);
+
+ bmov(source->btc_elems + sidx * size, dest->btc_elems + didx * size,
+ count * size);
+
+ uint64_t c_count = count + (shape == BSS_TRAPEZOID ? 1 : 0);
+ bmov(source->btc_children + sidx + (shape == BSS_TRAPEZOID ? 0 : 1),
+ dest->btc_children + didx + (shape == BSS_TRAPEZOID ? 0 : 1),
+ c_count * sizeof (*source->btc_children));
+}
+
+static inline void
+bt_transfer_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *source, uint64_t sidx,
+ uint64_t count, zfs_btree_leaf_t *dest, uint64_t didx)
+{
+ size_t size = tree->bt_elem_size;
+ ASSERT(!source->btl_hdr.bth_core);
+ ASSERT(!dest->btl_hdr.bth_core);
+
+ bmov(source->btl_elems + sidx * size, dest->btl_elems + didx * size,
+ count * size);
+}
+
+/*
+ * Find the first element in the subtree rooted at hdr, return its value and
+ * put its location in where if non-null.
+ */
+static void *
+zfs_btree_first_helper(zfs_btree_hdr_t *hdr, zfs_btree_index_t *where)
+{
+ zfs_btree_hdr_t *node;
+
+ for (node = hdr; node->bth_core; node =
+ ((zfs_btree_core_t *)node)->btc_children[0])
+ ;
+
+ ASSERT(!node->bth_core);
+ zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)node;
+ if (where != NULL) {
+ where->bti_node = node;
+ where->bti_offset = 0;
+ where->bti_before = B_FALSE;
+ }
+ return (&leaf->btl_elems[0]);
+}
+
+/* Insert an element and a child into a core node at the given offset. */
+static void
+zfs_btree_insert_core_impl(zfs_btree_t *tree, zfs_btree_core_t *parent,
+ uint64_t offset, zfs_btree_hdr_t *new_node, void *buf)
+{
+ uint64_t size = tree->bt_elem_size;
+ zfs_btree_hdr_t *par_hdr = &parent->btc_hdr;
+ ASSERT3P(par_hdr, ==, new_node->bth_parent);
+ ASSERT3U(par_hdr->bth_count, <, BTREE_CORE_ELEMS);
+
+ if (zfs_btree_verify_intensity >= 5) {
+ zfs_btree_verify_poison_at(tree, par_hdr,
+ par_hdr->bth_count);
+ }
+ /* Shift existing elements and children */
+ uint64_t count = par_hdr->bth_count - offset;
+ bt_shift_core_right(tree, parent, offset, count,
+ BSS_PARALLELOGRAM);
+
+ /* Insert new values */
+ parent->btc_children[offset + 1] = new_node;
+ bmov(buf, parent->btc_elems + offset * size, size);
+ par_hdr->bth_count++;
+}
+
+/*
+ * Insert new_node into the parent of old_node directly after old_node, with
+ * buf as the dividing element between the two.
+ */
+static void
+zfs_btree_insert_into_parent(zfs_btree_t *tree, zfs_btree_hdr_t *old_node,
+ zfs_btree_hdr_t *new_node, void *buf)
+{
+ ASSERT3P(old_node->bth_parent, ==, new_node->bth_parent);
+ uint64_t size = tree->bt_elem_size;
+ zfs_btree_core_t *parent = old_node->bth_parent;
+ zfs_btree_hdr_t *par_hdr = &parent->btc_hdr;
+
+ /*
+ * If this is the root node we were splitting, we create a new root
+ * and increase the height of the tree.
+ */
+ if (parent == NULL) {
+ ASSERT3P(old_node, ==, tree->bt_root);
+ tree->bt_num_nodes++;
+ zfs_btree_core_t *new_root =
+ kmem_alloc(sizeof (zfs_btree_core_t) + BTREE_CORE_ELEMS *
+ size, KM_SLEEP);
+ zfs_btree_hdr_t *new_root_hdr = &new_root->btc_hdr;
+ new_root_hdr->bth_parent = NULL;
+ new_root_hdr->bth_core = B_TRUE;
+ new_root_hdr->bth_count = 1;
+
+ old_node->bth_parent = new_node->bth_parent = new_root;
+ new_root->btc_children[0] = old_node;
+ new_root->btc_children[1] = new_node;
+ bmov(buf, new_root->btc_elems, size);
+
+ tree->bt_height++;
+ tree->bt_root = new_root_hdr;
+ zfs_btree_poison_node(tree, new_root_hdr);
+ return;
+ }
+
+ /*
+ * Since we have the new separator, binary search for where to put
+ * new_node.
+ */
+ zfs_btree_index_t idx;
+ ASSERT(par_hdr->bth_core);
+ VERIFY3P(zfs_btree_find_in_buf(tree, parent->btc_elems,
+ par_hdr->bth_count, buf, &idx), ==, NULL);
+ ASSERT(idx.bti_before);
+ uint64_t offset = idx.bti_offset;
+ ASSERT3U(offset, <=, par_hdr->bth_count);
+ ASSERT3P(parent->btc_children[offset], ==, old_node);
+
+ /*
+ * If the parent isn't full, shift things to accomodate our insertions
+ * and return.
+ */
+ if (par_hdr->bth_count != BTREE_CORE_ELEMS) {
+ zfs_btree_insert_core_impl(tree, parent, offset, new_node, buf);
+ return;
+ }
+
+ /*
+ * We need to split this core node into two. Currently there are
+ * BTREE_CORE_ELEMS + 1 child nodes, and we are adding one for
+ * BTREE_CORE_ELEMS + 2. Some of the children will be part of the
+ * current node, and the others will be moved to the new core node.
+ * There are BTREE_CORE_ELEMS + 1 elements including the new one. One
+ * will be used as the new separator in our parent, and the others
+ * will be split among the two core nodes.
+ *
+ * Usually we will split the node in half evenly, with
+ * BTREE_CORE_ELEMS/2 elements in each node. If we're bulk loading, we
+ * instead move only about a quarter of the elements (and children) to
+ * the new node. Since the average state after a long time is a 3/4
+ * full node, shortcutting directly to that state improves efficiency.
+ *
+ * We do this in two stages: first we split into two nodes, and then we
+ * reuse our existing logic to insert the new element and child.
+ */
+ uint64_t move_count = MAX((BTREE_CORE_ELEMS / (tree->bt_bulk == NULL ?
+ 2 : 4)) - 1, 2);
+ uint64_t keep_count = BTREE_CORE_ELEMS - move_count - 1;
+ ASSERT3U(BTREE_CORE_ELEMS - move_count, >=, 2);
+ tree->bt_num_nodes++;
+ zfs_btree_core_t *new_parent = kmem_alloc(sizeof (zfs_btree_core_t) +
+ BTREE_CORE_ELEMS * size, KM_SLEEP);
+ zfs_btree_hdr_t *new_par_hdr = &new_parent->btc_hdr;
+ new_par_hdr->bth_parent = par_hdr->bth_parent;
+ new_par_hdr->bth_core = B_TRUE;
+ new_par_hdr->bth_count = move_count;
+ zfs_btree_poison_node(tree, new_par_hdr);
+
+ par_hdr->bth_count = keep_count;
+
+ bt_transfer_core(tree, parent, keep_count + 1, move_count, new_parent,
+ 0, BSS_TRAPEZOID);
+
+ /* Store the new separator in a buffer. */
+ uint8_t *tmp_buf = kmem_alloc(size, KM_SLEEP);
+ bmov(parent->btc_elems + keep_count * size, tmp_buf,
+ size);
+ zfs_btree_poison_node(tree, par_hdr);
+
+ if (offset < keep_count) {
+ /* Insert the new node into the left half */
+ zfs_btree_insert_core_impl(tree, parent, offset, new_node,
+ buf);
+
+ /*
+ * Move the new separator to the existing buffer.
+ */
+ bmov(tmp_buf, buf, size);
+ } else if (offset > keep_count) {
+ /* Insert the new node into the right half */
+ new_node->bth_parent = new_parent;
+ zfs_btree_insert_core_impl(tree, new_parent,
+ offset - keep_count - 1, new_node, buf);
+
+ /*
+ * Move the new separator to the existing buffer.
+ */
+ bmov(tmp_buf, buf, size);
+ } else {
+ /*
+ * Move the new separator into the right half, and replace it
+ * with buf. We also need to shift back the elements in the
+ * right half to accomodate new_node.
+ */
+ bt_shift_core_right(tree, new_parent, 0, move_count,
+ BSS_TRAPEZOID);
+ new_parent->btc_children[0] = new_node;
+ bmov(tmp_buf, new_parent->btc_elems, size);
+ new_par_hdr->bth_count++;
+ }
+ kmem_free(tmp_buf, size);
+ zfs_btree_poison_node(tree, par_hdr);
+
+ for (int i = 0; i <= new_parent->btc_hdr.bth_count; i++)
+ new_parent->btc_children[i]->bth_parent = new_parent;
+
+ for (int i = 0; i <= parent->btc_hdr.bth_count; i++)
+ ASSERT3P(parent->btc_children[i]->bth_parent, ==, parent);
+
+ /*
+ * Now that the node is split, we need to insert the new node into its
+ * parent. This may cause further splitting.
+ */
+ zfs_btree_insert_into_parent(tree, &parent->btc_hdr,
+ &new_parent->btc_hdr, buf);
+}
+
+/* Insert an element into a leaf node at the given offset. */
+static void
+zfs_btree_insert_leaf_impl(zfs_btree_t *tree, zfs_btree_leaf_t *leaf,
+ uint64_t idx, const void *value)
+{
+ uint64_t size = tree->bt_elem_size;
+ uint8_t *start = leaf->btl_elems + (idx * size);
+ zfs_btree_hdr_t *hdr = &leaf->btl_hdr;
+ ASSERTV(uint64_t capacity = P2ALIGN((BTREE_LEAF_SIZE -
+ sizeof (zfs_btree_hdr_t)) / size, 2));
+ uint64_t count = leaf->btl_hdr.bth_count - idx;
+ ASSERT3U(leaf->btl_hdr.bth_count, <, capacity);
+
+ if (zfs_btree_verify_intensity >= 5) {
+ zfs_btree_verify_poison_at(tree, &leaf->btl_hdr,
+ leaf->btl_hdr.bth_count);
+ }
+
+ bt_shift_leaf_right(tree, leaf, idx, count);
+ bmov(value, start, size);
+ hdr->bth_count++;
+}
+
+/* Helper function for inserting a new value into leaf at the given index. */
+static void
+zfs_btree_insert_into_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *leaf,
+ const void *value, uint64_t idx)
+{
+ uint64_t size = tree->bt_elem_size;
+ uint64_t capacity = P2ALIGN((BTREE_LEAF_SIZE -
+ sizeof (zfs_btree_hdr_t)) / size, 2);
+
+ /*
+ * If the leaf isn't full, shift the elements after idx and insert
+ * value.
+ */
+ if (leaf->btl_hdr.bth_count != capacity) {
+ zfs_btree_insert_leaf_impl(tree, leaf, idx, value);
+ return;
+ }
+
+ /*
+ * Otherwise, we split the leaf node into two nodes. If we're not bulk
+ * inserting, each is of size (capacity / 2). If we are bulk
+ * inserting, we move a quarter of the elements to the new node so
+ * inserts into the old node don't cause immediate splitting but the
+ * tree stays relatively dense. Since the average state after a long
+ * time is a 3/4 full node, shortcutting directly to that state
+ * improves efficiency. At the end of the bulk insertion process
+ * we'll need to go through and fix up any nodes (the last leaf and
+ * its ancestors, potentially) that are below the minimum.
+ *
+ * In either case, we're left with one extra element. The leftover
+ * element will become the new dividing element between the two nodes.
+ */
+ uint64_t move_count = MAX(capacity / (tree->bt_bulk == NULL ? 2 : 4) -
+ 1, 2);
+ uint64_t keep_count = capacity - move_count - 1;
+ ASSERT3U(capacity - move_count, >=, 2);
+ tree->bt_num_nodes++;
+ zfs_btree_leaf_t *new_leaf = kmem_cache_alloc(zfs_btree_leaf_cache,
+ KM_SLEEP);
+ zfs_btree_hdr_t *new_hdr = &new_leaf->btl_hdr;
+ new_hdr->bth_parent = leaf->btl_hdr.bth_parent;
+ new_hdr->bth_core = B_FALSE;
+ new_hdr->bth_count = move_count;
+ zfs_btree_poison_node(tree, new_hdr);
+
+ leaf->btl_hdr.bth_count = keep_count;
+
+ if (tree->bt_bulk != NULL && leaf == tree->bt_bulk)
+ tree->bt_bulk = new_leaf;
+
+ /* Copy the back part to the new leaf. */
+ bt_transfer_leaf(tree, leaf, keep_count + 1, move_count, new_leaf,
+ 0);
+
+ /* We store the new separator in a buffer we control for simplicity. */
+ uint8_t *buf = kmem_alloc(size, KM_SLEEP);
+ bmov(leaf->btl_elems + (keep_count * size), buf, size);
+ zfs_btree_poison_node(tree, &leaf->btl_hdr);
+
+ if (idx < keep_count) {
+ /* Insert into the existing leaf. */
+ zfs_btree_insert_leaf_impl(tree, leaf, idx, value);
+ } else if (idx > keep_count) {
+ /* Insert into the new leaf. */
+ zfs_btree_insert_leaf_impl(tree, new_leaf, idx - keep_count -
+ 1, value);
+ } else {
+ /*
+ * Shift the elements in the new leaf to make room for the
+ * separator, and use the new value as the new separator.
+ */
+ bt_shift_leaf_right(tree, new_leaf, 0, move_count);
+ bmov(buf, new_leaf->btl_elems, size);
+ bmov(value, buf, size);
+ new_hdr->bth_count++;
+ }
+
+ /*
+ * Now that the node is split, we need to insert the new node into its
+ * parent. This may cause further splitting, bur only of core nodes.
+ */
+ zfs_btree_insert_into_parent(tree, &leaf->btl_hdr, &new_leaf->btl_hdr,
+ buf);
+ kmem_free(buf, size);
+}
+
+static uint64_t
+zfs_btree_find_parent_idx(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
+{
+ void *buf;
+ if (hdr->bth_core) {
+ buf = ((zfs_btree_core_t *)hdr)->btc_elems;
+ } else {
+ buf = ((zfs_btree_leaf_t *)hdr)->btl_elems;
+ }
+ zfs_btree_index_t idx;
+ zfs_btree_core_t *parent = hdr->bth_parent;
+ VERIFY3P(zfs_btree_find_in_buf(tree, parent->btc_elems,
+ parent->btc_hdr.bth_count, buf, &idx), ==, NULL);
+ ASSERT(idx.bti_before);
+ ASSERT3U(idx.bti_offset, <=, parent->btc_hdr.bth_count);
+ ASSERT3P(parent->btc_children[idx.bti_offset], ==, hdr);
+ return (idx.bti_offset);
+}
+
+/*
+ * Take the b-tree out of bulk insert mode. During bulk-insert mode, some
+ * nodes may violate the invariant that non-root nodes must be at least half
+ * full. All nodes violating this invariant should be the last node in their
+ * particular level. To correct the invariant, we take values from their left
+ * neighbor until they are half full. They must have a left neighbor at their
+ * level because the last node at a level is not the first node unless it's
+ * the root.
+ */
+static void
+zfs_btree_bulk_finish(zfs_btree_t *tree)
+{
+ ASSERT3P(tree->bt_bulk, !=, NULL);
+ ASSERT3P(tree->bt_root, !=, NULL);
+ zfs_btree_leaf_t *leaf = tree->bt_bulk;
+ zfs_btree_hdr_t *hdr = &leaf->btl_hdr;
+ zfs_btree_core_t *parent = hdr->bth_parent;
+ uint64_t size = tree->bt_elem_size;
+ uint64_t capacity = P2ALIGN((BTREE_LEAF_SIZE -
+ sizeof (zfs_btree_hdr_t)) / size, 2);
+
+ /*
+ * The invariant doesn't apply to the root node, if that's the only
+ * node in the tree we're done.
+ */
+ if (parent == NULL) {
+ tree->bt_bulk = NULL;
+ return;
+ }
+
+ /* First, take elements to rebalance the leaf node. */
+ if (hdr->bth_count < capacity / 2) {
+ /*
+ * First, find the left neighbor. The simplest way to do this
+ * is to call zfs_btree_prev twice; the first time finds some
+ * ancestor of this node, and the second time finds the left
+ * neighbor. The ancestor found is the lowest common ancestor
+ * of leaf and the neighbor.
+ */
+ zfs_btree_index_t idx = {
+ .bti_node = hdr,
+ .bti_offset = 0
+ };
+ VERIFY3P(zfs_btree_prev(tree, &idx, &idx), !=, NULL);
+ ASSERT(idx.bti_node->bth_core);
+ zfs_btree_core_t *common = (zfs_btree_core_t *)idx.bti_node;
+ uint64_t common_idx = idx.bti_offset;
+
+ VERIFY3P(zfs_btree_prev(tree, &idx, &idx), !=, NULL);
+ ASSERT(!idx.bti_node->bth_core);
+ zfs_btree_leaf_t *l_neighbor = (zfs_btree_leaf_t *)idx.bti_node;
+ zfs_btree_hdr_t *l_hdr = idx.bti_node;
+ uint64_t move_count = (capacity / 2) - hdr->bth_count;
+ ASSERT3U(l_neighbor->btl_hdr.bth_count - move_count, >=,
+ capacity / 2);
+
+ if (zfs_btree_verify_intensity >= 5) {
+ for (int i = 0; i < move_count; i++) {
+ zfs_btree_verify_poison_at(tree, hdr,
+ leaf->btl_hdr.bth_count + i);
+ }
+ }
+
+ /* First, shift elements in leaf back. */
+ bt_shift_leaf(tree, leaf, 0, hdr->bth_count, move_count,
+ BSD_RIGHT);
+
+ /* Next, move the separator from the common ancestor to leaf. */
+ uint8_t *separator = common->btc_elems + (common_idx * size);
+ uint8_t *out = leaf->btl_elems + ((move_count - 1) * size);
+ bmov(separator, out, size);
+ move_count--;
+
+ /*
+ * Now we move elements from the tail of the left neighbor to
+ * fill the remaining spots in leaf.
+ */
+ bt_transfer_leaf(tree, l_neighbor, l_hdr->bth_count -
+ move_count, move_count, leaf, 0);
+
+ /*
+ * Finally, move the new last element in the left neighbor to
+ * the separator.
+ */
+ bmov(l_neighbor->btl_elems + (l_hdr->bth_count -
+ move_count - 1) * size, separator, size);
+
+ /* Adjust the node's counts, and we're done. */
+ l_hdr->bth_count -= move_count + 1;
+ hdr->bth_count += move_count + 1;
+
+ ASSERT3U(l_hdr->bth_count, >=, capacity / 2);
+ ASSERT3U(hdr->bth_count, >=, capacity / 2);
+ zfs_btree_poison_node(tree, l_hdr);
+ }
+
+ /*
+ * Now we have to rebalance any ancestors of leaf that may also
+ * violate the invariant.
+ */
+ capacity = BTREE_CORE_ELEMS;
+ while (parent->btc_hdr.bth_parent != NULL) {
+ zfs_btree_core_t *cur = parent;
+ zfs_btree_hdr_t *hdr = &cur->btc_hdr;
+ parent = hdr->bth_parent;
+ /*
+ * If the invariant isn't violated, move on to the next
+ * ancestor.
+ */
+ if (hdr->bth_count >= capacity / 2)
+ continue;
+
+ /*
+ * Because the smallest number of nodes we can move when
+ * splitting is 2, we never need to worry about not having a
+ * left sibling (a sibling is a neighbor with the same parent).
+ */
+ uint64_t parent_idx = zfs_btree_find_parent_idx(tree, hdr);
+ ASSERT3U(parent_idx, >, 0);
+ zfs_btree_core_t *l_neighbor =
+ (zfs_btree_core_t *)parent->btc_children[parent_idx - 1];
+ uint64_t move_count = (capacity / 2) - hdr->bth_count;
+ ASSERT3U(l_neighbor->btc_hdr.bth_count - move_count, >=,
+ capacity / 2);
+
+ if (zfs_btree_verify_intensity >= 5) {
+ for (int i = 0; i < move_count; i++) {
+ zfs_btree_verify_poison_at(tree, hdr,
+ hdr->bth_count + i);
+ }
+ }
+ /* First, shift things in the right node back. */
+ bt_shift_core(tree, cur, 0, hdr->bth_count, move_count,
+ BSS_TRAPEZOID, BSD_RIGHT);
+
+ /* Next, move the separator to the right node. */
+ uint8_t *separator = parent->btc_elems + ((parent_idx - 1) *
+ size);
+ uint8_t *e_out = cur->btc_elems + ((move_count - 1) * size);
+ bmov(separator, e_out, size);
+
+ /*
+ * Now, move elements and children from the left node to the
+ * right. We move one more child than elements.
+ */
+ move_count--;
+ uint64_t move_idx = l_neighbor->btc_hdr.bth_count - move_count;
+ bt_transfer_core(tree, l_neighbor, move_idx, move_count, cur, 0,
+ BSS_TRAPEZOID);
+
+ /*
+ * Finally, move the last element in the left node to the
+ * separator's position.
+ */
+ move_idx--;
+ bmov(l_neighbor->btc_elems + move_idx * size, separator, size);
+
+ l_neighbor->btc_hdr.bth_count -= move_count + 1;
+ hdr->bth_count += move_count + 1;
+
+ ASSERT3U(l_neighbor->btc_hdr.bth_count, >=, capacity / 2);
+ ASSERT3U(hdr->bth_count, >=, capacity / 2);
+
+ zfs_btree_poison_node(tree, &l_neighbor->btc_hdr);
+
+ for (int i = 0; i <= hdr->bth_count; i++)
+ cur->btc_children[i]->bth_parent = cur;
+ }
+
+ tree->bt_bulk = NULL;
+}
+
+/*
+ * Insert value into tree at the location specified by where.
+ */
+void
+zfs_btree_insert(zfs_btree_t *tree, const void *value,
+ const zfs_btree_index_t *where)
+{
+ zfs_btree_index_t idx = {0};
+
+ /* If we're not inserting in the last leaf, end bulk insert mode. */
+ if (tree->bt_bulk != NULL) {
+ if (where->bti_node != &tree->bt_bulk->btl_hdr) {
+ zfs_btree_bulk_finish(tree);
+ VERIFY3P(zfs_btree_find(tree, value, &idx), ==, NULL);
+ where = &idx;
+ }
+ }
+
+ tree->bt_num_elems++;
+ /*
+ * If this is the first element in the tree, create a leaf root node
+ * and add the value to it.
+ */
+ if (where->bti_node == NULL) {
+ ASSERT3U(tree->bt_num_elems, ==, 1);
+ ASSERT3S(tree->bt_height, ==, -1);
+ ASSERT3P(tree->bt_root, ==, NULL);
+ ASSERT0(where->bti_offset);
+
+ tree->bt_num_nodes++;
+ zfs_btree_leaf_t *leaf = kmem_cache_alloc(zfs_btree_leaf_cache,
+ KM_SLEEP);
+ tree->bt_root = &leaf->btl_hdr;
+ tree->bt_height++;
+
+ zfs_btree_hdr_t *hdr = &leaf->btl_hdr;
+ hdr->bth_parent = NULL;
+ hdr->bth_core = B_FALSE;
+ hdr->bth_count = 0;
+ zfs_btree_poison_node(tree, hdr);
+
+ zfs_btree_insert_into_leaf(tree, leaf, value, 0);
+ tree->bt_bulk = leaf;
+ } else if (!where->bti_node->bth_core) {
+ /*
+ * If we're inserting into a leaf, go directly to the helper
+ * function.
+ */
+ zfs_btree_insert_into_leaf(tree,
+ (zfs_btree_leaf_t *)where->bti_node, value,
+ where->bti_offset);
+ } else {
+ /*
+ * If we're inserting into a core node, we can't just shift
+ * the existing element in that slot in the same node without
+ * breaking our ordering invariants. Instead we place the new
+ * value in the node at that spot and then insert the old
+ * separator into the first slot in the subtree to the right.
+ */
+ ASSERT(where->bti_node->bth_core);
+ zfs_btree_core_t *node = (zfs_btree_core_t *)where->bti_node;
+
+ /*
+ * We can ignore bti_before, because either way the value
+ * should end up in bti_offset.
+ */
+ uint64_t off = where->bti_offset;
+ zfs_btree_hdr_t *subtree = node->btc_children[off + 1];
+ size_t size = tree->bt_elem_size;
+ uint8_t *buf = kmem_alloc(size, KM_SLEEP);
+ bmov(node->btc_elems + off * size, buf, size);
+ bmov(value, node->btc_elems + off * size, size);
+
+ /*
+ * Find the first slot in the subtree to the right, insert
+ * there.
+ */
+ zfs_btree_index_t new_idx;
+ VERIFY3P(zfs_btree_first_helper(subtree, &new_idx), !=, NULL);
+ ASSERT0(new_idx.bti_offset);
+ ASSERT(!new_idx.bti_node->bth_core);
+ zfs_btree_insert_into_leaf(tree,
+ (zfs_btree_leaf_t *)new_idx.bti_node, buf, 0);
+ kmem_free(buf, size);
+ }
+ zfs_btree_verify(tree);
+}
+
+/*
+ * Return the first element in the tree, and put its location in where if
+ * non-null.
+ */
+void *
+zfs_btree_first(zfs_btree_t *tree, zfs_btree_index_t *where)
+{
+ if (tree->bt_height == -1) {
+ ASSERT0(tree->bt_num_elems);
+ return (NULL);
+ }
+ return (zfs_btree_first_helper(tree->bt_root, where));
+}
+
+/*
+ * Find the last element in the subtree rooted at hdr, return its value and
+ * put its location in where if non-null.
+ */
+static void *
+zfs_btree_last_helper(zfs_btree_t *btree, zfs_btree_hdr_t *hdr,
+ zfs_btree_index_t *where)
+{
+ zfs_btree_hdr_t *node;
+
+ for (node = hdr; node->bth_core; node =
+ ((zfs_btree_core_t *)node)->btc_children[node->bth_count])
+ ;
+
+ zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)node;
+ if (where != NULL) {
+ where->bti_node = node;
+ where->bti_offset = node->bth_count - 1;
+ where->bti_before = B_FALSE;
+ }
+ return (leaf->btl_elems + (node->bth_count - 1) * btree->bt_elem_size);
+}
+
+/*
+ * Return the last element in the tree, and put its location in where if
+ * non-null.
+ */
+void *
+zfs_btree_last(zfs_btree_t *tree, zfs_btree_index_t *where)
+{
+ if (tree->bt_height == -1) {
+ ASSERT0(tree->bt_num_elems);
+ return (NULL);
+ }
+ return (zfs_btree_last_helper(tree, tree->bt_root, where));
+}
+
+/*
+ * This function contains the logic to find the next node in the tree. A
+ * helper function is used because there are multiple internal consumemrs of
+ * this logic. The done_func is used by zfs_btree_destroy_nodes to clean up each
+ * node after we've finished with it.
+ */
+static void *
+zfs_btree_next_helper(zfs_btree_t *tree, const zfs_btree_index_t *idx,
+ zfs_btree_index_t *out_idx,
+ void (*done_func)(zfs_btree_t *, zfs_btree_hdr_t *))
+{
+ if (idx->bti_node == NULL) {
+ ASSERT3S(tree->bt_height, ==, -1);
+ return (NULL);
+ }
+
+ uint64_t offset = idx->bti_offset;
+ if (!idx->bti_node->bth_core) {
+ /*
+ * When finding the next element of an element in a leaf,
+ * there are two cases. If the element isn't the last one in
+ * the leaf, in which case we just return the next element in
+ * the leaf. Otherwise, we need to traverse up our parents
+ * until we find one where our ancestor isn't the last child
+ * of its parent. Once we do, the next element is the
+ * separator after our ancestor in its parent.
+ */
+ zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)idx->bti_node;
+ uint64_t new_off = offset + (idx->bti_before ? 0 : 1);
+ if (leaf->btl_hdr.bth_count > new_off) {
+ out_idx->bti_node = &leaf->btl_hdr;
+ out_idx->bti_offset = new_off;
+ out_idx->bti_before = B_FALSE;
+ return (leaf->btl_elems + new_off * tree->bt_elem_size);
+ }
+
+ zfs_btree_hdr_t *prev = &leaf->btl_hdr;
+ for (zfs_btree_core_t *node = leaf->btl_hdr.bth_parent;
+ node != NULL; node = node->btc_hdr.bth_parent) {
+ zfs_btree_hdr_t *hdr = &node->btc_hdr;
+ ASSERT(hdr->bth_core);
+ uint64_t i = zfs_btree_find_parent_idx(tree, prev);
+ if (done_func != NULL)
+ done_func(tree, prev);
+ if (i == hdr->bth_count) {
+ prev = hdr;
+ continue;
+ }
+ out_idx->bti_node = hdr;
+ out_idx->bti_offset = i;
+ out_idx->bti_before = B_FALSE;
+ return (node->btc_elems + i * tree->bt_elem_size);
+ }
+ if (done_func != NULL)
+ done_func(tree, prev);
+ /*
+ * We've traversed all the way up and been at the end of the
+ * node every time, so this was the last element in the tree.
+ */
+ return (NULL);
+ }
+
+ /* If we were before an element in a core node, return that element. */
+ ASSERT(idx->bti_node->bth_core);
+ zfs_btree_core_t *node = (zfs_btree_core_t *)idx->bti_node;
+ if (idx->bti_before) {
+ out_idx->bti_before = B_FALSE;
+ return (node->btc_elems + offset * tree->bt_elem_size);
+ }
+
+ /*
+ * The next element from one in a core node is the first element in
+ * the subtree just to the right of the separator.
+ */
+ zfs_btree_hdr_t *child = node->btc_children[offset + 1];
+ return (zfs_btree_first_helper(child, out_idx));
+}
+
+/*
+ * Return the next valued node in the tree. The same address can be safely
+ * passed for idx and out_idx.
+ */
+void *
+zfs_btree_next(zfs_btree_t *tree, const zfs_btree_index_t *idx,
+ zfs_btree_index_t *out_idx)
+{
+ return (zfs_btree_next_helper(tree, idx, out_idx, NULL));
+}
+
+/*
+ * Return the previous valued node in the tree. The same value can be safely
+ * passed for idx and out_idx.
+ */
+void *
+zfs_btree_prev(zfs_btree_t *tree, const zfs_btree_index_t *idx,
+ zfs_btree_index_t *out_idx)
+{
+ if (idx->bti_node == NULL) {
+ ASSERT3S(tree->bt_height, ==, -1);
+ return (NULL);
+ }
+
+ uint64_t offset = idx->bti_offset;
+ if (!idx->bti_node->bth_core) {
+ /*
+ * When finding the previous element of an element in a leaf,
+ * there are two cases. If the element isn't the first one in
+ * the leaf, in which case we just return the previous element
+ * in the leaf. Otherwise, we need to traverse up our parents
+ * until we find one where our previous ancestor isn't the
+ * first child. Once we do, the previous element is the
+ * separator after our previous ancestor.
+ */
+ zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)idx->bti_node;
+ if (offset != 0) {
+ out_idx->bti_node = &leaf->btl_hdr;
+ out_idx->bti_offset = offset - 1;
+ out_idx->bti_before = B_FALSE;
+ return (leaf->btl_elems + (offset - 1) *
+ tree->bt_elem_size);
+ }
+ zfs_btree_hdr_t *prev = &leaf->btl_hdr;
+ for (zfs_btree_core_t *node = leaf->btl_hdr.bth_parent;
+ node != NULL; node = node->btc_hdr.bth_parent) {
+ zfs_btree_hdr_t *hdr = &node->btc_hdr;
+ ASSERT(hdr->bth_core);
+ uint64_t i = zfs_btree_find_parent_idx(tree, prev);
+ if (i == 0) {
+ prev = hdr;
+ continue;
+ }
+ out_idx->bti_node = hdr;
+ out_idx->bti_offset = i - 1;
+ out_idx->bti_before = B_FALSE;
+ return (node->btc_elems + (i - 1) * tree->bt_elem_size);
+ }
+ /*
+ * We've traversed all the way up and been at the start of the
+ * node every time, so this was the first node in the tree.
+ */
+ return (NULL);
+ }
+
+ /*
+ * The previous element from one in a core node is the last element in
+ * the subtree just to the left of the separator.
+ */
+ ASSERT(idx->bti_node->bth_core);
+ zfs_btree_core_t *node = (zfs_btree_core_t *)idx->bti_node;
+ zfs_btree_hdr_t *child = node->btc_children[offset];
+ return (zfs_btree_last_helper(tree, child, out_idx));
+}
+
+/*
+ * Get the value at the provided index in the tree.
+ *
+ * Note that the value returned from this function can be mutated, but only
+ * if it will not change the ordering of the element with respect to any other
+ * elements that could be in the tree.
+ */
+void *
+zfs_btree_get(zfs_btree_t *tree, zfs_btree_index_t *idx)
+{
+ ASSERT(!idx->bti_before);
+ if (!idx->bti_node->bth_core) {
+ zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)idx->bti_node;
+ return (leaf->btl_elems + idx->bti_offset * tree->bt_elem_size);
+ }
+ ASSERT(idx->bti_node->bth_core);
+ zfs_btree_core_t *node = (zfs_btree_core_t *)idx->bti_node;
+ return (node->btc_elems + idx->bti_offset * tree->bt_elem_size);
+}
+
+/* Add the given value to the tree. Must not already be in the tree. */
+void
+zfs_btree_add(zfs_btree_t *tree, const void *node)
+{
+ zfs_btree_index_t where = {0};
+ VERIFY3P(zfs_btree_find(tree, node, &where), ==, NULL);
+ zfs_btree_insert(tree, node, &where);
+}
+
+/* Helper function to free a tree node. */
+static void
+zfs_btree_node_destroy(zfs_btree_t *tree, zfs_btree_hdr_t *node)
+{
+ tree->bt_num_nodes--;
+ if (!node->bth_core) {
+ kmem_cache_free(zfs_btree_leaf_cache, node);
+ } else {
+ kmem_free(node, sizeof (zfs_btree_core_t) +
+ BTREE_CORE_ELEMS * tree->bt_elem_size);
+ }
+}
+
+/*
+ * Remove the rm_hdr and the separator to its left from the parent node. The
+ * buffer that rm_hdr was stored in may already be freed, so its contents
+ * cannot be accessed.
+ */
+static void
+zfs_btree_remove_from_node(zfs_btree_t *tree, zfs_btree_core_t *node,
+ zfs_btree_hdr_t *rm_hdr)
+{
+ size_t size = tree->bt_elem_size;
+ uint64_t min_count = (BTREE_CORE_ELEMS / 2) - 1;
+ zfs_btree_hdr_t *hdr = &node->btc_hdr;
+ /*
+ * If the node is the root node and rm_hdr is one of two children,
+ * promote the other child to the root.
+ */
+ if (hdr->bth_parent == NULL && hdr->bth_count <= 1) {
+ ASSERT3U(hdr->bth_count, ==, 1);
+ ASSERT3P(tree->bt_root, ==, node);
+ ASSERT3P(node->btc_children[1], ==, rm_hdr);
+ tree->bt_root = node->btc_children[0];
+ node->btc_children[0]->bth_parent = NULL;
+ zfs_btree_node_destroy(tree, hdr);
+ tree->bt_height--;
+ return;
+ }
+
+ uint64_t idx;
+ for (idx = 0; idx <= hdr->bth_count; idx++) {
+ if (node->btc_children[idx] == rm_hdr)
+ break;
+ }
+ ASSERT3U(idx, <=, hdr->bth_count);
+
+ /*
+ * If the node is the root or it has more than the minimum number of
+ * children, just remove the child and separator, and return.
+ */
+ if (hdr->bth_parent == NULL ||
+ hdr->bth_count > min_count) {
+ /*
+ * Shift the element and children to the right of rm_hdr to
+ * the left by one spot.
+ */
+ bt_shift_core_left(tree, node, idx, hdr->bth_count - idx,
+ BSS_PARALLELOGRAM);
+ hdr->bth_count--;
+ zfs_btree_poison_node_at(tree, hdr, hdr->bth_count);
+ return;
+ }
+
+ ASSERT3U(hdr->bth_count, ==, min_count);
+
+ /*
+ * Now we try to take a node from a neighbor. We check left, then
+ * right. If the neighbor exists and has more than the minimum number
+ * of elements, we move the separator betweeen us and them to our
+ * node, move their closest element (last for left, first for right)
+ * to the separator, and move their closest child to our node. Along
+ * the way we need to collapse the gap made by idx, and (for our right
+ * neighbor) the gap made by removing their first element and child.
+ *
+ * Note: this logic currently doesn't support taking from a neighbor
+ * that isn't a sibling (i.e. a neighbor with a different
+ * parent). This isn't critical functionality, but may be worth
+ * implementing in the future for completeness' sake.
+ */
+ zfs_btree_core_t *parent = hdr->bth_parent;
+ uint64_t parent_idx = zfs_btree_find_parent_idx(tree, hdr);
+
+ zfs_btree_hdr_t *l_hdr = (parent_idx == 0 ? NULL :
+ parent->btc_children[parent_idx - 1]);
+ if (l_hdr != NULL && l_hdr->bth_count > min_count) {
+ /* We can take a node from the left neighbor. */
+ ASSERT(l_hdr->bth_core);
+ zfs_btree_core_t *neighbor = (zfs_btree_core_t *)l_hdr;
+
+ /*
+ * Start by shifting the elements and children in the current
+ * node to the right by one spot.
+ */
+ bt_shift_core_right(tree, node, 0, idx - 1, BSS_TRAPEZOID);
+
+ /*
+ * Move the separator between node and neighbor to the first
+ * element slot in the current node.
+ */
+ uint8_t *separator = parent->btc_elems + (parent_idx - 1) *
+ size;
+ bmov(separator, node->btc_elems, size);
+
+ /* Move the last child of neighbor to our first child slot. */
+ zfs_btree_hdr_t **take_child = neighbor->btc_children +
+ l_hdr->bth_count;
+ bmov(take_child, node->btc_children, sizeof (*take_child));
+ node->btc_children[0]->bth_parent = node;
+
+ /* Move the last element of neighbor to the separator spot. */
+ uint8_t *take_elem = neighbor->btc_elems +
+ (l_hdr->bth_count - 1) * size;
+ bmov(take_elem, separator, size);
+ l_hdr->bth_count--;
+ zfs_btree_poison_node_at(tree, l_hdr, l_hdr->bth_count);
+ return;
+ }
+
+ zfs_btree_hdr_t *r_hdr = (parent_idx == parent->btc_hdr.bth_count ?
+ NULL : parent->btc_children[parent_idx + 1]);
+ if (r_hdr != NULL && r_hdr->bth_count > min_count) {
+ /* We can take a node from the right neighbor. */
+ ASSERT(r_hdr->bth_core);
+ zfs_btree_core_t *neighbor = (zfs_btree_core_t *)r_hdr;
+
+ /*
+ * Shift elements in node left by one spot to overwrite rm_hdr
+ * and the separator before it.
+ */
+ bt_shift_core_left(tree, node, idx, hdr->bth_count - idx,
+ BSS_PARALLELOGRAM);
+
+ /*
+ * Move the separator between node and neighbor to the last
+ * element spot in node.
+ */
+ uint8_t *separator = parent->btc_elems + parent_idx * size;
+ bmov(separator, node->btc_elems + (hdr->bth_count - 1) * size,
+ size);
+
+ /*
+ * Move the first child of neighbor to the last child spot in
+ * node.
+ */
+ zfs_btree_hdr_t **take_child = neighbor->btc_children;
+ bmov(take_child, node->btc_children + hdr->bth_count,
+ sizeof (*take_child));
+ node->btc_children[hdr->bth_count]->bth_parent = node;
+
+ /* Move the first element of neighbor to the separator spot. */
+ uint8_t *take_elem = neighbor->btc_elems;
+ bmov(take_elem, separator, size);
+ r_hdr->bth_count--;
+
+ /*
+ * Shift the elements and children of neighbor to cover the
+ * stolen elements.
+ */
+ bt_shift_core_left(tree, neighbor, 1, r_hdr->bth_count,
+ BSS_TRAPEZOID);
+ zfs_btree_poison_node_at(tree, r_hdr, r_hdr->bth_count);
+ return;
+ }
+
+ /*
+ * In this case, neither of our neighbors can spare an element, so we
+ * need to merge with one of them. We prefer the left one,
+ * arabitrarily. Move the separator into the leftmost merging node
+ * (which may be us or the left neighbor), and then move the right
+ * merging node's elements. Once that's done, we go back and delete
+ * the element we're removing. Finally, go into the parent and delete
+ * the right merging node and the separator. This may cause further
+ * merging.
+ */
+ zfs_btree_hdr_t *new_rm_hdr, *keep_hdr;
+ uint64_t new_idx = idx;
+ if (l_hdr != NULL) {
+ keep_hdr = l_hdr;
+ new_rm_hdr = hdr;
+ new_idx += keep_hdr->bth_count + 1;
+ } else {
+ ASSERT3P(r_hdr, !=, NULL);
+ keep_hdr = hdr;
+ new_rm_hdr = r_hdr;
+ parent_idx++;
+ }
+
+ ASSERT(keep_hdr->bth_core);
+ ASSERT(new_rm_hdr->bth_core);
+
+ zfs_btree_core_t *keep = (zfs_btree_core_t *)keep_hdr;
+ zfs_btree_core_t *rm = (zfs_btree_core_t *)new_rm_hdr;
+
+ if (zfs_btree_verify_intensity >= 5) {
+ for (int i = 0; i < new_rm_hdr->bth_count + 1; i++) {
+ zfs_btree_verify_poison_at(tree, keep_hdr,
+ keep_hdr->bth_count + i);
+ }
+ }
+
+ /* Move the separator into the left node. */
+ uint8_t *e_out = keep->btc_elems + keep_hdr->bth_count * size;
+ uint8_t *separator = parent->btc_elems + (parent_idx - 1) *
+ size;
+ bmov(separator, e_out, size);
+ keep_hdr->bth_count++;
+
+ /* Move all our elements and children into the left node. */
+ bt_transfer_core(tree, rm, 0, new_rm_hdr->bth_count, keep,
+ keep_hdr->bth_count, BSS_TRAPEZOID);
+
+ uint64_t old_count = keep_hdr->bth_count;
+
+ /* Update bookkeeping */
+ keep_hdr->bth_count += new_rm_hdr->bth_count;
+ ASSERT3U(keep_hdr->bth_count, ==, (min_count * 2) + 1);
+
+ /*
+ * Shift the element and children to the right of rm_hdr to
+ * the left by one spot.
+ */
+ ASSERT3P(keep->btc_children[new_idx], ==, rm_hdr);
+ bt_shift_core_left(tree, keep, new_idx, keep_hdr->bth_count - new_idx,
+ BSS_PARALLELOGRAM);
+ keep_hdr->bth_count--;
+
+ /* Reparent all our children to point to the left node. */
+ zfs_btree_hdr_t **new_start = keep->btc_children +
+ old_count - 1;
+ for (int i = 0; i < new_rm_hdr->bth_count + 1; i++)
+ new_start[i]->bth_parent = keep;
+ for (int i = 0; i <= keep_hdr->bth_count; i++) {
+ ASSERT3P(keep->btc_children[i]->bth_parent, ==, keep);
+ ASSERT3P(keep->btc_children[i], !=, rm_hdr);
+ }
+ zfs_btree_poison_node_at(tree, keep_hdr, keep_hdr->bth_count);
+
+ new_rm_hdr->bth_count = 0;
+ zfs_btree_node_destroy(tree, new_rm_hdr);
+ zfs_btree_remove_from_node(tree, parent, new_rm_hdr);
+}
+
+/* Remove the element at the specific location. */
+void
+zfs_btree_remove_from(zfs_btree_t *tree, zfs_btree_index_t *where)
+{
+ size_t size = tree->bt_elem_size;
+ zfs_btree_hdr_t *hdr = where->bti_node;
+ uint64_t idx = where->bti_offset;
+ uint64_t capacity = P2ALIGN((BTREE_LEAF_SIZE -
+ sizeof (zfs_btree_hdr_t)) / size, 2);
+
+ ASSERT(!where->bti_before);
+ if (tree->bt_bulk != NULL) {
+ /*
+ * Leave bulk insert mode. Note that our index would be
+ * invalid after we correct the tree, so we copy the value
+ * we're planning to remove and find it again after
+ * bulk_finish.
+ */
+ uint8_t *value = zfs_btree_get(tree, where);
+ uint8_t *tmp = kmem_alloc(size, KM_SLEEP);
+ bmov(value, tmp, size);
+ zfs_btree_bulk_finish(tree);
+ VERIFY3P(zfs_btree_find(tree, tmp, where), !=, NULL);
+ kmem_free(tmp, size);
+ hdr = where->bti_node;
+ idx = where->bti_offset;
+ }
+
+ tree->bt_num_elems--;
+ /*
+ * If the element happens to be in a core node, we move a leaf node's
+ * element into its place and then remove the leaf node element. This
+ * makes the rebalance logic not need to be recursive both upwards and
+ * downwards.
+ */
+ if (hdr->bth_core) {
+ zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
+ zfs_btree_hdr_t *left_subtree = node->btc_children[idx];
+ void *new_value = zfs_btree_last_helper(tree, left_subtree,
+ where);
+ ASSERT3P(new_value, !=, NULL);
+
+ bmov(new_value, node->btc_elems + idx * size, size);
+
+ hdr = where->bti_node;
+ idx = where->bti_offset;
+ ASSERT(!where->bti_before);
+ }
+
+ /*
+ * First, we'll update the leaf's metadata. Then, we shift any
+ * elements after the idx to the left. After that, we rebalance if
+ * needed.
+ */
+ ASSERT(!hdr->bth_core);
+ zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr;
+ ASSERT3U(hdr->bth_count, >, 0);
+
+ uint64_t min_count = (capacity / 2) - 1;
+
+ /*
+ * If we're over the minimum size or this is the root, just overwrite
+ * the value and return.
+ */
+ if (hdr->bth_count > min_count || hdr->bth_parent == NULL) {
+ hdr->bth_count--;
+ bt_shift_leaf_left(tree, leaf, idx + 1, hdr->bth_count - idx);
+ if (hdr->bth_parent == NULL) {
+ ASSERT0(tree->bt_height);
+ if (hdr->bth_count == 0) {
+ tree->bt_root = NULL;
+ tree->bt_height--;
+ zfs_btree_node_destroy(tree, &leaf->btl_hdr);
+ }
+ }
+ if (tree->bt_root != NULL)
+ zfs_btree_poison_node_at(tree, hdr, hdr->bth_count);
+ zfs_btree_verify(tree);
+ return;
+ }
+ ASSERT3U(hdr->bth_count, ==, min_count);
+
+ /*
+ * Now we try to take a node from a sibling. We check left, then
+ * right. If they exist and have more than the minimum number of
+ * elements, we move the separator betweeen us and them to our node
+ * and move their closest element (last for left, first for right) to
+ * the separator. Along the way we need to collapse the gap made by
+ * idx, and (for our right neighbor) the gap made by removing their
+ * first element.
+ *
+ * Note: this logic currently doesn't support taking from a neighbor
+ * that isn't a sibling. This isn't critical functionality, but may be
+ * worth implementing in the future for completeness' sake.
+ */
+ zfs_btree_core_t *parent = hdr->bth_parent;
+ uint64_t parent_idx = zfs_btree_find_parent_idx(tree, hdr);
+
+ zfs_btree_hdr_t *l_hdr = (parent_idx == 0 ? NULL :
+ parent->btc_children[parent_idx - 1]);
+ if (l_hdr != NULL && l_hdr->bth_count > min_count) {
+ /* We can take a node from the left neighbor. */
+ ASSERT(!l_hdr->bth_core);
+
+ /*
+ * Move our elements back by one spot to make room for the
+ * stolen element and overwrite the element being removed.
+ */
+ bt_shift_leaf_right(tree, leaf, 0, idx);
+ uint8_t *separator = parent->btc_elems + (parent_idx - 1) *
+ size;
+ uint8_t *take_elem = ((zfs_btree_leaf_t *)l_hdr)->btl_elems +
+ (l_hdr->bth_count - 1) * size;
+ /* Move the separator to our first spot. */
+ bmov(separator, leaf->btl_elems, size);
+
+ /* Move our neighbor's last element to the separator. */
+ bmov(take_elem, separator, size);
+
+ /* Update the bookkeeping. */
+ l_hdr->bth_count--;
+ zfs_btree_poison_node_at(tree, l_hdr, l_hdr->bth_count);
+
+ zfs_btree_verify(tree);
+ return;
+ }
+
+ zfs_btree_hdr_t *r_hdr = (parent_idx == parent->btc_hdr.bth_count ?
+ NULL : parent->btc_children[parent_idx + 1]);
+ if (r_hdr != NULL && r_hdr->bth_count > min_count) {
+ /* We can take a node from the right neighbor. */
+ ASSERT(!r_hdr->bth_core);
+ zfs_btree_leaf_t *neighbor = (zfs_btree_leaf_t *)r_hdr;
+
+ /*
+ * Move our elements after the element being removed forwards
+ * by one spot to make room for the stolen element and
+ * overwrite the element being removed.
+ */
+ bt_shift_leaf_left(tree, leaf, idx + 1, hdr->bth_count - idx -
+ 1);
+
+ uint8_t *separator = parent->btc_elems + parent_idx * size;
+ uint8_t *take_elem = ((zfs_btree_leaf_t *)r_hdr)->btl_elems;
+ /* Move the separator between us to our last spot. */
+ bmov(separator, leaf->btl_elems + (hdr->bth_count - 1) * size,
+ size);
+
+ /* Move our neighbor's first element to the separator. */
+ bmov(take_elem, separator, size);
+
+ /* Update the bookkeeping. */
+ r_hdr->bth_count--;
+
+ /*
+ * Move our neighbors elements forwards to overwrite the
+ * stolen element.
+ */
+ bt_shift_leaf_left(tree, neighbor, 1, r_hdr->bth_count);
+ zfs_btree_poison_node_at(tree, r_hdr, r_hdr->bth_count);
+ zfs_btree_verify(tree);
+ return;
+ }
+
+ /*
+ * In this case, neither of our neighbors can spare an element, so we
+ * need to merge with one of them. We prefer the left one,
+ * arabitrarily. Move the separator into the leftmost merging node
+ * (which may be us or the left neighbor), and then move the right
+ * merging node's elements. Once that's done, we go back and delete
+ * the element we're removing. Finally, go into the parent and delete
+ * the right merging node and the separator. This may cause further
+ * merging.
+ */
+ zfs_btree_hdr_t *rm_hdr, *keep_hdr;
+ uint64_t new_idx = idx;
+ if (l_hdr != NULL) {
+ keep_hdr = l_hdr;
+ rm_hdr = hdr;
+ new_idx += keep_hdr->bth_count + 1; // 449
+ } else {
+ ASSERT3P(r_hdr, !=, NULL);
+ keep_hdr = hdr;
+ rm_hdr = r_hdr;
+ parent_idx++;
+ }
+
+ ASSERT(!keep_hdr->bth_core);
+ ASSERT(!rm_hdr->bth_core);
+ ASSERT3U(keep_hdr->bth_count, ==, min_count);
+ ASSERT3U(rm_hdr->bth_count, ==, min_count);
+
+ zfs_btree_leaf_t *keep = (zfs_btree_leaf_t *)keep_hdr;
+ zfs_btree_leaf_t *rm = (zfs_btree_leaf_t *)rm_hdr;
+
+ if (zfs_btree_verify_intensity >= 5) {
+ for (int i = 0; i < rm_hdr->bth_count + 1; i++) {
+ zfs_btree_verify_poison_at(tree, keep_hdr,
+ keep_hdr->bth_count + i);
+ }
+ }
+ /*
+ * Move the separator into the first open spot in the left
+ * neighbor.
+ */
+ uint8_t *out = keep->btl_elems + keep_hdr->bth_count * size;
+ uint8_t *separator = parent->btc_elems + (parent_idx - 1) *
+ size;
+ bmov(separator, out, size);
+ keep_hdr->bth_count++;
+
+ /* Move our elements to the left neighbor. */
+ bt_transfer_leaf(tree, rm, 0, rm_hdr->bth_count, keep,
+ keep_hdr->bth_count);
+
+ /* Update the bookkeeping. */
+ keep_hdr->bth_count += rm_hdr->bth_count;
+ ASSERT3U(keep_hdr->bth_count, ==, min_count * 2 + 1);
+
+ /* Remove the value from the node */
+ keep_hdr->bth_count--;
+ bt_shift_leaf_left(tree, keep, new_idx + 1, keep_hdr->bth_count -
+ new_idx);
+ zfs_btree_poison_node_at(tree, keep_hdr, keep_hdr->bth_count);
+
+ rm_hdr->bth_count = 0;
+ zfs_btree_node_destroy(tree, rm_hdr);
+ /* Remove the emptied node from the parent. */
+ zfs_btree_remove_from_node(tree, parent, rm_hdr);
+ zfs_btree_verify(tree);
+}
+
+/* Remove the given value from the tree. */
+void
+zfs_btree_remove(zfs_btree_t *tree, const void *value)
+{
+ zfs_btree_index_t where = {0};
+ VERIFY3P(zfs_btree_find(tree, value, &where), !=, NULL);
+ zfs_btree_remove_from(tree, &where);
+}
+
+/* Return the number of elements in the tree. */
+ulong_t
+zfs_btree_numnodes(zfs_btree_t *tree)
+{
+ return (tree->bt_num_elems);
+}
+
+/*
+ * This function is used to visit all the elements in the tree before
+ * destroying the tree. This allows the calling code to perform any cleanup it
+ * needs to do. This is more efficient than just removing the first element
+ * over and over, because it removes all rebalancing. Once the destroy_nodes()
+ * function has been called, no other btree operations are valid until it
+ * returns NULL, which point the only valid operation is zfs_btree_destroy().
+ *
+ * example:
+ *
+ * zfs_btree_index_t *cookie = NULL;
+ * my_data_t *node;
+ *
+ * while ((node = zfs_btree_destroy_nodes(tree, &cookie)) != NULL)
+ * free(node->ptr);
+ * zfs_btree_destroy(tree);
+ *
+ */
+void *
+zfs_btree_destroy_nodes(zfs_btree_t *tree, zfs_btree_index_t **cookie)
+{
+ if (*cookie == NULL) {
+ if (tree->bt_height == -1)
+ return (NULL);
+ *cookie = kmem_alloc(sizeof (**cookie), KM_SLEEP);
+ return (zfs_btree_first(tree, *cookie));
+ }
+
+ void *rval = zfs_btree_next_helper(tree, *cookie, *cookie,
+ zfs_btree_node_destroy);
+ if (rval == NULL) {
+ tree->bt_root = NULL;
+ tree->bt_height = -1;
+ tree->bt_num_elems = 0;
+ kmem_free(*cookie, sizeof (**cookie));
+ tree->bt_bulk = NULL;
+ }
+ return (rval);
+}
+
+static void
+zfs_btree_clear_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
+{
+ if (hdr->bth_core) {
+ zfs_btree_core_t *btc = (zfs_btree_core_t *)hdr;
+ for (int i = 0; i <= hdr->bth_count; i++) {
+ zfs_btree_clear_helper(tree, btc->btc_children[i]);
+ }
+ }
+
+ zfs_btree_node_destroy(tree, hdr);
+}
+
+void
+zfs_btree_clear(zfs_btree_t *tree)
+{
+ if (tree->bt_root == NULL) {
+ ASSERT0(tree->bt_num_elems);
+ return;
+ }
+
+ zfs_btree_clear_helper(tree, tree->bt_root);
+ tree->bt_num_elems = 0;
+ tree->bt_root = NULL;
+ tree->bt_num_nodes = 0;
+ tree->bt_height = -1;
+ tree->bt_bulk = NULL;
+}
+
+void
+zfs_btree_destroy(zfs_btree_t *tree)
+{
+ ASSERT0(tree->bt_num_elems);
+ ASSERT3P(tree->bt_root, ==, NULL);
+}
+
+/* Verify that every child of this node has the correct parent pointer. */
+static void
+zfs_btree_verify_pointers_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
+{
+ if (!hdr->bth_core)
+ return;
+
+ zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
+ for (int i = 0; i <= hdr->bth_count; i++) {
+ VERIFY3P(node->btc_children[i]->bth_parent, ==, hdr);
+ zfs_btree_verify_pointers_helper(tree, node->btc_children[i]);
+ }
+}
+
+/* Verify that every node has the correct parent pointer. */
+static void
+zfs_btree_verify_pointers(zfs_btree_t *tree)
+{
+ if (tree->bt_height == -1) {
+ VERIFY3P(tree->bt_root, ==, NULL);
+ return;
+ }
+ VERIFY3P(tree->bt_root->bth_parent, ==, NULL);
+ zfs_btree_verify_pointers_helper(tree, tree->bt_root);
+}
+
+/*
+ * Verify that all the current node and its children satisfy the count
+ * invariants, and return the total count in the subtree rooted in this node.
+ */
+static uint64_t
+zfs_btree_verify_counts_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
+{
+ if (!hdr->bth_core) {
+ if (tree->bt_root != hdr && hdr != &tree->bt_bulk->btl_hdr) {
+ uint64_t capacity = P2ALIGN((BTREE_LEAF_SIZE -
+ sizeof (zfs_btree_hdr_t)) / tree->bt_elem_size, 2);
+ VERIFY3U(hdr->bth_count, >=, (capacity / 2) - 1);
+ }
+
+ return (hdr->bth_count);
+ } else {
+
+ zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
+ uint64_t ret = hdr->bth_count;
+ if (tree->bt_root != hdr && tree->bt_bulk == NULL)
+ VERIFY3P(hdr->bth_count, >=, BTREE_CORE_ELEMS / 2 - 1);
+ for (int i = 0; i <= hdr->bth_count; i++) {
+ ret += zfs_btree_verify_counts_helper(tree,
+ node->btc_children[i]);
+ }
+
+ return (ret);
+ }
+}
+
+/*
+ * Verify that all nodes satisfy the invariants and that the total number of
+ * elements is correct.
+ */
+static void
+zfs_btree_verify_counts(zfs_btree_t *tree)
+{
+ EQUIV(tree->bt_num_elems == 0, tree->bt_height == -1);
+ if (tree->bt_height == -1) {
+ return;
+ }
+ VERIFY3P(zfs_btree_verify_counts_helper(tree, tree->bt_root), ==,
+ tree->bt_num_elems);
+}
+
+/*
+ * Check that the subtree rooted at this node has a uniform height. Returns
+ * the number of nodes under this node, to help verify bt_num_nodes.
+ */
+static uint64_t
+zfs_btree_verify_height_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr,
+ int64_t height)
+{
+ if (!hdr->bth_core) {
+ VERIFY0(height);
+ return (1);
+ }
+
+ VERIFY(hdr->bth_core);
+ zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
+ uint64_t ret = 1;
+ for (int i = 0; i <= hdr->bth_count; i++) {
+ ret += zfs_btree_verify_height_helper(tree,
+ node->btc_children[i], height - 1);
+ }
+ return (ret);
+}
+
+/*
+ * Check that the tree rooted at this node has a uniform height, and that the
+ * bt_height in the tree is correct.
+ */
+static void
+zfs_btree_verify_height(zfs_btree_t *tree)
+{
+ EQUIV(tree->bt_height == -1, tree->bt_root == NULL);
+ if (tree->bt_height == -1) {
+ return;
+ }
+
+ VERIFY3U(zfs_btree_verify_height_helper(tree, tree->bt_root,
+ tree->bt_height), ==, tree->bt_num_nodes);
+}
+
+/*
+ * Check that the elements in this node are sorted, and that if this is a core
+ * node, the separators are properly between the subtrees they separaate and
+ * that the children also satisfy this requirement.
+ */
+static void
+zfs_btree_verify_order_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
+{
+ size_t size = tree->bt_elem_size;
+ if (!hdr->bth_core) {
+ zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr;
+ for (int i = 1; i < hdr->bth_count; i++) {
+ VERIFY3S(tree->bt_compar(leaf->btl_elems + (i - 1) *
+ size, leaf->btl_elems + i * size), ==, -1);
+ }
+ return;
+ }
+
+ zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
+ for (int i = 1; i < hdr->bth_count; i++) {
+ VERIFY3S(tree->bt_compar(node->btc_elems + (i - 1) * size,
+ node->btc_elems + i * size), ==, -1);
+ }
+ for (int i = 0; i < hdr->bth_count; i++) {
+ uint8_t *left_child_last = NULL;
+ zfs_btree_hdr_t *left_child_hdr = node->btc_children[i];
+ if (left_child_hdr->bth_core) {
+ zfs_btree_core_t *left_child =
+ (zfs_btree_core_t *)left_child_hdr;
+ left_child_last = left_child->btc_elems +
+ (left_child_hdr->bth_count - 1) * size;
+ } else {
+ zfs_btree_leaf_t *left_child =
+ (zfs_btree_leaf_t *)left_child_hdr;
+ left_child_last = left_child->btl_elems +
+ (left_child_hdr->bth_count - 1) * size;
+ }
+ if (tree->bt_compar(node->btc_elems + i * size,
+ left_child_last) != 1) {
+ panic("btree: compar returned %d (expected 1) at "
+ "%px %d: compar(%px, %px)", tree->bt_compar(
+ node->btc_elems + i * size, left_child_last),
+ (void *)node, i, (void *)(node->btc_elems + i *
+ size), (void *)left_child_last);
+ }
+
+ uint8_t *right_child_first = NULL;
+ zfs_btree_hdr_t *right_child_hdr = node->btc_children[i + 1];
+ if (right_child_hdr->bth_core) {
+ zfs_btree_core_t *right_child =
+ (zfs_btree_core_t *)right_child_hdr;
+ right_child_first = right_child->btc_elems;
+ } else {
+ zfs_btree_leaf_t *right_child =
+ (zfs_btree_leaf_t *)right_child_hdr;
+ right_child_first = right_child->btl_elems;
+ }
+ if (tree->bt_compar(node->btc_elems + i * size,
+ right_child_first) != -1) {
+ panic("btree: compar returned %d (expected -1) at "
+ "%px %d: compar(%px, %px)", tree->bt_compar(
+ node->btc_elems + i * size, right_child_first),
+ (void *)node, i, (void *)(node->btc_elems + i *
+ size), (void *)right_child_first);
+ }
+ }
+ for (int i = 0; i <= hdr->bth_count; i++) {
+ zfs_btree_verify_order_helper(tree, node->btc_children[i]);
+ }
+}
+
+/* Check that all elements in the tree are in sorted order. */
+static void
+zfs_btree_verify_order(zfs_btree_t *tree)
+{
+ EQUIV(tree->bt_height == -1, tree->bt_root == NULL);
+ if (tree->bt_height == -1) {
+ return;
+ }
+
+ zfs_btree_verify_order_helper(tree, tree->bt_root);
+}
+
+#ifdef ZFS_DEBUG
+/* Check that all unused memory is poisoned correctly. */
+static void
+zfs_btree_verify_poison_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
+{
+ size_t size = tree->bt_elem_size;
+ if (!hdr->bth_core) {
+ zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr;
+ uint8_t val = 0x0f;
+ for (int i = hdr->bth_count * size; i < BTREE_LEAF_SIZE -
+ sizeof (zfs_btree_hdr_t); i++) {
+ VERIFY3U(leaf->btl_elems[i], ==, val);
+ }
+ } else {
+ zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
+ uint8_t val = 0x0f;
+ for (int i = hdr->bth_count * size; i < BTREE_CORE_ELEMS * size;
+ i++) {
+ VERIFY3U(node->btc_elems[i], ==, val);
+ }
+
+ for (int i = hdr->bth_count + 1; i <= BTREE_CORE_ELEMS; i++) {
+ VERIFY3P(node->btc_children[i], ==,
+ (zfs_btree_hdr_t *)BTREE_POISON);
+ }
+
+ for (int i = 0; i <= hdr->bth_count; i++) {
+ zfs_btree_verify_poison_helper(tree,
+ node->btc_children[i]);
+ }
+ }
+}
+#endif
+
+/* Check that unused memory in the tree is still poisoned. */
+static void
+zfs_btree_verify_poison(zfs_btree_t *tree)
+{
+#ifdef ZFS_DEBUG
+ if (tree->bt_height == -1)
+ return;
+ zfs_btree_verify_poison_helper(tree, tree->bt_root);
+#endif
+}
+
+void
+zfs_btree_verify(zfs_btree_t *tree)
+{
+ if (zfs_btree_verify_intensity == 0)
+ return;
+ zfs_btree_verify_height(tree);
+ if (zfs_btree_verify_intensity == 1)
+ return;
+ zfs_btree_verify_pointers(tree);
+ if (zfs_btree_verify_intensity == 2)
+ return;
+ zfs_btree_verify_counts(tree);
+ if (zfs_btree_verify_intensity == 3)
+ return;
+ zfs_btree_verify_order(tree);
+
+ if (zfs_btree_verify_intensity == 4)
+ return;
+ zfs_btree_verify_poison(tree);
+}