diff options
author | Brian Atkinson <[email protected]> | 2020-05-20 19:06:09 -0600 |
---|---|---|
committer | GitHub <[email protected]> | 2020-05-20 18:06:09 -0700 |
commit | fb822260b19921985a5312f7306b0ee0e30eb3b0 (patch) | |
tree | 1dacef1716b894d163b41948c28295a941c7708c /module | |
parent | 501a1511aeaaf8f7b50410ef7e64e06647aa8dfb (diff) |
Gang ABD Type
Adding the gang ABD type, which allows for linear and scatter ABDs to
be chained together into a single ABD.
This can be used to avoid doing memory copies to/from ABDs. An example
of this can be found in vdev_queue.c in the vdev_queue_aggregate()
function.
Reviewed-by: Matthew Ahrens <[email protected]>
Reviewed-by: Brian Behlendorf <[email protected]>
Co-authored-by: Brian <[email protected]>
Co-authored-by: Mark Maybee <[email protected]>
Signed-off-by: Brian Atkinson <[email protected]>
Closes #10069
Diffstat (limited to 'module')
-rw-r--r-- | module/os/freebsd/zfs/abd_os.c | 62 | ||||
-rw-r--r-- | module/os/linux/zfs/abd_os.c | 194 | ||||
-rw-r--r-- | module/os/linux/zfs/vdev_disk.c | 50 | ||||
-rw-r--r-- | module/zfs/abd.c | 342 | ||||
-rw-r--r-- | module/zfs/vdev_queue.c | 66 |
5 files changed, 611 insertions, 103 deletions
diff --git a/module/os/freebsd/zfs/abd_os.c b/module/os/freebsd/zfs/abd_os.c index 6b967bc07..e87981815 100644 --- a/module/os/freebsd/zfs/abd_os.c +++ b/module/os/freebsd/zfs/abd_os.c @@ -90,6 +90,15 @@ SYSCTL_ULONG(_vfs_zfs, OID_AUTO, abd_chunk_size, CTLFLAG_RDTUN, kmem_cache_t *abd_chunk_cache; static kstat_t *abd_ksp; +/* + * We use a scattered SPA_MAXBLOCKSIZE sized ABD whose chunks are + * just a single zero'd sized zfs_abd_chunk_size buffer. This + * allows us to conserve memory by only using a single zero buffer + * for the scatter chunks. + */ +abd_t *abd_zero_scatter = NULL; +static char *abd_zero_buf = NULL; + static void abd_free_chunk(void *c) { @@ -193,6 +202,8 @@ abd_alloc_struct(size_t size) abd_u.abd_scatter.abd_chunks[chunkcnt]); abd_t *abd = kmem_alloc(abd_size, KM_PUSHPAGE); ASSERT3P(abd, !=, NULL); + list_link_init(&abd->abd_gang_link); + mutex_init(&abd->abd_mtx, NULL, MUTEX_DEFAULT, NULL); ABDSTAT_INCR(abdstat_struct_size, abd_size); return (abd); @@ -203,10 +214,53 @@ abd_free_struct(abd_t *abd) { size_t chunkcnt = abd_is_linear(abd) ? 0 : abd_scatter_chunkcnt(abd); int size = offsetof(abd_t, abd_u.abd_scatter.abd_chunks[chunkcnt]); + mutex_destroy(&abd->abd_mtx); + ASSERT(!list_link_active(&abd->abd_gang_link)); kmem_free(abd, size); ABDSTAT_INCR(abdstat_struct_size, -size); } +/* + * Allocate scatter ABD of size SPA_MAXBLOCKSIZE, where + * each chunk in the scatterlist will be set to abd_zero_buf. + */ +static void +abd_alloc_zero_scatter(void) +{ + size_t n = abd_chunkcnt_for_bytes(SPA_MAXBLOCKSIZE); + abd_zero_buf = kmem_zalloc(zfs_abd_chunk_size, KM_SLEEP); + abd_zero_scatter = abd_alloc_struct(SPA_MAXBLOCKSIZE); + + abd_zero_scatter->abd_flags = ABD_FLAG_OWNER | ABD_FLAG_ZEROS; + abd_zero_scatter->abd_size = SPA_MAXBLOCKSIZE; + abd_zero_scatter->abd_parent = NULL; + zfs_refcount_create(&abd_zero_scatter->abd_children); + + ABD_SCATTER(abd_zero_scatter).abd_offset = 0; + ABD_SCATTER(abd_zero_scatter).abd_chunk_size = + zfs_abd_chunk_size; + + for (int i = 0; i < n; i++) { + ABD_SCATTER(abd_zero_scatter).abd_chunks[i] = + abd_zero_buf; + } + + ABDSTAT_BUMP(abdstat_scatter_cnt); + ABDSTAT_INCR(abdstat_scatter_data_size, zfs_abd_chunk_size); +} + +static void +abd_free_zero_scatter(void) +{ + zfs_refcount_destroy(&abd_zero_scatter->abd_children); + ABDSTAT_BUMPDOWN(abdstat_scatter_cnt); + ABDSTAT_INCR(abdstat_scatter_data_size, -(int)zfs_abd_chunk_size); + + abd_free_struct(abd_zero_scatter); + abd_zero_scatter = NULL; + kmem_free(abd_zero_buf, zfs_abd_chunk_size); +} + void abd_init(void) { @@ -219,11 +273,15 @@ abd_init(void) abd_ksp->ks_data = &abd_stats; kstat_install(abd_ksp); } + + abd_alloc_zero_scatter(); } void abd_fini(void) { + abd_free_zero_scatter(); + if (abd_ksp != NULL) { kstat_delete(abd_ksp); abd_ksp = NULL; @@ -271,12 +329,13 @@ abd_alloc_scatter_offset_chunkcnt(size_t chunkcnt) abd_u.abd_scatter.abd_chunks[chunkcnt]); abd_t *abd = kmem_alloc(abd_size, KM_PUSHPAGE); ASSERT3P(abd, !=, NULL); + list_link_init(&abd->abd_gang_link); + mutex_init(&abd->abd_mtx, NULL, MUTEX_DEFAULT, NULL); ABDSTAT_INCR(abdstat_struct_size, abd_size); return (abd); } - abd_t * abd_get_offset_scatter(abd_t *sabd, size_t off) { @@ -332,6 +391,7 @@ abd_iter_scatter_chunk_index(struct abd_iter *aiter) void abd_iter_init(struct abd_iter *aiter, abd_t *abd) { + ASSERT(!abd_is_gang(abd)); abd_verify(abd); aiter->iter_abd = abd; aiter->iter_pos = 0; diff --git a/module/os/linux/zfs/abd_os.c b/module/os/linux/zfs/abd_os.c index a8e8f404d..9ad40d69c 100644 --- a/module/os/linux/zfs/abd_os.c +++ b/module/os/linux/zfs/abd_os.c @@ -24,7 +24,7 @@ */ /* - * See abd.c for an general overview of the arc buffered data (ABD). + * See abd.c for a general overview of the arc buffered data (ABD). * * Linear buffers act exactly like normal buffers and are always mapped into the * kernel's virtual memory space, while scattered ABD data chunks are allocated @@ -48,7 +48,7 @@ * * If we are not using HIGHMEM, scattered buffers which have only one chunk * can be treated as linear buffers, because they are contiguous in the - * kernel's virtual address space. See abd_alloc_chunks() for details. + * kernel's virtual address space. See abd_alloc_chunks() for details. */ #include <sys/abd_impl.h> @@ -160,6 +160,13 @@ unsigned zfs_abd_scatter_max_order = MAX_ORDER - 1; */ int zfs_abd_scatter_min_size = 512 * 3; +/* + * We use a scattered SPA_MAXBLOCKSIZE sized ABD whose pages are + * just a single zero'd page. This allows us to conserve memory by + * only using a single zero page for the scatterlist. + */ +abd_t *abd_zero_scatter = NULL; + static kmem_cache_t *abd_cache = NULL; static kstat_t *abd_ksp; @@ -178,6 +185,8 @@ abd_alloc_struct(size_t size) */ abd_t *abd = kmem_cache_alloc(abd_cache, KM_PUSHPAGE); ASSERT3P(abd, !=, NULL); + list_link_init(&abd->abd_gang_link); + mutex_init(&abd->abd_mtx, NULL, MUTEX_DEFAULT, NULL); ABDSTAT_INCR(abdstat_struct_size, sizeof (abd_t)); return (abd); @@ -186,6 +195,8 @@ abd_alloc_struct(size_t size) void abd_free_struct(abd_t *abd) { + mutex_destroy(&abd->abd_mtx); + ASSERT(!list_link_active(&abd->abd_gang_link)); kmem_cache_free(abd_cache, abd); ABDSTAT_INCR(abdstat_struct_size, -(int)sizeof (abd_t)); } @@ -426,14 +437,59 @@ abd_free_chunks(abd_t *abd) abd_free_sg_table(abd); } +/* + * Allocate scatter ABD of size SPA_MAXBLOCKSIZE, where each page in + * the scatterlist will be set to ZERO_PAGE(0). ZERO_PAGE(0) returns + * a global shared page that is always zero'd out. + */ +static void +abd_alloc_zero_scatter(void) +{ + struct scatterlist *sg = NULL; + struct sg_table table; + gfp_t gfp = __GFP_NOWARN | GFP_NOIO; + int nr_pages = abd_chunkcnt_for_bytes(SPA_MAXBLOCKSIZE); + int i = 0; + + while (sg_alloc_table(&table, nr_pages, gfp)) { + ABDSTAT_BUMP(abdstat_scatter_sg_table_retry); + schedule_timeout_interruptible(1); + } + ASSERT3U(table.nents, ==, nr_pages); + + abd_zero_scatter = abd_alloc_struct(SPA_MAXBLOCKSIZE); + abd_zero_scatter->abd_flags = ABD_FLAG_OWNER; + ABD_SCATTER(abd_zero_scatter).abd_offset = 0; + ABD_SCATTER(abd_zero_scatter).abd_sgl = table.sgl; + ABD_SCATTER(abd_zero_scatter).abd_nents = nr_pages; + abd_zero_scatter->abd_size = SPA_MAXBLOCKSIZE; + abd_zero_scatter->abd_parent = NULL; + abd_zero_scatter->abd_flags |= ABD_FLAG_MULTI_CHUNK | ABD_FLAG_ZEROS; + zfs_refcount_create(&abd_zero_scatter->abd_children); + + abd_for_each_sg(abd_zero_scatter, sg, nr_pages, i) { + sg_set_page(sg, ZERO_PAGE(0), PAGESIZE, 0); + } + + ABDSTAT_BUMP(abdstat_scatter_cnt); + ABDSTAT_INCR(abdstat_scatter_data_size, PAGESIZE); + ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk); +} + #else /* _KERNEL */ +struct page; + +/* + * In user space abd_zero_page we will be an allocated zero'd PAGESIZE + * buffer, which is assigned to set each of the pages of abd_zero_scatter. + */ +static struct page *abd_zero_page = NULL; + #ifndef PAGE_SHIFT #define PAGE_SHIFT (highbit64(PAGESIZE)-1) #endif -struct page; - #define zfs_kmap_atomic(chunk, km) ((void *)chunk) #define zfs_kunmap_atomic(addr, km) do { (void)(addr); } while (0) #define local_irq_save(flags) do { (void)(flags); } while (0) @@ -527,6 +583,37 @@ abd_free_chunks(abd_t *abd) abd_free_sg_table(abd); } +static void +abd_alloc_zero_scatter(void) +{ + unsigned nr_pages = abd_chunkcnt_for_bytes(SPA_MAXBLOCKSIZE); + struct scatterlist *sg; + int i; + + abd_zero_page = umem_alloc_aligned(PAGESIZE, 64, KM_SLEEP); + memset(abd_zero_page, 0, PAGESIZE); + abd_zero_scatter = abd_alloc_struct(SPA_MAXBLOCKSIZE); + abd_zero_scatter->abd_flags = ABD_FLAG_OWNER; + abd_zero_scatter->abd_flags |= ABD_FLAG_MULTI_CHUNK | ABD_FLAG_ZEROS; + ABD_SCATTER(abd_zero_scatter).abd_offset = 0; + ABD_SCATTER(abd_zero_scatter).abd_nents = nr_pages; + abd_zero_scatter->abd_size = SPA_MAXBLOCKSIZE; + abd_zero_scatter->abd_parent = NULL; + zfs_refcount_create(&abd_zero_scatter->abd_children); + ABD_SCATTER(abd_zero_scatter).abd_sgl = vmem_alloc(nr_pages * + sizeof (struct scatterlist), KM_SLEEP); + + sg_init_table(ABD_SCATTER(abd_zero_scatter).abd_sgl, nr_pages); + + abd_for_each_sg(abd_zero_scatter, sg, nr_pages, i) { + sg_set_page(sg, abd_zero_page, PAGESIZE, 0); + } + + ABDSTAT_BUMP(abdstat_scatter_cnt); + ABDSTAT_INCR(abdstat_scatter_data_size, PAGESIZE); + ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk); +} + #endif /* _KERNEL */ boolean_t @@ -582,6 +669,22 @@ abd_verify_scatter(abd_t *abd) } } +static void +abd_free_zero_scatter(void) +{ + zfs_refcount_destroy(&abd_zero_scatter->abd_children); + ABDSTAT_BUMPDOWN(abdstat_scatter_cnt); + ABDSTAT_INCR(abdstat_scatter_data_size, -(int)PAGESIZE); + ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_chunk); + + abd_free_sg_table(abd_zero_scatter); + abd_free_struct(abd_zero_scatter); + abd_zero_scatter = NULL; +#if !defined(_KERNEL) + umem_free(abd_zero_page, PAGESIZE); +#endif /* _KERNEL */ +} + void abd_init(void) { @@ -602,11 +705,15 @@ abd_init(void) abd_ksp->ks_data = &abd_stats; kstat_install(abd_ksp); } + + abd_alloc_zero_scatter(); } void abd_fini(void) { + abd_free_zero_scatter(); + if (abd_ksp != NULL) { kstat_delete(abd_ksp); abd_ksp = NULL; @@ -692,6 +799,7 @@ abd_get_offset_scatter(abd_t *sabd, size_t off) void abd_iter_init(struct abd_iter *aiter, abd_t *abd) { + ASSERT(!abd_is_gang(abd)); abd_verify(abd); aiter->iter_abd = abd; aiter->iter_mapaddr = NULL; @@ -813,6 +921,10 @@ abd_nr_pages_off(abd_t *abd, unsigned int size, size_t off) { unsigned long pos; + while (abd_is_gang(abd)) + abd = abd_gang_get_offset(abd, &off); + + ASSERT(!abd_is_gang(abd)); if (abd_is_linear(abd)) pos = (unsigned long)abd_to_buf(abd) + off; else @@ -822,20 +934,88 @@ abd_nr_pages_off(abd_t *abd, unsigned int size, size_t off) (pos >> PAGE_SHIFT); } +static unsigned int +bio_map(struct bio *bio, void *buf_ptr, unsigned int bio_size) +{ + unsigned int offset, size, i; + struct page *page; + + offset = offset_in_page(buf_ptr); + for (i = 0; i < bio->bi_max_vecs; i++) { + size = PAGE_SIZE - offset; + + if (bio_size <= 0) + break; + + if (size > bio_size) + size = bio_size; + + if (is_vmalloc_addr(buf_ptr)) + page = vmalloc_to_page(buf_ptr); + else + page = virt_to_page(buf_ptr); + + /* + * Some network related block device uses tcp_sendpage, which + * doesn't behave well when using 0-count page, this is a + * safety net to catch them. + */ + ASSERT3S(page_count(page), >, 0); + + if (bio_add_page(bio, page, size, offset) != size) + break; + + buf_ptr += size; + bio_size -= size; + offset = 0; + } + + return (bio_size); +} + /* - * bio_map for scatter ABD. + * bio_map for gang ABD. + */ +static unsigned int +abd_gang_bio_map_off(struct bio *bio, abd_t *abd, + unsigned int io_size, size_t off) +{ + ASSERT(abd_is_gang(abd)); + + for (abd_t *cabd = abd_gang_get_offset(abd, &off); + cabd != NULL; + cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) { + ASSERT3U(off, <, cabd->abd_size); + int size = MIN(io_size, cabd->abd_size - off); + int remainder = abd_bio_map_off(bio, cabd, size, off); + io_size -= (size - remainder); + if (io_size == 0 || remainder > 0) + return (io_size); + off = 0; + } + ASSERT0(io_size); + return (io_size); +} + +/* + * bio_map for ABD. * @off is the offset in @abd * Remaining IO size is returned */ unsigned int -abd_scatter_bio_map_off(struct bio *bio, abd_t *abd, +abd_bio_map_off(struct bio *bio, abd_t *abd, unsigned int io_size, size_t off) { int i; struct abd_iter aiter; - ASSERT(!abd_is_linear(abd)); ASSERT3U(io_size, <=, abd->abd_size - off); + if (abd_is_linear(abd)) + return (bio_map(bio, ((char *)abd_to_buf(abd)) + off, io_size)); + + ASSERT(!abd_is_linear(abd)); + if (abd_is_gang(abd)) + return (abd_gang_bio_map_off(bio, abd, io_size, off)); abd_iter_init(&aiter, abd); abd_iter_advance(&aiter, off); diff --git a/module/os/linux/zfs/vdev_disk.c b/module/os/linux/zfs/vdev_disk.c index 66e408c6c..b514df3bc 100644 --- a/module/os/linux/zfs/vdev_disk.c +++ b/module/os/linux/zfs/vdev_disk.c @@ -396,54 +396,6 @@ BIO_END_IO_PROTO(vdev_disk_physio_completion, bio, error) rc = vdev_disk_dio_put(dr); } -static unsigned int -bio_map(struct bio *bio, void *bio_ptr, unsigned int bio_size) -{ - unsigned int offset, size, i; - struct page *page; - - offset = offset_in_page(bio_ptr); - for (i = 0; i < bio->bi_max_vecs; i++) { - size = PAGE_SIZE - offset; - - if (bio_size <= 0) - break; - - if (size > bio_size) - size = bio_size; - - if (is_vmalloc_addr(bio_ptr)) - page = vmalloc_to_page(bio_ptr); - else - page = virt_to_page(bio_ptr); - - /* - * Some network related block device uses tcp_sendpage, which - * doesn't behave well when using 0-count page, this is a - * safety net to catch them. - */ - ASSERT3S(page_count(page), >, 0); - - if (bio_add_page(bio, page, size, offset) != size) - break; - - bio_ptr += size; - bio_size -= size; - offset = 0; - } - - return (bio_size); -} - -static unsigned int -bio_map_abd_off(struct bio *bio, abd_t *abd, unsigned int size, size_t off) -{ - if (abd_is_linear(abd)) - return (bio_map(bio, ((char *)abd_to_buf(abd)) + off, size)); - - return (abd_scatter_bio_map_off(bio, abd, size, off)); -} - static inline void vdev_submit_bio_impl(struct bio *bio) { @@ -603,7 +555,7 @@ retry: bio_set_op_attrs(dr->dr_bio[i], rw, flags); /* Remaining size is returned to become the new size */ - bio_size = bio_map_abd_off(dr->dr_bio[i], zio->io_abd, + bio_size = abd_bio_map_off(dr->dr_bio[i], zio->io_abd, bio_size, abd_offset); /* Advance in buffer and construct another bio if needed */ diff --git a/module/zfs/abd.c b/module/zfs/abd.c index abb5d5f2e..a3e58ebc5 100644 --- a/module/zfs/abd.c +++ b/module/zfs/abd.c @@ -88,6 +88,10 @@ * function which progressively accesses the whole ABD, use the abd_iterate_* * functions. * + * As an additional feature, linear and scatter ABD's can be stitched together + * by using the gang ABD type (abd_alloc_gang_abd()). This allows for + * multiple ABDs to be viewed as a singular ABD. + * * It is possible to make all ABDs linear by setting zfs_abd_scatter_enabled to * B_FALSE. */ @@ -114,6 +118,13 @@ abd_is_linear_page(abd_t *abd) B_TRUE : B_FALSE); } +boolean_t +abd_is_gang(abd_t *abd) +{ + return ((abd->abd_flags & ABD_FLAG_GANG) != 0 ? B_TRUE : + B_FALSE); +} + void abd_verify(abd_t *abd) { @@ -121,11 +132,18 @@ abd_verify(abd_t *abd) ASSERT3U(abd->abd_size, <=, SPA_MAXBLOCKSIZE); ASSERT3U(abd->abd_flags, ==, abd->abd_flags & (ABD_FLAG_LINEAR | ABD_FLAG_OWNER | ABD_FLAG_META | ABD_FLAG_MULTI_ZONE | - ABD_FLAG_MULTI_CHUNK | ABD_FLAG_LINEAR_PAGE)); + ABD_FLAG_MULTI_CHUNK | ABD_FLAG_LINEAR_PAGE | ABD_FLAG_GANG | + ABD_FLAG_GANG_FREE | ABD_FLAG_ZEROS)); IMPLY(abd->abd_parent != NULL, !(abd->abd_flags & ABD_FLAG_OWNER)); IMPLY(abd->abd_flags & ABD_FLAG_META, abd->abd_flags & ABD_FLAG_OWNER); if (abd_is_linear(abd)) { ASSERT3P(ABD_LINEAR_BUF(abd), !=, NULL); + } else if (abd_is_gang(abd)) { + for (abd_t *cabd = list_head(&ABD_GANG(abd).abd_gang_chain); + cabd != NULL; + cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) { + abd_verify(cabd); + } } else { abd_verify_scatter(abd); } @@ -177,6 +195,22 @@ abd_free_scatter(abd_t *abd) abd_free_struct(abd); } +static void +abd_put_gang_abd(abd_t *abd) +{ + ASSERT(abd_is_gang(abd)); + abd_t *cabd; + + while ((cabd = list_remove_head(&ABD_GANG(abd).abd_gang_chain)) + != NULL) { + ASSERT0(cabd->abd_flags & ABD_FLAG_GANG_FREE); + abd->abd_size -= cabd->abd_size; + abd_put(cabd); + } + ASSERT0(abd->abd_size); + list_destroy(&ABD_GANG(abd).abd_gang_chain); +} + /* * Free an ABD allocated from abd_get_offset() or abd_get_from_buf(). Will not * free the underlying scatterlist or buffer. @@ -195,6 +229,9 @@ abd_put(abd_t *abd) abd->abd_size, abd); } + if (abd_is_gang(abd)) + abd_put_gang_abd(abd); + zfs_refcount_destroy(&abd->abd_children); abd_free_struct(abd); } @@ -249,9 +286,31 @@ abd_free_linear(abd_t *abd) abd_free_struct(abd); } +static void +abd_free_gang_abd(abd_t *abd) +{ + ASSERT(abd_is_gang(abd)); + abd_t *cabd; + + while ((cabd = list_remove_head(&ABD_GANG(abd).abd_gang_chain)) + != NULL) { + abd->abd_size -= cabd->abd_size; + if (cabd->abd_flags & ABD_FLAG_GANG_FREE) { + if (cabd->abd_flags & ABD_FLAG_OWNER) + abd_free(cabd); + else + abd_put(cabd); + } + } + ASSERT0(abd->abd_size); + list_destroy(&ABD_GANG(abd).abd_gang_chain); + zfs_refcount_destroy(&abd->abd_children); + abd_free_struct(abd); +} + /* - * Free an ABD. Only use this on ABDs allocated with abd_alloc() or - * abd_alloc_linear(). + * Free an ABD. Only use this on ABDs allocated with abd_alloc(), + * abd_alloc_linear(), or abd_alloc_gang_abd(). */ void abd_free(abd_t *abd) @@ -264,6 +323,8 @@ abd_free(abd_t *abd) ASSERT(abd->abd_flags & ABD_FLAG_OWNER); if (abd_is_linear(abd)) abd_free_linear(abd); + else if (abd_is_gang(abd)) + abd_free_gang_abd(abd); else abd_free_scatter(abd); } @@ -284,6 +345,109 @@ abd_alloc_sametype(abd_t *sabd, size_t size) } } + +/* + * Create gang ABD that will be the head of a list of ABD's. This is used + * to "chain" scatter/gather lists together when constructing aggregated + * IO's. To free this abd, abd_free() must be called. + */ +abd_t * +abd_alloc_gang_abd(void) +{ + abd_t *abd; + + abd = abd_alloc_struct(0); + abd->abd_flags = ABD_FLAG_GANG | ABD_FLAG_OWNER; + abd->abd_size = 0; + abd->abd_parent = NULL; + list_create(&ABD_GANG(abd).abd_gang_chain, + sizeof (abd_t), offsetof(abd_t, abd_gang_link)); + zfs_refcount_create(&abd->abd_children); + return (abd); +} + +/* + * Add a child ABD to a gang ABD's chained list. + */ +void +abd_gang_add(abd_t *pabd, abd_t *cabd, boolean_t free_on_free) +{ + ASSERT(abd_is_gang(pabd)); + abd_t *child_abd = NULL; + + /* + * In order to verify that an ABD is not already part of + * another gang ABD, we must lock the child ABD's abd_mtx + * to check its abd_gang_link status. We unlock the abd_mtx + * only after it is has been added to a gang ABD, which + * will update the abd_gang_link's status. See comment below + * for how an ABD can be in multiple gang ABD's simultaneously. + */ + mutex_enter(&cabd->abd_mtx); + if (list_link_active(&cabd->abd_gang_link)) { + /* + * If the child ABD is already part of another + * gang ABD then we must allocate a new + * ABD to use a seperate link. We mark the newly + * allocated ABD with ABD_FLAG_GANG_FREE, before + * adding it to the gang ABD's list, to make the + * gang ABD aware that it is responsible to call + * abd_put(). We use abd_get_offset() in order + * to just allocate a new ABD but avoid copying the + * data over into the newly allocated ABD. + * + * An ABD may become part of multiple gang ABD's. For + * example, when writting ditto bocks, the same ABD + * is used to write 2 or 3 locations with 2 or 3 + * zio_t's. Each of the zio's may be aggregated with + * different adjacent zio's. zio aggregation uses gang + * zio's, so the single ABD can become part of multiple + * gang zio's. + * + * The ASSERT below is to make sure that if + * free_on_free is passed as B_TRUE, the ABD can + * not be in mulitple gang ABD's. The gang ABD + * can not be responsible for cleaning up the child + * ABD memory allocation if the ABD can be in + * multiple gang ABD's at one time. + */ + ASSERT3B(free_on_free, ==, B_FALSE); + child_abd = abd_get_offset(cabd, 0); + child_abd->abd_flags |= ABD_FLAG_GANG_FREE; + } else { + child_abd = cabd; + if (free_on_free) + child_abd->abd_flags |= ABD_FLAG_GANG_FREE; + } + ASSERT3P(child_abd, !=, NULL); + + list_insert_tail(&ABD_GANG(pabd).abd_gang_chain, child_abd); + mutex_exit(&cabd->abd_mtx); + pabd->abd_size += child_abd->abd_size; +} + +/* + * Locate the ABD for the supplied offset in the gang ABD. + * Return a new offset relative to the returned ABD. + */ +abd_t * +abd_gang_get_offset(abd_t *abd, size_t *off) +{ + abd_t *cabd; + + ASSERT(abd_is_gang(abd)); + ASSERT3U(*off, <, abd->abd_size); + for (cabd = list_head(&ABD_GANG(abd).abd_gang_chain); cabd != NULL; + cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) { + if (*off >= cabd->abd_size) + *off -= cabd->abd_size; + else + return (cabd); + } + VERIFY3P(cabd, !=, NULL); + return (cabd); +} + /* * Allocate a new ABD to point to offset off of sabd. It shares the underlying * buffer data with sabd. Use abd_put() to free. sabd must not be freed while @@ -308,6 +472,21 @@ abd_get_offset_impl(abd_t *sabd, size_t off, size_t size) abd->abd_flags = ABD_FLAG_LINEAR; ABD_LINEAR_BUF(abd) = (char *)ABD_LINEAR_BUF(sabd) + off; + } else if (abd_is_gang(sabd)) { + size_t left = size; + abd = abd_alloc_gang_abd(); + abd->abd_flags &= ~ABD_FLAG_OWNER; + for (abd_t *cabd = abd_gang_get_offset(sabd, &off); + cabd != NULL && left > 0; + cabd = list_next(&ABD_GANG(sabd).abd_gang_chain, cabd)) { + int csize = MIN(left, cabd->abd_size - off); + + abd_t *nabd = abd_get_offset_impl(cabd, off, csize); + abd_gang_add(abd, nabd, B_FALSE); + left -= csize; + off = 0; + } + ASSERT3U(left, ==, 0); } else { abd = abd_get_offset_scatter(sabd, off); } @@ -335,6 +514,18 @@ abd_get_offset_size(abd_t *sabd, size_t off, size_t size) } /* + * Return a size scatter ABD. In order to free the returned + * ABD abd_put() must be called. + */ +abd_t * +abd_get_zeros(size_t size) +{ + ASSERT3P(abd_zero_scatter, !=, NULL); + ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); + return (abd_get_offset_size(abd_zero_scatter, 0, size)); +} + +/* * Allocate a linear ABD structure for buf. You must free this with abd_put() * since the resulting ABD doesn't own its own buffer. */ @@ -477,20 +668,69 @@ abd_take_ownership_of_buf(abd_t *abd, boolean_t is_metadata) abd_update_linear_stats(abd, ABDSTAT_INCR); } +/* + * Initializes an abd_iter based on whether the abd is a gang ABD + * or just a single ABD. + */ +static inline abd_t * +abd_init_abd_iter(abd_t *abd, struct abd_iter *aiter, size_t off) +{ + abd_t *cabd = NULL; + + if (abd_is_gang(abd)) { + cabd = abd_gang_get_offset(abd, &off); + if (cabd) { + abd_iter_init(aiter, cabd); + abd_iter_advance(aiter, off); + } + } else { + abd_iter_init(aiter, abd); + abd_iter_advance(aiter, off); + } + return (cabd); +} + +/* + * Advances an abd_iter. We have to be careful with gang ABD as + * advancing could mean that we are at the end of a particular ABD and + * must grab the ABD in the gang ABD's list. + */ +static inline abd_t * +abd_advance_abd_iter(abd_t *abd, abd_t *cabd, struct abd_iter *aiter, + size_t len) +{ + abd_iter_advance(aiter, len); + if (abd_is_gang(abd) && abd_iter_at_end(aiter)) { + ASSERT3P(cabd, !=, NULL); + cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd); + if (cabd) { + abd_iter_init(aiter, cabd); + abd_iter_advance(aiter, 0); + } + } + return (cabd); +} + int abd_iterate_func(abd_t *abd, size_t off, size_t size, abd_iter_func_t *func, void *private) { int ret = 0; struct abd_iter aiter; + boolean_t abd_multi; + abd_t *c_abd; abd_verify(abd); ASSERT3U(off + size, <=, abd->abd_size); - abd_iter_init(&aiter, abd); - abd_iter_advance(&aiter, off); + abd_multi = abd_is_gang(abd); + c_abd = abd_init_abd_iter(abd, &aiter, off); while (size > 0) { + /* If we are at the end of the gang ABD we are done */ + if (abd_multi && !c_abd) + break; + abd_iter_map(&aiter); size_t len = MIN(aiter.iter_mapsize, size); @@ -504,7 +744,7 @@ abd_iterate_func(abd_t *abd, size_t off, size_t size, break; size -= len; - abd_iter_advance(&aiter, len); + c_abd = abd_advance_abd_iter(abd, c_abd, &aiter, len); } return (ret); @@ -611,6 +851,8 @@ abd_iterate_func2(abd_t *dabd, abd_t *sabd, size_t doff, size_t soff, { int ret = 0; struct abd_iter daiter, saiter; + boolean_t dabd_is_gang_abd, sabd_is_gang_abd; + abd_t *c_dabd, *c_sabd; abd_verify(dabd); abd_verify(sabd); @@ -618,12 +860,17 @@ abd_iterate_func2(abd_t *dabd, abd_t *sabd, size_t doff, size_t soff, ASSERT3U(doff + size, <=, dabd->abd_size); ASSERT3U(soff + size, <=, sabd->abd_size); - abd_iter_init(&daiter, dabd); - abd_iter_init(&saiter, sabd); - abd_iter_advance(&daiter, doff); - abd_iter_advance(&saiter, soff); + dabd_is_gang_abd = abd_is_gang(dabd); + sabd_is_gang_abd = abd_is_gang(sabd); + c_dabd = abd_init_abd_iter(dabd, &daiter, doff); + c_sabd = abd_init_abd_iter(sabd, &saiter, soff); while (size > 0) { + /* if we are at the end of the gang ABD we are done */ + if ((dabd_is_gang_abd && !c_dabd) || + (sabd_is_gang_abd && !c_sabd)) + break; + abd_iter_map(&daiter); abd_iter_map(&saiter); @@ -642,8 +889,10 @@ abd_iterate_func2(abd_t *dabd, abd_t *sabd, size_t doff, size_t soff, break; size -= len; - abd_iter_advance(&daiter, len); - abd_iter_advance(&saiter, len); + c_dabd = + abd_advance_abd_iter(dabd, c_dabd, &daiter, len); + c_sabd = + abd_advance_abd_iter(sabd, c_sabd, &saiter, len); } return (ret); @@ -704,29 +953,46 @@ abd_raidz_gen_iterate(abd_t **cabds, abd_t *dabd, struct abd_iter daiter = {0}; void *caddrs[3]; unsigned long flags __maybe_unused = 0; + abd_t *c_cabds[3]; + abd_t *c_dabd = NULL; + boolean_t cabds_is_gang_abd[3]; + boolean_t dabd_is_gang_abd = B_FALSE; ASSERT3U(parity, <=, 3); - for (i = 0; i < parity; i++) - abd_iter_init(&caiters[i], cabds[i]); + for (i = 0; i < parity; i++) { + cabds_is_gang_abd[i] = abd_is_gang(cabds[i]); + c_cabds[i] = abd_init_abd_iter(cabds[i], &caiters[i], 0); + } - if (dabd) - abd_iter_init(&daiter, dabd); + if (dabd) { + dabd_is_gang_abd = abd_is_gang(dabd); + c_dabd = abd_init_abd_iter(dabd, &daiter, 0); + } ASSERT3S(dsize, >=, 0); abd_enter_critical(flags); while (csize > 0) { - len = csize; - - if (dabd && dsize > 0) - abd_iter_map(&daiter); + /* if we are at the end of the gang ABD we are done */ + if (dabd_is_gang_abd && !c_dabd) + break; for (i = 0; i < parity; i++) { + /* + * If we are at the end of the gang ABD we are + * done. + */ + if (cabds_is_gang_abd[i] && !c_cabds[i]) + break; abd_iter_map(&caiters[i]); caddrs[i] = caiters[i].iter_mapaddr; } + len = csize; + + if (dabd && dsize > 0) + abd_iter_map(&daiter); switch (parity) { case 3: @@ -761,12 +1027,16 @@ abd_raidz_gen_iterate(abd_t **cabds, abd_t *dabd, for (i = parity-1; i >= 0; i--) { abd_iter_unmap(&caiters[i]); - abd_iter_advance(&caiters[i], len); + c_cabds[i] = + abd_advance_abd_iter(cabds[i], c_cabds[i], + &caiters[i], len); } if (dabd && dsize > 0) { abd_iter_unmap(&daiter); - abd_iter_advance(&daiter, dlen); + c_dabd = + abd_advance_abd_iter(dabd, c_dabd, &daiter, + dlen); dsize -= dlen; } @@ -801,18 +1071,34 @@ abd_raidz_rec_iterate(abd_t **cabds, abd_t **tabds, struct abd_iter xiters[3]; void *caddrs[3], *xaddrs[3]; unsigned long flags __maybe_unused = 0; + boolean_t cabds_is_gang_abd[3]; + boolean_t tabds_is_gang_abd[3]; + abd_t *c_cabds[3]; + abd_t *c_tabds[3]; ASSERT3U(parity, <=, 3); for (i = 0; i < parity; i++) { - abd_iter_init(&citers[i], cabds[i]); - abd_iter_init(&xiters[i], tabds[i]); + cabds_is_gang_abd[i] = abd_is_gang(cabds[i]); + tabds_is_gang_abd[i] = abd_is_gang(tabds[i]); + c_cabds[i] = + abd_init_abd_iter(cabds[i], &citers[i], 0); + c_tabds[i] = + abd_init_abd_iter(tabds[i], &xiters[i], 0); } abd_enter_critical(flags); while (tsize > 0) { for (i = 0; i < parity; i++) { + /* + * If we are at the end of the gang ABD we + * are done. + */ + if (cabds_is_gang_abd[i] && !c_cabds[i]) + break; + if (tabds_is_gang_abd[i] && !c_tabds[i]) + break; abd_iter_map(&citers[i]); abd_iter_map(&xiters[i]); caddrs[i] = citers[i].iter_mapaddr; @@ -846,8 +1132,12 @@ abd_raidz_rec_iterate(abd_t **cabds, abd_t **tabds, for (i = parity-1; i >= 0; i--) { abd_iter_unmap(&xiters[i]); abd_iter_unmap(&citers[i]); - abd_iter_advance(&xiters[i], len); - abd_iter_advance(&citers[i], len); + c_tabds[i] = + abd_advance_abd_iter(tabds[i], c_tabds[i], + &xiters[i], len); + c_cabds[i] = + abd_advance_abd_iter(cabds[i], c_cabds[i], + &citers[i], len); } tsize -= len; diff --git a/module/zfs/vdev_queue.c b/module/zfs/vdev_queue.c index e156e2b01..b61ba39d7 100644 --- a/module/zfs/vdev_queue.c +++ b/module/zfs/vdev_queue.c @@ -535,15 +535,6 @@ vdev_queue_pending_remove(vdev_queue_t *vq, zio_t *zio) static void vdev_queue_agg_io_done(zio_t *aio) { - if (aio->io_type == ZIO_TYPE_READ) { - zio_t *pio; - zio_link_t *zl = NULL; - while ((pio = zio_walk_parents(aio, &zl)) != NULL) { - abd_copy_off(pio->io_abd, aio->io_abd, - 0, pio->io_offset - aio->io_offset, pio->io_size); - } - } - abd_free(aio->io_abd); } @@ -556,6 +547,14 @@ vdev_queue_agg_io_done(zio_t *aio) #define IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset) #define IO_GAP(fio, lio) (-IO_SPAN(lio, fio)) +/* + * Sufficiently adjacent io_offset's in ZIOs will be aggregated. We do this + * by creating a gang ABD from the adjacent ZIOs io_abd's. By using + * a gang ABD we avoid doing memory copies to and from the parent, + * child ZIOs. The gang ABD also accounts for gaps between adjacent + * io_offsets by simply getting the zero ABD for writes or allocating + * a new ABD for reads and placing them in the gang ABD as well. + */ static zio_t * vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio) { @@ -568,6 +567,7 @@ vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio) boolean_t stretch = B_FALSE; avl_tree_t *t = vdev_queue_type_tree(vq, zio->io_type); enum zio_flag flags = zio->io_flags & ZIO_FLAG_AGG_INHERIT; + uint64_t next_offset; abd_t *abd; maxblocksize = spa_maxblocksize(vq->vq_vdev->vdev_spa); @@ -695,7 +695,7 @@ vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio) size = IO_SPAN(first, last); ASSERT3U(size, <=, maxblocksize); - abd = abd_alloc_for_io(size, B_TRUE); + abd = abd_alloc_gang_abd(); if (abd == NULL) return (NULL); @@ -706,32 +706,58 @@ vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio) aio->io_timestamp = first->io_timestamp; nio = first; + next_offset = first->io_offset; do { dio = nio; nio = AVL_NEXT(t, dio); zio_add_child(dio, aio); vdev_queue_io_remove(vq, dio); + + if (dio->io_offset != next_offset) { + /* allocate a buffer for a read gap */ + ASSERT3U(dio->io_type, ==, ZIO_TYPE_READ); + ASSERT3U(dio->io_offset, >, next_offset); + abd = abd_alloc_for_io( + dio->io_offset - next_offset, B_TRUE); + abd_gang_add(aio->io_abd, abd, B_TRUE); + } + if (dio->io_abd && + (dio->io_size != abd_get_size(dio->io_abd))) { + /* abd size not the same as IO size */ + ASSERT3U(abd_get_size(dio->io_abd), >, dio->io_size); + abd = abd_get_offset_size(dio->io_abd, 0, dio->io_size); + abd_gang_add(aio->io_abd, abd, B_TRUE); + } else { + if (dio->io_flags & ZIO_FLAG_NODATA) { + /* allocate a buffer for a write gap */ + ASSERT3U(dio->io_type, ==, ZIO_TYPE_WRITE); + ASSERT3P(dio->io_abd, ==, NULL); + abd_gang_add(aio->io_abd, + abd_get_zeros(dio->io_size), B_TRUE); + } else { + /* + * We pass B_FALSE to abd_gang_add() + * because we did not allocate a new + * ABD, so it is assumed the caller + * will free this ABD. + */ + abd_gang_add(aio->io_abd, dio->io_abd, + B_FALSE); + } + } + next_offset = dio->io_offset + dio->io_size; } while (dio != last); + ASSERT3U(abd_get_size(aio->io_abd), ==, aio->io_size); /* * We need to drop the vdev queue's lock during zio_execute() to * avoid a deadlock that we could encounter due to lock order * reversal between vq_lock and io_lock in zio_change_priority(). - * Use the dropped lock to do memory copy without congestion. */ mutex_exit(&vq->vq_lock); while ((dio = zio_walk_parents(aio, &zl)) != NULL) { ASSERT3U(dio->io_type, ==, aio->io_type); - if (dio->io_flags & ZIO_FLAG_NODATA) { - ASSERT3U(dio->io_type, ==, ZIO_TYPE_WRITE); - abd_zero_off(aio->io_abd, - dio->io_offset - aio->io_offset, dio->io_size); - } else if (dio->io_type == ZIO_TYPE_WRITE) { - abd_copy_off(aio->io_abd, dio->io_abd, - dio->io_offset - aio->io_offset, 0, dio->io_size); - } - zio_vdev_io_bypass(dio); zio_execute(dio); } |