diff options
Diffstat (limited to 'module/zfs/btree.c')
-rw-r--r-- | module/zfs/btree.c | 2124 |
1 files changed, 2124 insertions, 0 deletions
diff --git a/module/zfs/btree.c b/module/zfs/btree.c new file mode 100644 index 000000000..8f514caab --- /dev/null +++ b/module/zfs/btree.c @@ -0,0 +1,2124 @@ +/* + * CDDL HEADER START + * + * This file and its contents are supplied under the terms of the + * Common Development and Distribution License ("CDDL"), version 1.0. + * You may only use this file in accordance with the terms of version + * 1.0 of the CDDL. + * + * A full copy of the text of the CDDL should have accompanied this + * source. A copy of the CDDL is also available via the Internet at + * http://www.illumos.org/license/CDDL. + * + * CDDL HEADER END + */ +/* + * Copyright (c) 2019 by Delphix. All rights reserved. + */ + +#include <sys/btree.h> +#include <sys/bitops.h> +#include <sys/zfs_context.h> + +kmem_cache_t *zfs_btree_leaf_cache; + +/* + * Control the extent of the verification that occurs when zfs_btree_verify is + * called. Primarily used for debugging when extending the btree logic and + * functionality. As the intensity is increased, new verification steps are + * added. These steps are cumulative; intensity = 3 includes the intensity = 1 + * and intensity = 2 steps as well. + * + * Intensity 1: Verify that the tree's height is consistent throughout. + * Intensity 2: Verify that a core node's children's parent pointers point + * to the core node. + * Intensity 3: Verify that the total number of elements in the tree matches the + * sum of the number of elements in each node. Also verifies that each node's + * count obeys the invariants (less than or equal to maximum value, greater than + * or equal to half the maximum minus one). + * Intensity 4: Verify that each element compares less than the element + * immediately after it and greater than the one immediately before it using the + * comparator function. For core nodes, also checks that each element is greater + * than the last element in the first of the two nodes it separates, and less + * than the first element in the second of the two nodes. + * Intensity 5: Verifies, if ZFS_DEBUG is defined, that all unused memory inside + * of each node is poisoned appropriately. Note that poisoning always occurs if + * ZFS_DEBUG is set, so it is safe to set the intensity to 5 during normal + * operation. + * + * Intensity 4 and 5 are particularly expensive to perform; the previous levels + * are a few memory operations per node, while these levels require multiple + * operations per element. In addition, when creating large btrees, these + * operations are called at every step, resulting in extremely slow operation + * (while the asymptotic complexity of the other steps is the same, the + * importance of the constant factors cannot be denied). + */ +int zfs_btree_verify_intensity = 0; + +/* + * A convenience function to silence warnings from memmove's return value and + * change argument order to src, dest. + */ +void +bmov(const void *src, void *dest, size_t size) +{ + (void) memmove(dest, src, size); +} + +#ifdef _ILP32 +#define BTREE_POISON 0xabadb10c +#else +#define BTREE_POISON 0xabadb10cdeadbeef +#endif + +static void +zfs_btree_poison_node(zfs_btree_t *tree, zfs_btree_hdr_t *hdr) +{ +#ifdef ZFS_DEBUG + size_t size = tree->bt_elem_size; + if (!hdr->bth_core) { + zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr; + (void) memset(leaf->btl_elems + hdr->bth_count * size, 0x0f, + BTREE_LEAF_SIZE - sizeof (zfs_btree_hdr_t) - + hdr->bth_count * size); + } else { + zfs_btree_core_t *node = (zfs_btree_core_t *)hdr; + for (int i = hdr->bth_count + 1; i <= BTREE_CORE_ELEMS; i++) { + node->btc_children[i] = + (zfs_btree_hdr_t *)BTREE_POISON; + } + (void) memset(node->btc_elems + hdr->bth_count * size, 0x0f, + (BTREE_CORE_ELEMS - hdr->bth_count) * size); + } +#endif +} + +static inline void +zfs_btree_poison_node_at(zfs_btree_t *tree, zfs_btree_hdr_t *hdr, + uint64_t offset) +{ +#ifdef ZFS_DEBUG + size_t size = tree->bt_elem_size; + ASSERT3U(offset, >=, hdr->bth_count); + if (!hdr->bth_core) { + zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr; + (void) memset(leaf->btl_elems + offset * size, 0x0f, size); + } else { + zfs_btree_core_t *node = (zfs_btree_core_t *)hdr; + node->btc_children[offset + 1] = + (zfs_btree_hdr_t *)BTREE_POISON; + (void) memset(node->btc_elems + offset * size, 0x0f, size); + } +#endif +} + +static inline void +zfs_btree_verify_poison_at(zfs_btree_t *tree, zfs_btree_hdr_t *hdr, + uint64_t offset) +{ +#ifdef ZFS_DEBUG + size_t size = tree->bt_elem_size; + uint8_t eval = 0x0f; + if (hdr->bth_core) { + zfs_btree_core_t *node = (zfs_btree_core_t *)hdr; + zfs_btree_hdr_t *cval = (zfs_btree_hdr_t *)BTREE_POISON; + VERIFY3P(node->btc_children[offset + 1], ==, cval); + for (int i = 0; i < size; i++) + VERIFY3U(node->btc_elems[offset * size + i], ==, eval); + } else { + zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr; + for (int i = 0; i < size; i++) + VERIFY3U(leaf->btl_elems[offset * size + i], ==, eval); + } +#endif +} + +void +zfs_btree_init(void) +{ + zfs_btree_leaf_cache = kmem_cache_create("zfs_btree_leaf_cache", + BTREE_LEAF_SIZE, 0, NULL, NULL, NULL, NULL, + NULL, 0); +} + +void +zfs_btree_fini(void) +{ + kmem_cache_destroy(zfs_btree_leaf_cache); +} + +void +zfs_btree_create(zfs_btree_t *tree, int (*compar) (const void *, const void *), + size_t size) +{ + /* + * We need a minimmum of 4 elements so that when we split a node we + * always have at least two elements in each node. This simplifies the + * logic in zfs_btree_bulk_finish, since it means the last leaf will + * always have a left sibling to share with (unless it's the root). + */ + ASSERT3U(size, <=, (BTREE_LEAF_SIZE - sizeof (zfs_btree_hdr_t)) / 4); + + bzero(tree, sizeof (*tree)); + tree->bt_compar = compar; + tree->bt_elem_size = size; + tree->bt_height = -1; + tree->bt_bulk = NULL; +} + +/* + * Find value in the array of elements provided. Uses a simple binary search. + */ +static void * +zfs_btree_find_in_buf(zfs_btree_t *tree, uint8_t *buf, uint64_t nelems, + const void *value, zfs_btree_index_t *where) +{ + uint64_t max = nelems; + uint64_t min = 0; + while (max > min) { + uint64_t idx = (min + max) / 2; + uint8_t *cur = buf + idx * tree->bt_elem_size; + int comp = tree->bt_compar(cur, value); + if (comp == -1) { + min = idx + 1; + } else if (comp == 1) { + max = idx; + } else { + ASSERT0(comp); + where->bti_offset = idx; + where->bti_before = B_FALSE; + return (cur); + } + } + + where->bti_offset = max; + where->bti_before = B_TRUE; + return (NULL); +} + +/* + * Find the given value in the tree. where may be passed as null to use as a + * membership test or if the btree is being used as a map. + */ +void * +zfs_btree_find(zfs_btree_t *tree, const void *value, zfs_btree_index_t *where) +{ + if (tree->bt_height == -1) { + if (where != NULL) { + where->bti_node = NULL; + where->bti_offset = 0; + } + ASSERT0(tree->bt_num_elems); + return (NULL); + } + + /* + * If we're in bulk-insert mode, we check the last spot in the tree + * and the last leaf in the tree before doing the normal search, + * because for most workloads the vast majority of finds in + * bulk-insert mode are to insert new elements. + */ + zfs_btree_index_t idx; + if (tree->bt_bulk != NULL) { + zfs_btree_leaf_t *last_leaf = tree->bt_bulk; + int compar = tree->bt_compar(last_leaf->btl_elems + + ((last_leaf->btl_hdr.bth_count - 1) * tree->bt_elem_size), + value); + if (compar < 0) { + /* + * If what they're looking for is after the last + * element, it's not in the tree. + */ + if (where != NULL) { + where->bti_node = (zfs_btree_hdr_t *)last_leaf; + where->bti_offset = + last_leaf->btl_hdr.bth_count; + where->bti_before = B_TRUE; + } + return (NULL); + } else if (compar == 0) { + if (where != NULL) { + where->bti_node = (zfs_btree_hdr_t *)last_leaf; + where->bti_offset = + last_leaf->btl_hdr.bth_count - 1; + where->bti_before = B_FALSE; + } + return (last_leaf->btl_elems + + ((last_leaf->btl_hdr.bth_count - 1) * + tree->bt_elem_size)); + } + if (tree->bt_compar(last_leaf->btl_elems, value) <= 0) { + /* + * If what they're looking for is after the first + * element in the last leaf, it's in the last leaf or + * it's not in the tree. + */ + void *d = zfs_btree_find_in_buf(tree, + last_leaf->btl_elems, last_leaf->btl_hdr.bth_count, + value, &idx); + + if (where != NULL) { + idx.bti_node = (zfs_btree_hdr_t *)last_leaf; + *where = idx; + } + return (d); + } + } + + zfs_btree_core_t *node = NULL; + uint64_t child = 0; + uint64_t depth = 0; + + /* + * Iterate down the tree, finding which child the value should be in + * by comparing with the separators. + */ + for (node = (zfs_btree_core_t *)tree->bt_root; depth < tree->bt_height; + node = (zfs_btree_core_t *)node->btc_children[child], depth++) { + ASSERT3P(node, !=, NULL); + void *d = zfs_btree_find_in_buf(tree, node->btc_elems, + node->btc_hdr.bth_count, value, &idx); + EQUIV(d != NULL, !idx.bti_before); + if (d != NULL) { + if (where != NULL) { + idx.bti_node = (zfs_btree_hdr_t *)node; + *where = idx; + } + return (d); + } + ASSERT(idx.bti_before); + child = idx.bti_offset; + } + + /* + * The value is in this leaf, or it would be if it were in the + * tree. Find its proper location and return it. + */ + zfs_btree_leaf_t *leaf = (depth == 0 ? + (zfs_btree_leaf_t *)tree->bt_root : (zfs_btree_leaf_t *)node); + void *d = zfs_btree_find_in_buf(tree, leaf->btl_elems, + leaf->btl_hdr.bth_count, value, &idx); + + if (where != NULL) { + idx.bti_node = (zfs_btree_hdr_t *)leaf; + *where = idx; + } + + return (d); +} + +/* + * To explain the following functions, it is useful to understand the four + * kinds of shifts used in btree operation. First, a shift is a movement of + * elements within a node. It is used to create gaps for inserting new + * elements and children, or cover gaps created when things are removed. A + * shift has two fundamental properties, each of which can be one of two + * values, making four types of shifts. There is the direction of the shift + * (left or right) and the shape of the shift (parallelogram or isoceles + * trapezoid (shortened to trapezoid hereafter)). The shape distinction only + * applies to shifts of core nodes. + * + * The names derive from the following imagining of the layout of a node: + * + * Elements: * * * * * * * ... * * * + * Children: * * * * * * * * ... * * * + * + * This layout follows from the fact that the elements act as separators + * between pairs of children, and that children root subtrees "below" the + * current node. A left and right shift are fairly self-explanatory; a left + * shift moves things to the left, while a right shift moves things to the + * right. A parallelogram shift is a shift with the same number of elements + * and children being moved, while a trapezoid shift is a shift that moves one + * more children than elements. An example follows: + * + * A parallelogram shift could contain the following: + * _______________ + * \* * * * \ * * * ... * * * + * * \ * * * *\ * * * ... * * * + * --------------- + * A trapezoid shift could contain the following: + * ___________ + * * / * * * \ * * * ... * * * + * * / * * * *\ * * * ... * * * + * --------------- + * + * Note that a parellelogram shift is always shaped like a "left-leaning" + * parallelogram, where the starting index of the children being moved is + * always one higher than the starting index of the elements being moved. No + * "right-leaning" parallelogram shifts are needed (shifts where the starting + * element index and starting child index being moved are the same) to achieve + * any btree operations, so we ignore them. + */ + +enum bt_shift_shape { + BSS_TRAPEZOID, + BSS_PARALLELOGRAM +}; + +enum bt_shift_direction { + BSD_LEFT, + BSD_RIGHT +}; + +/* + * Shift elements and children in the provided core node by off spots. The + * first element moved is idx, and count elements are moved. The shape of the + * shift is determined by shape. The direction is determined by dir. + */ +static inline void +bt_shift_core(zfs_btree_t *tree, zfs_btree_core_t *node, uint64_t idx, + uint64_t count, uint64_t off, enum bt_shift_shape shape, + enum bt_shift_direction dir) +{ + size_t size = tree->bt_elem_size; + ASSERT(node->btc_hdr.bth_core); + + uint8_t *e_start = node->btc_elems + idx * size; + int sign = (dir == BSD_LEFT ? -1 : +1); + uint8_t *e_out = e_start + sign * off * size; + uint64_t e_count = count; + bmov(e_start, e_out, e_count * size); + + zfs_btree_hdr_t **c_start = node->btc_children + idx + + (shape == BSS_TRAPEZOID ? 0 : 1); + zfs_btree_hdr_t **c_out = (dir == BSD_LEFT ? c_start - off : + c_start + off); + uint64_t c_count = count + (shape == BSS_TRAPEZOID ? 1 : 0); + bmov(c_start, c_out, c_count * sizeof (*c_start)); +} + +/* + * Shift elements and children in the provided core node left by one spot. + * The first element moved is idx, and count elements are moved. The + * shape of the shift is determined by trap; true if the shift is a trapezoid, + * false if it is a parallelogram. + */ +static inline void +bt_shift_core_left(zfs_btree_t *tree, zfs_btree_core_t *node, uint64_t idx, + uint64_t count, enum bt_shift_shape shape) +{ + bt_shift_core(tree, node, idx, count, 1, shape, BSD_LEFT); +} + +/* + * Shift elements and children in the provided core node right by one spot. + * Starts with elements[idx] and children[idx] and one more child than element. + */ +static inline void +bt_shift_core_right(zfs_btree_t *tree, zfs_btree_core_t *node, uint64_t idx, + uint64_t count, enum bt_shift_shape shape) +{ + bt_shift_core(tree, node, idx, count, 1, shape, BSD_RIGHT); +} + +/* + * Shift elements and children in the provided leaf node by off spots. + * The first element moved is idx, and count elements are moved. The direction + * is determined by left. + */ +static inline void +bt_shift_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *node, uint64_t idx, + uint64_t count, uint64_t off, enum bt_shift_direction dir) +{ + size_t size = tree->bt_elem_size; + ASSERT(!node->btl_hdr.bth_core); + + uint8_t *start = node->btl_elems + idx * size; + int sign = (dir == BSD_LEFT ? -1 : +1); + uint8_t *out = start + sign * off * size; + bmov(start, out, count * size); +} + +static inline void +bt_shift_leaf_right(zfs_btree_t *tree, zfs_btree_leaf_t *leaf, uint64_t idx, + uint64_t count) +{ + bt_shift_leaf(tree, leaf, idx, count, 1, BSD_RIGHT); +} + +static inline void +bt_shift_leaf_left(zfs_btree_t *tree, zfs_btree_leaf_t *leaf, uint64_t idx, + uint64_t count) +{ + bt_shift_leaf(tree, leaf, idx, count, 1, BSD_LEFT); +} + +/* + * Move children and elements from one core node to another. The shape + * parameter behaves the same as it does in the shift logic. + */ +static inline void +bt_transfer_core(zfs_btree_t *tree, zfs_btree_core_t *source, uint64_t sidx, + uint64_t count, zfs_btree_core_t *dest, uint64_t didx, + enum bt_shift_shape shape) +{ + size_t size = tree->bt_elem_size; + ASSERT(source->btc_hdr.bth_core); + ASSERT(dest->btc_hdr.bth_core); + + bmov(source->btc_elems + sidx * size, dest->btc_elems + didx * size, + count * size); + + uint64_t c_count = count + (shape == BSS_TRAPEZOID ? 1 : 0); + bmov(source->btc_children + sidx + (shape == BSS_TRAPEZOID ? 0 : 1), + dest->btc_children + didx + (shape == BSS_TRAPEZOID ? 0 : 1), + c_count * sizeof (*source->btc_children)); +} + +static inline void +bt_transfer_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *source, uint64_t sidx, + uint64_t count, zfs_btree_leaf_t *dest, uint64_t didx) +{ + size_t size = tree->bt_elem_size; + ASSERT(!source->btl_hdr.bth_core); + ASSERT(!dest->btl_hdr.bth_core); + + bmov(source->btl_elems + sidx * size, dest->btl_elems + didx * size, + count * size); +} + +/* + * Find the first element in the subtree rooted at hdr, return its value and + * put its location in where if non-null. + */ +static void * +zfs_btree_first_helper(zfs_btree_hdr_t *hdr, zfs_btree_index_t *where) +{ + zfs_btree_hdr_t *node; + + for (node = hdr; node->bth_core; node = + ((zfs_btree_core_t *)node)->btc_children[0]) + ; + + ASSERT(!node->bth_core); + zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)node; + if (where != NULL) { + where->bti_node = node; + where->bti_offset = 0; + where->bti_before = B_FALSE; + } + return (&leaf->btl_elems[0]); +} + +/* Insert an element and a child into a core node at the given offset. */ +static void +zfs_btree_insert_core_impl(zfs_btree_t *tree, zfs_btree_core_t *parent, + uint64_t offset, zfs_btree_hdr_t *new_node, void *buf) +{ + uint64_t size = tree->bt_elem_size; + zfs_btree_hdr_t *par_hdr = &parent->btc_hdr; + ASSERT3P(par_hdr, ==, new_node->bth_parent); + ASSERT3U(par_hdr->bth_count, <, BTREE_CORE_ELEMS); + + if (zfs_btree_verify_intensity >= 5) { + zfs_btree_verify_poison_at(tree, par_hdr, + par_hdr->bth_count); + } + /* Shift existing elements and children */ + uint64_t count = par_hdr->bth_count - offset; + bt_shift_core_right(tree, parent, offset, count, + BSS_PARALLELOGRAM); + + /* Insert new values */ + parent->btc_children[offset + 1] = new_node; + bmov(buf, parent->btc_elems + offset * size, size); + par_hdr->bth_count++; +} + +/* + * Insert new_node into the parent of old_node directly after old_node, with + * buf as the dividing element between the two. + */ +static void +zfs_btree_insert_into_parent(zfs_btree_t *tree, zfs_btree_hdr_t *old_node, + zfs_btree_hdr_t *new_node, void *buf) +{ + ASSERT3P(old_node->bth_parent, ==, new_node->bth_parent); + uint64_t size = tree->bt_elem_size; + zfs_btree_core_t *parent = old_node->bth_parent; + zfs_btree_hdr_t *par_hdr = &parent->btc_hdr; + + /* + * If this is the root node we were splitting, we create a new root + * and increase the height of the tree. + */ + if (parent == NULL) { + ASSERT3P(old_node, ==, tree->bt_root); + tree->bt_num_nodes++; + zfs_btree_core_t *new_root = + kmem_alloc(sizeof (zfs_btree_core_t) + BTREE_CORE_ELEMS * + size, KM_SLEEP); + zfs_btree_hdr_t *new_root_hdr = &new_root->btc_hdr; + new_root_hdr->bth_parent = NULL; + new_root_hdr->bth_core = B_TRUE; + new_root_hdr->bth_count = 1; + + old_node->bth_parent = new_node->bth_parent = new_root; + new_root->btc_children[0] = old_node; + new_root->btc_children[1] = new_node; + bmov(buf, new_root->btc_elems, size); + + tree->bt_height++; + tree->bt_root = new_root_hdr; + zfs_btree_poison_node(tree, new_root_hdr); + return; + } + + /* + * Since we have the new separator, binary search for where to put + * new_node. + */ + zfs_btree_index_t idx; + ASSERT(par_hdr->bth_core); + VERIFY3P(zfs_btree_find_in_buf(tree, parent->btc_elems, + par_hdr->bth_count, buf, &idx), ==, NULL); + ASSERT(idx.bti_before); + uint64_t offset = idx.bti_offset; + ASSERT3U(offset, <=, par_hdr->bth_count); + ASSERT3P(parent->btc_children[offset], ==, old_node); + + /* + * If the parent isn't full, shift things to accomodate our insertions + * and return. + */ + if (par_hdr->bth_count != BTREE_CORE_ELEMS) { + zfs_btree_insert_core_impl(tree, parent, offset, new_node, buf); + return; + } + + /* + * We need to split this core node into two. Currently there are + * BTREE_CORE_ELEMS + 1 child nodes, and we are adding one for + * BTREE_CORE_ELEMS + 2. Some of the children will be part of the + * current node, and the others will be moved to the new core node. + * There are BTREE_CORE_ELEMS + 1 elements including the new one. One + * will be used as the new separator in our parent, and the others + * will be split among the two core nodes. + * + * Usually we will split the node in half evenly, with + * BTREE_CORE_ELEMS/2 elements in each node. If we're bulk loading, we + * instead move only about a quarter of the elements (and children) to + * the new node. Since the average state after a long time is a 3/4 + * full node, shortcutting directly to that state improves efficiency. + * + * We do this in two stages: first we split into two nodes, and then we + * reuse our existing logic to insert the new element and child. + */ + uint64_t move_count = MAX((BTREE_CORE_ELEMS / (tree->bt_bulk == NULL ? + 2 : 4)) - 1, 2); + uint64_t keep_count = BTREE_CORE_ELEMS - move_count - 1; + ASSERT3U(BTREE_CORE_ELEMS - move_count, >=, 2); + tree->bt_num_nodes++; + zfs_btree_core_t *new_parent = kmem_alloc(sizeof (zfs_btree_core_t) + + BTREE_CORE_ELEMS * size, KM_SLEEP); + zfs_btree_hdr_t *new_par_hdr = &new_parent->btc_hdr; + new_par_hdr->bth_parent = par_hdr->bth_parent; + new_par_hdr->bth_core = B_TRUE; + new_par_hdr->bth_count = move_count; + zfs_btree_poison_node(tree, new_par_hdr); + + par_hdr->bth_count = keep_count; + + bt_transfer_core(tree, parent, keep_count + 1, move_count, new_parent, + 0, BSS_TRAPEZOID); + + /* Store the new separator in a buffer. */ + uint8_t *tmp_buf = kmem_alloc(size, KM_SLEEP); + bmov(parent->btc_elems + keep_count * size, tmp_buf, + size); + zfs_btree_poison_node(tree, par_hdr); + + if (offset < keep_count) { + /* Insert the new node into the left half */ + zfs_btree_insert_core_impl(tree, parent, offset, new_node, + buf); + + /* + * Move the new separator to the existing buffer. + */ + bmov(tmp_buf, buf, size); + } else if (offset > keep_count) { + /* Insert the new node into the right half */ + new_node->bth_parent = new_parent; + zfs_btree_insert_core_impl(tree, new_parent, + offset - keep_count - 1, new_node, buf); + + /* + * Move the new separator to the existing buffer. + */ + bmov(tmp_buf, buf, size); + } else { + /* + * Move the new separator into the right half, and replace it + * with buf. We also need to shift back the elements in the + * right half to accomodate new_node. + */ + bt_shift_core_right(tree, new_parent, 0, move_count, + BSS_TRAPEZOID); + new_parent->btc_children[0] = new_node; + bmov(tmp_buf, new_parent->btc_elems, size); + new_par_hdr->bth_count++; + } + kmem_free(tmp_buf, size); + zfs_btree_poison_node(tree, par_hdr); + + for (int i = 0; i <= new_parent->btc_hdr.bth_count; i++) + new_parent->btc_children[i]->bth_parent = new_parent; + + for (int i = 0; i <= parent->btc_hdr.bth_count; i++) + ASSERT3P(parent->btc_children[i]->bth_parent, ==, parent); + + /* + * Now that the node is split, we need to insert the new node into its + * parent. This may cause further splitting. + */ + zfs_btree_insert_into_parent(tree, &parent->btc_hdr, + &new_parent->btc_hdr, buf); +} + +/* Insert an element into a leaf node at the given offset. */ +static void +zfs_btree_insert_leaf_impl(zfs_btree_t *tree, zfs_btree_leaf_t *leaf, + uint64_t idx, const void *value) +{ + uint64_t size = tree->bt_elem_size; + uint8_t *start = leaf->btl_elems + (idx * size); + zfs_btree_hdr_t *hdr = &leaf->btl_hdr; + ASSERTV(uint64_t capacity = P2ALIGN((BTREE_LEAF_SIZE - + sizeof (zfs_btree_hdr_t)) / size, 2)); + uint64_t count = leaf->btl_hdr.bth_count - idx; + ASSERT3U(leaf->btl_hdr.bth_count, <, capacity); + + if (zfs_btree_verify_intensity >= 5) { + zfs_btree_verify_poison_at(tree, &leaf->btl_hdr, + leaf->btl_hdr.bth_count); + } + + bt_shift_leaf_right(tree, leaf, idx, count); + bmov(value, start, size); + hdr->bth_count++; +} + +/* Helper function for inserting a new value into leaf at the given index. */ +static void +zfs_btree_insert_into_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *leaf, + const void *value, uint64_t idx) +{ + uint64_t size = tree->bt_elem_size; + uint64_t capacity = P2ALIGN((BTREE_LEAF_SIZE - + sizeof (zfs_btree_hdr_t)) / size, 2); + + /* + * If the leaf isn't full, shift the elements after idx and insert + * value. + */ + if (leaf->btl_hdr.bth_count != capacity) { + zfs_btree_insert_leaf_impl(tree, leaf, idx, value); + return; + } + + /* + * Otherwise, we split the leaf node into two nodes. If we're not bulk + * inserting, each is of size (capacity / 2). If we are bulk + * inserting, we move a quarter of the elements to the new node so + * inserts into the old node don't cause immediate splitting but the + * tree stays relatively dense. Since the average state after a long + * time is a 3/4 full node, shortcutting directly to that state + * improves efficiency. At the end of the bulk insertion process + * we'll need to go through and fix up any nodes (the last leaf and + * its ancestors, potentially) that are below the minimum. + * + * In either case, we're left with one extra element. The leftover + * element will become the new dividing element between the two nodes. + */ + uint64_t move_count = MAX(capacity / (tree->bt_bulk == NULL ? 2 : 4) - + 1, 2); + uint64_t keep_count = capacity - move_count - 1; + ASSERT3U(capacity - move_count, >=, 2); + tree->bt_num_nodes++; + zfs_btree_leaf_t *new_leaf = kmem_cache_alloc(zfs_btree_leaf_cache, + KM_SLEEP); + zfs_btree_hdr_t *new_hdr = &new_leaf->btl_hdr; + new_hdr->bth_parent = leaf->btl_hdr.bth_parent; + new_hdr->bth_core = B_FALSE; + new_hdr->bth_count = move_count; + zfs_btree_poison_node(tree, new_hdr); + + leaf->btl_hdr.bth_count = keep_count; + + if (tree->bt_bulk != NULL && leaf == tree->bt_bulk) + tree->bt_bulk = new_leaf; + + /* Copy the back part to the new leaf. */ + bt_transfer_leaf(tree, leaf, keep_count + 1, move_count, new_leaf, + 0); + + /* We store the new separator in a buffer we control for simplicity. */ + uint8_t *buf = kmem_alloc(size, KM_SLEEP); + bmov(leaf->btl_elems + (keep_count * size), buf, size); + zfs_btree_poison_node(tree, &leaf->btl_hdr); + + if (idx < keep_count) { + /* Insert into the existing leaf. */ + zfs_btree_insert_leaf_impl(tree, leaf, idx, value); + } else if (idx > keep_count) { + /* Insert into the new leaf. */ + zfs_btree_insert_leaf_impl(tree, new_leaf, idx - keep_count - + 1, value); + } else { + /* + * Shift the elements in the new leaf to make room for the + * separator, and use the new value as the new separator. + */ + bt_shift_leaf_right(tree, new_leaf, 0, move_count); + bmov(buf, new_leaf->btl_elems, size); + bmov(value, buf, size); + new_hdr->bth_count++; + } + + /* + * Now that the node is split, we need to insert the new node into its + * parent. This may cause further splitting, bur only of core nodes. + */ + zfs_btree_insert_into_parent(tree, &leaf->btl_hdr, &new_leaf->btl_hdr, + buf); + kmem_free(buf, size); +} + +static uint64_t +zfs_btree_find_parent_idx(zfs_btree_t *tree, zfs_btree_hdr_t *hdr) +{ + void *buf; + if (hdr->bth_core) { + buf = ((zfs_btree_core_t *)hdr)->btc_elems; + } else { + buf = ((zfs_btree_leaf_t *)hdr)->btl_elems; + } + zfs_btree_index_t idx; + zfs_btree_core_t *parent = hdr->bth_parent; + VERIFY3P(zfs_btree_find_in_buf(tree, parent->btc_elems, + parent->btc_hdr.bth_count, buf, &idx), ==, NULL); + ASSERT(idx.bti_before); + ASSERT3U(idx.bti_offset, <=, parent->btc_hdr.bth_count); + ASSERT3P(parent->btc_children[idx.bti_offset], ==, hdr); + return (idx.bti_offset); +} + +/* + * Take the b-tree out of bulk insert mode. During bulk-insert mode, some + * nodes may violate the invariant that non-root nodes must be at least half + * full. All nodes violating this invariant should be the last node in their + * particular level. To correct the invariant, we take values from their left + * neighbor until they are half full. They must have a left neighbor at their + * level because the last node at a level is not the first node unless it's + * the root. + */ +static void +zfs_btree_bulk_finish(zfs_btree_t *tree) +{ + ASSERT3P(tree->bt_bulk, !=, NULL); + ASSERT3P(tree->bt_root, !=, NULL); + zfs_btree_leaf_t *leaf = tree->bt_bulk; + zfs_btree_hdr_t *hdr = &leaf->btl_hdr; + zfs_btree_core_t *parent = hdr->bth_parent; + uint64_t size = tree->bt_elem_size; + uint64_t capacity = P2ALIGN((BTREE_LEAF_SIZE - + sizeof (zfs_btree_hdr_t)) / size, 2); + + /* + * The invariant doesn't apply to the root node, if that's the only + * node in the tree we're done. + */ + if (parent == NULL) { + tree->bt_bulk = NULL; + return; + } + + /* First, take elements to rebalance the leaf node. */ + if (hdr->bth_count < capacity / 2) { + /* + * First, find the left neighbor. The simplest way to do this + * is to call zfs_btree_prev twice; the first time finds some + * ancestor of this node, and the second time finds the left + * neighbor. The ancestor found is the lowest common ancestor + * of leaf and the neighbor. + */ + zfs_btree_index_t idx = { + .bti_node = hdr, + .bti_offset = 0 + }; + VERIFY3P(zfs_btree_prev(tree, &idx, &idx), !=, NULL); + ASSERT(idx.bti_node->bth_core); + zfs_btree_core_t *common = (zfs_btree_core_t *)idx.bti_node; + uint64_t common_idx = idx.bti_offset; + + VERIFY3P(zfs_btree_prev(tree, &idx, &idx), !=, NULL); + ASSERT(!idx.bti_node->bth_core); + zfs_btree_leaf_t *l_neighbor = (zfs_btree_leaf_t *)idx.bti_node; + zfs_btree_hdr_t *l_hdr = idx.bti_node; + uint64_t move_count = (capacity / 2) - hdr->bth_count; + ASSERT3U(l_neighbor->btl_hdr.bth_count - move_count, >=, + capacity / 2); + + if (zfs_btree_verify_intensity >= 5) { + for (int i = 0; i < move_count; i++) { + zfs_btree_verify_poison_at(tree, hdr, + leaf->btl_hdr.bth_count + i); + } + } + + /* First, shift elements in leaf back. */ + bt_shift_leaf(tree, leaf, 0, hdr->bth_count, move_count, + BSD_RIGHT); + + /* Next, move the separator from the common ancestor to leaf. */ + uint8_t *separator = common->btc_elems + (common_idx * size); + uint8_t *out = leaf->btl_elems + ((move_count - 1) * size); + bmov(separator, out, size); + move_count--; + + /* + * Now we move elements from the tail of the left neighbor to + * fill the remaining spots in leaf. + */ + bt_transfer_leaf(tree, l_neighbor, l_hdr->bth_count - + move_count, move_count, leaf, 0); + + /* + * Finally, move the new last element in the left neighbor to + * the separator. + */ + bmov(l_neighbor->btl_elems + (l_hdr->bth_count - + move_count - 1) * size, separator, size); + + /* Adjust the node's counts, and we're done. */ + l_hdr->bth_count -= move_count + 1; + hdr->bth_count += move_count + 1; + + ASSERT3U(l_hdr->bth_count, >=, capacity / 2); + ASSERT3U(hdr->bth_count, >=, capacity / 2); + zfs_btree_poison_node(tree, l_hdr); + } + + /* + * Now we have to rebalance any ancestors of leaf that may also + * violate the invariant. + */ + capacity = BTREE_CORE_ELEMS; + while (parent->btc_hdr.bth_parent != NULL) { + zfs_btree_core_t *cur = parent; + zfs_btree_hdr_t *hdr = &cur->btc_hdr; + parent = hdr->bth_parent; + /* + * If the invariant isn't violated, move on to the next + * ancestor. + */ + if (hdr->bth_count >= capacity / 2) + continue; + + /* + * Because the smallest number of nodes we can move when + * splitting is 2, we never need to worry about not having a + * left sibling (a sibling is a neighbor with the same parent). + */ + uint64_t parent_idx = zfs_btree_find_parent_idx(tree, hdr); + ASSERT3U(parent_idx, >, 0); + zfs_btree_core_t *l_neighbor = + (zfs_btree_core_t *)parent->btc_children[parent_idx - 1]; + uint64_t move_count = (capacity / 2) - hdr->bth_count; + ASSERT3U(l_neighbor->btc_hdr.bth_count - move_count, >=, + capacity / 2); + + if (zfs_btree_verify_intensity >= 5) { + for (int i = 0; i < move_count; i++) { + zfs_btree_verify_poison_at(tree, hdr, + hdr->bth_count + i); + } + } + /* First, shift things in the right node back. */ + bt_shift_core(tree, cur, 0, hdr->bth_count, move_count, + BSS_TRAPEZOID, BSD_RIGHT); + + /* Next, move the separator to the right node. */ + uint8_t *separator = parent->btc_elems + ((parent_idx - 1) * + size); + uint8_t *e_out = cur->btc_elems + ((move_count - 1) * size); + bmov(separator, e_out, size); + + /* + * Now, move elements and children from the left node to the + * right. We move one more child than elements. + */ + move_count--; + uint64_t move_idx = l_neighbor->btc_hdr.bth_count - move_count; + bt_transfer_core(tree, l_neighbor, move_idx, move_count, cur, 0, + BSS_TRAPEZOID); + + /* + * Finally, move the last element in the left node to the + * separator's position. + */ + move_idx--; + bmov(l_neighbor->btc_elems + move_idx * size, separator, size); + + l_neighbor->btc_hdr.bth_count -= move_count + 1; + hdr->bth_count += move_count + 1; + + ASSERT3U(l_neighbor->btc_hdr.bth_count, >=, capacity / 2); + ASSERT3U(hdr->bth_count, >=, capacity / 2); + + zfs_btree_poison_node(tree, &l_neighbor->btc_hdr); + + for (int i = 0; i <= hdr->bth_count; i++) + cur->btc_children[i]->bth_parent = cur; + } + + tree->bt_bulk = NULL; +} + +/* + * Insert value into tree at the location specified by where. + */ +void +zfs_btree_insert(zfs_btree_t *tree, const void *value, + const zfs_btree_index_t *where) +{ + zfs_btree_index_t idx = {0}; + + /* If we're not inserting in the last leaf, end bulk insert mode. */ + if (tree->bt_bulk != NULL) { + if (where->bti_node != &tree->bt_bulk->btl_hdr) { + zfs_btree_bulk_finish(tree); + VERIFY3P(zfs_btree_find(tree, value, &idx), ==, NULL); + where = &idx; + } + } + + tree->bt_num_elems++; + /* + * If this is the first element in the tree, create a leaf root node + * and add the value to it. + */ + if (where->bti_node == NULL) { + ASSERT3U(tree->bt_num_elems, ==, 1); + ASSERT3S(tree->bt_height, ==, -1); + ASSERT3P(tree->bt_root, ==, NULL); + ASSERT0(where->bti_offset); + + tree->bt_num_nodes++; + zfs_btree_leaf_t *leaf = kmem_cache_alloc(zfs_btree_leaf_cache, + KM_SLEEP); + tree->bt_root = &leaf->btl_hdr; + tree->bt_height++; + + zfs_btree_hdr_t *hdr = &leaf->btl_hdr; + hdr->bth_parent = NULL; + hdr->bth_core = B_FALSE; + hdr->bth_count = 0; + zfs_btree_poison_node(tree, hdr); + + zfs_btree_insert_into_leaf(tree, leaf, value, 0); + tree->bt_bulk = leaf; + } else if (!where->bti_node->bth_core) { + /* + * If we're inserting into a leaf, go directly to the helper + * function. + */ + zfs_btree_insert_into_leaf(tree, + (zfs_btree_leaf_t *)where->bti_node, value, + where->bti_offset); + } else { + /* + * If we're inserting into a core node, we can't just shift + * the existing element in that slot in the same node without + * breaking our ordering invariants. Instead we place the new + * value in the node at that spot and then insert the old + * separator into the first slot in the subtree to the right. + */ + ASSERT(where->bti_node->bth_core); + zfs_btree_core_t *node = (zfs_btree_core_t *)where->bti_node; + + /* + * We can ignore bti_before, because either way the value + * should end up in bti_offset. + */ + uint64_t off = where->bti_offset; + zfs_btree_hdr_t *subtree = node->btc_children[off + 1]; + size_t size = tree->bt_elem_size; + uint8_t *buf = kmem_alloc(size, KM_SLEEP); + bmov(node->btc_elems + off * size, buf, size); + bmov(value, node->btc_elems + off * size, size); + + /* + * Find the first slot in the subtree to the right, insert + * there. + */ + zfs_btree_index_t new_idx; + VERIFY3P(zfs_btree_first_helper(subtree, &new_idx), !=, NULL); + ASSERT0(new_idx.bti_offset); + ASSERT(!new_idx.bti_node->bth_core); + zfs_btree_insert_into_leaf(tree, + (zfs_btree_leaf_t *)new_idx.bti_node, buf, 0); + kmem_free(buf, size); + } + zfs_btree_verify(tree); +} + +/* + * Return the first element in the tree, and put its location in where if + * non-null. + */ +void * +zfs_btree_first(zfs_btree_t *tree, zfs_btree_index_t *where) +{ + if (tree->bt_height == -1) { + ASSERT0(tree->bt_num_elems); + return (NULL); + } + return (zfs_btree_first_helper(tree->bt_root, where)); +} + +/* + * Find the last element in the subtree rooted at hdr, return its value and + * put its location in where if non-null. + */ +static void * +zfs_btree_last_helper(zfs_btree_t *btree, zfs_btree_hdr_t *hdr, + zfs_btree_index_t *where) +{ + zfs_btree_hdr_t *node; + + for (node = hdr; node->bth_core; node = + ((zfs_btree_core_t *)node)->btc_children[node->bth_count]) + ; + + zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)node; + if (where != NULL) { + where->bti_node = node; + where->bti_offset = node->bth_count - 1; + where->bti_before = B_FALSE; + } + return (leaf->btl_elems + (node->bth_count - 1) * btree->bt_elem_size); +} + +/* + * Return the last element in the tree, and put its location in where if + * non-null. + */ +void * +zfs_btree_last(zfs_btree_t *tree, zfs_btree_index_t *where) +{ + if (tree->bt_height == -1) { + ASSERT0(tree->bt_num_elems); + return (NULL); + } + return (zfs_btree_last_helper(tree, tree->bt_root, where)); +} + +/* + * This function contains the logic to find the next node in the tree. A + * helper function is used because there are multiple internal consumemrs of + * this logic. The done_func is used by zfs_btree_destroy_nodes to clean up each + * node after we've finished with it. + */ +static void * +zfs_btree_next_helper(zfs_btree_t *tree, const zfs_btree_index_t *idx, + zfs_btree_index_t *out_idx, + void (*done_func)(zfs_btree_t *, zfs_btree_hdr_t *)) +{ + if (idx->bti_node == NULL) { + ASSERT3S(tree->bt_height, ==, -1); + return (NULL); + } + + uint64_t offset = idx->bti_offset; + if (!idx->bti_node->bth_core) { + /* + * When finding the next element of an element in a leaf, + * there are two cases. If the element isn't the last one in + * the leaf, in which case we just return the next element in + * the leaf. Otherwise, we need to traverse up our parents + * until we find one where our ancestor isn't the last child + * of its parent. Once we do, the next element is the + * separator after our ancestor in its parent. + */ + zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)idx->bti_node; + uint64_t new_off = offset + (idx->bti_before ? 0 : 1); + if (leaf->btl_hdr.bth_count > new_off) { + out_idx->bti_node = &leaf->btl_hdr; + out_idx->bti_offset = new_off; + out_idx->bti_before = B_FALSE; + return (leaf->btl_elems + new_off * tree->bt_elem_size); + } + + zfs_btree_hdr_t *prev = &leaf->btl_hdr; + for (zfs_btree_core_t *node = leaf->btl_hdr.bth_parent; + node != NULL; node = node->btc_hdr.bth_parent) { + zfs_btree_hdr_t *hdr = &node->btc_hdr; + ASSERT(hdr->bth_core); + uint64_t i = zfs_btree_find_parent_idx(tree, prev); + if (done_func != NULL) + done_func(tree, prev); + if (i == hdr->bth_count) { + prev = hdr; + continue; + } + out_idx->bti_node = hdr; + out_idx->bti_offset = i; + out_idx->bti_before = B_FALSE; + return (node->btc_elems + i * tree->bt_elem_size); + } + if (done_func != NULL) + done_func(tree, prev); + /* + * We've traversed all the way up and been at the end of the + * node every time, so this was the last element in the tree. + */ + return (NULL); + } + + /* If we were before an element in a core node, return that element. */ + ASSERT(idx->bti_node->bth_core); + zfs_btree_core_t *node = (zfs_btree_core_t *)idx->bti_node; + if (idx->bti_before) { + out_idx->bti_before = B_FALSE; + return (node->btc_elems + offset * tree->bt_elem_size); + } + + /* + * The next element from one in a core node is the first element in + * the subtree just to the right of the separator. + */ + zfs_btree_hdr_t *child = node->btc_children[offset + 1]; + return (zfs_btree_first_helper(child, out_idx)); +} + +/* + * Return the next valued node in the tree. The same address can be safely + * passed for idx and out_idx. + */ +void * +zfs_btree_next(zfs_btree_t *tree, const zfs_btree_index_t *idx, + zfs_btree_index_t *out_idx) +{ + return (zfs_btree_next_helper(tree, idx, out_idx, NULL)); +} + +/* + * Return the previous valued node in the tree. The same value can be safely + * passed for idx and out_idx. + */ +void * +zfs_btree_prev(zfs_btree_t *tree, const zfs_btree_index_t *idx, + zfs_btree_index_t *out_idx) +{ + if (idx->bti_node == NULL) { + ASSERT3S(tree->bt_height, ==, -1); + return (NULL); + } + + uint64_t offset = idx->bti_offset; + if (!idx->bti_node->bth_core) { + /* + * When finding the previous element of an element in a leaf, + * there are two cases. If the element isn't the first one in + * the leaf, in which case we just return the previous element + * in the leaf. Otherwise, we need to traverse up our parents + * until we find one where our previous ancestor isn't the + * first child. Once we do, the previous element is the + * separator after our previous ancestor. + */ + zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)idx->bti_node; + if (offset != 0) { + out_idx->bti_node = &leaf->btl_hdr; + out_idx->bti_offset = offset - 1; + out_idx->bti_before = B_FALSE; + return (leaf->btl_elems + (offset - 1) * + tree->bt_elem_size); + } + zfs_btree_hdr_t *prev = &leaf->btl_hdr; + for (zfs_btree_core_t *node = leaf->btl_hdr.bth_parent; + node != NULL; node = node->btc_hdr.bth_parent) { + zfs_btree_hdr_t *hdr = &node->btc_hdr; + ASSERT(hdr->bth_core); + uint64_t i = zfs_btree_find_parent_idx(tree, prev); + if (i == 0) { + prev = hdr; + continue; + } + out_idx->bti_node = hdr; + out_idx->bti_offset = i - 1; + out_idx->bti_before = B_FALSE; + return (node->btc_elems + (i - 1) * tree->bt_elem_size); + } + /* + * We've traversed all the way up and been at the start of the + * node every time, so this was the first node in the tree. + */ + return (NULL); + } + + /* + * The previous element from one in a core node is the last element in + * the subtree just to the left of the separator. + */ + ASSERT(idx->bti_node->bth_core); + zfs_btree_core_t *node = (zfs_btree_core_t *)idx->bti_node; + zfs_btree_hdr_t *child = node->btc_children[offset]; + return (zfs_btree_last_helper(tree, child, out_idx)); +} + +/* + * Get the value at the provided index in the tree. + * + * Note that the value returned from this function can be mutated, but only + * if it will not change the ordering of the element with respect to any other + * elements that could be in the tree. + */ +void * +zfs_btree_get(zfs_btree_t *tree, zfs_btree_index_t *idx) +{ + ASSERT(!idx->bti_before); + if (!idx->bti_node->bth_core) { + zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)idx->bti_node; + return (leaf->btl_elems + idx->bti_offset * tree->bt_elem_size); + } + ASSERT(idx->bti_node->bth_core); + zfs_btree_core_t *node = (zfs_btree_core_t *)idx->bti_node; + return (node->btc_elems + idx->bti_offset * tree->bt_elem_size); +} + +/* Add the given value to the tree. Must not already be in the tree. */ +void +zfs_btree_add(zfs_btree_t *tree, const void *node) +{ + zfs_btree_index_t where = {0}; + VERIFY3P(zfs_btree_find(tree, node, &where), ==, NULL); + zfs_btree_insert(tree, node, &where); +} + +/* Helper function to free a tree node. */ +static void +zfs_btree_node_destroy(zfs_btree_t *tree, zfs_btree_hdr_t *node) +{ + tree->bt_num_nodes--; + if (!node->bth_core) { + kmem_cache_free(zfs_btree_leaf_cache, node); + } else { + kmem_free(node, sizeof (zfs_btree_core_t) + + BTREE_CORE_ELEMS * tree->bt_elem_size); + } +} + +/* + * Remove the rm_hdr and the separator to its left from the parent node. The + * buffer that rm_hdr was stored in may already be freed, so its contents + * cannot be accessed. + */ +static void +zfs_btree_remove_from_node(zfs_btree_t *tree, zfs_btree_core_t *node, + zfs_btree_hdr_t *rm_hdr) +{ + size_t size = tree->bt_elem_size; + uint64_t min_count = (BTREE_CORE_ELEMS / 2) - 1; + zfs_btree_hdr_t *hdr = &node->btc_hdr; + /* + * If the node is the root node and rm_hdr is one of two children, + * promote the other child to the root. + */ + if (hdr->bth_parent == NULL && hdr->bth_count <= 1) { + ASSERT3U(hdr->bth_count, ==, 1); + ASSERT3P(tree->bt_root, ==, node); + ASSERT3P(node->btc_children[1], ==, rm_hdr); + tree->bt_root = node->btc_children[0]; + node->btc_children[0]->bth_parent = NULL; + zfs_btree_node_destroy(tree, hdr); + tree->bt_height--; + return; + } + + uint64_t idx; + for (idx = 0; idx <= hdr->bth_count; idx++) { + if (node->btc_children[idx] == rm_hdr) + break; + } + ASSERT3U(idx, <=, hdr->bth_count); + + /* + * If the node is the root or it has more than the minimum number of + * children, just remove the child and separator, and return. + */ + if (hdr->bth_parent == NULL || + hdr->bth_count > min_count) { + /* + * Shift the element and children to the right of rm_hdr to + * the left by one spot. + */ + bt_shift_core_left(tree, node, idx, hdr->bth_count - idx, + BSS_PARALLELOGRAM); + hdr->bth_count--; + zfs_btree_poison_node_at(tree, hdr, hdr->bth_count); + return; + } + + ASSERT3U(hdr->bth_count, ==, min_count); + + /* + * Now we try to take a node from a neighbor. We check left, then + * right. If the neighbor exists and has more than the minimum number + * of elements, we move the separator betweeen us and them to our + * node, move their closest element (last for left, first for right) + * to the separator, and move their closest child to our node. Along + * the way we need to collapse the gap made by idx, and (for our right + * neighbor) the gap made by removing their first element and child. + * + * Note: this logic currently doesn't support taking from a neighbor + * that isn't a sibling (i.e. a neighbor with a different + * parent). This isn't critical functionality, but may be worth + * implementing in the future for completeness' sake. + */ + zfs_btree_core_t *parent = hdr->bth_parent; + uint64_t parent_idx = zfs_btree_find_parent_idx(tree, hdr); + + zfs_btree_hdr_t *l_hdr = (parent_idx == 0 ? NULL : + parent->btc_children[parent_idx - 1]); + if (l_hdr != NULL && l_hdr->bth_count > min_count) { + /* We can take a node from the left neighbor. */ + ASSERT(l_hdr->bth_core); + zfs_btree_core_t *neighbor = (zfs_btree_core_t *)l_hdr; + + /* + * Start by shifting the elements and children in the current + * node to the right by one spot. + */ + bt_shift_core_right(tree, node, 0, idx - 1, BSS_TRAPEZOID); + + /* + * Move the separator between node and neighbor to the first + * element slot in the current node. + */ + uint8_t *separator = parent->btc_elems + (parent_idx - 1) * + size; + bmov(separator, node->btc_elems, size); + + /* Move the last child of neighbor to our first child slot. */ + zfs_btree_hdr_t **take_child = neighbor->btc_children + + l_hdr->bth_count; + bmov(take_child, node->btc_children, sizeof (*take_child)); + node->btc_children[0]->bth_parent = node; + + /* Move the last element of neighbor to the separator spot. */ + uint8_t *take_elem = neighbor->btc_elems + + (l_hdr->bth_count - 1) * size; + bmov(take_elem, separator, size); + l_hdr->bth_count--; + zfs_btree_poison_node_at(tree, l_hdr, l_hdr->bth_count); + return; + } + + zfs_btree_hdr_t *r_hdr = (parent_idx == parent->btc_hdr.bth_count ? + NULL : parent->btc_children[parent_idx + 1]); + if (r_hdr != NULL && r_hdr->bth_count > min_count) { + /* We can take a node from the right neighbor. */ + ASSERT(r_hdr->bth_core); + zfs_btree_core_t *neighbor = (zfs_btree_core_t *)r_hdr; + + /* + * Shift elements in node left by one spot to overwrite rm_hdr + * and the separator before it. + */ + bt_shift_core_left(tree, node, idx, hdr->bth_count - idx, + BSS_PARALLELOGRAM); + + /* + * Move the separator between node and neighbor to the last + * element spot in node. + */ + uint8_t *separator = parent->btc_elems + parent_idx * size; + bmov(separator, node->btc_elems + (hdr->bth_count - 1) * size, + size); + + /* + * Move the first child of neighbor to the last child spot in + * node. + */ + zfs_btree_hdr_t **take_child = neighbor->btc_children; + bmov(take_child, node->btc_children + hdr->bth_count, + sizeof (*take_child)); + node->btc_children[hdr->bth_count]->bth_parent = node; + + /* Move the first element of neighbor to the separator spot. */ + uint8_t *take_elem = neighbor->btc_elems; + bmov(take_elem, separator, size); + r_hdr->bth_count--; + + /* + * Shift the elements and children of neighbor to cover the + * stolen elements. + */ + bt_shift_core_left(tree, neighbor, 1, r_hdr->bth_count, + BSS_TRAPEZOID); + zfs_btree_poison_node_at(tree, r_hdr, r_hdr->bth_count); + return; + } + + /* + * In this case, neither of our neighbors can spare an element, so we + * need to merge with one of them. We prefer the left one, + * arabitrarily. Move the separator into the leftmost merging node + * (which may be us or the left neighbor), and then move the right + * merging node's elements. Once that's done, we go back and delete + * the element we're removing. Finally, go into the parent and delete + * the right merging node and the separator. This may cause further + * merging. + */ + zfs_btree_hdr_t *new_rm_hdr, *keep_hdr; + uint64_t new_idx = idx; + if (l_hdr != NULL) { + keep_hdr = l_hdr; + new_rm_hdr = hdr; + new_idx += keep_hdr->bth_count + 1; + } else { + ASSERT3P(r_hdr, !=, NULL); + keep_hdr = hdr; + new_rm_hdr = r_hdr; + parent_idx++; + } + + ASSERT(keep_hdr->bth_core); + ASSERT(new_rm_hdr->bth_core); + + zfs_btree_core_t *keep = (zfs_btree_core_t *)keep_hdr; + zfs_btree_core_t *rm = (zfs_btree_core_t *)new_rm_hdr; + + if (zfs_btree_verify_intensity >= 5) { + for (int i = 0; i < new_rm_hdr->bth_count + 1; i++) { + zfs_btree_verify_poison_at(tree, keep_hdr, + keep_hdr->bth_count + i); + } + } + + /* Move the separator into the left node. */ + uint8_t *e_out = keep->btc_elems + keep_hdr->bth_count * size; + uint8_t *separator = parent->btc_elems + (parent_idx - 1) * + size; + bmov(separator, e_out, size); + keep_hdr->bth_count++; + + /* Move all our elements and children into the left node. */ + bt_transfer_core(tree, rm, 0, new_rm_hdr->bth_count, keep, + keep_hdr->bth_count, BSS_TRAPEZOID); + + uint64_t old_count = keep_hdr->bth_count; + + /* Update bookkeeping */ + keep_hdr->bth_count += new_rm_hdr->bth_count; + ASSERT3U(keep_hdr->bth_count, ==, (min_count * 2) + 1); + + /* + * Shift the element and children to the right of rm_hdr to + * the left by one spot. + */ + ASSERT3P(keep->btc_children[new_idx], ==, rm_hdr); + bt_shift_core_left(tree, keep, new_idx, keep_hdr->bth_count - new_idx, + BSS_PARALLELOGRAM); + keep_hdr->bth_count--; + + /* Reparent all our children to point to the left node. */ + zfs_btree_hdr_t **new_start = keep->btc_children + + old_count - 1; + for (int i = 0; i < new_rm_hdr->bth_count + 1; i++) + new_start[i]->bth_parent = keep; + for (int i = 0; i <= keep_hdr->bth_count; i++) { + ASSERT3P(keep->btc_children[i]->bth_parent, ==, keep); + ASSERT3P(keep->btc_children[i], !=, rm_hdr); + } + zfs_btree_poison_node_at(tree, keep_hdr, keep_hdr->bth_count); + + new_rm_hdr->bth_count = 0; + zfs_btree_node_destroy(tree, new_rm_hdr); + zfs_btree_remove_from_node(tree, parent, new_rm_hdr); +} + +/* Remove the element at the specific location. */ +void +zfs_btree_remove_from(zfs_btree_t *tree, zfs_btree_index_t *where) +{ + size_t size = tree->bt_elem_size; + zfs_btree_hdr_t *hdr = where->bti_node; + uint64_t idx = where->bti_offset; + uint64_t capacity = P2ALIGN((BTREE_LEAF_SIZE - + sizeof (zfs_btree_hdr_t)) / size, 2); + + ASSERT(!where->bti_before); + if (tree->bt_bulk != NULL) { + /* + * Leave bulk insert mode. Note that our index would be + * invalid after we correct the tree, so we copy the value + * we're planning to remove and find it again after + * bulk_finish. + */ + uint8_t *value = zfs_btree_get(tree, where); + uint8_t *tmp = kmem_alloc(size, KM_SLEEP); + bmov(value, tmp, size); + zfs_btree_bulk_finish(tree); + VERIFY3P(zfs_btree_find(tree, tmp, where), !=, NULL); + kmem_free(tmp, size); + hdr = where->bti_node; + idx = where->bti_offset; + } + + tree->bt_num_elems--; + /* + * If the element happens to be in a core node, we move a leaf node's + * element into its place and then remove the leaf node element. This + * makes the rebalance logic not need to be recursive both upwards and + * downwards. + */ + if (hdr->bth_core) { + zfs_btree_core_t *node = (zfs_btree_core_t *)hdr; + zfs_btree_hdr_t *left_subtree = node->btc_children[idx]; + void *new_value = zfs_btree_last_helper(tree, left_subtree, + where); + ASSERT3P(new_value, !=, NULL); + + bmov(new_value, node->btc_elems + idx * size, size); + + hdr = where->bti_node; + idx = where->bti_offset; + ASSERT(!where->bti_before); + } + + /* + * First, we'll update the leaf's metadata. Then, we shift any + * elements after the idx to the left. After that, we rebalance if + * needed. + */ + ASSERT(!hdr->bth_core); + zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr; + ASSERT3U(hdr->bth_count, >, 0); + + uint64_t min_count = (capacity / 2) - 1; + + /* + * If we're over the minimum size or this is the root, just overwrite + * the value and return. + */ + if (hdr->bth_count > min_count || hdr->bth_parent == NULL) { + hdr->bth_count--; + bt_shift_leaf_left(tree, leaf, idx + 1, hdr->bth_count - idx); + if (hdr->bth_parent == NULL) { + ASSERT0(tree->bt_height); + if (hdr->bth_count == 0) { + tree->bt_root = NULL; + tree->bt_height--; + zfs_btree_node_destroy(tree, &leaf->btl_hdr); + } + } + if (tree->bt_root != NULL) + zfs_btree_poison_node_at(tree, hdr, hdr->bth_count); + zfs_btree_verify(tree); + return; + } + ASSERT3U(hdr->bth_count, ==, min_count); + + /* + * Now we try to take a node from a sibling. We check left, then + * right. If they exist and have more than the minimum number of + * elements, we move the separator betweeen us and them to our node + * and move their closest element (last for left, first for right) to + * the separator. Along the way we need to collapse the gap made by + * idx, and (for our right neighbor) the gap made by removing their + * first element. + * + * Note: this logic currently doesn't support taking from a neighbor + * that isn't a sibling. This isn't critical functionality, but may be + * worth implementing in the future for completeness' sake. + */ + zfs_btree_core_t *parent = hdr->bth_parent; + uint64_t parent_idx = zfs_btree_find_parent_idx(tree, hdr); + + zfs_btree_hdr_t *l_hdr = (parent_idx == 0 ? NULL : + parent->btc_children[parent_idx - 1]); + if (l_hdr != NULL && l_hdr->bth_count > min_count) { + /* We can take a node from the left neighbor. */ + ASSERT(!l_hdr->bth_core); + + /* + * Move our elements back by one spot to make room for the + * stolen element and overwrite the element being removed. + */ + bt_shift_leaf_right(tree, leaf, 0, idx); + uint8_t *separator = parent->btc_elems + (parent_idx - 1) * + size; + uint8_t *take_elem = ((zfs_btree_leaf_t *)l_hdr)->btl_elems + + (l_hdr->bth_count - 1) * size; + /* Move the separator to our first spot. */ + bmov(separator, leaf->btl_elems, size); + + /* Move our neighbor's last element to the separator. */ + bmov(take_elem, separator, size); + + /* Update the bookkeeping. */ + l_hdr->bth_count--; + zfs_btree_poison_node_at(tree, l_hdr, l_hdr->bth_count); + + zfs_btree_verify(tree); + return; + } + + zfs_btree_hdr_t *r_hdr = (parent_idx == parent->btc_hdr.bth_count ? + NULL : parent->btc_children[parent_idx + 1]); + if (r_hdr != NULL && r_hdr->bth_count > min_count) { + /* We can take a node from the right neighbor. */ + ASSERT(!r_hdr->bth_core); + zfs_btree_leaf_t *neighbor = (zfs_btree_leaf_t *)r_hdr; + + /* + * Move our elements after the element being removed forwards + * by one spot to make room for the stolen element and + * overwrite the element being removed. + */ + bt_shift_leaf_left(tree, leaf, idx + 1, hdr->bth_count - idx - + 1); + + uint8_t *separator = parent->btc_elems + parent_idx * size; + uint8_t *take_elem = ((zfs_btree_leaf_t *)r_hdr)->btl_elems; + /* Move the separator between us to our last spot. */ + bmov(separator, leaf->btl_elems + (hdr->bth_count - 1) * size, + size); + + /* Move our neighbor's first element to the separator. */ + bmov(take_elem, separator, size); + + /* Update the bookkeeping. */ + r_hdr->bth_count--; + + /* + * Move our neighbors elements forwards to overwrite the + * stolen element. + */ + bt_shift_leaf_left(tree, neighbor, 1, r_hdr->bth_count); + zfs_btree_poison_node_at(tree, r_hdr, r_hdr->bth_count); + zfs_btree_verify(tree); + return; + } + + /* + * In this case, neither of our neighbors can spare an element, so we + * need to merge with one of them. We prefer the left one, + * arabitrarily. Move the separator into the leftmost merging node + * (which may be us or the left neighbor), and then move the right + * merging node's elements. Once that's done, we go back and delete + * the element we're removing. Finally, go into the parent and delete + * the right merging node and the separator. This may cause further + * merging. + */ + zfs_btree_hdr_t *rm_hdr, *keep_hdr; + uint64_t new_idx = idx; + if (l_hdr != NULL) { + keep_hdr = l_hdr; + rm_hdr = hdr; + new_idx += keep_hdr->bth_count + 1; // 449 + } else { + ASSERT3P(r_hdr, !=, NULL); + keep_hdr = hdr; + rm_hdr = r_hdr; + parent_idx++; + } + + ASSERT(!keep_hdr->bth_core); + ASSERT(!rm_hdr->bth_core); + ASSERT3U(keep_hdr->bth_count, ==, min_count); + ASSERT3U(rm_hdr->bth_count, ==, min_count); + + zfs_btree_leaf_t *keep = (zfs_btree_leaf_t *)keep_hdr; + zfs_btree_leaf_t *rm = (zfs_btree_leaf_t *)rm_hdr; + + if (zfs_btree_verify_intensity >= 5) { + for (int i = 0; i < rm_hdr->bth_count + 1; i++) { + zfs_btree_verify_poison_at(tree, keep_hdr, + keep_hdr->bth_count + i); + } + } + /* + * Move the separator into the first open spot in the left + * neighbor. + */ + uint8_t *out = keep->btl_elems + keep_hdr->bth_count * size; + uint8_t *separator = parent->btc_elems + (parent_idx - 1) * + size; + bmov(separator, out, size); + keep_hdr->bth_count++; + + /* Move our elements to the left neighbor. */ + bt_transfer_leaf(tree, rm, 0, rm_hdr->bth_count, keep, + keep_hdr->bth_count); + + /* Update the bookkeeping. */ + keep_hdr->bth_count += rm_hdr->bth_count; + ASSERT3U(keep_hdr->bth_count, ==, min_count * 2 + 1); + + /* Remove the value from the node */ + keep_hdr->bth_count--; + bt_shift_leaf_left(tree, keep, new_idx + 1, keep_hdr->bth_count - + new_idx); + zfs_btree_poison_node_at(tree, keep_hdr, keep_hdr->bth_count); + + rm_hdr->bth_count = 0; + zfs_btree_node_destroy(tree, rm_hdr); + /* Remove the emptied node from the parent. */ + zfs_btree_remove_from_node(tree, parent, rm_hdr); + zfs_btree_verify(tree); +} + +/* Remove the given value from the tree. */ +void +zfs_btree_remove(zfs_btree_t *tree, const void *value) +{ + zfs_btree_index_t where = {0}; + VERIFY3P(zfs_btree_find(tree, value, &where), !=, NULL); + zfs_btree_remove_from(tree, &where); +} + +/* Return the number of elements in the tree. */ +ulong_t +zfs_btree_numnodes(zfs_btree_t *tree) +{ + return (tree->bt_num_elems); +} + +/* + * This function is used to visit all the elements in the tree before + * destroying the tree. This allows the calling code to perform any cleanup it + * needs to do. This is more efficient than just removing the first element + * over and over, because it removes all rebalancing. Once the destroy_nodes() + * function has been called, no other btree operations are valid until it + * returns NULL, which point the only valid operation is zfs_btree_destroy(). + * + * example: + * + * zfs_btree_index_t *cookie = NULL; + * my_data_t *node; + * + * while ((node = zfs_btree_destroy_nodes(tree, &cookie)) != NULL) + * free(node->ptr); + * zfs_btree_destroy(tree); + * + */ +void * +zfs_btree_destroy_nodes(zfs_btree_t *tree, zfs_btree_index_t **cookie) +{ + if (*cookie == NULL) { + if (tree->bt_height == -1) + return (NULL); + *cookie = kmem_alloc(sizeof (**cookie), KM_SLEEP); + return (zfs_btree_first(tree, *cookie)); + } + + void *rval = zfs_btree_next_helper(tree, *cookie, *cookie, + zfs_btree_node_destroy); + if (rval == NULL) { + tree->bt_root = NULL; + tree->bt_height = -1; + tree->bt_num_elems = 0; + kmem_free(*cookie, sizeof (**cookie)); + tree->bt_bulk = NULL; + } + return (rval); +} + +static void +zfs_btree_clear_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr) +{ + if (hdr->bth_core) { + zfs_btree_core_t *btc = (zfs_btree_core_t *)hdr; + for (int i = 0; i <= hdr->bth_count; i++) { + zfs_btree_clear_helper(tree, btc->btc_children[i]); + } + } + + zfs_btree_node_destroy(tree, hdr); +} + +void +zfs_btree_clear(zfs_btree_t *tree) +{ + if (tree->bt_root == NULL) { + ASSERT0(tree->bt_num_elems); + return; + } + + zfs_btree_clear_helper(tree, tree->bt_root); + tree->bt_num_elems = 0; + tree->bt_root = NULL; + tree->bt_num_nodes = 0; + tree->bt_height = -1; + tree->bt_bulk = NULL; +} + +void +zfs_btree_destroy(zfs_btree_t *tree) +{ + ASSERT0(tree->bt_num_elems); + ASSERT3P(tree->bt_root, ==, NULL); +} + +/* Verify that every child of this node has the correct parent pointer. */ +static void +zfs_btree_verify_pointers_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr) +{ + if (!hdr->bth_core) + return; + + zfs_btree_core_t *node = (zfs_btree_core_t *)hdr; + for (int i = 0; i <= hdr->bth_count; i++) { + VERIFY3P(node->btc_children[i]->bth_parent, ==, hdr); + zfs_btree_verify_pointers_helper(tree, node->btc_children[i]); + } +} + +/* Verify that every node has the correct parent pointer. */ +static void +zfs_btree_verify_pointers(zfs_btree_t *tree) +{ + if (tree->bt_height == -1) { + VERIFY3P(tree->bt_root, ==, NULL); + return; + } + VERIFY3P(tree->bt_root->bth_parent, ==, NULL); + zfs_btree_verify_pointers_helper(tree, tree->bt_root); +} + +/* + * Verify that all the current node and its children satisfy the count + * invariants, and return the total count in the subtree rooted in this node. + */ +static uint64_t +zfs_btree_verify_counts_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr) +{ + if (!hdr->bth_core) { + if (tree->bt_root != hdr && hdr != &tree->bt_bulk->btl_hdr) { + uint64_t capacity = P2ALIGN((BTREE_LEAF_SIZE - + sizeof (zfs_btree_hdr_t)) / tree->bt_elem_size, 2); + VERIFY3U(hdr->bth_count, >=, (capacity / 2) - 1); + } + + return (hdr->bth_count); + } else { + + zfs_btree_core_t *node = (zfs_btree_core_t *)hdr; + uint64_t ret = hdr->bth_count; + if (tree->bt_root != hdr && tree->bt_bulk == NULL) + VERIFY3P(hdr->bth_count, >=, BTREE_CORE_ELEMS / 2 - 1); + for (int i = 0; i <= hdr->bth_count; i++) { + ret += zfs_btree_verify_counts_helper(tree, + node->btc_children[i]); + } + + return (ret); + } +} + +/* + * Verify that all nodes satisfy the invariants and that the total number of + * elements is correct. + */ +static void +zfs_btree_verify_counts(zfs_btree_t *tree) +{ + EQUIV(tree->bt_num_elems == 0, tree->bt_height == -1); + if (tree->bt_height == -1) { + return; + } + VERIFY3P(zfs_btree_verify_counts_helper(tree, tree->bt_root), ==, + tree->bt_num_elems); +} + +/* + * Check that the subtree rooted at this node has a uniform height. Returns + * the number of nodes under this node, to help verify bt_num_nodes. + */ +static uint64_t +zfs_btree_verify_height_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr, + int64_t height) +{ + if (!hdr->bth_core) { + VERIFY0(height); + return (1); + } + + VERIFY(hdr->bth_core); + zfs_btree_core_t *node = (zfs_btree_core_t *)hdr; + uint64_t ret = 1; + for (int i = 0; i <= hdr->bth_count; i++) { + ret += zfs_btree_verify_height_helper(tree, + node->btc_children[i], height - 1); + } + return (ret); +} + +/* + * Check that the tree rooted at this node has a uniform height, and that the + * bt_height in the tree is correct. + */ +static void +zfs_btree_verify_height(zfs_btree_t *tree) +{ + EQUIV(tree->bt_height == -1, tree->bt_root == NULL); + if (tree->bt_height == -1) { + return; + } + + VERIFY3U(zfs_btree_verify_height_helper(tree, tree->bt_root, + tree->bt_height), ==, tree->bt_num_nodes); +} + +/* + * Check that the elements in this node are sorted, and that if this is a core + * node, the separators are properly between the subtrees they separaate and + * that the children also satisfy this requirement. + */ +static void +zfs_btree_verify_order_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr) +{ + size_t size = tree->bt_elem_size; + if (!hdr->bth_core) { + zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr; + for (int i = 1; i < hdr->bth_count; i++) { + VERIFY3S(tree->bt_compar(leaf->btl_elems + (i - 1) * + size, leaf->btl_elems + i * size), ==, -1); + } + return; + } + + zfs_btree_core_t *node = (zfs_btree_core_t *)hdr; + for (int i = 1; i < hdr->bth_count; i++) { + VERIFY3S(tree->bt_compar(node->btc_elems + (i - 1) * size, + node->btc_elems + i * size), ==, -1); + } + for (int i = 0; i < hdr->bth_count; i++) { + uint8_t *left_child_last = NULL; + zfs_btree_hdr_t *left_child_hdr = node->btc_children[i]; + if (left_child_hdr->bth_core) { + zfs_btree_core_t *left_child = + (zfs_btree_core_t *)left_child_hdr; + left_child_last = left_child->btc_elems + + (left_child_hdr->bth_count - 1) * size; + } else { + zfs_btree_leaf_t *left_child = + (zfs_btree_leaf_t *)left_child_hdr; + left_child_last = left_child->btl_elems + + (left_child_hdr->bth_count - 1) * size; + } + if (tree->bt_compar(node->btc_elems + i * size, + left_child_last) != 1) { + panic("btree: compar returned %d (expected 1) at " + "%px %d: compar(%px, %px)", tree->bt_compar( + node->btc_elems + i * size, left_child_last), + (void *)node, i, (void *)(node->btc_elems + i * + size), (void *)left_child_last); + } + + uint8_t *right_child_first = NULL; + zfs_btree_hdr_t *right_child_hdr = node->btc_children[i + 1]; + if (right_child_hdr->bth_core) { + zfs_btree_core_t *right_child = + (zfs_btree_core_t *)right_child_hdr; + right_child_first = right_child->btc_elems; + } else { + zfs_btree_leaf_t *right_child = + (zfs_btree_leaf_t *)right_child_hdr; + right_child_first = right_child->btl_elems; + } + if (tree->bt_compar(node->btc_elems + i * size, + right_child_first) != -1) { + panic("btree: compar returned %d (expected -1) at " + "%px %d: compar(%px, %px)", tree->bt_compar( + node->btc_elems + i * size, right_child_first), + (void *)node, i, (void *)(node->btc_elems + i * + size), (void *)right_child_first); + } + } + for (int i = 0; i <= hdr->bth_count; i++) { + zfs_btree_verify_order_helper(tree, node->btc_children[i]); + } +} + +/* Check that all elements in the tree are in sorted order. */ +static void +zfs_btree_verify_order(zfs_btree_t *tree) +{ + EQUIV(tree->bt_height == -1, tree->bt_root == NULL); + if (tree->bt_height == -1) { + return; + } + + zfs_btree_verify_order_helper(tree, tree->bt_root); +} + +#ifdef ZFS_DEBUG +/* Check that all unused memory is poisoned correctly. */ +static void +zfs_btree_verify_poison_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr) +{ + size_t size = tree->bt_elem_size; + if (!hdr->bth_core) { + zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr; + uint8_t val = 0x0f; + for (int i = hdr->bth_count * size; i < BTREE_LEAF_SIZE - + sizeof (zfs_btree_hdr_t); i++) { + VERIFY3U(leaf->btl_elems[i], ==, val); + } + } else { + zfs_btree_core_t *node = (zfs_btree_core_t *)hdr; + uint8_t val = 0x0f; + for (int i = hdr->bth_count * size; i < BTREE_CORE_ELEMS * size; + i++) { + VERIFY3U(node->btc_elems[i], ==, val); + } + + for (int i = hdr->bth_count + 1; i <= BTREE_CORE_ELEMS; i++) { + VERIFY3P(node->btc_children[i], ==, + (zfs_btree_hdr_t *)BTREE_POISON); + } + + for (int i = 0; i <= hdr->bth_count; i++) { + zfs_btree_verify_poison_helper(tree, + node->btc_children[i]); + } + } +} +#endif + +/* Check that unused memory in the tree is still poisoned. */ +static void +zfs_btree_verify_poison(zfs_btree_t *tree) +{ +#ifdef ZFS_DEBUG + if (tree->bt_height == -1) + return; + zfs_btree_verify_poison_helper(tree, tree->bt_root); +#endif +} + +void +zfs_btree_verify(zfs_btree_t *tree) +{ + if (zfs_btree_verify_intensity == 0) + return; + zfs_btree_verify_height(tree); + if (zfs_btree_verify_intensity == 1) + return; + zfs_btree_verify_pointers(tree); + if (zfs_btree_verify_intensity == 2) + return; + zfs_btree_verify_counts(tree); + if (zfs_btree_verify_intensity == 3) + return; + zfs_btree_verify_order(tree); + + if (zfs_btree_verify_intensity == 4) + return; + zfs_btree_verify_poison(tree); +} |