summaryrefslogtreecommitdiffstats
path: root/lib/libzfs/libzfs_crypto.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/libzfs/libzfs_crypto.c')
-rw-r--r--lib/libzfs/libzfs_crypto.c1612
1 files changed, 1612 insertions, 0 deletions
diff --git a/lib/libzfs/libzfs_crypto.c b/lib/libzfs/libzfs_crypto.c
new file mode 100644
index 000000000..8bd788074
--- /dev/null
+++ b/lib/libzfs/libzfs_crypto.c
@@ -0,0 +1,1612 @@
+/*
+ * CDDL HEADER START
+ *
+ * This file and its contents are supplied under the terms of the
+ * Common Development and Distribution License ("CDDL"), version 1.0.
+ * You may only use this file in accordance with the terms of version
+ * 1.0 of the CDDL.
+ *
+ * A full copy of the text of the CDDL should have accompanied this
+ * source. A copy of the CDDL is also available via the Internet at
+ * http://www.illumos.org/license/CDDL.
+ *
+ * CDDL HEADER END
+ */
+
+/*
+ * Copyright (c) 2017, Datto, Inc. All rights reserved.
+ */
+
+#include <sys/zfs_context.h>
+#include <sys/fs/zfs.h>
+#include <sys/dsl_crypt.h>
+#include <sys/crypto/icp.h>
+#include <libintl.h>
+#include <termios.h>
+#include <signal.h>
+#include <errno.h>
+#include <libzfs.h>
+#include "libzfs_impl.h"
+#include "zfeature_common.h"
+
+/*
+ * User keys are used to decrypt the master encryption keys of a dataset. This
+ * indirection allows a user to change his / her access key without having to
+ * re-encrypt the entire dataset. User keys can be provided in one of several
+ * ways. Raw keys are simply given to the kernel as is. Similarly, hex keys
+ * are converted to binary and passed into the kernel. Password based keys are
+ * a bit more complicated. Passwords alone do not provide suitable entropy for
+ * encryption and may be too short or too long to be used. In order to derive
+ * a more appropriate key we use a PBKDF2 function. This function is designed
+ * to take a (relatively) long time to calculate in order to discourage
+ * attackers from guessing from a list of common passwords. PBKDF2 requires
+ * 2 additional parameters. The first is the number of iterations to run, which
+ * will ultimately determine how long it takes to derive the resulting key from
+ * the password. The second parameter is a salt that is randomly generated for
+ * each dataset. The salt is used to "tweak" PBKDF2 such that a group of
+ * attackers cannot reasonably generate a table of commonly known passwords to
+ * their output keys and expect it work for all past and future PBKDF2 users.
+ * We store the salt as a hidden property of the dataset (although it is
+ * technically ok if the salt is known to the attacker).
+ */
+
+typedef enum key_locator {
+ KEY_LOCATOR_NONE,
+ KEY_LOCATOR_PROMPT,
+ KEY_LOCATOR_URI
+} key_locator_t;
+
+#define MIN_PASSPHRASE_LEN 8
+#define MAX_PASSPHRASE_LEN 512
+#define MAX_KEY_PROMPT_ATTEMPTS 3
+
+static int caught_interrupt;
+
+static int
+pkcs11_get_urandom(uint8_t *buf, size_t bytes)
+{
+ int rand;
+ ssize_t bytes_read = 0;
+
+ rand = open("/dev/urandom", O_RDONLY);
+
+ if (rand < 0)
+ return (rand);
+
+ while (bytes_read < bytes) {
+ ssize_t rc = read(rand, buf + bytes_read, bytes - bytes_read);
+ if (rc < 0)
+ break;
+ bytes_read += rc;
+ }
+
+ (void) close(rand);
+
+ return (bytes_read);
+}
+
+static zfs_keylocation_t
+zfs_prop_parse_keylocation(const char *str)
+{
+ if (strcmp("prompt", str) == 0)
+ return (ZFS_KEYLOCATION_PROMPT);
+ else if (strlen(str) > 8 && strncmp("file:///", str, 8) == 0)
+ return (ZFS_KEYLOCATION_URI);
+
+ return (ZFS_KEYLOCATION_NONE);
+}
+
+static int
+hex_key_to_raw(char *hex, int hexlen, uint8_t *out)
+{
+ int ret, i;
+ unsigned int c;
+
+ for (i = 0; i < hexlen; i += 2) {
+ if (!isxdigit(hex[i]) || !isxdigit(hex[i + 1])) {
+ ret = EINVAL;
+ goto error;
+ }
+
+ ret = sscanf(&hex[i], "%02x", &c);
+ if (ret != 1) {
+ ret = EINVAL;
+ goto error;
+ }
+
+ out[i / 2] = c;
+ }
+
+ return (0);
+
+error:
+ return (ret);
+}
+
+
+static void
+catch_signal(int sig)
+{
+ caught_interrupt = sig;
+}
+
+static char *
+get_format_prompt_string(zfs_keyformat_t format)
+{
+ switch (format) {
+ case ZFS_KEYFORMAT_RAW:
+ return ("raw key");
+ case ZFS_KEYFORMAT_HEX:
+ return ("hex key");
+ case ZFS_KEYFORMAT_PASSPHRASE:
+ return ("passphrase");
+ default:
+ /* shouldn't happen */
+ return (NULL);
+ }
+}
+
+static int
+get_key_material_raw(FILE *fd, const char *fsname, zfs_keyformat_t keyformat,
+ boolean_t again, boolean_t newkey, uint8_t **buf, size_t *len_out)
+{
+ int ret = 0, bytes;
+ size_t buflen = 0;
+ struct termios old_term, new_term;
+ struct sigaction act, osigint, osigtstp;
+
+ *len_out = 0;
+
+ if (isatty(fileno(fd))) {
+ /*
+ * handle SIGINT and ignore SIGSTP. This is necessary to
+ * restore the state of the terminal.
+ */
+ caught_interrupt = 0;
+ act.sa_flags = 0;
+ (void) sigemptyset(&act.sa_mask);
+ act.sa_handler = catch_signal;
+
+ (void) sigaction(SIGINT, &act, &osigint);
+ act.sa_handler = SIG_IGN;
+ (void) sigaction(SIGTSTP, &act, &osigtstp);
+
+ /* prompt for the key */
+ if (fsname != NULL) {
+ (void) printf("%s %s%s for '%s': ",
+ (again) ? "Re-enter" : "Enter",
+ (newkey) ? "new " : "",
+ get_format_prompt_string(keyformat), fsname);
+ } else {
+ (void) printf("%s %s%s: ",
+ (again) ? "Re-enter" : "Enter",
+ (newkey) ? "new " : "",
+ get_format_prompt_string(keyformat));
+
+ }
+ (void) fflush(stdout);
+
+ /* disable the terminal echo for key input */
+ (void) tcgetattr(fileno(fd), &old_term);
+
+ new_term = old_term;
+ new_term.c_lflag &= ~(ECHO | ECHOE | ECHOK | ECHONL);
+
+ ret = tcsetattr(fileno(fd), TCSAFLUSH, &new_term);
+ if (ret != 0) {
+ ret = errno;
+ errno = 0;
+ goto out;
+ }
+ }
+
+ /* read the key material */
+ if (keyformat != ZFS_KEYFORMAT_RAW) {
+ bytes = getline((char **)buf, &buflen, fd);
+ if (bytes < 0) {
+ ret = errno;
+ errno = 0;
+ goto out;
+ }
+
+ /* trim the ending newline if it exists */
+ if ((*buf)[bytes - 1] == '\n') {
+ (*buf)[bytes - 1] = '\0';
+ bytes--;
+ }
+ } else {
+ /*
+ * Raw keys may have newline characters in them and so can't
+ * use getline(). Here we attempt to read 33 bytes so that we
+ * can properly check the key length (the file should only have
+ * 32 bytes).
+ */
+ *buf = malloc((WRAPPING_KEY_LEN + 1) * sizeof (char));
+ if (*buf == NULL) {
+ ret = ENOMEM;
+ goto out;
+ }
+
+ bytes = fread(*buf, 1, WRAPPING_KEY_LEN + 1, fd);
+ if (bytes < 0) {
+ /* size errors are handled by the calling function */
+ free(*buf);
+ *buf = NULL;
+ ret = errno;
+ errno = 0;
+ goto out;
+ }
+ }
+
+ *len_out = bytes;
+
+out:
+ if (isatty(fileno(fd))) {
+ /* reset the teminal */
+ (void) tcsetattr(fileno(fd), TCSAFLUSH, &old_term);
+ (void) sigaction(SIGINT, &osigint, NULL);
+ (void) sigaction(SIGTSTP, &osigtstp, NULL);
+
+ /* if we caught a signal, re-throw it now */
+ if (caught_interrupt != 0) {
+ (void) kill(getpid(), caught_interrupt);
+ }
+
+ /* print the newline that was not echo'd */
+ printf("\n");
+ }
+
+ return (ret);
+
+}
+
+/*
+ * Attempts to fetch key material, no matter where it might live. The key
+ * material is allocated and returned in km_out. *can_retry_out will be set
+ * to B_TRUE if the user is providing the key material interactively, allowing
+ * for re-entry attempts.
+ */
+static int
+get_key_material(libzfs_handle_t *hdl, boolean_t do_verify, boolean_t newkey,
+ zfs_keyformat_t keyformat, char *keylocation, const char *fsname,
+ uint8_t **km_out, size_t *kmlen_out, boolean_t *can_retry_out)
+{
+ int ret, i;
+ zfs_keylocation_t keyloc = ZFS_KEYLOCATION_NONE;
+ FILE *fd = NULL;
+ uint8_t *km = NULL, *km2 = NULL;
+ size_t kmlen, kmlen2;
+ boolean_t can_retry = B_FALSE;
+
+ /* verify and parse the keylocation */
+ keyloc = zfs_prop_parse_keylocation(keylocation);
+
+ /* open the appropriate file descriptor */
+ switch (keyloc) {
+ case ZFS_KEYLOCATION_PROMPT:
+ fd = stdin;
+ if (isatty(fileno(fd))) {
+ can_retry = B_TRUE;
+
+ /* raw keys cannot be entered on the terminal */
+ if (keyformat == ZFS_KEYFORMAT_RAW) {
+ ret = EINVAL;
+ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
+ "Cannot enter raw keys on the terminal"));
+ goto error;
+ }
+ }
+ break;
+ case ZFS_KEYLOCATION_URI:
+ fd = fopen(&keylocation[7], "r");
+ if (!fd) {
+ ret = errno;
+ errno = 0;
+ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
+ "Failed to open key material file"));
+ goto error;
+ }
+ break;
+ default:
+ ret = EINVAL;
+ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
+ "Invalid keylocation."));
+ goto error;
+ }
+
+ /* fetch the key material into the buffer */
+ ret = get_key_material_raw(fd, fsname, keyformat, B_FALSE, newkey,
+ &km, &kmlen);
+ if (ret != 0)
+ goto error;
+
+ /* do basic validation of the key material */
+ switch (keyformat) {
+ case ZFS_KEYFORMAT_RAW:
+ /* verify the key length is correct */
+ if (kmlen < WRAPPING_KEY_LEN) {
+ ret = EINVAL;
+ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
+ "Raw key too short (expected %u)."),
+ WRAPPING_KEY_LEN);
+ goto error;
+ }
+
+ if (kmlen > WRAPPING_KEY_LEN) {
+ ret = EINVAL;
+ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
+ "Raw key too long (expected %u)."),
+ WRAPPING_KEY_LEN);
+ goto error;
+ }
+ break;
+ case ZFS_KEYFORMAT_HEX:
+ /* verify the key length is correct */
+ if (kmlen < WRAPPING_KEY_LEN * 2) {
+ ret = EINVAL;
+ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
+ "Hex key too short (expected %u)."),
+ WRAPPING_KEY_LEN * 2);
+ goto error;
+ }
+
+ if (kmlen > WRAPPING_KEY_LEN * 2) {
+ ret = EINVAL;
+ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
+ "Hex key too long (expected %u)."),
+ WRAPPING_KEY_LEN * 2);
+ goto error;
+ }
+
+ /* check for invalid hex digits */
+ for (i = 0; i < WRAPPING_KEY_LEN * 2; i++) {
+ if (!isxdigit((char)km[i])) {
+ ret = EINVAL;
+ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
+ "Invalid hex character detected."));
+ goto error;
+ }
+ }
+ break;
+ case ZFS_KEYFORMAT_PASSPHRASE:
+ /* verify the length is within bounds */
+ if (kmlen > MAX_PASSPHRASE_LEN) {
+ ret = EINVAL;
+ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
+ "Passphrase too long (max %u)."),
+ MAX_PASSPHRASE_LEN);
+ goto error;
+ }
+
+ if (kmlen < MIN_PASSPHRASE_LEN) {
+ ret = EINVAL;
+ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
+ "Passphrase too short (min %u)."),
+ MIN_PASSPHRASE_LEN);
+ goto error;
+ }
+ break;
+ default:
+ /* can't happen, checked above */
+ break;
+ }
+
+ if (do_verify && isatty(fileno(fd))) {
+ ret = get_key_material_raw(fd, fsname, keyformat, B_TRUE,
+ newkey, &km2, &kmlen2);
+ if (ret != 0)
+ goto error;
+
+ if (kmlen2 != kmlen ||
+ (memcmp((char *)km, (char *)km2, kmlen) != 0)) {
+ ret = EINVAL;
+ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
+ "Provided keys do not match."));
+ goto error;
+ }
+ }
+
+ if (fd != stdin)
+ fclose(fd);
+
+ if (km2 != NULL)
+ free(km2);
+
+ *km_out = km;
+ *kmlen_out = kmlen;
+ if (can_retry_out != NULL)
+ *can_retry_out = can_retry;
+
+ return (0);
+
+error:
+ if (km != NULL)
+ free(km);
+
+ if (km2 != NULL)
+ free(km2);
+
+ if (fd != NULL && fd != stdin)
+ fclose(fd);
+
+ *km_out = NULL;
+ *kmlen_out = 0;
+ if (can_retry_out != NULL)
+ *can_retry_out = can_retry;
+
+ return (ret);
+}
+
+static int
+pbkdf2(uint8_t *passphrase, size_t passphraselen, uint8_t *salt,
+ size_t saltlen, uint64_t iterations, uint8_t *output,
+ size_t outputlen)
+{
+ int ret;
+ uint64_t iter;
+ uint32_t blockptr, i;
+ uint16_t hmac_key_len;
+ uint8_t *hmac_key;
+ uint8_t block[SHA1_DIGEST_LEN * 2];
+ uint8_t *hmacresult = block + SHA1_DIGEST_LEN;
+ crypto_mechanism_t mech;
+ crypto_key_t key;
+ crypto_data_t in_data, out_data;
+ crypto_ctx_template_t tmpl = NULL;
+
+ /* initialize output */
+ memset(output, 0, outputlen);
+
+ /* initialize icp for use */
+ icp_init();
+
+ /* HMAC key size is max(sizeof(uint32_t) + salt len, sha 256 len) */
+ if (saltlen > SHA1_DIGEST_LEN) {
+ hmac_key_len = saltlen + sizeof (uint32_t);
+ } else {
+ hmac_key_len = SHA1_DIGEST_LEN;
+ }
+
+ hmac_key = calloc(hmac_key_len, 1);
+ if (!hmac_key) {
+ ret = ENOMEM;
+ goto error;
+ }
+
+ /* initialize sha 256 hmac mechanism */
+ mech.cm_type = crypto_mech2id(SUN_CKM_SHA1_HMAC);
+ mech.cm_param = NULL;
+ mech.cm_param_len = 0;
+
+ /* initialize passphrase as a crypto key */
+ key.ck_format = CRYPTO_KEY_RAW;
+ key.ck_length = BYTES_TO_BITS(passphraselen);
+ key.ck_data = passphrase;
+
+ /*
+ * initialize crypto data for the input data. length will change
+ * after the first iteration, so we will initialize it in the loop.
+ */
+ in_data.cd_format = CRYPTO_DATA_RAW;
+ in_data.cd_offset = 0;
+ in_data.cd_raw.iov_base = (char *)hmac_key;
+
+ /* initialize crypto data for the output data */
+ out_data.cd_format = CRYPTO_DATA_RAW;
+ out_data.cd_offset = 0;
+ out_data.cd_length = SHA1_DIGEST_LEN;
+ out_data.cd_raw.iov_base = (char *)hmacresult;
+ out_data.cd_raw.iov_len = out_data.cd_length;
+
+ /* initialize the context template */
+ ret = crypto_create_ctx_template(&mech, &key, &tmpl, KM_SLEEP);
+ if (ret != CRYPTO_SUCCESS) {
+ ret = EIO;
+ goto error;
+ }
+
+ /* main loop */
+ for (blockptr = 0; blockptr < outputlen; blockptr += SHA1_DIGEST_LEN) {
+
+ /*
+ * for the first iteration, the HMAC key is the user-provided
+ * salt concatenated with the block index (1-indexed)
+ */
+ i = htobe32(1 + (blockptr / SHA1_DIGEST_LEN));
+ memmove(hmac_key, salt, saltlen);
+ memmove(hmac_key + saltlen, (uint8_t *)(&i), sizeof (uint32_t));
+
+ /* block initializes to zeroes (no XOR) */
+ memset(block, 0, SHA1_DIGEST_LEN);
+
+ for (iter = 0; iter < iterations; iter++) {
+ if (iter > 0) {
+ in_data.cd_length = SHA1_DIGEST_LEN;
+ in_data.cd_raw.iov_len = in_data.cd_length;
+ } else {
+ in_data.cd_length = saltlen + sizeof (uint32_t);
+ in_data.cd_raw.iov_len = in_data.cd_length;
+ }
+
+ ret = crypto_mac(&mech, &in_data, &key, tmpl,
+ &out_data, NULL);
+ if (ret != CRYPTO_SUCCESS) {
+ ret = EIO;
+ goto error;
+ }
+
+ /* HMAC key now becomes the output of this iteration */
+ memmove(hmac_key, hmacresult, SHA1_DIGEST_LEN);
+
+ /* XOR this iteration's result with the current block */
+ for (i = 0; i < SHA1_DIGEST_LEN; i++) {
+ block[i] ^= hmacresult[i];
+ }
+ }
+
+ /*
+ * compute length of this block, make sure we don't write
+ * beyond the end of the output, truncating if necessary
+ */
+ if (blockptr + SHA1_DIGEST_LEN > outputlen) {
+ memmove(output + blockptr, block, outputlen - blockptr);
+ } else {
+ memmove(output + blockptr, block, SHA1_DIGEST_LEN);
+ }
+ }
+
+ crypto_destroy_ctx_template(tmpl);
+ free(hmac_key);
+ icp_fini();
+
+ return (0);
+
+error:
+ crypto_destroy_ctx_template(tmpl);
+ if (hmac_key != NULL)
+ free(hmac_key);
+ icp_fini();
+
+ return (ret);
+}
+
+static int
+derive_key(libzfs_handle_t *hdl, zfs_keyformat_t format, uint64_t iters,
+ uint8_t *key_material, size_t key_material_len, uint64_t salt,
+ uint8_t **key_out)
+{
+ int ret;
+ uint8_t *key;
+
+ *key_out = NULL;
+
+ key = zfs_alloc(hdl, WRAPPING_KEY_LEN);
+ if (!key)
+ return (ENOMEM);
+
+ switch (format) {
+ case ZFS_KEYFORMAT_RAW:
+ bcopy(key_material, key, WRAPPING_KEY_LEN);
+ break;
+ case ZFS_KEYFORMAT_HEX:
+ ret = hex_key_to_raw((char *)key_material,
+ WRAPPING_KEY_LEN * 2, key);
+ if (ret != 0) {
+ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
+ "Invalid hex key provided."));
+ goto error;
+ }
+ break;
+ case ZFS_KEYFORMAT_PASSPHRASE:
+ salt = LE_64(salt);
+ ret = pbkdf2(key_material, strlen((char *)key_material),
+ ((uint8_t *)&salt), sizeof (uint64_t), iters,
+ key, WRAPPING_KEY_LEN);
+ if (ret != 0) {
+ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
+ "Failed to generate key from passphrase."));
+ goto error;
+ }
+ break;
+ default:
+ ret = EINVAL;
+ goto error;
+ }
+
+ *key_out = key;
+ return (0);
+
+error:
+ free(key);
+
+ *key_out = NULL;
+ return (ret);
+}
+
+static boolean_t
+encryption_feature_is_enabled(zpool_handle_t *zph)
+{
+ nvlist_t *features;
+ uint64_t feat_refcount;
+
+ /* check that features can be enabled */
+ if (zpool_get_prop_int(zph, ZPOOL_PROP_VERSION, NULL)
+ < SPA_VERSION_FEATURES)
+ return (B_FALSE);
+
+ /* check for crypto feature */
+ features = zpool_get_features(zph);
+ if (!features || nvlist_lookup_uint64(features,
+ spa_feature_table[SPA_FEATURE_ENCRYPTION].fi_guid,
+ &feat_refcount) != 0)
+ return (B_FALSE);
+
+ return (B_TRUE);
+}
+
+static int
+populate_create_encryption_params_nvlists(libzfs_handle_t *hdl,
+ zfs_handle_t *zhp, boolean_t newkey, zfs_keyformat_t keyformat,
+ char *keylocation, nvlist_t *props, uint8_t **wkeydata, uint_t *wkeylen)
+{
+ int ret;
+ uint64_t iters = 0, salt = 0;
+ uint8_t *key_material = NULL;
+ size_t key_material_len = 0;
+ uint8_t *key_data = NULL;
+ const char *fsname = (zhp) ? zfs_get_name(zhp) : NULL;
+
+ /* get key material from keyformat and keylocation */
+ ret = get_key_material(hdl, B_TRUE, newkey, keyformat, keylocation,
+ fsname, &key_material, &key_material_len, NULL);
+ if (ret != 0)
+ goto error;
+
+ /* passphrase formats require a salt and pbkdf2 iters property */
+ if (keyformat == ZFS_KEYFORMAT_PASSPHRASE) {
+ /* always generate a new salt */
+ ret = pkcs11_get_urandom((uint8_t *)&salt, sizeof (uint64_t));
+ if (ret != sizeof (uint64_t)) {
+ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
+ "Failed to generate salt."));
+ goto error;
+ }
+
+ ret = nvlist_add_uint64(props,
+ zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), salt);
+ if (ret != 0) {
+ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
+ "Failed to add salt to properties."));
+ goto error;
+ }
+
+ /*
+ * If not otherwise specified, use the default number of
+ * pbkdf2 iterations. If specified, we have already checked
+ * that the given value is greater than MIN_PBKDF2_ITERATIONS
+ * during zfs_valid_proplist().
+ */
+ ret = nvlist_lookup_uint64(props,
+ zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), &iters);
+ if (ret == ENOENT) {
+ iters = DEFAULT_PBKDF2_ITERATIONS;
+ ret = nvlist_add_uint64(props,
+ zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), iters);
+ if (ret != 0)
+ goto error;
+ } else if (ret != 0) {
+ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
+ "Failed to get pbkdf2 iterations."));
+ goto error;
+ }
+ } else {
+ /* check that pbkdf2iters was not specified by the user */
+ ret = nvlist_lookup_uint64(props,
+ zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), &iters);
+ if (ret == 0) {
+ ret = EINVAL;
+ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
+ "Cannot specify pbkdf2iters with a non-passphrase "
+ "keyformat."));
+ goto error;
+ }
+ }
+
+ /* derive a key from the key material */
+ ret = derive_key(hdl, keyformat, iters, key_material, key_material_len,
+ salt, &key_data);
+ if (ret != 0)
+ goto error;
+
+ free(key_material);
+
+ *wkeydata = key_data;
+ *wkeylen = WRAPPING_KEY_LEN;
+ return (0);
+
+error:
+ if (key_material != NULL)
+ free(key_material);
+ if (key_data != NULL)
+ free(key_data);
+
+ *wkeydata = NULL;
+ *wkeylen = 0;
+ return (ret);
+}
+
+static boolean_t
+proplist_has_encryption_props(nvlist_t *props)
+{
+ int ret;
+ uint64_t intval;
+ char *strval;
+
+ ret = nvlist_lookup_uint64(props,
+ zfs_prop_to_name(ZFS_PROP_ENCRYPTION), &intval);
+ if (ret == 0 && intval != ZIO_CRYPT_OFF)
+ return (B_TRUE);
+
+ ret = nvlist_lookup_string(props,
+ zfs_prop_to_name(ZFS_PROP_KEYLOCATION), &strval);
+ if (ret == 0 && strcmp(strval, "none") != 0)
+ return (B_TRUE);
+
+ ret = nvlist_lookup_uint64(props,
+ zfs_prop_to_name(ZFS_PROP_KEYFORMAT), &intval);
+ if (ret == 0)
+ return (B_TRUE);
+
+ ret = nvlist_lookup_uint64(props,
+ zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), &intval);
+ if (ret == 0)
+ return (B_TRUE);
+
+ return (B_FALSE);
+}
+
+int
+zfs_crypto_get_encryption_root(zfs_handle_t *zhp, boolean_t *is_encroot,
+ char *buf)
+{
+ int ret;
+ char prop_encroot[MAXNAMELEN];
+
+ /* if the dataset isn't encrypted, just return */
+ if (zfs_prop_get_int(zhp, ZFS_PROP_ENCRYPTION) == ZIO_CRYPT_OFF) {
+ *is_encroot = B_FALSE;
+ if (buf != NULL)
+ buf[0] = '\0';
+ return (0);
+ }
+
+ ret = zfs_prop_get(zhp, ZFS_PROP_ENCRYPTION_ROOT, prop_encroot,
+ sizeof (prop_encroot), NULL, NULL, 0, B_TRUE);
+ if (ret != 0) {
+ *is_encroot = B_FALSE;
+ if (buf != NULL)
+ buf[0] = '\0';
+ return (ret);
+ }
+
+ *is_encroot = strcmp(prop_encroot, zfs_get_name(zhp)) == 0;
+ if (buf != NULL)
+ strcpy(buf, prop_encroot);
+
+ return (0);
+}
+
+int
+zfs_crypto_create(libzfs_handle_t *hdl, char *parent_name, nvlist_t *props,
+ nvlist_t *pool_props, uint8_t **wkeydata_out, uint_t *wkeylen_out)
+{
+ int ret;
+ char errbuf[1024];
+ uint64_t crypt = ZIO_CRYPT_INHERIT, pcrypt = ZIO_CRYPT_INHERIT;
+ uint64_t keyformat = ZFS_KEYFORMAT_NONE;
+ char *keylocation = NULL;
+ zfs_handle_t *pzhp = NULL;
+ uint8_t *wkeydata = NULL;
+ uint_t wkeylen = 0;
+ boolean_t local_crypt = B_TRUE;
+
+ (void) snprintf(errbuf, sizeof (errbuf),
+ dgettext(TEXT_DOMAIN, "Encryption create error"));
+
+ /* lookup crypt from props */
+ ret = nvlist_lookup_uint64(props,
+ zfs_prop_to_name(ZFS_PROP_ENCRYPTION), &crypt);
+ if (ret != 0)
+ local_crypt = B_FALSE;
+
+ /* lookup key location and format from props */
+ (void) nvlist_lookup_uint64(props,
+ zfs_prop_to_name(ZFS_PROP_KEYFORMAT), &keyformat);
+ (void) nvlist_lookup_string(props,
+ zfs_prop_to_name(ZFS_PROP_KEYLOCATION), &keylocation);
+
+ if (parent_name != NULL) {
+ /* get a reference to parent dataset */
+ pzhp = make_dataset_handle(hdl, parent_name);
+ if (pzhp == NULL) {
+ ret = ENOENT;
+ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
+ "Failed to lookup parent."));
+ goto out;
+ }
+
+ /* Lookup parent's crypt */
+ pcrypt = zfs_prop_get_int(pzhp, ZFS_PROP_ENCRYPTION);
+
+ /* Params require the encryption feature */
+ if (!encryption_feature_is_enabled(pzhp->zpool_hdl)) {
+ if (proplist_has_encryption_props(props)) {
+ ret = EINVAL;
+ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
+ "Encryption feature not enabled."));
+ goto out;
+ }
+
+ ret = 0;
+ goto out;
+ }
+ } else {
+ /*
+ * special case for root dataset where encryption feature
+ * feature won't be on disk yet
+ */
+ if (!nvlist_exists(pool_props, "feature@encryption")) {
+ if (proplist_has_encryption_props(props)) {
+ ret = EINVAL;
+ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
+ "Encryption feature not enabled."));
+ goto out;
+ }
+
+ ret = 0;
+ goto out;
+ }
+
+ pcrypt = ZIO_CRYPT_OFF;
+ }
+
+ /* Check for encryption being explicitly truned off */
+ if (crypt == ZIO_CRYPT_OFF && pcrypt != ZIO_CRYPT_OFF) {
+ ret = EINVAL;
+ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
+ "Invalid encryption value. Dataset must be encrypted."));
+ goto out;
+ }
+
+ /* Get the inherited encryption property if we don't have it locally */
+ if (!local_crypt)
+ crypt = pcrypt;
+
+ /*
+ * At this point crypt should be the actual encryption value. If
+ * encryption is off just verify that no encryption properties have
+ * been specified and return.
+ */
+ if (crypt == ZIO_CRYPT_OFF) {
+ if (proplist_has_encryption_props(props)) {
+ ret = EINVAL;
+ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
+ "Encryption must be turned on to set encryption "
+ "properties."));
+ goto out;
+ }
+
+ ret = 0;
+ goto out;
+ }
+
+ /*
+ * If we have a parent crypt it is valid to specify encryption alone.
+ * This will result in a child that is encrypted with the chosen
+ * encryption suite that will also inherit the parent's key. If
+ * the parent is not encrypted we need an encryption suite provided.
+ */
+ if (pcrypt == ZIO_CRYPT_OFF && keylocation == NULL &&
+ keyformat == ZFS_KEYFORMAT_NONE) {
+ ret = EINVAL;
+ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
+ "Keyformat required for new encryption root."));
+ goto out;
+ }
+
+ /*
+ * Specifying a keylocation implies this will be a new encryption root.
+ * Check that a keyformat is also specified.
+ */
+ if (keylocation != NULL && keyformat == ZFS_KEYFORMAT_NONE) {
+ ret = EINVAL;
+ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
+ "Keyformat required for new encryption root."));
+ goto out;
+ }
+
+ /* default to prompt if no keylocation is specified */
+ if (keyformat != ZFS_KEYFORMAT_NONE && keylocation == NULL) {
+ keylocation = "prompt";
+ ret = nvlist_add_string(props,
+ zfs_prop_to_name(ZFS_PROP_KEYLOCATION), keylocation);
+ if (ret != 0)
+ goto out;
+ }
+
+ /*
+ * If a local key is provided, this dataset will be a new
+ * encryption root. Populate the encryption params.
+ */
+ if (keylocation != NULL) {
+ ret = populate_create_encryption_params_nvlists(hdl, NULL,
+ B_FALSE, keyformat, keylocation, props, &wkeydata,
+ &wkeylen);
+ if (ret != 0)
+ goto out;
+ }
+
+ if (pzhp != NULL)
+ zfs_close(pzhp);
+
+ *wkeydata_out = wkeydata;
+ *wkeylen_out = wkeylen;
+ return (0);
+
+out:
+ if (pzhp != NULL)
+ zfs_close(pzhp);
+ if (wkeydata != NULL)
+ free(wkeydata);
+
+ *wkeydata_out = NULL;
+ *wkeylen_out = 0;
+ return (ret);
+}
+
+int
+zfs_crypto_clone_check(libzfs_handle_t *hdl, zfs_handle_t *origin_zhp,
+ char *parent_name, nvlist_t *props)
+{
+ int ret;
+ char errbuf[1024];
+ zfs_handle_t *pzhp = NULL;
+ uint64_t pcrypt, ocrypt;
+
+ (void) snprintf(errbuf, sizeof (errbuf),
+ dgettext(TEXT_DOMAIN, "Encryption clone error"));
+
+ /*
+ * No encryption properties should be specified. They will all be
+ * inherited from the origin dataset.
+ */
+ if (nvlist_exists(props, zfs_prop_to_name(ZFS_PROP_KEYFORMAT)) ||
+ nvlist_exists(props, zfs_prop_to_name(ZFS_PROP_KEYLOCATION)) ||
+ nvlist_exists(props, zfs_prop_to_name(ZFS_PROP_ENCRYPTION)) ||
+ nvlist_exists(props, zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS))) {
+ ret = EINVAL;
+ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
+ "Encryption properties must inherit from origin dataset."));
+ goto out;
+ }
+
+ /* get a reference to parent dataset, should never be NULL */
+ pzhp = make_dataset_handle(hdl, parent_name);
+ if (pzhp == NULL) {
+ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
+ "Failed to lookup parent."));
+ return (ENOENT);
+ }
+
+ /* Lookup parent's crypt */
+ pcrypt = zfs_prop_get_int(pzhp, ZFS_PROP_ENCRYPTION);
+ ocrypt = zfs_prop_get_int(origin_zhp, ZFS_PROP_ENCRYPTION);
+
+ /* all children of encrypted parents must be encrypted */
+ if (pcrypt != ZIO_CRYPT_OFF && ocrypt == ZIO_CRYPT_OFF) {
+ ret = EINVAL;
+ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
+ "Cannot create unencrypted clone as a child "
+ "of encrypted parent."));
+ goto out;
+ }
+
+ zfs_close(pzhp);
+ return (0);
+
+out:
+ if (pzhp != NULL)
+ zfs_close(pzhp);
+ return (ret);
+}
+
+typedef struct loadkeys_cbdata {
+ uint64_t cb_numfailed;
+ uint64_t cb_numattempted;
+} loadkey_cbdata_t;
+
+static int
+load_keys_cb(zfs_handle_t *zhp, void *arg)
+{
+ int ret;
+ boolean_t is_encroot;
+ loadkey_cbdata_t *cb = arg;
+ uint64_t keystatus = zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS);
+
+ /* only attempt to load keys for encryption roots */
+ ret = zfs_crypto_get_encryption_root(zhp, &is_encroot, NULL);
+ if (ret != 0 || !is_encroot)
+ goto out;
+
+ /* don't attempt to load already loaded keys */
+ if (keystatus == ZFS_KEYSTATUS_AVAILABLE)
+ goto out;
+
+ /* Attempt to load the key. Record status in cb. */
+ cb->cb_numattempted++;
+
+ ret = zfs_crypto_load_key(zhp, B_FALSE, NULL);
+ if (ret)
+ cb->cb_numfailed++;
+
+out:
+ (void) zfs_iter_filesystems(zhp, load_keys_cb, cb);
+ zfs_close(zhp);
+
+ /* always return 0, since this function is best effort */
+ return (0);
+}
+
+/*
+ * This function is best effort. It attempts to load all the keys for the given
+ * filesystem and all of its children.
+ */
+int
+zfs_crypto_attempt_load_keys(libzfs_handle_t *hdl, char *fsname)
+{
+ int ret;
+ zfs_handle_t *zhp = NULL;
+ loadkey_cbdata_t cb = { 0 };
+
+ zhp = zfs_open(hdl, fsname, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME);
+ if (zhp == NULL) {
+ ret = ENOENT;
+ goto error;
+ }
+
+ ret = load_keys_cb(zfs_handle_dup(zhp), &cb);
+ if (ret)
+ goto error;
+
+ (void) printf(gettext("%llu / %llu keys successfully loaded\n"),
+ (u_longlong_t)(cb.cb_numattempted - cb.cb_numfailed),
+ (u_longlong_t)cb.cb_numattempted);
+
+ if (cb.cb_numfailed != 0) {
+ ret = -1;
+ goto error;
+ }
+
+ zfs_close(zhp);
+ return (0);
+
+error:
+ if (zhp != NULL)
+ zfs_close(zhp);
+ return (ret);
+}
+
+int
+zfs_crypto_load_key(zfs_handle_t *zhp, boolean_t noop, char *alt_keylocation)
+{
+ int ret, attempts = 0;
+ char errbuf[1024];
+ uint64_t keystatus, iters = 0, salt = 0;
+ uint64_t keyformat = ZFS_KEYFORMAT_NONE;
+ char prop_keylocation[MAXNAMELEN];
+ char prop_encroot[MAXNAMELEN];
+ char *keylocation = NULL;
+ uint8_t *key_material = NULL, *key_data = NULL;
+ size_t key_material_len;
+ boolean_t is_encroot, can_retry = B_FALSE, correctible = B_FALSE;
+
+ (void) snprintf(errbuf, sizeof (errbuf),
+ dgettext(TEXT_DOMAIN, "Key load error"));
+
+ /* check that encryption is enabled for the pool */
+ if (!encryption_feature_is_enabled(zhp->zpool_hdl)) {
+ zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
+ "Encryption feature not enabled."));
+ ret = EINVAL;
+ goto error;
+ }
+
+ /* Fetch the keyformat. Check that the dataset is encrypted. */
+ keyformat = zfs_prop_get_int(zhp, ZFS_PROP_KEYFORMAT);
+ if (keyformat == ZFS_KEYFORMAT_NONE) {
+ zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
+ "'%s' is not encrypted."), zfs_get_name(zhp));
+ ret = EINVAL;
+ goto error;
+ }
+
+ /*
+ * Fetch the key location. Check that we are working with an
+ * encryption root.
+ */
+ ret = zfs_crypto_get_encryption_root(zhp, &is_encroot, prop_encroot);
+ if (ret != 0) {
+ zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
+ "Failed to get encryption root for '%s'."),
+ zfs_get_name(zhp));
+ goto error;
+ } else if (!is_encroot) {
+ zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
+ "Keys must be loaded for encryption root of '%s' (%s)."),
+ zfs_get_name(zhp), prop_encroot);
+ ret = EINVAL;
+ goto error;
+ }
+
+ /*
+ * if the caller has elected to override the keylocation property
+ * use that instead
+ */
+ if (alt_keylocation != NULL) {
+ keylocation = alt_keylocation;
+ } else {
+ ret = zfs_prop_get(zhp, ZFS_PROP_KEYLOCATION, prop_keylocation,
+ sizeof (prop_keylocation), NULL, NULL, 0, B_TRUE);
+ if (ret != 0) {
+ zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
+ "Failed to get keylocation for '%s'."),
+ zfs_get_name(zhp));
+ goto error;
+ }
+
+ keylocation = prop_keylocation;
+ }
+
+ /* check that the key is unloaded unless this is a noop */
+ if (!noop) {
+ keystatus = zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS);
+ if (keystatus == ZFS_KEYSTATUS_AVAILABLE) {
+ zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
+ "Key already loaded for '%s'."), zfs_get_name(zhp));
+ ret = EEXIST;
+ goto error;
+ }
+ }
+
+ /* passphrase formats require a salt and pbkdf2_iters property */
+ if (keyformat == ZFS_KEYFORMAT_PASSPHRASE) {
+ salt = zfs_prop_get_int(zhp, ZFS_PROP_PBKDF2_SALT);
+ iters = zfs_prop_get_int(zhp, ZFS_PROP_PBKDF2_ITERS);
+ }
+
+try_again:
+ /* fetching and deriving the key are correctible errors. set the flag */
+ correctible = B_TRUE;
+
+ /* get key material from key format and location */
+ ret = get_key_material(zhp->zfs_hdl, B_FALSE, B_FALSE, keyformat,
+ keylocation, zfs_get_name(zhp), &key_material, &key_material_len,
+ &can_retry);
+ if (ret != 0)
+ goto error;
+
+ /* derive a key from the key material */
+ ret = derive_key(zhp->zfs_hdl, keyformat, iters, key_material,
+ key_material_len, salt, &key_data);
+ if (ret != 0)
+ goto error;
+
+ correctible = B_FALSE;
+
+ /* pass the wrapping key and noop flag to the ioctl */
+ ret = lzc_load_key(zhp->zfs_name, noop, key_data, WRAPPING_KEY_LEN);
+ if (ret != 0) {
+ switch (ret) {
+ case EINVAL:
+ zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
+ "Invalid parameters provided for %s."),
+ zfs_get_name(zhp));
+ break;
+ case EEXIST:
+ zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
+ "Key already loaded for '%s'."), zfs_get_name(zhp));
+ break;
+ case EBUSY:
+ zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
+ "'%s' is busy."), zfs_get_name(zhp));
+ break;
+ case EACCES:
+ correctible = B_TRUE;
+ zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
+ "Incorrect key provided for '%s'."),
+ zfs_get_name(zhp));
+ break;
+ }
+ goto error;
+ }
+
+ free(key_material);
+ free(key_data);
+
+ return (0);
+
+error:
+ zfs_error(zhp->zfs_hdl, EZFS_CRYPTOFAILED, errbuf);
+ if (key_material != NULL)
+ free(key_material);
+ if (key_data != NULL)
+ free(key_data);
+
+ /*
+ * Here we decide if it is ok to allow the user to retry entering their
+ * key. The can_retry flag will be set if the user is entering their
+ * key from an interactive prompt. The correctible flag will only be
+ * set if an error that occured could be corrected by retrying. Both
+ * flags are needed to allow the user to attempt key entry again
+ */
+ if (can_retry && correctible && attempts <= MAX_KEY_PROMPT_ATTEMPTS) {
+ attempts++;
+ goto try_again;
+ }
+
+ return (ret);
+}
+
+int
+zfs_crypto_unload_key(zfs_handle_t *zhp)
+{
+ int ret;
+ char errbuf[1024];
+ char prop_encroot[MAXNAMELEN];
+ uint64_t keystatus, keyformat;
+ boolean_t is_encroot;
+
+ (void) snprintf(errbuf, sizeof (errbuf),
+ dgettext(TEXT_DOMAIN, "Key unload error"));
+
+ /* check that encryption is enabled for the pool */
+ if (!encryption_feature_is_enabled(zhp->zpool_hdl)) {
+ zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
+ "Encryption feature not enabled."));
+ ret = EINVAL;
+ goto error;
+ }
+
+ /* Fetch the keyformat. Check that the dataset is encrypted. */
+ keyformat = zfs_prop_get_int(zhp, ZFS_PROP_KEYFORMAT);
+ if (keyformat == ZFS_KEYFORMAT_NONE) {
+ zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
+ "'%s' is not encrypted."), zfs_get_name(zhp));
+ ret = EINVAL;
+ goto error;
+ }
+
+ /*
+ * Fetch the key location. Check that we are working with an
+ * encryption root.
+ */
+ ret = zfs_crypto_get_encryption_root(zhp, &is_encroot, prop_encroot);
+ if (ret != 0) {
+ zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
+ "Failed to get encryption root for '%s'."),
+ zfs_get_name(zhp));
+ goto error;
+ } else if (!is_encroot) {
+ zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
+ "Keys must be unloaded for encryption root of '%s' (%s)."),
+ zfs_get_name(zhp), prop_encroot);
+ ret = EINVAL;
+ goto error;
+ }
+
+ /* check that the key is loaded */
+ keystatus = zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS);
+ if (keystatus == ZFS_KEYSTATUS_UNAVAILABLE) {
+ zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
+ "Key already unloaded for '%s'."), zfs_get_name(zhp));
+ ret = ENOENT;
+ goto error;
+ }
+
+ /* call the ioctl */
+ ret = lzc_unload_key(zhp->zfs_name);
+
+ if (ret != 0) {
+ switch (ret) {
+ case ENOENT:
+ zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
+ "Key already unloaded for '%s'."),
+ zfs_get_name(zhp));
+ break;
+ case EBUSY:
+ zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
+ "'%s' is busy."), zfs_get_name(zhp));
+ break;
+ }
+ zfs_error(zhp->zfs_hdl, EZFS_CRYPTOFAILED, errbuf);
+ }
+
+ return (ret);
+
+error:
+ zfs_error(zhp->zfs_hdl, EZFS_CRYPTOFAILED, errbuf);
+ return (ret);
+}
+
+static int
+zfs_crypto_verify_rewrap_nvlist(zfs_handle_t *zhp, nvlist_t *props,
+ nvlist_t **props_out, char *errbuf)
+{
+ int ret;
+ nvpair_t *elem = NULL;
+ zfs_prop_t prop;
+ nvlist_t *new_props = NULL;
+
+ new_props = fnvlist_alloc();
+
+ /*
+ * loop through all provided properties, we should only have
+ * keyformat, keylocation and pbkdf2iters. The actual validation of
+ * values is done by zfs_valid_proplist().
+ */
+ while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
+ const char *propname = nvpair_name(elem);
+ prop = zfs_name_to_prop(propname);
+
+ switch (prop) {
+ case ZFS_PROP_PBKDF2_ITERS:
+ case ZFS_PROP_KEYFORMAT:
+ case ZFS_PROP_KEYLOCATION:
+ break;
+ default:
+ ret = EINVAL;
+ zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
+ "Only keyformat, keylocation and pbkdf2iters may "
+ "be set with this command."));
+ goto error;
+ }
+ }
+
+ new_props = zfs_valid_proplist(zhp->zfs_hdl, zhp->zfs_type, props,
+ zfs_prop_get_int(zhp, ZFS_PROP_ZONED), NULL, zhp->zpool_hdl,
+ B_TRUE, errbuf);
+ if (new_props == NULL)
+ goto error;
+
+ *props_out = new_props;
+ return (0);
+
+error:
+ nvlist_free(new_props);
+ *props_out = NULL;
+ return (ret);
+}
+
+int
+zfs_crypto_rewrap(zfs_handle_t *zhp, nvlist_t *raw_props, boolean_t inheritkey)
+{
+ int ret;
+ char errbuf[1024];
+ boolean_t is_encroot;
+ nvlist_t *props = NULL;
+ uint8_t *wkeydata = NULL;
+ uint_t wkeylen = 0;
+ dcp_cmd_t cmd = (inheritkey) ? DCP_CMD_INHERIT : DCP_CMD_NEW_KEY;
+ uint64_t crypt, pcrypt, keystatus, pkeystatus;
+ uint64_t keyformat = ZFS_KEYFORMAT_NONE;
+ zfs_handle_t *pzhp = NULL;
+ char *keylocation = NULL;
+ char origin_name[MAXNAMELEN];
+ char prop_keylocation[MAXNAMELEN];
+ char parent_name[ZFS_MAX_DATASET_NAME_LEN];
+
+ (void) snprintf(errbuf, sizeof (errbuf),
+ dgettext(TEXT_DOMAIN, "Key change error"));
+
+ /* check that encryption is enabled for the pool */
+ if (!encryption_feature_is_enabled(zhp->zpool_hdl)) {
+ zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
+ "Encryption feature not enabled."));
+ ret = EINVAL;
+ goto error;
+ }
+
+ /* get crypt from dataset */
+ crypt = zfs_prop_get_int(zhp, ZFS_PROP_ENCRYPTION);
+ if (crypt == ZIO_CRYPT_OFF) {
+ zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
+ "Dataset not encrypted."));
+ ret = EINVAL;
+ goto error;
+ }
+
+ /* get the encryption root of the dataset */
+ ret = zfs_crypto_get_encryption_root(zhp, &is_encroot, NULL);
+ if (ret != 0) {
+ zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
+ "Failed to get encryption root for '%s'."),
+ zfs_get_name(zhp));
+ goto error;
+ }
+
+ /* Clones use their origin's key and cannot rewrap it */
+ ret = zfs_prop_get(zhp, ZFS_PROP_ORIGIN, origin_name,
+ sizeof (origin_name), NULL, NULL, 0, B_TRUE);
+ if (ret == 0 && strcmp(origin_name, "") != 0) {
+ zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
+ "Keys cannot be changed on clones."));
+ ret = EINVAL;
+ goto error;
+ }
+
+ /*
+ * If the user wants to use the inheritkey variant of this function
+ * we don't need to collect any crypto arguments.
+ */
+ if (!inheritkey) {
+ /* validate the provided properties */
+ ret = zfs_crypto_verify_rewrap_nvlist(zhp, raw_props, &props,
+ errbuf);
+ if (ret != 0)
+ goto error;
+
+ /*
+ * Load keyformat and keylocation from the nvlist. Fetch from
+ * the dataset properties if not specified.
+ */
+ (void) nvlist_lookup_uint64(props,
+ zfs_prop_to_name(ZFS_PROP_KEYFORMAT), &keyformat);
+ (void) nvlist_lookup_string(props,
+ zfs_prop_to_name(ZFS_PROP_KEYLOCATION), &keylocation);
+
+ if (is_encroot) {
+ /*
+ * If this is already an ecryption root, just keep
+ * any properties not set by the user.
+ */
+ if (keyformat == ZFS_KEYFORMAT_NONE) {
+ keyformat = zfs_prop_get_int(zhp,
+ ZFS_PROP_KEYFORMAT);
+ ret = nvlist_add_uint64(props,
+ zfs_prop_to_name(ZFS_PROP_KEYFORMAT),
+ keyformat);
+ }
+
+ if (keylocation == NULL) {
+ ret = zfs_prop_get(zhp, ZFS_PROP_KEYLOCATION,
+ prop_keylocation, sizeof (prop_keylocation),
+ NULL, NULL, 0, B_TRUE);
+ if (ret != 0) {
+ zfs_error_aux(zhp->zfs_hdl,
+ dgettext(TEXT_DOMAIN, "Failed to "
+ "get existing keylocation "
+ "property."));
+ goto error;
+ }
+
+ keylocation = prop_keylocation;
+ }
+ } else {
+ /* need a new key for non-encryption roots */
+ if (keyformat == ZFS_KEYFORMAT_NONE) {
+ ret = EINVAL;
+ zfs_error_aux(zhp->zfs_hdl,
+ dgettext(TEXT_DOMAIN, "Keyformat required "
+ "for new encryption root."));
+ goto error;
+ }
+
+ /* default to prompt if no keylocation is specified */
+ if (keylocation == NULL) {
+ keylocation = "prompt";
+ ret = nvlist_add_string(props,
+ zfs_prop_to_name(ZFS_PROP_KEYLOCATION),
+ keylocation);
+ if (ret != 0)
+ goto error;
+ }
+ }
+
+ /* fetch the new wrapping key and associated properties */
+ ret = populate_create_encryption_params_nvlists(zhp->zfs_hdl,
+ zhp, B_TRUE, keyformat, keylocation, props, &wkeydata,
+ &wkeylen);
+ if (ret != 0)
+ goto error;
+ } else {
+ /* check that zhp is an encryption root */
+ if (!is_encroot) {
+ zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
+ "Key inheritting can only be performed on "
+ "encryption roots."));
+ ret = EINVAL;
+ goto error;
+ }
+
+ /* get the parent's name */
+ ret = zfs_parent_name(zhp, parent_name, sizeof (parent_name));
+ if (ret != 0) {
+ zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
+ "Root dataset cannot inherit key."));
+ ret = EINVAL;
+ goto error;
+ }
+
+ /* get a handle to the parent */
+ pzhp = make_dataset_handle(zhp->zfs_hdl, parent_name);
+ if (pzhp == NULL) {
+ zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
+ "Failed to lookup parent."));
+ ret = ENOENT;
+ goto error;
+ }
+
+ /* parent must be encrypted */
+ pcrypt = zfs_prop_get_int(pzhp, ZFS_PROP_ENCRYPTION);
+ if (pcrypt == ZIO_CRYPT_OFF) {
+ zfs_error_aux(pzhp->zfs_hdl, dgettext(TEXT_DOMAIN,
+ "Parent must be encrypted."));
+ ret = EINVAL;
+ goto error;
+ }
+
+ /* check that the parent's key is loaded */
+ pkeystatus = zfs_prop_get_int(pzhp, ZFS_PROP_KEYSTATUS);
+ if (pkeystatus == ZFS_KEYSTATUS_UNAVAILABLE) {
+ zfs_error_aux(pzhp->zfs_hdl, dgettext(TEXT_DOMAIN,
+ "Parent key must be loaded."));
+ ret = EACCES;
+ goto error;
+ }
+ }
+
+ /* check that the key is loaded */
+ keystatus = zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS);
+ if (keystatus == ZFS_KEYSTATUS_UNAVAILABLE) {
+ zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
+ "Key must be loaded."));
+ ret = EACCES;
+ goto error;
+ }
+
+ /* call the ioctl */
+ ret = lzc_change_key(zhp->zfs_name, cmd, props, wkeydata, wkeylen);
+ if (ret != 0) {
+ switch (ret) {
+ case EINVAL:
+ zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
+ "Invalid properties for key change."));
+ break;
+ case EACCES:
+ zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN,
+ "Key is not currently loaded."));
+ break;
+ }
+ zfs_error(zhp->zfs_hdl, EZFS_CRYPTOFAILED, errbuf);
+ }
+
+ if (pzhp != NULL)
+ zfs_close(pzhp);
+ if (props != NULL)
+ nvlist_free(props);
+ if (wkeydata != NULL)
+ free(wkeydata);
+
+ return (ret);
+
+error:
+ if (pzhp != NULL)
+ zfs_close(pzhp);
+ if (props != NULL)
+ nvlist_free(props);
+ if (wkeydata != NULL)
+ free(wkeydata);
+
+ zfs_error(zhp->zfs_hdl, EZFS_CRYPTOFAILED, errbuf);
+ return (ret);
+}