aboutsummaryrefslogtreecommitdiffstats
path: root/module/spl/spl-kmem.c
diff options
context:
space:
mode:
Diffstat (limited to 'module/spl/spl-kmem.c')
-rw-r--r--module/spl/spl-kmem.c1792
1 files changed, 2 insertions, 1790 deletions
diff --git a/module/spl/spl-kmem.c b/module/spl/spl-kmem.c
index 502f5365b..075bf2580 100644
--- a/module/spl/spl-kmem.c
+++ b/module/spl/spl-kmem.c
@@ -24,97 +24,9 @@
* Solaris Porting Layer (SPL) Kmem Implementation.
\*****************************************************************************/
+#include <sys/debug.h>
#include <sys/kmem.h>
-#include <linux/mm_compat.h>
-#include <linux/wait_compat.h>
-
-/*
- * Within the scope of spl-kmem.c file the kmem_cache_* definitions
- * are removed to allow access to the real Linux slab allocator.
- */
-#undef kmem_cache_destroy
-#undef kmem_cache_create
-#undef kmem_cache_alloc
-#undef kmem_cache_free
-
-
-/*
- * Cache expiration was implemented because it was part of the default Solaris
- * kmem_cache behavior. The idea is that per-cpu objects which haven't been
- * accessed in several seconds should be returned to the cache. On the other
- * hand Linux slabs never move objects back to the slabs unless there is
- * memory pressure on the system. By default the Linux method is enabled
- * because it has been shown to improve responsiveness on low memory systems.
- * This policy may be changed by setting KMC_EXPIRE_AGE or KMC_EXPIRE_MEM.
- */
-unsigned int spl_kmem_cache_expire = KMC_EXPIRE_MEM;
-EXPORT_SYMBOL(spl_kmem_cache_expire);
-module_param(spl_kmem_cache_expire, uint, 0644);
-MODULE_PARM_DESC(spl_kmem_cache_expire, "By age (0x1) or low memory (0x2)");
-
-/*
- * The default behavior is to report the number of objects remaining in the
- * cache. This allows the Linux VM to repeatedly reclaim objects from the
- * cache when memory is low satisfy other memory allocations. Alternately,
- * setting this value to KMC_RECLAIM_ONCE limits how aggressively the cache
- * is reclaimed. This may increase the likelihood of out of memory events.
- */
-unsigned int spl_kmem_cache_reclaim = 0 /* KMC_RECLAIM_ONCE */;
-module_param(spl_kmem_cache_reclaim, uint, 0644);
-MODULE_PARM_DESC(spl_kmem_cache_reclaim, "Single reclaim pass (0x1)");
-
-unsigned int spl_kmem_cache_obj_per_slab = SPL_KMEM_CACHE_OBJ_PER_SLAB;
-module_param(spl_kmem_cache_obj_per_slab, uint, 0644);
-MODULE_PARM_DESC(spl_kmem_cache_obj_per_slab, "Number of objects per slab");
-
-unsigned int spl_kmem_cache_obj_per_slab_min = SPL_KMEM_CACHE_OBJ_PER_SLAB_MIN;
-module_param(spl_kmem_cache_obj_per_slab_min, uint, 0644);
-MODULE_PARM_DESC(spl_kmem_cache_obj_per_slab_min,
- "Minimal number of objects per slab");
-
-unsigned int spl_kmem_cache_max_size = 32;
-module_param(spl_kmem_cache_max_size, uint, 0644);
-MODULE_PARM_DESC(spl_kmem_cache_max_size, "Maximum size of slab in MB");
-
-/*
- * For small objects the Linux slab allocator should be used to make the most
- * efficient use of the memory. However, large objects are not supported by
- * the Linux slab and therefore the SPL implementation is preferred. A cutoff
- * of 16K was determined to be optimal for architectures using 4K pages.
- */
-#if PAGE_SIZE == 4096
-unsigned int spl_kmem_cache_slab_limit = 16384;
-#else
-unsigned int spl_kmem_cache_slab_limit = 0;
-#endif
-module_param(spl_kmem_cache_slab_limit, uint, 0644);
-MODULE_PARM_DESC(spl_kmem_cache_slab_limit,
- "Objects less than N bytes use the Linux slab");
-
-unsigned int spl_kmem_cache_kmem_limit = (PAGE_SIZE / 4);
-module_param(spl_kmem_cache_kmem_limit, uint, 0644);
-MODULE_PARM_DESC(spl_kmem_cache_kmem_limit,
- "Objects less than N bytes use the kmalloc");
-
-vmem_t *heap_arena = NULL;
-EXPORT_SYMBOL(heap_arena);
-
-vmem_t *zio_alloc_arena = NULL;
-EXPORT_SYMBOL(zio_alloc_arena);
-
-vmem_t *zio_arena = NULL;
-EXPORT_SYMBOL(zio_arena);
-
-size_t
-vmem_size(vmem_t *vmp, int typemask)
-{
- ASSERT3P(vmp, ==, NULL);
- ASSERT3S(typemask & VMEM_ALLOC, ==, VMEM_ALLOC);
- ASSERT3S(typemask & VMEM_FREE, ==, VMEM_FREE);
-
- return (VMALLOC_TOTAL);
-}
-EXPORT_SYMBOL(vmem_size);
+#include <sys/vmem.h>
int
kmem_debugging(void)
@@ -195,19 +107,13 @@ EXPORT_SYMBOL(strfree);
# ifdef HAVE_ATOMIC64_T
atomic64_t kmem_alloc_used = ATOMIC64_INIT(0);
unsigned long long kmem_alloc_max = 0;
-atomic64_t vmem_alloc_used = ATOMIC64_INIT(0);
-unsigned long long vmem_alloc_max = 0;
# else /* HAVE_ATOMIC64_T */
atomic_t kmem_alloc_used = ATOMIC_INIT(0);
unsigned long long kmem_alloc_max = 0;
-atomic_t vmem_alloc_used = ATOMIC_INIT(0);
-unsigned long long vmem_alloc_max = 0;
# endif /* HAVE_ATOMIC64_T */
EXPORT_SYMBOL(kmem_alloc_used);
EXPORT_SYMBOL(kmem_alloc_max);
-EXPORT_SYMBOL(vmem_alloc_used);
-EXPORT_SYMBOL(vmem_alloc_max);
/* When DEBUG_KMEM_TRACKING is enabled not only will total bytes be tracked
* but also the location of every alloc and free. When the SPL module is
@@ -225,9 +131,6 @@ EXPORT_SYMBOL(vmem_alloc_max);
# define KMEM_HASH_BITS 10
# define KMEM_TABLE_SIZE (1 << KMEM_HASH_BITS)
-# define VMEM_HASH_BITS 10
-# define VMEM_TABLE_SIZE (1 << VMEM_HASH_BITS)
-
typedef struct kmem_debug {
struct hlist_node kd_hlist; /* Hash node linkage */
struct list_head kd_list; /* List of all allocations */
@@ -241,18 +144,10 @@ spinlock_t kmem_lock;
struct hlist_head kmem_table[KMEM_TABLE_SIZE];
struct list_head kmem_list;
-spinlock_t vmem_lock;
-struct hlist_head vmem_table[VMEM_TABLE_SIZE];
-struct list_head vmem_list;
-
EXPORT_SYMBOL(kmem_lock);
EXPORT_SYMBOL(kmem_table);
EXPORT_SYMBOL(kmem_list);
-EXPORT_SYMBOL(vmem_lock);
-EXPORT_SYMBOL(vmem_table);
-EXPORT_SYMBOL(vmem_list);
-
static kmem_debug_t *
kmem_del_init(spinlock_t *lock, struct hlist_head *table, int bits, const void *addr)
{
@@ -393,107 +288,6 @@ kmem_free_track(const void *ptr, size_t size)
}
EXPORT_SYMBOL(kmem_free_track);
-void *
-vmem_alloc_track(size_t size, int flags, const char *func, int line)
-{
- void *ptr = NULL;
- kmem_debug_t *dptr;
- unsigned long irq_flags;
-
- ASSERT(flags & KM_SLEEP);
-
- /* Function may be called with KM_NOSLEEP so failure is possible */
- dptr = (kmem_debug_t *) kmalloc_nofail(sizeof(kmem_debug_t),
- flags & ~__GFP_ZERO);
- if (unlikely(dptr == NULL)) {
- printk(KERN_WARNING "debug vmem_alloc(%ld, 0x%x) "
- "at %s:%d failed (%lld/%llu)\n",
- sizeof(kmem_debug_t), flags, func, line,
- vmem_alloc_used_read(), vmem_alloc_max);
- } else {
- /*
- * We use __strdup() below because the string pointed to by
- * __FUNCTION__ might not be available by the time we want
- * to print it, since the module might have been unloaded.
- * This can never fail because we have already asserted
- * that flags is KM_SLEEP.
- */
- dptr->kd_func = __strdup(func, flags & ~__GFP_ZERO);
- if (unlikely(dptr->kd_func == NULL)) {
- kfree(dptr);
- printk(KERN_WARNING "debug __strdup() at %s:%d "
- "failed (%lld/%llu)\n", func, line,
- vmem_alloc_used_read(), vmem_alloc_max);
- goto out;
- }
-
- /* Use the correct allocator */
- if (flags & __GFP_ZERO) {
- ptr = vzalloc_nofail(size, flags & ~__GFP_ZERO);
- } else {
- ptr = vmalloc_nofail(size, flags);
- }
-
- if (unlikely(ptr == NULL)) {
- kfree(dptr->kd_func);
- kfree(dptr);
- printk(KERN_WARNING "vmem_alloc (%llu, 0x%x) "
- "at %s:%d failed (%lld/%llu)\n",
- (unsigned long long) size, flags, func, line,
- vmem_alloc_used_read(), vmem_alloc_max);
- goto out;
- }
-
- vmem_alloc_used_add(size);
- if (unlikely(vmem_alloc_used_read() > vmem_alloc_max))
- vmem_alloc_max = vmem_alloc_used_read();
-
- INIT_HLIST_NODE(&dptr->kd_hlist);
- INIT_LIST_HEAD(&dptr->kd_list);
-
- dptr->kd_addr = ptr;
- dptr->kd_size = size;
- dptr->kd_line = line;
-
- spin_lock_irqsave(&vmem_lock, irq_flags);
- hlist_add_head(&dptr->kd_hlist,
- &vmem_table[hash_ptr(ptr, VMEM_HASH_BITS)]);
- list_add_tail(&dptr->kd_list, &vmem_list);
- spin_unlock_irqrestore(&vmem_lock, irq_flags);
- }
-out:
- return (ptr);
-}
-EXPORT_SYMBOL(vmem_alloc_track);
-
-void
-vmem_free_track(const void *ptr, size_t size)
-{
- kmem_debug_t *dptr;
-
- ASSERTF(ptr || size > 0, "ptr: %p, size: %llu", ptr,
- (unsigned long long) size);
-
- /* Must exist in hash due to vmem_alloc() */
- dptr = kmem_del_init(&vmem_lock, vmem_table, VMEM_HASH_BITS, ptr);
- ASSERT(dptr);
-
- /* Size must match */
- ASSERTF(dptr->kd_size == size, "kd_size (%llu) != size (%llu), "
- "kd_func = %s, kd_line = %d\n", (unsigned long long) dptr->kd_size,
- (unsigned long long) size, dptr->kd_func, dptr->kd_line);
-
- vmem_alloc_used_sub(size);
- kfree(dptr->kd_func);
-
- memset((void *)dptr, 0x5a, sizeof(kmem_debug_t));
- kfree(dptr);
-
- memset((void *)ptr, 0x5a, size);
- vfree(ptr);
-}
-EXPORT_SYMBOL(vmem_free_track);
-
# else /* DEBUG_KMEM_TRACKING */
void *
@@ -548,1573 +342,9 @@ kmem_free_debug(const void *ptr, size_t size)
}
EXPORT_SYMBOL(kmem_free_debug);
-void *
-vmem_alloc_debug(size_t size, int flags, const char *func, int line)
-{
- void *ptr;
-
- ASSERT(flags & KM_SLEEP);
-
- /* Use the correct allocator */
- if (flags & __GFP_ZERO) {
- ptr = vzalloc_nofail(size, flags & (~__GFP_ZERO));
- } else {
- ptr = vmalloc_nofail(size, flags);
- }
-
- if (unlikely(ptr == NULL)) {
- printk(KERN_WARNING
- "vmem_alloc(%llu, 0x%x) at %s:%d failed (%lld/%llu)\n",
- (unsigned long long)size, flags, func, line,
- (unsigned long long)vmem_alloc_used_read(), vmem_alloc_max);
- } else {
- vmem_alloc_used_add(size);
- if (unlikely(vmem_alloc_used_read() > vmem_alloc_max))
- vmem_alloc_max = vmem_alloc_used_read();
- }
-
- return (ptr);
-}
-EXPORT_SYMBOL(vmem_alloc_debug);
-
-void
-vmem_free_debug(const void *ptr, size_t size)
-{
- ASSERT(ptr || size > 0);
- vmem_alloc_used_sub(size);
- vfree(ptr);
-}
-EXPORT_SYMBOL(vmem_free_debug);
-
# endif /* DEBUG_KMEM_TRACKING */
#endif /* DEBUG_KMEM */
-/*
- * Slab allocation interfaces
- *
- * While the Linux slab implementation was inspired by the Solaris
- * implementation I cannot use it to emulate the Solaris APIs. I
- * require two features which are not provided by the Linux slab.
- *
- * 1) Constructors AND destructors. Recent versions of the Linux
- * kernel have removed support for destructors. This is a deal
- * breaker for the SPL which contains particularly expensive
- * initializers for mutex's, condition variables, etc. We also
- * require a minimal level of cleanup for these data types unlike
- * many Linux data type which do need to be explicitly destroyed.
- *
- * 2) Virtual address space backed slab. Callers of the Solaris slab
- * expect it to work well for both small are very large allocations.
- * Because of memory fragmentation the Linux slab which is backed
- * by kmalloc'ed memory performs very badly when confronted with
- * large numbers of large allocations. Basing the slab on the
- * virtual address space removes the need for contiguous pages
- * and greatly improve performance for large allocations.
- *
- * For these reasons, the SPL has its own slab implementation with
- * the needed features. It is not as highly optimized as either the
- * Solaris or Linux slabs, but it should get me most of what is
- * needed until it can be optimized or obsoleted by another approach.
- *
- * One serious concern I do have about this method is the relatively
- * small virtual address space on 32bit arches. This will seriously
- * constrain the size of the slab caches and their performance.
- *
- * XXX: Improve the partial slab list by carefully maintaining a
- * strict ordering of fullest to emptiest slabs based on
- * the slab reference count. This guarantees the when freeing
- * slabs back to the system we need only linearly traverse the
- * last N slabs in the list to discover all the freeable slabs.
- *
- * XXX: NUMA awareness for optionally allocating memory close to a
- * particular core. This can be advantageous if you know the slab
- * object will be short lived and primarily accessed from one core.
- *
- * XXX: Slab coloring may also yield performance improvements and would
- * be desirable to implement.
- */
-
-struct list_head spl_kmem_cache_list; /* List of caches */
-struct rw_semaphore spl_kmem_cache_sem; /* Cache list lock */
-taskq_t *spl_kmem_cache_taskq; /* Task queue for ageing / reclaim */
-
-static void spl_cache_shrink(spl_kmem_cache_t *skc, void *obj);
-
-SPL_SHRINKER_CALLBACK_FWD_DECLARE(spl_kmem_cache_generic_shrinker);
-SPL_SHRINKER_DECLARE(spl_kmem_cache_shrinker,
- spl_kmem_cache_generic_shrinker, KMC_DEFAULT_SEEKS);
-
-static void *
-kv_alloc(spl_kmem_cache_t *skc, int size, int flags)
-{
- void *ptr;
-
- ASSERT(ISP2(size));
-
- if (skc->skc_flags & KMC_KMEM)
- ptr = (void *)__get_free_pages(flags | __GFP_COMP,
- get_order(size));
- else
- ptr = __vmalloc(size, flags | __GFP_HIGHMEM, PAGE_KERNEL);
-
- /* Resulting allocated memory will be page aligned */
- ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
-
- return ptr;
-}
-
-static void
-kv_free(spl_kmem_cache_t *skc, void *ptr, int size)
-{
- ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
- ASSERT(ISP2(size));
-
- /*
- * The Linux direct reclaim path uses this out of band value to
- * determine if forward progress is being made. Normally this is
- * incremented by kmem_freepages() which is part of the various
- * Linux slab implementations. However, since we are using none
- * of that infrastructure we are responsible for incrementing it.
- */
- if (current->reclaim_state)
- current->reclaim_state->reclaimed_slab += size >> PAGE_SHIFT;
-
- if (skc->skc_flags & KMC_KMEM)
- free_pages((unsigned long)ptr, get_order(size));
- else
- vfree(ptr);
-}
-
-/*
- * Required space for each aligned sks.
- */
-static inline uint32_t
-spl_sks_size(spl_kmem_cache_t *skc)
-{
- return P2ROUNDUP_TYPED(sizeof(spl_kmem_slab_t),
- skc->skc_obj_align, uint32_t);
-}
-
-/*
- * Required space for each aligned object.
- */
-static inline uint32_t
-spl_obj_size(spl_kmem_cache_t *skc)
-{
- uint32_t align = skc->skc_obj_align;
-
- return P2ROUNDUP_TYPED(skc->skc_obj_size, align, uint32_t) +
- P2ROUNDUP_TYPED(sizeof(spl_kmem_obj_t), align, uint32_t);
-}
-
-/*
- * Lookup the spl_kmem_object_t for an object given that object.
- */
-static inline spl_kmem_obj_t *
-spl_sko_from_obj(spl_kmem_cache_t *skc, void *obj)
-{
- return obj + P2ROUNDUP_TYPED(skc->skc_obj_size,
- skc->skc_obj_align, uint32_t);
-}
-
-/*
- * Required space for each offslab object taking in to account alignment
- * restrictions and the power-of-two requirement of kv_alloc().
- */
-static inline uint32_t
-spl_offslab_size(spl_kmem_cache_t *skc)
-{
- return 1UL << (fls64(spl_obj_size(skc)) + 1);
-}
-
-/*
- * It's important that we pack the spl_kmem_obj_t structure and the
- * actual objects in to one large address space to minimize the number
- * of calls to the allocator. It is far better to do a few large
- * allocations and then subdivide it ourselves. Now which allocator
- * we use requires balancing a few trade offs.
- *
- * For small objects we use kmem_alloc() because as long as you are
- * only requesting a small number of pages (ideally just one) its cheap.
- * However, when you start requesting multiple pages with kmem_alloc()
- * it gets increasingly expensive since it requires contiguous pages.
- * For this reason we shift to vmem_alloc() for slabs of large objects
- * which removes the need for contiguous pages. We do not use
- * vmem_alloc() in all cases because there is significant locking
- * overhead in __get_vm_area_node(). This function takes a single
- * global lock when acquiring an available virtual address range which
- * serializes all vmem_alloc()'s for all slab caches. Using slightly
- * different allocation functions for small and large objects should
- * give us the best of both worlds.
- *
- * KMC_ONSLAB KMC_OFFSLAB
- *
- * +------------------------+ +-----------------+
- * | spl_kmem_slab_t --+-+ | | spl_kmem_slab_t |---+-+
- * | skc_obj_size <-+ | | +-----------------+ | |
- * | spl_kmem_obj_t | | | |
- * | skc_obj_size <---+ | +-----------------+ | |
- * | spl_kmem_obj_t | | | skc_obj_size | <-+ |
- * | ... v | | spl_kmem_obj_t | |
- * +------------------------+ +-----------------+ v
- */
-static spl_kmem_slab_t *
-spl_slab_alloc(spl_kmem_cache_t *skc, int flags)
-{
- spl_kmem_slab_t *sks;
- spl_kmem_obj_t *sko, *n;
- void *base, *obj;
- uint32_t obj_size, offslab_size = 0;
- int i, rc = 0;
-
- base = kv_alloc(skc, skc->skc_slab_size, flags);
- if (base == NULL)
- return (NULL);
-
- sks = (spl_kmem_slab_t *)base;
- sks->sks_magic = SKS_MAGIC;
- sks->sks_objs = skc->skc_slab_objs;
- sks->sks_age = jiffies;
- sks->sks_cache = skc;
- INIT_LIST_HEAD(&sks->sks_list);
- INIT_LIST_HEAD(&sks->sks_free_list);
- sks->sks_ref = 0;
- obj_size = spl_obj_size(skc);
-
- if (skc->skc_flags & KMC_OFFSLAB)
- offslab_size = spl_offslab_size(skc);
-
- for (i = 0; i < sks->sks_objs; i++) {
- if (skc->skc_flags & KMC_OFFSLAB) {
- obj = kv_alloc(skc, offslab_size, flags);
- if (!obj) {
- rc = -ENOMEM;
- goto out;
- }
- } else {
- obj = base + spl_sks_size(skc) + (i * obj_size);
- }
-
- ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
- sko = spl_sko_from_obj(skc, obj);
- sko->sko_addr = obj;
- sko->sko_magic = SKO_MAGIC;
- sko->sko_slab = sks;
- INIT_LIST_HEAD(&sko->sko_list);
- list_add_tail(&sko->sko_list, &sks->sks_free_list);
- }
-
-out:
- if (rc) {
- if (skc->skc_flags & KMC_OFFSLAB)
- list_for_each_entry_safe(sko, n, &sks->sks_free_list,
- sko_list)
- kv_free(skc, sko->sko_addr, offslab_size);
-
- kv_free(skc, base, skc->skc_slab_size);
- sks = NULL;
- }
-
- return (sks);
-}
-
-/*
- * Remove a slab from complete or partial list, it must be called with
- * the 'skc->skc_lock' held but the actual free must be performed
- * outside the lock to prevent deadlocking on vmem addresses.
- */
-static void
-spl_slab_free(spl_kmem_slab_t *sks,
- struct list_head *sks_list, struct list_head *sko_list)
-{
- spl_kmem_cache_t *skc;
-
- ASSERT(sks->sks_magic == SKS_MAGIC);
- ASSERT(sks->sks_ref == 0);
-
- skc = sks->sks_cache;
- ASSERT(skc->skc_magic == SKC_MAGIC);
- ASSERT(spin_is_locked(&skc->skc_lock));
-
- /*
- * Update slab/objects counters in the cache, then remove the
- * slab from the skc->skc_partial_list. Finally add the slab
- * and all its objects in to the private work lists where the
- * destructors will be called and the memory freed to the system.
- */
- skc->skc_obj_total -= sks->sks_objs;
- skc->skc_slab_total--;
- list_del(&sks->sks_list);
- list_add(&sks->sks_list, sks_list);
- list_splice_init(&sks->sks_free_list, sko_list);
-}
-
-/*
- * Traverses all the partial slabs attached to a cache and free those
- * which which are currently empty, and have not been touched for
- * skc_delay seconds to avoid thrashing. The count argument is
- * passed to optionally cap the number of slabs reclaimed, a count
- * of zero means try and reclaim everything. When flag is set we
- * always free an available slab regardless of age.
- */
-static void
-spl_slab_reclaim(spl_kmem_cache_t *skc, int count, int flag)
-{
- spl_kmem_slab_t *sks, *m;
- spl_kmem_obj_t *sko, *n;
- LIST_HEAD(sks_list);
- LIST_HEAD(sko_list);
- uint32_t size = 0;
- int i = 0;
-
- /*
- * Move empty slabs and objects which have not been touched in
- * skc_delay seconds on to private lists to be freed outside
- * the spin lock. This delay time is important to avoid thrashing
- * however when flag is set the delay will not be used.
- */
- spin_lock(&skc->skc_lock);
- list_for_each_entry_safe_reverse(sks,m,&skc->skc_partial_list,sks_list){
- /*
- * All empty slabs are at the end of skc->skc_partial_list,
- * therefore once a non-empty slab is found we can stop
- * scanning. Additionally, stop when reaching the target
- * reclaim 'count' if a non-zero threshold is given.
- */
- if ((sks->sks_ref > 0) || (count && i >= count))
- break;
-
- if (time_after(jiffies,sks->sks_age+skc->skc_delay*HZ)||flag) {
- spl_slab_free(sks, &sks_list, &sko_list);
- i++;
- }
- }
- spin_unlock(&skc->skc_lock);
-
- /*
- * The following two loops ensure all the object destructors are
- * run, any offslab objects are freed, and the slabs themselves
- * are freed. This is all done outside the skc->skc_lock since
- * this allows the destructor to sleep, and allows us to perform
- * a conditional reschedule when a freeing a large number of
- * objects and slabs back to the system.
- */
- if (skc->skc_flags & KMC_OFFSLAB)
- size = spl_offslab_size(skc);
-
- list_for_each_entry_safe(sko, n, &sko_list, sko_list) {
- ASSERT(sko->sko_magic == SKO_MAGIC);
-
- if (skc->skc_flags & KMC_OFFSLAB)
- kv_free(skc, sko->sko_addr, size);
- }
-
- list_for_each_entry_safe(sks, m, &sks_list, sks_list) {
- ASSERT(sks->sks_magic == SKS_MAGIC);
- kv_free(skc, sks, skc->skc_slab_size);
- }
-}
-
-static spl_kmem_emergency_t *
-spl_emergency_search(struct rb_root *root, void *obj)
-{
- struct rb_node *node = root->rb_node;
- spl_kmem_emergency_t *ske;
- unsigned long address = (unsigned long)obj;
-
- while (node) {
- ske = container_of(node, spl_kmem_emergency_t, ske_node);
-
- if (address < (unsigned long)ske->ske_obj)
- node = node->rb_left;
- else if (address > (unsigned long)ske->ske_obj)
- node = node->rb_right;
- else
- return ske;
- }
-
- return NULL;
-}
-
-static int
-spl_emergency_insert(struct rb_root *root, spl_kmem_emergency_t *ske)
-{
- struct rb_node **new = &(root->rb_node), *parent = NULL;
- spl_kmem_emergency_t *ske_tmp;
- unsigned long address = (unsigned long)ske->ske_obj;
-
- while (*new) {
- ske_tmp = container_of(*new, spl_kmem_emergency_t, ske_node);
-
- parent = *new;
- if (address < (unsigned long)ske_tmp->ske_obj)
- new = &((*new)->rb_left);
- else if (address > (unsigned long)ske_tmp->ske_obj)
- new = &((*new)->rb_right);
- else
- return 0;
- }
-
- rb_link_node(&ske->ske_node, parent, new);
- rb_insert_color(&ske->ske_node, root);
-
- return 1;
-}
-
-/*
- * Allocate a single emergency object and track it in a red black tree.
- */
-static int
-spl_emergency_alloc(spl_kmem_cache_t *skc, int flags, void **obj)
-{
- spl_kmem_emergency_t *ske;
- int empty;
-
- /* Last chance use a partial slab if one now exists */
- spin_lock(&skc->skc_lock);
- empty = list_empty(&skc->skc_partial_list);
- spin_unlock(&skc->skc_lock);
- if (!empty)
- return (-EEXIST);
-
- ske = kmalloc(sizeof(*ske), flags);
- if (ske == NULL)
- return (-ENOMEM);
-
- ske->ske_obj = kmalloc(skc->skc_obj_size, flags);
- if (ske->ske_obj == NULL) {
- kfree(ske);
- return (-ENOMEM);
- }
-
- spin_lock(&skc->skc_lock);
- empty = spl_emergency_insert(&skc->skc_emergency_tree, ske);
- if (likely(empty)) {
- skc->skc_obj_total++;
- skc->skc_obj_emergency++;
- if (skc->skc_obj_emergency > skc->skc_obj_emergency_max)
- skc->skc_obj_emergency_max = skc->skc_obj_emergency;
- }
- spin_unlock(&skc->skc_lock);
-
- if (unlikely(!empty)) {
- kfree(ske->ske_obj);
- kfree(ske);
- return (-EINVAL);
- }
-
- *obj = ske->ske_obj;
-
- return (0);
-}
-
-/*
- * Locate the passed object in the red black tree and free it.
- */
-static int
-spl_emergency_free(spl_kmem_cache_t *skc, void *obj)
-{
- spl_kmem_emergency_t *ske;
-
- spin_lock(&skc->skc_lock);
- ske = spl_emergency_search(&skc->skc_emergency_tree, obj);
- if (likely(ske)) {
- rb_erase(&ske->ske_node, &skc->skc_emergency_tree);
- skc->skc_obj_emergency--;
- skc->skc_obj_total--;
- }
- spin_unlock(&skc->skc_lock);
-
- if (unlikely(ske == NULL))
- return (-ENOENT);
-
- kfree(ske->ske_obj);
- kfree(ske);
-
- return (0);
-}
-
-/*
- * Release objects from the per-cpu magazine back to their slab. The flush
- * argument contains the max number of entries to remove from the magazine.
- */
-static void
-__spl_cache_flush(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flush)
-{
- int i, count = MIN(flush, skm->skm_avail);
-
- ASSERT(skc->skc_magic == SKC_MAGIC);
- ASSERT(skm->skm_magic == SKM_MAGIC);
- ASSERT(spin_is_locked(&skc->skc_lock));
-
- for (i = 0; i < count; i++)
- spl_cache_shrink(skc, skm->skm_objs[i]);
-
- skm->skm_avail -= count;
- memmove(skm->skm_objs, &(skm->skm_objs[count]),
- sizeof(void *) * skm->skm_avail);
-}
-
-static void
-spl_cache_flush(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flush)
-{
- spin_lock(&skc->skc_lock);
- __spl_cache_flush(skc, skm, flush);
- spin_unlock(&skc->skc_lock);
-}
-
-static void
-spl_magazine_age(void *data)
-{
- spl_kmem_cache_t *skc = (spl_kmem_cache_t *)data;
- spl_kmem_magazine_t *skm = skc->skc_mag[smp_processor_id()];
-
- ASSERT(skm->skm_magic == SKM_MAGIC);
- ASSERT(skm->skm_cpu == smp_processor_id());
- ASSERT(irqs_disabled());
-
- /* There are no available objects or they are too young to age out */
- if ((skm->skm_avail == 0) ||
- time_before(jiffies, skm->skm_age + skc->skc_delay * HZ))
- return;
-
- /*
- * Because we're executing in interrupt context we may have
- * interrupted the holder of this lock. To avoid a potential
- * deadlock return if the lock is contended.
- */
- if (!spin_trylock(&skc->skc_lock))
- return;
-
- __spl_cache_flush(skc, skm, skm->skm_refill);
- spin_unlock(&skc->skc_lock);
-}
-
-/*
- * Called regularly to keep a downward pressure on the cache.
- *
- * Objects older than skc->skc_delay seconds in the per-cpu magazines will
- * be returned to the caches. This is done to prevent idle magazines from
- * holding memory which could be better used elsewhere. The delay is
- * present to prevent thrashing the magazine.
- *
- * The newly released objects may result in empty partial slabs. Those
- * slabs should be released to the system. Otherwise moving the objects
- * out of the magazines is just wasted work.
- */
-static void
-spl_cache_age(void *data)
-{
- spl_kmem_cache_t *skc = (spl_kmem_cache_t *)data;
- taskqid_t id = 0;
-
- ASSERT(skc->skc_magic == SKC_MAGIC);
-
- /* Dynamically disabled at run time */
- if (!(spl_kmem_cache_expire & KMC_EXPIRE_AGE))
- return;
-
- atomic_inc(&skc->skc_ref);
-
- if (!(skc->skc_flags & KMC_NOMAGAZINE))
- on_each_cpu(spl_magazine_age, skc, 1);
-
- spl_slab_reclaim(skc, skc->skc_reap, 0);
-
- while (!test_bit(KMC_BIT_DESTROY, &skc->skc_flags) && !id) {
- id = taskq_dispatch_delay(
- spl_kmem_cache_taskq, spl_cache_age, skc, TQ_SLEEP,
- ddi_get_lbolt() + skc->skc_delay / 3 * HZ);
-
- /* Destroy issued after dispatch immediately cancel it */
- if (test_bit(KMC_BIT_DESTROY, &skc->skc_flags) && id)
- taskq_cancel_id(spl_kmem_cache_taskq, id);
- }
-
- spin_lock(&skc->skc_lock);
- skc->skc_taskqid = id;
- spin_unlock(&skc->skc_lock);
-
- atomic_dec(&skc->skc_ref);
-}
-
-/*
- * Size a slab based on the size of each aligned object plus spl_kmem_obj_t.
- * When on-slab we want to target spl_kmem_cache_obj_per_slab. However,
- * for very small objects we may end up with more than this so as not
- * to waste space in the minimal allocation of a single page. Also for
- * very large objects we may use as few as spl_kmem_cache_obj_per_slab_min,
- * lower than this and we will fail.
- */
-static int
-spl_slab_size(spl_kmem_cache_t *skc, uint32_t *objs, uint32_t *size)
-{
- uint32_t sks_size, obj_size, max_size;
-
- if (skc->skc_flags & KMC_OFFSLAB) {
- *objs = spl_kmem_cache_obj_per_slab;
- *size = P2ROUNDUP(sizeof(spl_kmem_slab_t), PAGE_SIZE);
- return (0);
- } else {
- sks_size = spl_sks_size(skc);
- obj_size = spl_obj_size(skc);
-
- if (skc->skc_flags & KMC_KMEM)
- max_size = ((uint32_t)1 << (MAX_ORDER-3)) * PAGE_SIZE;
- else
- max_size = (spl_kmem_cache_max_size * 1024 * 1024);
-
- /* Power of two sized slab */
- for (*size = PAGE_SIZE; *size <= max_size; *size *= 2) {
- *objs = (*size - sks_size) / obj_size;
- if (*objs >= spl_kmem_cache_obj_per_slab)
- return (0);
- }
-
- /*
- * Unable to satisfy target objects per slab, fall back to
- * allocating a maximally sized slab and assuming it can
- * contain the minimum objects count use it. If not fail.
- */
- *size = max_size;
- *objs = (*size - sks_size) / obj_size;
- if (*objs >= (spl_kmem_cache_obj_per_slab_min))
- return (0);
- }
-
- return (-ENOSPC);
-}
-
-/*
- * Make a guess at reasonable per-cpu magazine size based on the size of
- * each object and the cost of caching N of them in each magazine. Long
- * term this should really adapt based on an observed usage heuristic.
- */
-static int
-spl_magazine_size(spl_kmem_cache_t *skc)
-{
- uint32_t obj_size = spl_obj_size(skc);
- int size;
-
- /* Per-magazine sizes below assume a 4Kib page size */
- if (obj_size > (PAGE_SIZE * 256))
- size = 4; /* Minimum 4Mib per-magazine */
- else if (obj_size > (PAGE_SIZE * 32))
- size = 16; /* Minimum 2Mib per-magazine */
- else if (obj_size > (PAGE_SIZE))
- size = 64; /* Minimum 256Kib per-magazine */
- else if (obj_size > (PAGE_SIZE / 4))
- size = 128; /* Minimum 128Kib per-magazine */
- else
- size = 256;
-
- return (size);
-}
-
-/*
- * Allocate a per-cpu magazine to associate with a specific core.
- */
-static spl_kmem_magazine_t *
-spl_magazine_alloc(spl_kmem_cache_t *skc, int cpu)
-{
- spl_kmem_magazine_t *skm;
- int size = sizeof(spl_kmem_magazine_t) +
- sizeof(void *) * skc->skc_mag_size;
-
- skm = kmem_alloc_node(size, KM_SLEEP, cpu_to_node(cpu));
- if (skm) {
- skm->skm_magic = SKM_MAGIC;
- skm->skm_avail = 0;
- skm->skm_size = skc->skc_mag_size;
- skm->skm_refill = skc->skc_mag_refill;
- skm->skm_cache = skc;
- skm->skm_age = jiffies;
- skm->skm_cpu = cpu;
- }
-
- return (skm);
-}
-
-/*
- * Free a per-cpu magazine associated with a specific core.
- */
-static void
-spl_magazine_free(spl_kmem_magazine_t *skm)
-{
- int size = sizeof(spl_kmem_magazine_t) +
- sizeof(void *) * skm->skm_size;
-
- ASSERT(skm->skm_magic == SKM_MAGIC);
- ASSERT(skm->skm_avail == 0);
-
- kmem_free(skm, size);
-}
-
-/*
- * Create all pre-cpu magazines of reasonable sizes.
- */
-static int
-spl_magazine_create(spl_kmem_cache_t *skc)
-{
- int i;
-
- if (skc->skc_flags & KMC_NOMAGAZINE)
- return (0);
-
- skc->skc_mag_size = spl_magazine_size(skc);
- skc->skc_mag_refill = (skc->skc_mag_size + 1) / 2;
-
- for_each_online_cpu(i) {
- skc->skc_mag[i] = spl_magazine_alloc(skc, i);
- if (!skc->skc_mag[i]) {
- for (i--; i >= 0; i--)
- spl_magazine_free(skc->skc_mag[i]);
-
- return (-ENOMEM);
- }
- }
-
- return (0);
-}
-
-/*
- * Destroy all pre-cpu magazines.
- */
-static void
-spl_magazine_destroy(spl_kmem_cache_t *skc)
-{
- spl_kmem_magazine_t *skm;
- int i;
-
- if (skc->skc_flags & KMC_NOMAGAZINE)
- return;
-
- for_each_online_cpu(i) {
- skm = skc->skc_mag[i];
- spl_cache_flush(skc, skm, skm->skm_avail);
- spl_magazine_free(skm);
- }
-}
-
-/*
- * Create a object cache based on the following arguments:
- * name cache name
- * size cache object size
- * align cache object alignment
- * ctor cache object constructor
- * dtor cache object destructor
- * reclaim cache object reclaim
- * priv cache private data for ctor/dtor/reclaim
- * vmp unused must be NULL
- * flags
- * KMC_NOTOUCH Disable cache object aging (unsupported)
- * KMC_NODEBUG Disable debugging (unsupported)
- * KMC_NOHASH Disable hashing (unsupported)
- * KMC_QCACHE Disable qcache (unsupported)
- * KMC_NOMAGAZINE Enabled for kmem/vmem, Disabled for Linux slab
- * KMC_KMEM Force kmem backed cache
- * KMC_VMEM Force vmem backed cache
- * KMC_SLAB Force Linux slab backed cache
- * KMC_OFFSLAB Locate objects off the slab
- */
-spl_kmem_cache_t *
-spl_kmem_cache_create(char *name, size_t size, size_t align,
- spl_kmem_ctor_t ctor,
- spl_kmem_dtor_t dtor,
- spl_kmem_reclaim_t reclaim,
- void *priv, void *vmp, int flags)
-{
- spl_kmem_cache_t *skc;
- int rc;
-
- /*
- * Unsupported flags
- */
- ASSERT0(flags & KMC_NOMAGAZINE);
- ASSERT0(flags & KMC_NOHASH);
- ASSERT0(flags & KMC_QCACHE);
- ASSERT(vmp == NULL);
-
- might_sleep();
-
- /*
- * Allocate memory for a new cache an initialize it. Unfortunately,
- * this usually ends up being a large allocation of ~32k because
- * we need to allocate enough memory for the worst case number of
- * cpus in the magazine, skc_mag[NR_CPUS]. Because of this we
- * explicitly pass KM_NODEBUG to suppress the kmem warning
- */
- skc = kmem_zalloc(sizeof(*skc), KM_SLEEP| KM_NODEBUG);
- if (skc == NULL)
- return (NULL);
-
- skc->skc_magic = SKC_MAGIC;
- skc->skc_name_size = strlen(name) + 1;
- skc->skc_name = (char *)kmem_alloc(skc->skc_name_size, KM_SLEEP);
- if (skc->skc_name == NULL) {
- kmem_free(skc, sizeof(*skc));
- return (NULL);
- }
- strncpy(skc->skc_name, name, skc->skc_name_size);
-
- skc->skc_ctor = ctor;
- skc->skc_dtor = dtor;
- skc->skc_reclaim = reclaim;
- skc->skc_private = priv;
- skc->skc_vmp = vmp;
- skc->skc_linux_cache = NULL;
- skc->skc_flags = flags;
- skc->skc_obj_size = size;
- skc->skc_obj_align = SPL_KMEM_CACHE_ALIGN;
- skc->skc_delay = SPL_KMEM_CACHE_DELAY;
- skc->skc_reap = SPL_KMEM_CACHE_REAP;
- atomic_set(&skc->skc_ref, 0);
-
- INIT_LIST_HEAD(&skc->skc_list);
- INIT_LIST_HEAD(&skc->skc_complete_list);
- INIT_LIST_HEAD(&skc->skc_partial_list);
- skc->skc_emergency_tree = RB_ROOT;
- spin_lock_init(&skc->skc_lock);
- init_waitqueue_head(&skc->skc_waitq);
- skc->skc_slab_fail = 0;
- skc->skc_slab_create = 0;
- skc->skc_slab_destroy = 0;
- skc->skc_slab_total = 0;
- skc->skc_slab_alloc = 0;
- skc->skc_slab_max = 0;
- skc->skc_obj_total = 0;
- skc->skc_obj_alloc = 0;
- skc->skc_obj_max = 0;
- skc->skc_obj_deadlock = 0;
- skc->skc_obj_emergency = 0;
- skc->skc_obj_emergency_max = 0;
-
- /*
- * Verify the requested alignment restriction is sane.
- */
- if (align) {
- VERIFY(ISP2(align));
- VERIFY3U(align, >=, SPL_KMEM_CACHE_ALIGN);
- VERIFY3U(align, <=, PAGE_SIZE);
- skc->skc_obj_align = align;
- }
-
- /*
- * When no specific type of slab is requested (kmem, vmem, or
- * linuxslab) then select a cache type based on the object size
- * and default tunables.
- */
- if (!(skc->skc_flags & (KMC_KMEM | KMC_VMEM | KMC_SLAB))) {
-
- /*
- * Objects smaller than spl_kmem_cache_slab_limit can
- * use the Linux slab for better space-efficiency. By
- * default this functionality is disabled until its
- * performance characters are fully understood.
- */
- if (spl_kmem_cache_slab_limit &&
- size <= (size_t)spl_kmem_cache_slab_limit)
- skc->skc_flags |= KMC_SLAB;
-
- /*
- * Small objects, less than spl_kmem_cache_kmem_limit per
- * object should use kmem because their slabs are small.
- */
- else if (spl_obj_size(skc) <= spl_kmem_cache_kmem_limit)
- skc->skc_flags |= KMC_KMEM;
-
- /*
- * All other objects are considered large and are placed
- * on vmem backed slabs.
- */
- else
- skc->skc_flags |= KMC_VMEM;
- }
-
- /*
- * Given the type of slab allocate the required resources.
- */
- if (skc->skc_flags & (KMC_KMEM | KMC_VMEM)) {
- rc = spl_slab_size(skc,
- &skc->skc_slab_objs, &skc->skc_slab_size);
- if (rc)
- goto out;
-
- rc = spl_magazine_create(skc);
- if (rc)
- goto out;
- } else {
- skc->skc_linux_cache = kmem_cache_create(
- skc->skc_name, size, align, 0, NULL);
- if (skc->skc_linux_cache == NULL) {
- rc = ENOMEM;
- goto out;
- }
-
- kmem_cache_set_allocflags(skc, __GFP_COMP);
- skc->skc_flags |= KMC_NOMAGAZINE;
- }
-
- if (spl_kmem_cache_expire & KMC_EXPIRE_AGE)
- skc->skc_taskqid = taskq_dispatch_delay(spl_kmem_cache_taskq,
- spl_cache_age, skc, TQ_SLEEP,
- ddi_get_lbolt() + skc->skc_delay / 3 * HZ);
-
- down_write(&spl_kmem_cache_sem);
- list_add_tail(&skc->skc_list, &spl_kmem_cache_list);
- up_write(&spl_kmem_cache_sem);
-
- return (skc);
-out:
- kmem_free(skc->skc_name, skc->skc_name_size);
- kmem_free(skc, sizeof(*skc));
- return (NULL);
-}
-EXPORT_SYMBOL(spl_kmem_cache_create);
-
-/*
- * Register a move callback to for cache defragmentation.
- * XXX: Unimplemented but harmless to stub out for now.
- */
-void
-spl_kmem_cache_set_move(spl_kmem_cache_t *skc,
- kmem_cbrc_t (move)(void *, void *, size_t, void *))
-{
- ASSERT(move != NULL);
-}
-EXPORT_SYMBOL(spl_kmem_cache_set_move);
-
-/*
- * Destroy a cache and all objects associated with the cache.
- */
-void
-spl_kmem_cache_destroy(spl_kmem_cache_t *skc)
-{
- DECLARE_WAIT_QUEUE_HEAD(wq);
- taskqid_t id;
-
- ASSERT(skc->skc_magic == SKC_MAGIC);
- ASSERT(skc->skc_flags & (KMC_KMEM | KMC_VMEM | KMC_SLAB));
-
- down_write(&spl_kmem_cache_sem);
- list_del_init(&skc->skc_list);
- up_write(&spl_kmem_cache_sem);
-
- /* Cancel any and wait for any pending delayed tasks */
- VERIFY(!test_and_set_bit(KMC_BIT_DESTROY, &skc->skc_flags));
-
- spin_lock(&skc->skc_lock);
- id = skc->skc_taskqid;
- spin_unlock(&skc->skc_lock);
-
- taskq_cancel_id(spl_kmem_cache_taskq, id);
-
- /* Wait until all current callers complete, this is mainly
- * to catch the case where a low memory situation triggers a
- * cache reaping action which races with this destroy. */
- wait_event(wq, atomic_read(&skc->skc_ref) == 0);
-
- if (skc->skc_flags & (KMC_KMEM | KMC_VMEM)) {
- spl_magazine_destroy(skc);
- spl_slab_reclaim(skc, 0, 1);
- } else {
- ASSERT(skc->skc_flags & KMC_SLAB);
- kmem_cache_destroy(skc->skc_linux_cache);
- }
-
- spin_lock(&skc->skc_lock);
-
- /* Validate there are no objects in use and free all the
- * spl_kmem_slab_t, spl_kmem_obj_t, and object buffers. */
- ASSERT3U(skc->skc_slab_alloc, ==, 0);
- ASSERT3U(skc->skc_obj_alloc, ==, 0);
- ASSERT3U(skc->skc_slab_total, ==, 0);
- ASSERT3U(skc->skc_obj_total, ==, 0);
- ASSERT3U(skc->skc_obj_emergency, ==, 0);
- ASSERT(list_empty(&skc->skc_complete_list));
-
- kmem_free(skc->skc_name, skc->skc_name_size);
- spin_unlock(&skc->skc_lock);
-
- kmem_free(skc, sizeof(*skc));
-}
-EXPORT_SYMBOL(spl_kmem_cache_destroy);
-
-/*
- * Allocate an object from a slab attached to the cache. This is used to
- * repopulate the per-cpu magazine caches in batches when they run low.
- */
-static void *
-spl_cache_obj(spl_kmem_cache_t *skc, spl_kmem_slab_t *sks)
-{
- spl_kmem_obj_t *sko;
-
- ASSERT(skc->skc_magic == SKC_MAGIC);
- ASSERT(sks->sks_magic == SKS_MAGIC);
- ASSERT(spin_is_locked(&skc->skc_lock));
-
- sko = list_entry(sks->sks_free_list.next, spl_kmem_obj_t, sko_list);
- ASSERT(sko->sko_magic == SKO_MAGIC);
- ASSERT(sko->sko_addr != NULL);
-
- /* Remove from sks_free_list */
- list_del_init(&sko->sko_list);
-
- sks->sks_age = jiffies;
- sks->sks_ref++;
- skc->skc_obj_alloc++;
-
- /* Track max obj usage statistics */
- if (skc->skc_obj_alloc > skc->skc_obj_max)
- skc->skc_obj_max = skc->skc_obj_alloc;
-
- /* Track max slab usage statistics */
- if (sks->sks_ref == 1) {
- skc->skc_slab_alloc++;
-
- if (skc->skc_slab_alloc > skc->skc_slab_max)
- skc->skc_slab_max = skc->skc_slab_alloc;
- }
-
- return sko->sko_addr;
-}
-
-/*
- * Generic slab allocation function to run by the global work queues.
- * It is responsible for allocating a new slab, linking it in to the list
- * of partial slabs, and then waking any waiters.
- */
-static void
-spl_cache_grow_work(void *data)
-{
- spl_kmem_alloc_t *ska = (spl_kmem_alloc_t *)data;
- spl_kmem_cache_t *skc = ska->ska_cache;
- spl_kmem_slab_t *sks;
-
- sks = spl_slab_alloc(skc, ska->ska_flags | __GFP_NORETRY | KM_NODEBUG);
- spin_lock(&skc->skc_lock);
- if (sks) {
- skc->skc_slab_total++;
- skc->skc_obj_total += sks->sks_objs;
- list_add_tail(&sks->sks_list, &skc->skc_partial_list);
- }
-
- atomic_dec(&skc->skc_ref);
- clear_bit(KMC_BIT_GROWING, &skc->skc_flags);
- clear_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags);
- wake_up_all(&skc->skc_waitq);
- spin_unlock(&skc->skc_lock);
-
- kfree(ska);
-}
-
-/*
- * Returns non-zero when a new slab should be available.
- */
-static int
-spl_cache_grow_wait(spl_kmem_cache_t *skc)
-{
- return !test_bit(KMC_BIT_GROWING, &skc->skc_flags);
-}
-
-/*
- * No available objects on any slabs, create a new slab. Note that this
- * functionality is disabled for KMC_SLAB caches which are backed by the
- * Linux slab.
- */
-static int
-spl_cache_grow(spl_kmem_cache_t *skc, int flags, void **obj)
-{
- int remaining, rc;
-
- ASSERT(skc->skc_magic == SKC_MAGIC);
- ASSERT((skc->skc_flags & KMC_SLAB) == 0);
- might_sleep();
- *obj = NULL;
-
- /*
- * Before allocating a new slab wait for any reaping to complete and
- * then return so the local magazine can be rechecked for new objects.
- */
- if (test_bit(KMC_BIT_REAPING, &skc->skc_flags)) {
- rc = spl_wait_on_bit(&skc->skc_flags, KMC_BIT_REAPING,
- TASK_UNINTERRUPTIBLE);
- return (rc ? rc : -EAGAIN);
- }
-
- /*
- * This is handled by dispatching a work request to the global work
- * queue. This allows us to asynchronously allocate a new slab while
- * retaining the ability to safely fall back to a smaller synchronous
- * allocations to ensure forward progress is always maintained.
- */
- if (test_and_set_bit(KMC_BIT_GROWING, &skc->skc_flags) == 0) {
- spl_kmem_alloc_t *ska;
-
- ska = kmalloc(sizeof(*ska), flags);
- if (ska == NULL) {
- clear_bit(KMC_BIT_GROWING, &skc->skc_flags);
- wake_up_all(&skc->skc_waitq);
- return (-ENOMEM);
- }
-
- atomic_inc(&skc->skc_ref);
- ska->ska_cache = skc;
- ska->ska_flags = flags & ~__GFP_FS;
- taskq_init_ent(&ska->ska_tqe);
- taskq_dispatch_ent(spl_kmem_cache_taskq,
- spl_cache_grow_work, ska, 0, &ska->ska_tqe);
- }
-
- /*
- * The goal here is to only detect the rare case where a virtual slab
- * allocation has deadlocked. We must be careful to minimize the use
- * of emergency objects which are more expensive to track. Therefore,
- * we set a very long timeout for the asynchronous allocation and if
- * the timeout is reached the cache is flagged as deadlocked. From
- * this point only new emergency objects will be allocated until the
- * asynchronous allocation completes and clears the deadlocked flag.
- */
- if (test_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags)) {
- rc = spl_emergency_alloc(skc, flags, obj);
- } else {
- remaining = wait_event_timeout(skc->skc_waitq,
- spl_cache_grow_wait(skc), HZ);
-
- if (!remaining && test_bit(KMC_BIT_VMEM, &skc->skc_flags)) {
- spin_lock(&skc->skc_lock);
- if (test_bit(KMC_BIT_GROWING, &skc->skc_flags)) {
- set_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags);
- skc->skc_obj_deadlock++;
- }
- spin_unlock(&skc->skc_lock);
- }
-
- rc = -ENOMEM;
- }
-
- return (rc);
-}
-
-/*
- * Refill a per-cpu magazine with objects from the slabs for this cache.
- * Ideally the magazine can be repopulated using existing objects which have
- * been released, however if we are unable to locate enough free objects new
- * slabs of objects will be created. On success NULL is returned, otherwise
- * the address of a single emergency object is returned for use by the caller.
- */
-static void *
-spl_cache_refill(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flags)
-{
- spl_kmem_slab_t *sks;
- int count = 0, rc, refill;
- void *obj = NULL;
-
- ASSERT(skc->skc_magic == SKC_MAGIC);
- ASSERT(skm->skm_magic == SKM_MAGIC);
-
- refill = MIN(skm->skm_refill, skm->skm_size - skm->skm_avail);
- spin_lock(&skc->skc_lock);
-
- while (refill > 0) {
- /* No slabs available we may need to grow the cache */
- if (list_empty(&skc->skc_partial_list)) {
- spin_unlock(&skc->skc_lock);
-
- local_irq_enable();
- rc = spl_cache_grow(skc, flags, &obj);
- local_irq_disable();
-
- /* Emergency object for immediate use by caller */
- if (rc == 0 && obj != NULL)
- return (obj);
-
- if (rc)
- goto out;
-
- /* Rescheduled to different CPU skm is not local */
- if (skm != skc->skc_mag[smp_processor_id()])
- goto out;
-
- /* Potentially rescheduled to the same CPU but
- * allocations may have occurred from this CPU while
- * we were sleeping so recalculate max refill. */
- refill = MIN(refill, skm->skm_size - skm->skm_avail);
-
- spin_lock(&skc->skc_lock);
- continue;
- }
-
- /* Grab the next available slab */
- sks = list_entry((&skc->skc_partial_list)->next,
- spl_kmem_slab_t, sks_list);
- ASSERT(sks->sks_magic == SKS_MAGIC);
- ASSERT(sks->sks_ref < sks->sks_objs);
- ASSERT(!list_empty(&sks->sks_free_list));
-
- /* Consume as many objects as needed to refill the requested
- * cache. We must also be careful not to overfill it. */
- while (sks->sks_ref < sks->sks_objs && refill-- > 0 && ++count) {
- ASSERT(skm->skm_avail < skm->skm_size);
- ASSERT(count < skm->skm_size);
- skm->skm_objs[skm->skm_avail++]=spl_cache_obj(skc,sks);
- }
-
- /* Move slab to skc_complete_list when full */
- if (sks->sks_ref == sks->sks_objs) {
- list_del(&sks->sks_list);
- list_add(&sks->sks_list, &skc->skc_complete_list);
- }
- }
-
- spin_unlock(&skc->skc_lock);
-out:
- return (NULL);
-}
-
-/*
- * Release an object back to the slab from which it came.
- */
-static void
-spl_cache_shrink(spl_kmem_cache_t *skc, void *obj)
-{
- spl_kmem_slab_t *sks = NULL;
- spl_kmem_obj_t *sko = NULL;
-
- ASSERT(skc->skc_magic == SKC_MAGIC);
- ASSERT(spin_is_locked(&skc->skc_lock));
-
- sko = spl_sko_from_obj(skc, obj);
- ASSERT(sko->sko_magic == SKO_MAGIC);
- sks = sko->sko_slab;
- ASSERT(sks->sks_magic == SKS_MAGIC);
- ASSERT(sks->sks_cache == skc);
- list_add(&sko->sko_list, &sks->sks_free_list);
-
- sks->sks_age = jiffies;
- sks->sks_ref--;
- skc->skc_obj_alloc--;
-
- /* Move slab to skc_partial_list when no longer full. Slabs
- * are added to the head to keep the partial list is quasi-full
- * sorted order. Fuller at the head, emptier at the tail. */
- if (sks->sks_ref == (sks->sks_objs - 1)) {
- list_del(&sks->sks_list);
- list_add(&sks->sks_list, &skc->skc_partial_list);
- }
-
- /* Move empty slabs to the end of the partial list so
- * they can be easily found and freed during reclamation. */
- if (sks->sks_ref == 0) {
- list_del(&sks->sks_list);
- list_add_tail(&sks->sks_list, &skc->skc_partial_list);
- skc->skc_slab_alloc--;
- }
-}
-
-/*
- * Allocate an object from the per-cpu magazine, or if the magazine
- * is empty directly allocate from a slab and repopulate the magazine.
- */
-void *
-spl_kmem_cache_alloc(spl_kmem_cache_t *skc, int flags)
-{
- spl_kmem_magazine_t *skm;
- void *obj = NULL;
-
- ASSERT(skc->skc_magic == SKC_MAGIC);
- ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
- ASSERT(flags & KM_SLEEP);
-
- atomic_inc(&skc->skc_ref);
-
- /*
- * Allocate directly from a Linux slab. All optimizations are left
- * to the underlying cache we only need to guarantee that KM_SLEEP
- * callers will never fail.
- */
- if (skc->skc_flags & KMC_SLAB) {
- struct kmem_cache *slc = skc->skc_linux_cache;
-
- do {
- obj = kmem_cache_alloc(slc, flags | __GFP_COMP);
- } while ((obj == NULL) && !(flags & KM_NOSLEEP));
-
- goto ret;
- }
-
- local_irq_disable();
-
-restart:
- /* Safe to update per-cpu structure without lock, but
- * in the restart case we must be careful to reacquire
- * the local magazine since this may have changed
- * when we need to grow the cache. */
- skm = skc->skc_mag[smp_processor_id()];
- ASSERT(skm->skm_magic == SKM_MAGIC);
-
- if (likely(skm->skm_avail)) {
- /* Object available in CPU cache, use it */
- obj = skm->skm_objs[--skm->skm_avail];
- skm->skm_age = jiffies;
- } else {
- obj = spl_cache_refill(skc, skm, flags);
- if (obj == NULL)
- goto restart;
- }
-
- local_irq_enable();
- ASSERT(obj);
- ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
-
-ret:
- /* Pre-emptively migrate object to CPU L1 cache */
- if (obj) {
- if (obj && skc->skc_ctor)
- skc->skc_ctor(obj, skc->skc_private, flags);
- else
- prefetchw(obj);
- }
-
- atomic_dec(&skc->skc_ref);
-
- return (obj);
-}
-
-EXPORT_SYMBOL(spl_kmem_cache_alloc);
-
-/*
- * Free an object back to the local per-cpu magazine, there is no
- * guarantee that this is the same magazine the object was originally
- * allocated from. We may need to flush entire from the magazine
- * back to the slabs to make space.
- */
-void
-spl_kmem_cache_free(spl_kmem_cache_t *skc, void *obj)
-{
- spl_kmem_magazine_t *skm;
- unsigned long flags;
-
- ASSERT(skc->skc_magic == SKC_MAGIC);
- ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
- atomic_inc(&skc->skc_ref);
-
- /*
- * Run the destructor
- */
- if (skc->skc_dtor)
- skc->skc_dtor(obj, skc->skc_private);
-
- /*
- * Free the object from the Linux underlying Linux slab.
- */
- if (skc->skc_flags & KMC_SLAB) {
- kmem_cache_free(skc->skc_linux_cache, obj);
- goto out;
- }
-
- /*
- * Only virtual slabs may have emergency objects and these objects
- * are guaranteed to have physical addresses. They must be removed
- * from the tree of emergency objects and the freed.
- */
- if ((skc->skc_flags & KMC_VMEM) && !kmem_virt(obj)) {
- spl_emergency_free(skc, obj);
- goto out;
- }
-
- local_irq_save(flags);
-
- /* Safe to update per-cpu structure without lock, but
- * no remote memory allocation tracking is being performed
- * it is entirely possible to allocate an object from one
- * CPU cache and return it to another. */
- skm = skc->skc_mag[smp_processor_id()];
- ASSERT(skm->skm_magic == SKM_MAGIC);
-
- /* Per-CPU cache full, flush it to make space */
- if (unlikely(skm->skm_avail >= skm->skm_size))
- spl_cache_flush(skc, skm, skm->skm_refill);
-
- /* Available space in cache, use it */
- skm->skm_objs[skm->skm_avail++] = obj;
-
- local_irq_restore(flags);
-out:
- atomic_dec(&skc->skc_ref);
-}
-EXPORT_SYMBOL(spl_kmem_cache_free);
-
-/*
- * The generic shrinker function for all caches. Under Linux a shrinker
- * may not be tightly coupled with a slab cache. In fact Linux always
- * systematically tries calling all registered shrinker callbacks which
- * report that they contain unused objects. Because of this we only
- * register one shrinker function in the shim layer for all slab caches.
- * We always attempt to shrink all caches when this generic shrinker
- * is called.
- *
- * If sc->nr_to_scan is zero, the caller is requesting a query of the
- * number of objects which can potentially be freed. If it is nonzero,
- * the request is to free that many objects.
- *
- * Linux kernels >= 3.12 have the count_objects and scan_objects callbacks
- * in struct shrinker and also require the shrinker to return the number
- * of objects freed.
- *
- * Older kernels require the shrinker to return the number of freeable
- * objects following the freeing of nr_to_free.
- *
- * Linux semantics differ from those under Solaris, which are to
- * free all available objects which may (and probably will) be more
- * objects than the requested nr_to_scan.
- */
-static spl_shrinker_t
-__spl_kmem_cache_generic_shrinker(struct shrinker *shrink,
- struct shrink_control *sc)
-{
- spl_kmem_cache_t *skc;
- int alloc = 0;
-
- down_read(&spl_kmem_cache_sem);
- list_for_each_entry(skc, &spl_kmem_cache_list, skc_list) {
- if (sc->nr_to_scan) {
-#ifdef HAVE_SPLIT_SHRINKER_CALLBACK
- uint64_t oldalloc = skc->skc_obj_alloc;
- spl_kmem_cache_reap_now(skc,
- MAX(sc->nr_to_scan >> fls64(skc->skc_slab_objs), 1));
- if (oldalloc > skc->skc_obj_alloc)
- alloc += oldalloc - skc->skc_obj_alloc;
-#else
- spl_kmem_cache_reap_now(skc,
- MAX(sc->nr_to_scan >> fls64(skc->skc_slab_objs), 1));
- alloc += skc->skc_obj_alloc;
-#endif /* HAVE_SPLIT_SHRINKER_CALLBACK */
- } else {
- /* Request to query number of freeable objects */
- alloc += skc->skc_obj_alloc;
- }
- }
- up_read(&spl_kmem_cache_sem);
-
- /*
- * When KMC_RECLAIM_ONCE is set allow only a single reclaim pass.
- * This functionality only exists to work around a rare issue where
- * shrink_slabs() is repeatedly invoked by many cores causing the
- * system to thrash.
- */
- if ((spl_kmem_cache_reclaim & KMC_RECLAIM_ONCE) && sc->nr_to_scan)
- return (SHRINK_STOP);
-
- return (MAX(alloc, 0));
-}
-
-SPL_SHRINKER_CALLBACK_WRAPPER(spl_kmem_cache_generic_shrinker);
-
-/*
- * Call the registered reclaim function for a cache. Depending on how
- * many and which objects are released it may simply repopulate the
- * local magazine which will then need to age-out. Objects which cannot
- * fit in the magazine we will be released back to their slabs which will
- * also need to age out before being release. This is all just best
- * effort and we do not want to thrash creating and destroying slabs.
- */
-void
-spl_kmem_cache_reap_now(spl_kmem_cache_t *skc, int count)
-{
- ASSERT(skc->skc_magic == SKC_MAGIC);
- ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
-
- atomic_inc(&skc->skc_ref);
-
- /*
- * Execute the registered reclaim callback if it exists. The
- * per-cpu caches will be drained when is set KMC_EXPIRE_MEM.
- */
- if (skc->skc_flags & KMC_SLAB) {
- if (skc->skc_reclaim)
- skc->skc_reclaim(skc->skc_private);
-
- if (spl_kmem_cache_expire & KMC_EXPIRE_MEM)
- kmem_cache_shrink(skc->skc_linux_cache);
-
- goto out;
- }
-
- /*
- * Prevent concurrent cache reaping when contended.
- */
- if (test_and_set_bit(KMC_BIT_REAPING, &skc->skc_flags))
- goto out;
-
- /*
- * When a reclaim function is available it may be invoked repeatedly
- * until at least a single slab can be freed. This ensures that we
- * do free memory back to the system. This helps minimize the chance
- * of an OOM event when the bulk of memory is used by the slab.
- *
- * When free slabs are already available the reclaim callback will be
- * skipped. Additionally, if no forward progress is detected despite
- * a reclaim function the cache will be skipped to avoid deadlock.
- *
- * Longer term this would be the correct place to add the code which
- * repacks the slabs in order minimize fragmentation.
- */
- if (skc->skc_reclaim) {
- uint64_t objects = UINT64_MAX;
- int do_reclaim;
-
- do {
- spin_lock(&skc->skc_lock);
- do_reclaim =
- (skc->skc_slab_total > 0) &&
- ((skc->skc_slab_total - skc->skc_slab_alloc) == 0) &&
- (skc->skc_obj_alloc < objects);
-
- objects = skc->skc_obj_alloc;
- spin_unlock(&skc->skc_lock);
-
- if (do_reclaim)
- skc->skc_reclaim(skc->skc_private);
-
- } while (do_reclaim);
- }
-
- /* Reclaim from the magazine then the slabs ignoring age and delay. */
- if (spl_kmem_cache_expire & KMC_EXPIRE_MEM) {
- spl_kmem_magazine_t *skm;
- unsigned long irq_flags;
-
- local_irq_save(irq_flags);
- skm = skc->skc_mag[smp_processor_id()];
- spl_cache_flush(skc, skm, skm->skm_avail);
- local_irq_restore(irq_flags);
- }
-
- spl_slab_reclaim(skc, count, 1);
- clear_bit(KMC_BIT_REAPING, &skc->skc_flags);
- smp_wmb();
- wake_up_bit(&skc->skc_flags, KMC_BIT_REAPING);
-out:
- atomic_dec(&skc->skc_ref);
-}
-EXPORT_SYMBOL(spl_kmem_cache_reap_now);
-
-/*
- * Reap all free slabs from all registered caches.
- */
-void
-spl_kmem_reap(void)
-{
- struct shrink_control sc;
-
- sc.nr_to_scan = KMC_REAP_CHUNK;
- sc.gfp_mask = GFP_KERNEL;
-
- (void) __spl_kmem_cache_generic_shrinker(NULL, &sc);
-}
-EXPORT_SYMBOL(spl_kmem_reap);
-
#if defined(DEBUG_KMEM) && defined(DEBUG_KMEM_TRACKING)
static char *
spl_sprintf_addr(kmem_debug_t *kd, char *str, int len, int min)
@@ -2202,28 +432,15 @@ spl_kmem_init(void)
#ifdef DEBUG_KMEM
kmem_alloc_used_set(0);
- vmem_alloc_used_set(0);
-
spl_kmem_init_tracking(&kmem_list, &kmem_lock, KMEM_TABLE_SIZE);
- spl_kmem_init_tracking(&vmem_list, &vmem_lock, VMEM_TABLE_SIZE);
#endif
- init_rwsem(&spl_kmem_cache_sem);
- INIT_LIST_HEAD(&spl_kmem_cache_list);
- spl_kmem_cache_taskq = taskq_create("spl_kmem_cache",
- 1, maxclsyspri, 1, 32, TASKQ_PREPOPULATE);
-
- spl_register_shrinker(&spl_kmem_cache_shrinker);
-
return (rc);
}
void
spl_kmem_fini(void)
{
- spl_unregister_shrinker(&spl_kmem_cache_shrinker);
- taskq_destroy(spl_kmem_cache_taskq);
-
#ifdef DEBUG_KMEM
/* Display all unreclaimed memory addresses, including the
* allocation size and the first few bytes of what's located
@@ -2233,11 +450,6 @@ spl_kmem_fini(void)
printk(KERN_WARNING "kmem leaked %ld/%llu bytes\n",
kmem_alloc_used_read(), kmem_alloc_max);
- if (vmem_alloc_used_read() != 0)
- printk(KERN_WARNING "vmem leaked %ld/%llu bytes\n",
- vmem_alloc_used_read(), vmem_alloc_max);
-
spl_kmem_fini_tracking(&kmem_list, &kmem_lock);
- spl_kmem_fini_tracking(&vmem_list, &vmem_lock);
#endif /* DEBUG_KMEM */
}