summaryrefslogtreecommitdiffstats
path: root/module
diff options
context:
space:
mode:
authorMatthew Ahrens <[email protected]>2016-09-22 09:30:13 -0700
committerBrian Behlendorf <[email protected]>2018-04-14 12:16:17 -0700
commita1d477c24c7badc89c60955995fd84d311938486 (patch)
treed0efeec0908cd74a183e1d1975244c951226c4fb /module
parent4b0f5b2d7b99ca3ed9585173fe4b1c7fedda5aa5 (diff)
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal OpenZFS 9064 - remove_mirror should wait for device removal to complete This project allows top-level vdevs to be removed from the storage pool with "zpool remove", reducing the total amount of storage in the pool. This operation copies all allocated regions of the device to be removed onto other devices, recording the mapping from old to new location. After the removal is complete, read and free operations to the removed (now "indirect") vdev must be remapped and performed at the new location on disk. The indirect mapping table is kept in memory whenever the pool is loaded, so there is minimal performance overhead when doing operations on the indirect vdev. The size of the in-memory mapping table will be reduced when its entries become "obsolete" because they are no longer used by any block pointers in the pool. An entry becomes obsolete when all the blocks that use it are freed. An entry can also become obsolete when all the snapshots that reference it are deleted, and the block pointers that reference it have been "remapped" in all filesystems/zvols (and clones). Whenever an indirect block is written, all the block pointers in it will be "remapped" to their new (concrete) locations if possible. This process can be accelerated by using the "zfs remap" command to proactively rewrite all indirect blocks that reference indirect (removed) vdevs. Note that when a device is removed, we do not verify the checksum of the data that is copied. This makes the process much faster, but if it were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be possible to copy the wrong data, when we have the correct data on e.g. the other side of the mirror. At the moment, only mirrors and simple top-level vdevs can be removed and no removal is allowed if any of the top-level vdevs are raidz. Porting Notes: * Avoid zero-sized kmem_alloc() in vdev_compact_children(). The device evacuation code adds a dependency that vdev_compact_children() be able to properly empty the vdev_child array by setting it to NULL and zeroing vdev_children. Under Linux, kmem_alloc() and related functions return a sentinel pointer rather than NULL for zero-sized allocations. * Remove comment regarding "mpt" driver where zfs_remove_max_segment is initialized to SPA_MAXBLOCKSIZE. Change zfs_condense_indirect_commit_entry_delay_ticks to zfs_condense_indirect_commit_entry_delay_ms for consistency with most other tunables in which delays are specified in ms. * ZTS changes: Use set_tunable rather than mdb Use zpool sync as appropriate Use sync_pool instead of sync Kill jobs during test_removal_with_operation to allow unmount/export Don't add non-disk names such as "mirror" or "raidz" to $DISKS Use $TEST_BASE_DIR instead of /tmp Increase HZ from 100 to 1000 which is more common on Linux removal_multiple_indirection.ksh Reduce iterations in order to not time out on the code coverage builders. removal_resume_export: Functionally, the test case is correct but there exists a race where the kernel thread hasn't been fully started yet and is not visible. Wait for up to 1 second for the removal thread to be started before giving up on it. Also, increase the amount of data copied in order that the removal not finish before the export has a chance to fail. * MMP compatibility, the concept of concrete versus non-concrete devices has slightly changed the semantics of vdev_writeable(). Update mmp_random_leaf_impl() accordingly. * Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool feature which is not supported by OpenZFS. * Added support for new vdev removal tracepoints. * Test cases removal_with_zdb and removal_condense_export have been intentionally disabled. When run manually they pass as intended, but when running in the automated test environment they produce unreliable results on the latest Fedora release. They may work better once the upstream pool import refectoring is merged into ZoL at which point they will be re-enabled. Authored by: Matthew Ahrens <[email protected]> Reviewed-by: Alex Reece <[email protected]> Reviewed-by: George Wilson <[email protected]> Reviewed-by: John Kennedy <[email protected]> Reviewed-by: Prakash Surya <[email protected]> Reviewed by: Richard Laager <[email protected]> Reviewed by: Tim Chase <[email protected]> Reviewed by: Brian Behlendorf <[email protected]> Approved by: Garrett D'Amore <[email protected]> Ported-by: Tim Chase <[email protected]> Signed-off-by: Tim Chase <[email protected]> OpenZFS-issue: https://www.illumos.org/issues/7614 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb Closes #6900
Diffstat (limited to 'module')
-rw-r--r--module/zcommon/zfeature_common.c16
-rw-r--r--module/zcommon/zfs_deleg.c3
-rw-r--r--module/zcommon/zfs_prop.c4
-rw-r--r--module/zfs/Makefile.in4
-rw-r--r--module/zfs/arc.c2
-rw-r--r--module/zfs/bpobj.c28
-rw-r--r--module/zfs/dbuf.c139
-rw-r--r--module/zfs/ddt.c8
-rw-r--r--module/zfs/dmu.c124
-rw-r--r--module/zfs/dmu_objset.c111
-rw-r--r--module/zfs/dmu_tx.c17
-rw-r--r--module/zfs/dmu_zfetch.c10
-rw-r--r--module/zfs/dnode.c3
-rw-r--r--module/zfs/dsl_dataset.c229
-rw-r--r--module/zfs/dsl_deadlist.c17
-rw-r--r--module/zfs/dsl_destroy.c52
-rw-r--r--module/zfs/dsl_dir.c52
-rw-r--r--module/zfs/dsl_pool.c64
-rw-r--r--module/zfs/dsl_scan.c87
-rw-r--r--module/zfs/metaslab.c639
-rw-r--r--module/zfs/mmp.c13
-rw-r--r--module/zfs/range_tree.c41
-rw-r--r--module/zfs/spa.c595
-rw-r--r--module/zfs/spa_config.c11
-rw-r--r--module/zfs/spa_misc.c82
-rw-r--r--module/zfs/space_map.c136
-rw-r--r--module/zfs/space_reftree.c4
-rw-r--r--module/zfs/trace.c1
-rw-r--r--module/zfs/txg.c2
-rw-r--r--module/zfs/vdev.c350
-rw-r--r--module/zfs/vdev_disk.c1
-rw-r--r--module/zfs/vdev_file.c2
-rw-r--r--module/zfs/vdev_indirect.c1064
-rw-r--r--module/zfs/vdev_indirect_births.c226
-rw-r--r--module/zfs/vdev_indirect_mapping.c616
-rw-r--r--module/zfs/vdev_label.c89
-rw-r--r--module/zfs/vdev_mirror.c3
-rw-r--r--module/zfs/vdev_missing.c2
-rw-r--r--module/zfs/vdev_queue.c18
-rw-r--r--module/zfs/vdev_raidz.c1
-rw-r--r--module/zfs/vdev_removal.c1925
-rw-r--r--module/zfs/vdev_root.c3
-rw-r--r--module/zfs/zfs_ioctl.c36
-rw-r--r--module/zfs/zfs_vnops.c12
-rw-r--r--module/zfs/zil.c3
-rw-r--r--module/zfs/zio.c46
46 files changed, 6145 insertions, 746 deletions
diff --git a/module/zcommon/zfeature_common.c b/module/zcommon/zfeature_common.c
index 36d0d9613..6ab3abe11 100644
--- a/module/zcommon/zfeature_common.c
+++ b/module/zcommon/zfeature_common.c
@@ -299,6 +299,22 @@ zpool_feature_init(void)
"Edon-R hash algorithm.",
ZFEATURE_FLAG_PER_DATASET, edonr_deps);
}
+ zfeature_register(SPA_FEATURE_DEVICE_REMOVAL,
+ "com.delphix:device_removal", "device_removal",
+ "Top-level vdevs can be removed, reducing logical pool size.",
+ ZFEATURE_FLAG_MOS, NULL);
+ {
+ static const spa_feature_t obsolete_counts_deps[] = {
+ SPA_FEATURE_EXTENSIBLE_DATASET,
+ SPA_FEATURE_DEVICE_REMOVAL,
+ SPA_FEATURE_NONE
+ };
+ zfeature_register(SPA_FEATURE_OBSOLETE_COUNTS,
+ "com.delphix:obsolete_counts", "obsolete_counts",
+ "Reduce memory used by removed devices when their blocks are "
+ "freed or remapped.",
+ ZFEATURE_FLAG_READONLY_COMPAT, obsolete_counts_deps);
+ }
{
static const spa_feature_t userobj_accounting_deps[] = {
SPA_FEATURE_EXTENSIBLE_DATASET,
diff --git a/module/zcommon/zfs_deleg.c b/module/zcommon/zfs_deleg.c
index 3a51bc49a..c6ba278cf 100644
--- a/module/zcommon/zfs_deleg.c
+++ b/module/zcommon/zfs_deleg.c
@@ -21,7 +21,7 @@
/*
* Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright 2010 Nexenta Systems, Inc. All rights reserved.
- * Copyright (c) 2013 by Delphix. All rights reserved.
+ * Copyright (c) 2013, 2015 by Delphix. All rights reserved.
* Copyright 2016 Igor Kozhukhov <[email protected]>
*/
@@ -53,6 +53,7 @@ zfs_deleg_perm_tab_t zfs_deleg_perm_tab[] = {
{ZFS_DELEG_PERM_MOUNT},
{ZFS_DELEG_PERM_PROMOTE},
{ZFS_DELEG_PERM_RECEIVE},
+ {ZFS_DELEG_PERM_REMAP},
{ZFS_DELEG_PERM_RENAME},
{ZFS_DELEG_PERM_ROLLBACK},
{ZFS_DELEG_PERM_SNAPSHOT},
diff --git a/module/zcommon/zfs_prop.c b/module/zcommon/zfs_prop.c
index 0d44fd139..34b7228ec 100644
--- a/module/zcommon/zfs_prop.c
+++ b/module/zcommon/zfs_prop.c
@@ -20,7 +20,7 @@
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
- * Copyright (c) 2011, 2016 by Delphix. All rights reserved.
+ * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
* Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
* Copyright 2016, Joyent, Inc.
*/
@@ -508,6 +508,8 @@ zfs_prop_init(void)
ZFS_TYPE_DATASET | ZFS_TYPE_BOOKMARK, "<uint64>", "GUID");
zprop_register_number(ZFS_PROP_CREATETXG, "createtxg", 0, PROP_READONLY,
ZFS_TYPE_DATASET | ZFS_TYPE_BOOKMARK, "<uint64>", "CREATETXG");
+ zprop_register_hidden(ZFS_PROP_REMAPTXG, "remaptxg", PROP_TYPE_NUMBER,
+ PROP_READONLY, ZFS_TYPE_DATASET, "REMAPTXG");
zprop_register_number(ZFS_PROP_PBKDF2_ITERS, "pbkdf2iters",
0, PROP_ONETIME_DEFAULT, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME,
"<iters>", "PBKDF2ITERS");
diff --git a/module/zfs/Makefile.in b/module/zfs/Makefile.in
index fe0d5b523..fefb29654 100644
--- a/module/zfs/Makefile.in
+++ b/module/zfs/Makefile.in
@@ -81,6 +81,9 @@ $(MODULE)-objs += vdev.o
$(MODULE)-objs += vdev_cache.o
$(MODULE)-objs += vdev_disk.o
$(MODULE)-objs += vdev_file.o
+$(MODULE)-objs += vdev_indirect.o
+$(MODULE)-objs += vdev_indirect_births.o
+$(MODULE)-objs += vdev_indirect_mapping.o
$(MODULE)-objs += vdev_label.o
$(MODULE)-objs += vdev_mirror.o
$(MODULE)-objs += vdev_missing.o
@@ -88,6 +91,7 @@ $(MODULE)-objs += vdev_queue.o
$(MODULE)-objs += vdev_raidz.o
$(MODULE)-objs += vdev_raidz_math.o
$(MODULE)-objs += vdev_raidz_math_scalar.o
+$(MODULE)-objs += vdev_removal.o
$(MODULE)-objs += vdev_root.o
$(MODULE)-objs += zap.o
$(MODULE)-objs += zap_leaf.o
diff --git a/module/zfs/arc.c b/module/zfs/arc.c
index d73d6ffcc..040e94365 100644
--- a/module/zfs/arc.c
+++ b/module/zfs/arc.c
@@ -6227,7 +6227,7 @@ top:
devw = hdr->b_l2hdr.b_dev->l2ad_writing;
addr = hdr->b_l2hdr.b_daddr;
/*
- * Lock out device removal.
+ * Lock out L2ARC device removal.
*/
if (vdev_is_dead(vd) ||
!spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
diff --git a/module/zfs/bpobj.c b/module/zfs/bpobj.c
index 1708eb710..66ab84df5 100644
--- a/module/zfs/bpobj.c
+++ b/module/zfs/bpobj.c
@@ -175,6 +175,12 @@ bpobj_open(bpobj_t *bpo, objset_t *os, uint64_t object)
return (0);
}
+boolean_t
+bpobj_is_open(const bpobj_t *bpo)
+{
+ return (bpo->bpo_object != 0);
+}
+
void
bpobj_close(bpobj_t *bpo)
{
@@ -193,11 +199,11 @@ bpobj_close(bpobj_t *bpo)
mutex_destroy(&bpo->bpo_lock);
}
-static boolean_t
-bpobj_hasentries(bpobj_t *bpo)
+boolean_t
+bpobj_is_empty(bpobj_t *bpo)
{
- return (bpo->bpo_phys->bpo_num_blkptrs != 0 ||
- (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_num_subobjs != 0));
+ return (bpo->bpo_phys->bpo_num_blkptrs == 0 &&
+ (!bpo->bpo_havesubobj || bpo->bpo_phys->bpo_num_subobjs == 0));
}
static int
@@ -210,11 +216,9 @@ bpobj_iterate_impl(bpobj_t *bpo, bpobj_itor_t func, void *arg, dmu_tx_t *tx,
int err = 0;
dmu_buf_t *dbuf = NULL;
+ ASSERT(bpobj_is_open(bpo));
mutex_enter(&bpo->bpo_lock);
- if (!bpobj_hasentries(bpo))
- goto out;
-
if (free)
dmu_buf_will_dirty(bpo->bpo_dbuf, tx);
@@ -344,7 +348,7 @@ bpobj_iterate_impl(bpobj_t *bpo, bpobj_itor_t func, void *arg, dmu_tx_t *tx,
out:
/* If there are no entries, there should be no bytes. */
- if (!bpobj_hasentries(bpo)) {
+ if (bpobj_is_empty(bpo)) {
ASSERT0(bpo->bpo_phys->bpo_bytes);
ASSERT0(bpo->bpo_phys->bpo_comp);
ASSERT0(bpo->bpo_phys->bpo_uncomp);
@@ -379,6 +383,8 @@ bpobj_enqueue_subobj(bpobj_t *bpo, uint64_t subobj, dmu_tx_t *tx)
bpobj_t subbpo;
uint64_t used, comp, uncomp, subsubobjs;
+ ASSERT(bpobj_is_open(bpo));
+ ASSERT(subobj != 0);
ASSERT(bpo->bpo_havesubobj);
ASSERT(bpo->bpo_havecomp);
ASSERT(bpo->bpo_object != dmu_objset_pool(bpo->bpo_os)->dp_empty_bpobj);
@@ -391,7 +397,7 @@ bpobj_enqueue_subobj(bpobj_t *bpo, uint64_t subobj, dmu_tx_t *tx)
VERIFY3U(0, ==, bpobj_open(&subbpo, bpo->bpo_os, subobj));
VERIFY3U(0, ==, bpobj_space(&subbpo, &used, &comp, &uncomp));
- if (!bpobj_hasentries(&subbpo)) {
+ if (bpobj_is_empty(&subbpo)) {
/* No point in having an empty subobj. */
bpobj_close(&subbpo);
bpobj_free(bpo->bpo_os, subobj, tx);
@@ -465,6 +471,7 @@ bpobj_enqueue(bpobj_t *bpo, const blkptr_t *bp, dmu_tx_t *tx)
int blkoff;
blkptr_t *bparray;
+ ASSERT(bpobj_is_open(bpo));
ASSERT(!BP_IS_HOLE(bp));
ASSERT(bpo->bpo_object != dmu_objset_pool(bpo->bpo_os)->dp_empty_bpobj);
@@ -550,6 +557,7 @@ space_range_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
int
bpobj_space(bpobj_t *bpo, uint64_t *usedp, uint64_t *compp, uint64_t *uncompp)
{
+ ASSERT(bpobj_is_open(bpo));
mutex_enter(&bpo->bpo_lock);
*usedp = bpo->bpo_phys->bpo_bytes;
@@ -576,6 +584,8 @@ bpobj_space_range(bpobj_t *bpo, uint64_t mintxg, uint64_t maxtxg,
struct space_range_arg sra = { 0 };
int err;
+ ASSERT(bpobj_is_open(bpo));
+
/*
* As an optimization, if they want the whole txg range, just
* get bpo_bytes rather than iterating over the bps.
diff --git a/module/zfs/dbuf.c b/module/zfs/dbuf.c
index 1a6e560d2..b0ae6cc72 100644
--- a/module/zfs/dbuf.c
+++ b/module/zfs/dbuf.c
@@ -47,6 +47,7 @@
#include <sys/trace_dbuf.h>
#include <sys/callb.h>
#include <sys/abd.h>
+#include <sys/vdev.h>
kstat_t *dbuf_ksp;
@@ -3530,6 +3531,7 @@ dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
db->db_data_pending = dr;
mutex_exit(&db->db_mtx);
+
dbuf_write(dr, db->db_buf, tx);
zio = dr->dr_zio;
@@ -4054,6 +4056,142 @@ dbuf_write_override_done(zio_t *zio)
abd_put(zio->io_abd);
}
+typedef struct dbuf_remap_impl_callback_arg {
+ objset_t *drica_os;
+ uint64_t drica_blk_birth;
+ dmu_tx_t *drica_tx;
+} dbuf_remap_impl_callback_arg_t;
+
+static void
+dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size,
+ void *arg)
+{
+ dbuf_remap_impl_callback_arg_t *drica = arg;
+ objset_t *os = drica->drica_os;
+ spa_t *spa = dmu_objset_spa(os);
+ dmu_tx_t *tx = drica->drica_tx;
+
+ ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
+
+ if (os == spa_meta_objset(spa)) {
+ spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx);
+ } else {
+ dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset,
+ size, drica->drica_blk_birth, tx);
+ }
+}
+
+static void
+dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, dmu_tx_t *tx)
+{
+ blkptr_t bp_copy = *bp;
+ spa_t *spa = dmu_objset_spa(dn->dn_objset);
+ dbuf_remap_impl_callback_arg_t drica;
+
+ ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
+
+ drica.drica_os = dn->dn_objset;
+ drica.drica_blk_birth = bp->blk_birth;
+ drica.drica_tx = tx;
+ if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback,
+ &drica)) {
+ /*
+ * The struct_rwlock prevents dbuf_read_impl() from
+ * dereferencing the BP while we are changing it. To
+ * avoid lock contention, only grab it when we are actually
+ * changing the BP.
+ */
+ rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
+ *bp = bp_copy;
+ rw_exit(&dn->dn_struct_rwlock);
+ }
+}
+
+/*
+ * Returns true if a dbuf_remap would modify the dbuf. We do this by attempting
+ * to remap a copy of every bp in the dbuf.
+ */
+boolean_t
+dbuf_can_remap(const dmu_buf_impl_t *db)
+{
+ spa_t *spa = dmu_objset_spa(db->db_objset);
+ blkptr_t *bp = db->db.db_data;
+ boolean_t ret = B_FALSE;
+
+ ASSERT3U(db->db_level, >, 0);
+ ASSERT3S(db->db_state, ==, DB_CACHED);
+
+ ASSERT(spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
+
+ spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
+ for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) {
+ blkptr_t bp_copy = bp[i];
+ if (spa_remap_blkptr(spa, &bp_copy, NULL, NULL)) {
+ ret = B_TRUE;
+ break;
+ }
+ }
+ spa_config_exit(spa, SCL_VDEV, FTAG);
+
+ return (ret);
+}
+
+boolean_t
+dnode_needs_remap(const dnode_t *dn)
+{
+ spa_t *spa = dmu_objset_spa(dn->dn_objset);
+ boolean_t ret = B_FALSE;
+
+ if (dn->dn_phys->dn_nlevels == 0) {
+ return (B_FALSE);
+ }
+
+ ASSERT(spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
+
+ spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
+ for (int j = 0; j < dn->dn_phys->dn_nblkptr; j++) {
+ blkptr_t bp_copy = dn->dn_phys->dn_blkptr[j];
+ if (spa_remap_blkptr(spa, &bp_copy, NULL, NULL)) {
+ ret = B_TRUE;
+ break;
+ }
+ }
+ spa_config_exit(spa, SCL_VDEV, FTAG);
+
+ return (ret);
+}
+
+/*
+ * Remap any existing BP's to concrete vdevs, if possible.
+ */
+static void
+dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx)
+{
+ spa_t *spa = dmu_objset_spa(db->db_objset);
+ ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
+
+ if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL))
+ return;
+
+ if (db->db_level > 0) {
+ blkptr_t *bp = db->db.db_data;
+ for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) {
+ dbuf_remap_impl(dn, &bp[i], tx);
+ }
+ } else if (db->db.db_object == DMU_META_DNODE_OBJECT) {
+ dnode_phys_t *dnp = db->db.db_data;
+ ASSERT3U(db->db_dnode_handle->dnh_dnode->dn_type, ==,
+ DMU_OT_DNODE);
+ for (int i = 0; i < db->db.db_size >> DNODE_SHIFT;
+ i += dnp[i].dn_extra_slots + 1) {
+ for (int j = 0; j < dnp[i].dn_nblkptr; j++) {
+ dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], tx);
+ }
+ }
+ }
+}
+
+
/* Issue I/O to commit a dirty buffer to disk. */
static void
dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
@@ -4087,6 +4225,7 @@ dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
} else {
dbuf_release_bp(db);
}
+ dbuf_remap(dn, db, tx);
}
}
diff --git a/module/zfs/ddt.c b/module/zfs/ddt.c
index 24516834f..681033d71 100644
--- a/module/zfs/ddt.c
+++ b/module/zfs/ddt.c
@@ -760,15 +760,15 @@ ddt_lookup(ddt_t *ddt, const blkptr_t *bp, boolean_t add)
for (type = 0; type < DDT_TYPES; type++) {
for (class = 0; class < DDT_CLASSES; class++) {
error = ddt_object_lookup(ddt, type, class, dde);
- if (error != ENOENT)
+ if (error != ENOENT) {
+ ASSERT0(error);
break;
+ }
}
if (error != ENOENT)
break;
}
- ASSERT(error == 0 || error == ENOENT);
-
ddt_enter(ddt);
ASSERT(dde->dde_loaded == B_FALSE);
@@ -1181,7 +1181,7 @@ ddt_sync(spa_t *spa, uint64_t txg)
tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
rio = zio_root(spa, NULL, NULL,
- ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
+ ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SELF_HEAL);
/*
* This function may cause an immediate scan of ddt blocks (see
diff --git a/module/zfs/dmu.c b/module/zfs/dmu.c
index 64c898198..0352393dc 100644
--- a/module/zfs/dmu.c
+++ b/module/zfs/dmu.c
@@ -73,6 +73,13 @@ unsigned long zfs_per_txg_dirty_frees_percent = 30;
*/
int zfs_dmu_offset_next_sync = 0;
+/*
+ * This can be used for testing, to ensure that certain actions happen
+ * while in the middle of a remap (which might otherwise complete too
+ * quickly).
+ */
+int zfs_object_remap_one_indirect_delay_ticks = 0;
+
const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
{ DMU_BSWAP_UINT8, TRUE, FALSE, "unallocated" },
{ DMU_BSWAP_ZAP, TRUE, FALSE, "object directory" },
@@ -1114,6 +1121,123 @@ dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size,
dmu_buf_rele_array(dbp, numbufs, FTAG);
}
+static int
+dmu_object_remap_one_indirect(objset_t *os, dnode_t *dn,
+ uint64_t last_removal_txg, uint64_t offset)
+{
+ uint64_t l1blkid = dbuf_whichblock(dn, 1, offset);
+ int err = 0;
+
+ rw_enter(&dn->dn_struct_rwlock, RW_READER);
+ dmu_buf_impl_t *dbuf = dbuf_hold_level(dn, 1, l1blkid, FTAG);
+ ASSERT3P(dbuf, !=, NULL);
+
+ /*
+ * If the block hasn't been written yet, this default will ensure
+ * we don't try to remap it.
+ */
+ uint64_t birth = UINT64_MAX;
+ ASSERT3U(last_removal_txg, !=, UINT64_MAX);
+ if (dbuf->db_blkptr != NULL)
+ birth = dbuf->db_blkptr->blk_birth;
+ rw_exit(&dn->dn_struct_rwlock);
+
+ /*
+ * If this L1 was already written after the last removal, then we've
+ * already tried to remap it.
+ */
+ if (birth <= last_removal_txg &&
+ dbuf_read(dbuf, NULL, DB_RF_MUST_SUCCEED) == 0 &&
+ dbuf_can_remap(dbuf)) {
+ dmu_tx_t *tx = dmu_tx_create(os);
+ dmu_tx_hold_remap_l1indirect(tx, dn->dn_object);
+ err = dmu_tx_assign(tx, TXG_WAIT);
+ if (err == 0) {
+ (void) dbuf_dirty(dbuf, tx);
+ dmu_tx_commit(tx);
+ } else {
+ dmu_tx_abort(tx);
+ }
+ }
+
+ dbuf_rele(dbuf, FTAG);
+
+ delay(zfs_object_remap_one_indirect_delay_ticks);
+
+ return (err);
+}
+
+/*
+ * Remap all blockpointers in the object, if possible, so that they reference
+ * only concrete vdevs.
+ *
+ * To do this, iterate over the L0 blockpointers and remap any that reference
+ * an indirect vdev. Note that we only examine L0 blockpointers; since we
+ * cannot guarantee that we can remap all blockpointer anyways (due to split
+ * blocks), we do not want to make the code unnecessarily complicated to
+ * catch the unlikely case that there is an L1 block on an indirect vdev that
+ * contains no indirect blockpointers.
+ */
+int
+dmu_object_remap_indirects(objset_t *os, uint64_t object,
+ uint64_t last_removal_txg)
+{
+ uint64_t offset, l1span;
+ int err;
+ dnode_t *dn;
+
+ err = dnode_hold(os, object, FTAG, &dn);
+ if (err != 0) {
+ return (err);
+ }
+
+ if (dn->dn_nlevels <= 1) {
+ if (issig(JUSTLOOKING) && issig(FORREAL)) {
+ err = SET_ERROR(EINTR);
+ }
+
+ /*
+ * If the dnode has no indirect blocks, we cannot dirty them.
+ * We still want to remap the blkptr(s) in the dnode if
+ * appropriate, so mark it as dirty.
+ */
+ if (err == 0 && dnode_needs_remap(dn)) {
+ dmu_tx_t *tx = dmu_tx_create(os);
+ dmu_tx_hold_bonus(tx, dn->dn_object);
+ if ((err = dmu_tx_assign(tx, TXG_WAIT)) == 0) {
+ dnode_setdirty(dn, tx);
+ dmu_tx_commit(tx);
+ } else {
+ dmu_tx_abort(tx);
+ }
+ }
+
+ dnode_rele(dn, FTAG);
+ return (err);
+ }
+
+ offset = 0;
+ l1span = 1ULL << (dn->dn_indblkshift - SPA_BLKPTRSHIFT +
+ dn->dn_datablkshift);
+ /*
+ * Find the next L1 indirect that is not a hole.
+ */
+ while (dnode_next_offset(dn, 0, &offset, 2, 1, 0) == 0) {
+ if (issig(JUSTLOOKING) && issig(FORREAL)) {
+ err = SET_ERROR(EINTR);
+ break;
+ }
+ if ((err = dmu_object_remap_one_indirect(os, dn,
+ last_removal_txg, offset)) != 0) {
+ break;
+ }
+ offset += l1span;
+ }
+
+ dnode_rele(dn, FTAG);
+ return (err);
+}
+
void
dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
dmu_tx_t *tx)
diff --git a/module/zfs/dmu_objset.c b/module/zfs/dmu_objset.c
index a0982f6ec..a44f485b7 100644
--- a/module/zfs/dmu_objset.c
+++ b/module/zfs/dmu_objset.c
@@ -55,6 +55,7 @@
#include <sys/zfs_onexit.h>
#include <sys/dsl_destroy.h>
#include <sys/vdev.h>
+#include <sys/zfeature.h>
#include <sys/policy.h>
#include <sys/spa_impl.h>
#include <sys/dmu_send.h>
@@ -383,6 +384,10 @@ dnode_multilist_index_func(multilist_t *ml, void *obj)
multilist_get_num_sublists(ml));
}
+/*
+ * Instantiates the objset_t in-memory structure corresponding to the
+ * objset_phys_t that's pointed to by the specified blkptr_t.
+ */
int
dmu_objset_open_impl(spa_t *spa, dsl_dataset_t *ds, blkptr_t *bp,
objset_t **osp)
@@ -392,6 +397,17 @@ dmu_objset_open_impl(spa_t *spa, dsl_dataset_t *ds, blkptr_t *bp,
ASSERT(ds == NULL || MUTEX_HELD(&ds->ds_opening_lock));
+ /*
+ * The $ORIGIN dataset (if it exists) doesn't have an associated
+ * objset, so there's no reason to open it. The $ORIGIN dataset
+ * will not exist on pools older than SPA_VERSION_ORIGIN.
+ */
+ if (ds != NULL && spa_get_dsl(spa) != NULL &&
+ spa_get_dsl(spa)->dp_origin_snap != NULL) {
+ ASSERT3P(ds->ds_dir, !=,
+ spa_get_dsl(spa)->dp_origin_snap->ds_dir);
+ }
+
os = kmem_zalloc(sizeof (objset_t), KM_SLEEP);
os->os_dsl_dataset = ds;
os->os_spa = spa;
@@ -1321,6 +1337,101 @@ dmu_objset_clone(const char *clone, const char *origin)
6, ZFS_SPACE_CHECK_NORMAL));
}
+static int
+dmu_objset_remap_indirects_impl(objset_t *os, uint64_t last_removed_txg)
+{
+ int error = 0;
+ uint64_t object = 0;
+ while ((error = dmu_object_next(os, &object, B_FALSE, 0)) == 0) {
+ error = dmu_object_remap_indirects(os, object,
+ last_removed_txg);
+ /*
+ * If the ZPL removed the object before we managed to dnode_hold
+ * it, we would get an ENOENT. If the ZPL declares its intent
+ * to remove the object (dnode_free) before we manage to
+ * dnode_hold it, we would get an EEXIST. In either case, we
+ * want to continue remapping the other objects in the objset;
+ * in all other cases, we want to break early.
+ */
+ if (error != 0 && error != ENOENT && error != EEXIST) {
+ break;
+ }
+ }
+ if (error == ESRCH) {
+ error = 0;
+ }
+ return (error);
+}
+
+int
+dmu_objset_remap_indirects(const char *fsname)
+{
+ int error = 0;
+ objset_t *os = NULL;
+ uint64_t last_removed_txg;
+ uint64_t remap_start_txg;
+ dsl_dir_t *dd;
+
+ error = dmu_objset_hold(fsname, FTAG, &os);
+ if (error != 0) {
+ return (error);
+ }
+ dd = dmu_objset_ds(os)->ds_dir;
+
+ if (!spa_feature_is_enabled(dmu_objset_spa(os),
+ SPA_FEATURE_OBSOLETE_COUNTS)) {
+ dmu_objset_rele(os, FTAG);
+ return (SET_ERROR(ENOTSUP));
+ }
+
+ if (dsl_dataset_is_snapshot(dmu_objset_ds(os))) {
+ dmu_objset_rele(os, FTAG);
+ return (SET_ERROR(EINVAL));
+ }
+
+ /*
+ * If there has not been a removal, we're done.
+ */
+ last_removed_txg = spa_get_last_removal_txg(dmu_objset_spa(os));
+ if (last_removed_txg == -1ULL) {
+ dmu_objset_rele(os, FTAG);
+ return (0);
+ }
+
+ /*
+ * If we have remapped since the last removal, we're done.
+ */
+ if (dsl_dir_is_zapified(dd)) {
+ uint64_t last_remap_txg;
+ if (zap_lookup(spa_meta_objset(dmu_objset_spa(os)),
+ dd->dd_object, DD_FIELD_LAST_REMAP_TXG,
+ sizeof (last_remap_txg), 1, &last_remap_txg) == 0 &&
+ last_remap_txg > last_removed_txg) {
+ dmu_objset_rele(os, FTAG);
+ return (0);
+ }
+ }
+
+ dsl_dataset_long_hold(dmu_objset_ds(os), FTAG);
+ dsl_pool_rele(dmu_objset_pool(os), FTAG);
+
+ remap_start_txg = spa_last_synced_txg(dmu_objset_spa(os));
+ error = dmu_objset_remap_indirects_impl(os, last_removed_txg);
+ if (error == 0) {
+ /*
+ * We update the last_remap_txg to be the start txg so that
+ * we can guarantee that every block older than last_remap_txg
+ * that can be remapped has been remapped.
+ */
+ error = dsl_dir_update_last_remap_txg(dd, remap_start_txg);
+ }
+
+ dsl_dataset_long_rele(dmu_objset_ds(os), FTAG);
+ dsl_dataset_rele(dmu_objset_ds(os), FTAG);
+
+ return (error);
+}
+
int
dmu_objset_snapshot_one(const char *fsname, const char *snapname)
{
diff --git a/module/zfs/dmu_tx.c b/module/zfs/dmu_tx.c
index f72859ba1..861769b40 100644
--- a/module/zfs/dmu_tx.c
+++ b/module/zfs/dmu_tx.c
@@ -316,6 +316,23 @@ dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len)
}
void
+dmu_tx_hold_remap_l1indirect(dmu_tx_t *tx, uint64_t object)
+{
+ dmu_tx_hold_t *txh;
+
+ ASSERT(tx->tx_txg == 0);
+ txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
+ object, THT_WRITE, 0, 0);
+ if (txh == NULL)
+ return;
+
+ dnode_t *dn = txh->txh_dnode;
+ (void) refcount_add_many(&txh->txh_space_towrite,
+ 1ULL << dn->dn_indblkshift, FTAG);
+ dmu_tx_count_dnode(txh);
+}
+
+void
dmu_tx_hold_write_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, int len)
{
dmu_tx_hold_t *txh;
diff --git a/module/zfs/dmu_zfetch.c b/module/zfs/dmu_zfetch.c
index a2bf80993..e22560ed1 100644
--- a/module/zfs/dmu_zfetch.c
+++ b/module/zfs/dmu_zfetch.c
@@ -213,9 +213,19 @@ dmu_zfetch(zfetch_t *zf, uint64_t blkid, uint64_t nblks, boolean_t fetch_data)
int epbs, max_dist_blks, pf_nblks, ipf_nblks;
uint64_t end_of_access_blkid;
end_of_access_blkid = blkid + nblks;
+ spa_t *spa = zf->zf_dnode->dn_objset->os_spa;
if (zfs_prefetch_disable)
return;
+ /*
+ * If we haven't yet loaded the indirect vdevs' mappings, we
+ * can only read from blocks that we carefully ensure are on
+ * concrete vdevs (or previously-loaded indirect vdevs). So we
+ * can't allow the predictive prefetcher to attempt reads of other
+ * blocks (e.g. of the MOS's dnode obejct).
+ */
+ if (!spa_indirect_vdevs_loaded(spa))
+ return;
/*
* As a fast path for small (single-block) files, ignore access
diff --git a/module/zfs/dnode.c b/module/zfs/dnode.c
index a379527a0..80d5f33d9 100644
--- a/module/zfs/dnode.c
+++ b/module/zfs/dnode.c
@@ -2077,8 +2077,7 @@ done:
{
int txgoff = tx->tx_txg & TXG_MASK;
if (dn->dn_free_ranges[txgoff] == NULL) {
- dn->dn_free_ranges[txgoff] =
- range_tree_create(NULL, NULL, &dn->dn_mtx);
+ dn->dn_free_ranges[txgoff] = range_tree_create(NULL, NULL);
}
range_tree_clear(dn->dn_free_ranges[txgoff], blkid, nblks);
range_tree_add(dn->dn_free_ranges[txgoff], blkid, nblks);
diff --git a/module/zfs/dsl_dataset.c b/module/zfs/dsl_dataset.c
index 40c2df1e7..9823f3183 100644
--- a/module/zfs/dsl_dataset.c
+++ b/module/zfs/dsl_dataset.c
@@ -46,6 +46,7 @@
#include <sys/zfs_context.h>
#include <sys/zfs_ioctl.h>
#include <sys/spa.h>
+#include <sys/vdev.h>
#include <sys/zfs_znode.h>
#include <sys/zfs_onexit.h>
#include <sys/zvol.h>
@@ -82,6 +83,11 @@ int zfs_max_recordsize = 1 * 1024 * 1024;
extern inline dsl_dataset_phys_t *dsl_dataset_phys(dsl_dataset_t *ds);
+static void dsl_dataset_set_remap_deadlist_object(dsl_dataset_t *ds,
+ uint64_t obj, dmu_tx_t *tx);
+static void dsl_dataset_unset_remap_deadlist_object(dsl_dataset_t *ds,
+ dmu_tx_t *tx);
+
extern int spa_asize_inflation;
static zil_header_t zero_zil;
@@ -157,6 +163,47 @@ dsl_dataset_block_born(dsl_dataset_t *ds, const blkptr_t *bp, dmu_tx_t *tx)
DD_USED_REFRSRV, DD_USED_HEAD, tx);
}
+/*
+ * Called when the specified segment has been remapped, and is thus no
+ * longer referenced in the head dataset. The vdev must be indirect.
+ *
+ * If the segment is referenced by a snapshot, put it on the remap deadlist.
+ * Otherwise, add this segment to the obsolete spacemap.
+ */
+void
+dsl_dataset_block_remapped(dsl_dataset_t *ds, uint64_t vdev, uint64_t offset,
+ uint64_t size, uint64_t birth, dmu_tx_t *tx)
+{
+ spa_t *spa = ds->ds_dir->dd_pool->dp_spa;
+
+ ASSERT(dmu_tx_is_syncing(tx));
+ ASSERT(birth <= tx->tx_txg);
+ ASSERT(!ds->ds_is_snapshot);
+
+ if (birth > dsl_dataset_phys(ds)->ds_prev_snap_txg) {
+ spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx);
+ } else {
+ blkptr_t fakebp;
+ dva_t *dva = &fakebp.blk_dva[0];
+
+ ASSERT(ds != NULL);
+
+ mutex_enter(&ds->ds_remap_deadlist_lock);
+ if (!dsl_dataset_remap_deadlist_exists(ds)) {
+ dsl_dataset_create_remap_deadlist(ds, tx);
+ }
+ mutex_exit(&ds->ds_remap_deadlist_lock);
+
+ BP_ZERO(&fakebp);
+ fakebp.blk_birth = birth;
+ DVA_SET_VDEV(dva, vdev);
+ DVA_SET_OFFSET(dva, offset);
+ DVA_SET_ASIZE(dva, size);
+
+ dsl_deadlist_insert(&ds->ds_remap_deadlist, &fakebp, tx);
+ }
+}
+
int
dsl_dataset_block_kill(dsl_dataset_t *ds, const blkptr_t *bp, dmu_tx_t *tx,
boolean_t async)
@@ -275,8 +322,10 @@ dsl_dataset_evict_async(void *dbu)
}
bplist_destroy(&ds->ds_pending_deadlist);
- if (ds->ds_deadlist.dl_os != NULL)
+ if (dsl_deadlist_is_open(&ds->ds_deadlist))
dsl_deadlist_close(&ds->ds_deadlist);
+ if (dsl_deadlist_is_open(&ds->ds_remap_deadlist))
+ dsl_deadlist_close(&ds->ds_remap_deadlist);
if (ds->ds_dir)
dsl_dir_async_rele(ds->ds_dir, ds);
@@ -286,6 +335,7 @@ dsl_dataset_evict_async(void *dbu)
mutex_destroy(&ds->ds_lock);
mutex_destroy(&ds->ds_opening_lock);
mutex_destroy(&ds->ds_sendstream_lock);
+ mutex_destroy(&ds->ds_remap_deadlist_lock);
refcount_destroy(&ds->ds_longholds);
rrw_destroy(&ds->ds_bp_rwlock);
@@ -417,15 +467,23 @@ dsl_dataset_hold_obj_flags(dsl_pool_t *dp, uint64_t dsobj,
ds->ds_is_snapshot = dsl_dataset_phys(ds)->ds_num_children != 0;
list_link_init(&ds->ds_synced_link);
+ err = dsl_dir_hold_obj(dp, dsl_dataset_phys(ds)->ds_dir_obj,
+ NULL, ds, &ds->ds_dir);
+ if (err != 0) {
+ kmem_free(ds, sizeof (dsl_dataset_t));
+ dmu_buf_rele(dbuf, tag);
+ return (err);
+ }
+
mutex_init(&ds->ds_lock, NULL, MUTEX_DEFAULT, NULL);
mutex_init(&ds->ds_opening_lock, NULL, MUTEX_DEFAULT, NULL);
mutex_init(&ds->ds_sendstream_lock, NULL, MUTEX_DEFAULT, NULL);
+ mutex_init(&ds->ds_remap_deadlist_lock,
+ NULL, MUTEX_DEFAULT, NULL);
rrw_init(&ds->ds_bp_rwlock, B_FALSE);
refcount_create(&ds->ds_longholds);
bplist_create(&ds->ds_pending_deadlist);
- dsl_deadlist_open(&ds->ds_deadlist,
- mos, dsl_dataset_phys(ds)->ds_deadlist_obj);
list_create(&ds->ds_sendstreams, sizeof (dmu_sendarg_t),
offsetof(dmu_sendarg_t, dsa_link));
@@ -451,20 +509,6 @@ dsl_dataset_hold_obj_flags(dsl_pool_t *dp, uint64_t dsobj,
}
}
- err = dsl_dir_hold_obj(dp,
- dsl_dataset_phys(ds)->ds_dir_obj, NULL, ds, &ds->ds_dir);
- if (err != 0) {
- mutex_destroy(&ds->ds_lock);
- mutex_destroy(&ds->ds_opening_lock);
- mutex_destroy(&ds->ds_sendstream_lock);
- refcount_destroy(&ds->ds_longholds);
- bplist_destroy(&ds->ds_pending_deadlist);
- dsl_deadlist_close(&ds->ds_deadlist);
- kmem_free(ds, sizeof (dsl_dataset_t));
- dmu_buf_rele(dbuf, tag);
- return (err);
- }
-
if (!ds->ds_is_snapshot) {
ds->ds_snapname[0] = '\0';
if (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
@@ -505,6 +549,15 @@ dsl_dataset_hold_obj_flags(dsl_pool_t *dp, uint64_t dsobj,
ds->ds_reserved = ds->ds_quota = 0;
}
+ dsl_deadlist_open(&ds->ds_deadlist,
+ mos, dsl_dataset_phys(ds)->ds_deadlist_obj);
+ uint64_t remap_deadlist_obj =
+ dsl_dataset_get_remap_deadlist_object(ds);
+ if (remap_deadlist_obj != 0) {
+ dsl_deadlist_open(&ds->ds_remap_deadlist, mos,
+ remap_deadlist_obj);
+ }
+
dmu_buf_init_user(&ds->ds_dbu, dsl_dataset_evict_sync,
dsl_dataset_evict_async, &ds->ds_dbuf);
if (err == 0)
@@ -513,6 +566,8 @@ dsl_dataset_hold_obj_flags(dsl_pool_t *dp, uint64_t dsobj,
if (err != 0 || winner != NULL) {
bplist_destroy(&ds->ds_pending_deadlist);
dsl_deadlist_close(&ds->ds_deadlist);
+ if (dsl_deadlist_is_open(&ds->ds_remap_deadlist))
+ dsl_deadlist_close(&ds->ds_remap_deadlist);
if (ds->ds_prev)
dsl_dataset_rele(ds->ds_prev, ds);
dsl_dir_rele(ds->ds_dir, ds);
@@ -1457,10 +1512,27 @@ dsl_dataset_snapshot_sync_impl(dsl_dataset_t *ds, const char *snapname,
dsl_deadlist_add_key(&ds->ds_deadlist,
dsl_dataset_phys(ds)->ds_prev_snap_txg, tx);
+ if (dsl_dataset_remap_deadlist_exists(ds)) {
+ uint64_t remap_deadlist_obj =
+ dsl_dataset_get_remap_deadlist_object(ds);
+ /*
+ * Move the remap_deadlist to the snapshot. The head
+ * will create a new remap deadlist on demand, from
+ * dsl_dataset_block_remapped().
+ */
+ dsl_dataset_unset_remap_deadlist_object(ds, tx);
+ dsl_deadlist_close(&ds->ds_remap_deadlist);
+
+ dmu_object_zapify(mos, dsobj, DMU_OT_DSL_DATASET, tx);
+ VERIFY0(zap_add(mos, dsobj, DS_FIELD_REMAP_DEADLIST,
+ sizeof (remap_deadlist_obj), 1, &remap_deadlist_obj, tx));
+ }
+
ASSERT3U(dsl_dataset_phys(ds)->ds_prev_snap_txg, <, tx->tx_txg);
dsl_dataset_phys(ds)->ds_prev_snap_obj = dsobj;
dsl_dataset_phys(ds)->ds_prev_snap_txg = crtxg;
dsl_dataset_phys(ds)->ds_unique_bytes = 0;
+
if (spa_version(dp->dp_spa) >= SPA_VERSION_UNIQUE_ACCURATE)
dsl_dataset_phys(ds)->ds_flags |= DS_FLAG_UNIQUE_ACCURATE;
@@ -3365,6 +3437,41 @@ dsl_dataset_clone_swap_check_impl(dsl_dataset_t *clone,
return (0);
}
+static void
+dsl_dataset_swap_remap_deadlists(dsl_dataset_t *clone,
+ dsl_dataset_t *origin, dmu_tx_t *tx)
+{
+ uint64_t clone_remap_dl_obj, origin_remap_dl_obj;
+ dsl_pool_t *dp = dmu_tx_pool(tx);
+
+ ASSERT(dsl_pool_sync_context(dp));
+
+ clone_remap_dl_obj = dsl_dataset_get_remap_deadlist_object(clone);
+ origin_remap_dl_obj = dsl_dataset_get_remap_deadlist_object(origin);
+
+ if (clone_remap_dl_obj != 0) {
+ dsl_deadlist_close(&clone->ds_remap_deadlist);
+ dsl_dataset_unset_remap_deadlist_object(clone, tx);
+ }
+ if (origin_remap_dl_obj != 0) {
+ dsl_deadlist_close(&origin->ds_remap_deadlist);
+ dsl_dataset_unset_remap_deadlist_object(origin, tx);
+ }
+
+ if (clone_remap_dl_obj != 0) {
+ dsl_dataset_set_remap_deadlist_object(origin,
+ clone_remap_dl_obj, tx);
+ dsl_deadlist_open(&origin->ds_remap_deadlist,
+ dp->dp_meta_objset, clone_remap_dl_obj);
+ }
+ if (origin_remap_dl_obj != 0) {
+ dsl_dataset_set_remap_deadlist_object(clone,
+ origin_remap_dl_obj, tx);
+ dsl_deadlist_open(&clone->ds_remap_deadlist,
+ dp->dp_meta_objset, origin_remap_dl_obj);
+ }
+}
+
void
dsl_dataset_clone_swap_sync_impl(dsl_dataset_t *clone,
dsl_dataset_t *origin_head, dmu_tx_t *tx)
@@ -3534,6 +3641,7 @@ dsl_dataset_clone_swap_sync_impl(dsl_dataset_t *clone,
dsl_dataset_phys(clone)->ds_deadlist_obj);
dsl_deadlist_open(&origin_head->ds_deadlist, dp->dp_meta_objset,
dsl_dataset_phys(origin_head)->ds_deadlist_obj);
+ dsl_dataset_swap_remap_deadlists(clone, origin_head, tx);
dsl_scan_ds_clone_swapped(origin_head, clone, tx);
@@ -4042,6 +4150,93 @@ dsl_dataset_has_resume_receive_state(dsl_dataset_t *ds)
ds->ds_object, DS_FIELD_RESUME_TOGUID) == 0);
}
+uint64_t
+dsl_dataset_get_remap_deadlist_object(dsl_dataset_t *ds)
+{
+ uint64_t remap_deadlist_obj;
+ int err;
+
+ if (!dsl_dataset_is_zapified(ds))
+ return (0);
+
+ err = zap_lookup(ds->ds_dir->dd_pool->dp_meta_objset, ds->ds_object,
+ DS_FIELD_REMAP_DEADLIST, sizeof (remap_deadlist_obj), 1,
+ &remap_deadlist_obj);
+
+ if (err != 0) {
+ VERIFY3S(err, ==, ENOENT);
+ return (0);
+ }
+
+ ASSERT(remap_deadlist_obj != 0);
+ return (remap_deadlist_obj);
+}
+
+boolean_t
+dsl_dataset_remap_deadlist_exists(dsl_dataset_t *ds)
+{
+ EQUIV(dsl_deadlist_is_open(&ds->ds_remap_deadlist),
+ dsl_dataset_get_remap_deadlist_object(ds) != 0);
+ return (dsl_deadlist_is_open(&ds->ds_remap_deadlist));
+}
+
+static void
+dsl_dataset_set_remap_deadlist_object(dsl_dataset_t *ds, uint64_t obj,
+ dmu_tx_t *tx)
+{
+ ASSERT(obj != 0);
+ dsl_dataset_zapify(ds, tx);
+ VERIFY0(zap_add(ds->ds_dir->dd_pool->dp_meta_objset, ds->ds_object,
+ DS_FIELD_REMAP_DEADLIST, sizeof (obj), 1, &obj, tx));
+}
+
+static void
+dsl_dataset_unset_remap_deadlist_object(dsl_dataset_t *ds, dmu_tx_t *tx)
+{
+ VERIFY0(zap_remove(ds->ds_dir->dd_pool->dp_meta_objset,
+ ds->ds_object, DS_FIELD_REMAP_DEADLIST, tx));
+}
+
+void
+dsl_dataset_destroy_remap_deadlist(dsl_dataset_t *ds, dmu_tx_t *tx)
+{
+ uint64_t remap_deadlist_object;
+ spa_t *spa = ds->ds_dir->dd_pool->dp_spa;
+
+ ASSERT(dmu_tx_is_syncing(tx));
+ ASSERT(dsl_dataset_remap_deadlist_exists(ds));
+
+ remap_deadlist_object = ds->ds_remap_deadlist.dl_object;
+ dsl_deadlist_close(&ds->ds_remap_deadlist);
+ dsl_deadlist_free(spa_meta_objset(spa), remap_deadlist_object, tx);
+ dsl_dataset_unset_remap_deadlist_object(ds, tx);
+ spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
+}
+
+void
+dsl_dataset_create_remap_deadlist(dsl_dataset_t *ds, dmu_tx_t *tx)
+{
+ uint64_t remap_deadlist_obj;
+ spa_t *spa = ds->ds_dir->dd_pool->dp_spa;
+
+ ASSERT(dmu_tx_is_syncing(tx));
+ ASSERT(MUTEX_HELD(&ds->ds_remap_deadlist_lock));
+ /*
+ * Currently we only create remap deadlists when there are indirect
+ * vdevs with referenced mappings.
+ */
+ ASSERT(spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
+
+ remap_deadlist_obj = dsl_deadlist_clone(
+ &ds->ds_deadlist, UINT64_MAX,
+ dsl_dataset_phys(ds)->ds_prev_snap_obj, tx);
+ dsl_dataset_set_remap_deadlist_object(ds,
+ remap_deadlist_obj, tx);
+ dsl_deadlist_open(&ds->ds_remap_deadlist, spa_meta_objset(spa),
+ remap_deadlist_obj);
+ spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
+}
+
#if defined(_KERNEL) && defined(HAVE_SPL)
#if defined(_LP64)
module_param(zfs_max_recordsize, int, 0644);
diff --git a/module/zfs/dsl_deadlist.c b/module/zfs/dsl_deadlist.c
index 0be0d7420..10846a324 100644
--- a/module/zfs/dsl_deadlist.c
+++ b/module/zfs/dsl_deadlist.c
@@ -93,6 +93,8 @@ dsl_deadlist_open(dsl_deadlist_t *dl, objset_t *os, uint64_t object)
{
dmu_object_info_t doi;
+ ASSERT(!dsl_deadlist_is_open(dl));
+
mutex_init(&dl->dl_lock, NULL, MUTEX_DEFAULT, NULL);
dl->dl_os = os;
dl->dl_object = object;
@@ -111,18 +113,26 @@ dsl_deadlist_open(dsl_deadlist_t *dl, objset_t *os, uint64_t object)
dl->dl_havetree = B_FALSE;
}
+boolean_t
+dsl_deadlist_is_open(dsl_deadlist_t *dl)
+{
+ return (dl->dl_os != NULL);
+}
+
void
dsl_deadlist_close(dsl_deadlist_t *dl)
{
void *cookie = NULL;
dsl_deadlist_entry_t *dle;
- dl->dl_os = NULL;
+ ASSERT(dsl_deadlist_is_open(dl));
mutex_destroy(&dl->dl_lock);
if (dl->dl_oldfmt) {
dl->dl_oldfmt = B_FALSE;
bpobj_close(&dl->dl_bpobj);
+ dl->dl_os = NULL;
+ dl->dl_object = 0;
return;
}
@@ -137,6 +147,8 @@ dsl_deadlist_close(dsl_deadlist_t *dl)
dmu_buf_rele(dl->dl_dbuf, dl);
dl->dl_dbuf = NULL;
dl->dl_phys = NULL;
+ dl->dl_os = NULL;
+ dl->dl_object = 0;
}
uint64_t
@@ -311,7 +323,7 @@ static void
dsl_deadlist_regenerate(objset_t *os, uint64_t dlobj,
uint64_t mrs_obj, dmu_tx_t *tx)
{
- dsl_deadlist_t dl;
+ dsl_deadlist_t dl = { 0 };
dsl_pool_t *dp = dmu_objset_pool(os);
dsl_deadlist_open(&dl, os, dlobj);
@@ -367,6 +379,7 @@ void
dsl_deadlist_space(dsl_deadlist_t *dl,
uint64_t *usedp, uint64_t *compp, uint64_t *uncompp)
{
+ ASSERT(dsl_deadlist_is_open(dl));
if (dl->dl_oldfmt) {
VERIFY3U(0, ==, bpobj_space(&dl->dl_bpobj,
usedp, compp, uncompp));
diff --git a/module/zfs/dsl_destroy.c b/module/zfs/dsl_destroy.c
index d0fcacaed..e11508c90 100644
--- a/module/zfs/dsl_destroy.c
+++ b/module/zfs/dsl_destroy.c
@@ -209,6 +209,10 @@ dsl_dataset_remove_clones_key(dsl_dataset_t *ds, uint64_t mintxg, dmu_tx_t *tx)
if (clone->ds_dir->dd_origin_txg > mintxg) {
dsl_deadlist_remove_key(&clone->ds_deadlist,
mintxg, tx);
+ if (dsl_dataset_remap_deadlist_exists(clone)) {
+ dsl_deadlist_remove_key(
+ &clone->ds_remap_deadlist, mintxg, tx);
+ }
dsl_dataset_remove_clones_key(clone, mintxg, tx);
}
dsl_dataset_rele(clone, FTAG);
@@ -219,6 +223,39 @@ dsl_dataset_remove_clones_key(dsl_dataset_t *ds, uint64_t mintxg, dmu_tx_t *tx)
kmem_free(zc, sizeof (zap_cursor_t));
}
+static void
+dsl_destroy_snapshot_handle_remaps(dsl_dataset_t *ds, dsl_dataset_t *ds_next,
+ dmu_tx_t *tx)
+{
+ dsl_pool_t *dp = ds->ds_dir->dd_pool;
+
+ /* Move blocks to be obsoleted to pool's obsolete list. */
+ if (dsl_dataset_remap_deadlist_exists(ds_next)) {
+ if (!bpobj_is_open(&dp->dp_obsolete_bpobj))
+ dsl_pool_create_obsolete_bpobj(dp, tx);
+
+ dsl_deadlist_move_bpobj(&ds_next->ds_remap_deadlist,
+ &dp->dp_obsolete_bpobj,
+ dsl_dataset_phys(ds)->ds_prev_snap_txg, tx);
+ }
+
+ /* Merge our deadlist into next's and free it. */
+ if (dsl_dataset_remap_deadlist_exists(ds)) {
+ uint64_t remap_deadlist_object =
+ dsl_dataset_get_remap_deadlist_object(ds);
+ ASSERT(remap_deadlist_object != 0);
+
+ mutex_enter(&ds_next->ds_remap_deadlist_lock);
+ if (!dsl_dataset_remap_deadlist_exists(ds_next))
+ dsl_dataset_create_remap_deadlist(ds_next, tx);
+ mutex_exit(&ds_next->ds_remap_deadlist_lock);
+
+ dsl_deadlist_merge(&ds_next->ds_remap_deadlist,
+ remap_deadlist_object, tx);
+ dsl_dataset_destroy_remap_deadlist(ds, tx);
+ }
+}
+
void
dsl_destroy_snapshot_sync_impl(dsl_dataset_t *ds, boolean_t defer, dmu_tx_t *tx)
{
@@ -333,11 +370,14 @@ dsl_destroy_snapshot_sync_impl(dsl_dataset_t *ds, boolean_t defer, dmu_tx_t *tx)
dsl_deadlist_merge(&ds_next->ds_deadlist,
dsl_dataset_phys(ds)->ds_deadlist_obj, tx);
}
+
dsl_deadlist_close(&ds->ds_deadlist);
dsl_deadlist_free(mos, dsl_dataset_phys(ds)->ds_deadlist_obj, tx);
dmu_buf_will_dirty(ds->ds_dbuf, tx);
dsl_dataset_phys(ds)->ds_deadlist_obj = 0;
+ dsl_destroy_snapshot_handle_remaps(ds, ds_next, tx);
+
/* Collapse range in clone heads */
dsl_dataset_remove_clones_key(ds,
dsl_dataset_phys(ds)->ds_creation_txg, tx);
@@ -371,6 +411,10 @@ dsl_destroy_snapshot_sync_impl(dsl_dataset_t *ds, boolean_t defer, dmu_tx_t *tx)
dsl_dir_phys(ds->ds_dir)->dd_head_dataset_obj, FTAG, &hds));
dsl_deadlist_remove_key(&hds->ds_deadlist,
dsl_dataset_phys(ds)->ds_creation_txg, tx);
+ if (dsl_dataset_remap_deadlist_exists(hds)) {
+ dsl_deadlist_remove_key(&hds->ds_remap_deadlist,
+ dsl_dataset_phys(ds)->ds_creation_txg, tx);
+ }
dsl_dataset_rele(hds, FTAG);
} else {
@@ -826,14 +870,18 @@ dsl_destroy_head_sync_impl(dsl_dataset_t *ds, dmu_tx_t *tx)
/*
* Destroy the deadlist. Unless it's a clone, the
- * deadlist should be empty. (If it's a clone, it's
- * safe to ignore the deadlist contents.)
+ * deadlist should be empty since the dataset has no snapshots.
+ * (If it's a clone, it's safe to ignore the deadlist contents
+ * since they are still referenced by the origin snapshot.)
*/
dsl_deadlist_close(&ds->ds_deadlist);
dsl_deadlist_free(mos, dsl_dataset_phys(ds)->ds_deadlist_obj, tx);
dmu_buf_will_dirty(ds->ds_dbuf, tx);
dsl_dataset_phys(ds)->ds_deadlist_obj = 0;
+ if (dsl_dataset_remap_deadlist_exists(ds))
+ dsl_dataset_destroy_remap_deadlist(ds, tx);
+
objset_t *os;
VERIFY0(dmu_objset_from_ds(ds, &os));
diff --git a/module/zfs/dsl_dir.c b/module/zfs/dsl_dir.c
index bf130eb99..a866c3074 100644
--- a/module/zfs/dsl_dir.c
+++ b/module/zfs/dsl_dir.c
@@ -129,6 +129,11 @@ extern inline dsl_dir_phys_t *dsl_dir_phys(dsl_dir_t *dd);
static uint64_t dsl_dir_space_towrite(dsl_dir_t *dd);
+typedef struct ddulrt_arg {
+ dsl_dir_t *ddulrta_dd;
+ uint64_t ddlrta_txg;
+} ddulrt_arg_t;
+
static void
dsl_dir_evict_async(void *dbu)
{
@@ -750,6 +755,35 @@ dsl_enforce_ds_ss_limits(dsl_dir_t *dd, zfs_prop_t prop, cred_t *cr)
return (enforce);
}
+static void
+dsl_dir_update_last_remap_txg_sync(void *varg, dmu_tx_t *tx)
+{
+ ddulrt_arg_t *arg = varg;
+ uint64_t last_remap_txg;
+ dsl_dir_t *dd = arg->ddulrta_dd;
+ objset_t *mos = dd->dd_pool->dp_meta_objset;
+
+ dsl_dir_zapify(dd, tx);
+ if (zap_lookup(mos, dd->dd_object, DD_FIELD_LAST_REMAP_TXG,
+ sizeof (last_remap_txg), 1, &last_remap_txg) != 0 ||
+ last_remap_txg < arg->ddlrta_txg) {
+ VERIFY0(zap_update(mos, dd->dd_object, DD_FIELD_LAST_REMAP_TXG,
+ sizeof (arg->ddlrta_txg), 1, &arg->ddlrta_txg, tx));
+ }
+}
+
+int
+dsl_dir_update_last_remap_txg(dsl_dir_t *dd, uint64_t txg)
+{
+ ddulrt_arg_t arg;
+ arg.ddulrta_dd = dd;
+ arg.ddlrta_txg = txg;
+
+ return (dsl_sync_task(spa_name(dd->dd_pool->dp_spa),
+ NULL, dsl_dir_update_last_remap_txg_sync, &arg,
+ 1, ZFS_SPACE_CHECK_RESERVED));
+}
+
/*
* Check if adding additional child filesystem(s) would exceed any filesystem
* limits or adding additional snapshot(s) would exceed any snapshot limits.
@@ -947,7 +981,6 @@ dsl_dir_is_clone(dsl_dir_t *dd)
dd->dd_pool->dp_origin_snap->ds_object));
}
-
uint64_t
dsl_dir_get_used(dsl_dir_t *dd)
{
@@ -1042,6 +1075,19 @@ dsl_dir_get_snapshot_count(dsl_dir_t *dd, uint64_t *count)
}
}
+int
+dsl_dir_get_remaptxg(dsl_dir_t *dd, uint64_t *count)
+{
+ if (dsl_dir_is_zapified(dd)) {
+ objset_t *os = dd->dd_pool->dp_meta_objset;
+ return (zap_lookup(os, dd->dd_object, DD_FIELD_LAST_REMAP_TXG,
+ sizeof (*count), 1, count));
+ } else {
+ return (ENOENT);
+ }
+
+}
+
void
dsl_dir_stats(dsl_dir_t *dd, nvlist_t *nv)
{
@@ -1073,6 +1119,10 @@ dsl_dir_stats(dsl_dir_t *dd, nvlist_t *nv)
dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_SNAPSHOT_COUNT,
count);
}
+ if (dsl_dir_get_remaptxg(dd, &count) == 0) {
+ dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_REMAPTXG,
+ count);
+ }
if (dsl_dir_is_clone(dd)) {
char buf[ZFS_MAX_DATASET_NAME_LEN];
diff --git a/module/zfs/dsl_pool.c b/module/zfs/dsl_pool.c
index db2e67742..094b6bec0 100644
--- a/module/zfs/dsl_pool.c
+++ b/module/zfs/dsl_pool.c
@@ -300,9 +300,25 @@ dsl_pool_open(dsl_pool_t *dp)
dp->dp_meta_objset, obj));
}
+ if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
+ err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
+ DMU_POOL_OBSOLETE_BPOBJ, sizeof (uint64_t), 1, &obj);
+ if (err == 0) {
+ VERIFY0(bpobj_open(&dp->dp_obsolete_bpobj,
+ dp->dp_meta_objset, obj));
+ } else if (err == ENOENT) {
+ /*
+ * We might not have created the remap bpobj yet.
+ */
+ err = 0;
+ } else {
+ goto out;
+ }
+ }
+
/*
- * Note: errors ignored, because the leak dir will not exist if we
- * have not encountered a leak yet.
+ * Note: errors ignored, because the these special dirs, used for
+ * space accounting, are only created on demand.
*/
(void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME,
&dp->dp_leak_dir);
@@ -348,21 +364,22 @@ dsl_pool_close(dsl_pool_t *dp)
* includes pool-opening context), it actually only got a "ref"
* and not a hold, so just drop that here.
*/
- if (dp->dp_origin_snap)
+ if (dp->dp_origin_snap != NULL)
dsl_dataset_rele(dp->dp_origin_snap, dp);
- if (dp->dp_mos_dir)
+ if (dp->dp_mos_dir != NULL)
dsl_dir_rele(dp->dp_mos_dir, dp);
- if (dp->dp_free_dir)
+ if (dp->dp_free_dir != NULL)
dsl_dir_rele(dp->dp_free_dir, dp);
- if (dp->dp_leak_dir)
+ if (dp->dp_leak_dir != NULL)
dsl_dir_rele(dp->dp_leak_dir, dp);
- if (dp->dp_root_dir)
+ if (dp->dp_root_dir != NULL)
dsl_dir_rele(dp->dp_root_dir, dp);
bpobj_close(&dp->dp_free_bpobj);
+ bpobj_close(&dp->dp_obsolete_bpobj);
/* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */
- if (dp->dp_meta_objset)
+ if (dp->dp_meta_objset != NULL)
dmu_objset_evict(dp->dp_meta_objset);
txg_list_destroy(&dp->dp_dirty_datasets);
@@ -390,13 +407,42 @@ dsl_pool_close(dsl_pool_t *dp)
mutex_destroy(&dp->dp_lock);
cv_destroy(&dp->dp_spaceavail_cv);
taskq_destroy(dp->dp_iput_taskq);
- if (dp->dp_blkstats) {
+ if (dp->dp_blkstats != NULL) {
mutex_destroy(&dp->dp_blkstats->zab_lock);
vmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
}
kmem_free(dp, sizeof (dsl_pool_t));
}
+void
+dsl_pool_create_obsolete_bpobj(dsl_pool_t *dp, dmu_tx_t *tx)
+{
+ uint64_t obj;
+ /*
+ * Currently, we only create the obsolete_bpobj where there are
+ * indirect vdevs with referenced mappings.
+ */
+ ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_DEVICE_REMOVAL));
+ /* create and open the obsolete_bpobj */
+ obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
+ VERIFY0(bpobj_open(&dp->dp_obsolete_bpobj, dp->dp_meta_objset, obj));
+ VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
+ DMU_POOL_OBSOLETE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
+ spa_feature_incr(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
+}
+
+void
+dsl_pool_destroy_obsolete_bpobj(dsl_pool_t *dp, dmu_tx_t *tx)
+{
+ spa_feature_decr(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
+ VERIFY0(zap_remove(dp->dp_meta_objset,
+ DMU_POOL_DIRECTORY_OBJECT,
+ DMU_POOL_OBSOLETE_BPOBJ, tx));
+ bpobj_free(dp->dp_meta_objset,
+ dp->dp_obsolete_bpobj.bpo_object, tx);
+ bpobj_close(&dp->dp_obsolete_bpobj);
+}
+
dsl_pool_t *
dsl_pool_create(spa_t *spa, nvlist_t *zplprops, dsl_crypto_params_t *dcp,
uint64_t txg)
diff --git a/module/zfs/dsl_scan.c b/module/zfs/dsl_scan.c
index 90534b4fa..53953a6c5 100644
--- a/module/zfs/dsl_scan.c
+++ b/module/zfs/dsl_scan.c
@@ -20,7 +20,7 @@
*/
/*
* Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
- * Copyright (c) 2011, 2016 by Delphix. All rights reserved.
+ * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
* Copyright 2016 Gary Mills
* Copyright (c) 2017 Datto Inc.
* Copyright 2017 Joyent, Inc.
@@ -165,6 +165,7 @@ int zfs_scan_mem_lim_fact = 20; /* fraction of physmem */
int zfs_scan_mem_lim_soft_fact = 20; /* fraction of mem lim above */
int zfs_scrub_min_time_ms = 1000; /* min millisecs to scrub per txg */
+int zfs_obsolete_min_time_ms = 500; /* min millisecs to obsolete per txg */
int zfs_free_min_time_ms = 1000; /* min millisecs to free per txg */
int zfs_resilver_min_time_ms = 3000; /* min millisecs to resilver per txg */
int zfs_scan_checkpoint_intval = 7200; /* in seconds */
@@ -172,7 +173,7 @@ int zfs_no_scrub_io = B_FALSE; /* set to disable scrub i/o */
int zfs_no_scrub_prefetch = B_FALSE; /* set to disable scrub prefetch */
enum ddt_class zfs_scrub_ddt_class_max = DDT_CLASS_DUPLICATE;
/* max number of blocks to free in a single TXG */
-unsigned long zfs_free_max_blocks = 100000;
+unsigned long zfs_async_block_max_blocks = 100000;
/*
* We wait a few txgs after importing a pool to begin scanning so that
@@ -2112,7 +2113,6 @@ dsl_scan_visitds(dsl_scan_t *scn, uint64_t dsobj, dmu_tx_t *tx)
{
dsl_pool_t *dp = scn->scn_dp;
dsl_dataset_t *ds;
- objset_t *os;
VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
@@ -2156,18 +2156,23 @@ dsl_scan_visitds(dsl_scan_t *scn, uint64_t dsobj, dmu_tx_t *tx)
goto out;
}
- if (dmu_objset_from_ds(ds, &os))
- goto out;
-
/*
- * Only the ZIL in the head (non-snapshot) is valid. Even though
+ * Only the ZIL in the head (non-snapshot) is valid. Even though
* snapshots can have ZIL block pointers (which may be the same
- * BP as in the head), they must be ignored. So we traverse the
- * ZIL here, rather than in scan_recurse(), because the regular
- * snapshot block-sharing rules don't apply to it.
+ * BP as in the head), they must be ignored. In addition, $ORIGIN
+ * doesn't have a objset (i.e. its ds_bp is a hole) so we don't
+ * need to look for a ZIL in it either. So we traverse the ZIL here,
+ * rather than in scan_recurse(), because the regular snapshot
+ * block-sharing rules don't apply to it.
*/
- if (!ds->ds_is_snapshot)
+ if (!dsl_dataset_is_snapshot(ds) &&
+ ds->ds_dir != dp->dp_origin_snap->ds_dir) {
+ objset_t *os;
+ if (dmu_objset_from_ds(ds, &os) != 0) {
+ goto out;
+ }
dsl_scan_zil(dp, &os->os_zil_header);
+ }
/*
* Iterate over the bps in this ds.
@@ -2839,19 +2844,19 @@ scan_io_queues_run(dsl_scan_t *scn)
}
static boolean_t
-dsl_scan_free_should_suspend(dsl_scan_t *scn)
+dsl_scan_async_block_should_pause(dsl_scan_t *scn)
{
uint64_t elapsed_nanosecs;
if (zfs_recover)
return (B_FALSE);
- if (scn->scn_visited_this_txg >= zfs_free_max_blocks)
+ if (scn->scn_visited_this_txg >= zfs_async_block_max_blocks)
return (B_TRUE);
elapsed_nanosecs = gethrtime() - scn->scn_sync_start_time;
return (elapsed_nanosecs / NANOSEC > zfs_txg_timeout ||
- (NSEC2MSEC(elapsed_nanosecs) > zfs_free_min_time_ms &&
+ (NSEC2MSEC(elapsed_nanosecs) > scn->scn_async_block_min_time_ms &&
txg_sync_waiting(scn->scn_dp)) ||
spa_shutting_down(scn->scn_dp->dp_spa));
}
@@ -2863,7 +2868,7 @@ dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
if (!scn->scn_is_bptree ||
(BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)) {
- if (dsl_scan_free_should_suspend(scn))
+ if (dsl_scan_async_block_should_pause(scn))
return (SET_ERROR(ERESTART));
}
@@ -2911,6 +2916,22 @@ dsl_scan_update_stats(dsl_scan_t *scn)
scn->scn_zios_this_txg = zio_count_total;
}
+static int
+dsl_scan_obsolete_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
+{
+ dsl_scan_t *scn = arg;
+ const dva_t *dva = &bp->blk_dva[0];
+
+ if (dsl_scan_async_block_should_pause(scn))
+ return (SET_ERROR(ERESTART));
+
+ spa_vdev_indirect_mark_obsolete(scn->scn_dp->dp_spa,
+ DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva),
+ DVA_GET_ASIZE(dva), tx);
+ scn->scn_visited_this_txg++;
+ return (0);
+}
+
boolean_t
dsl_scan_active(dsl_scan_t *scn)
{
@@ -3047,6 +3068,7 @@ dsl_scan_sync(dsl_pool_t *dp, dmu_tx_t *tx)
if (zfs_free_bpobj_enabled &&
spa_version(spa) >= SPA_VERSION_DEADLISTS) {
scn->scn_is_bptree = B_FALSE;
+ scn->scn_async_block_min_time_ms = zfs_free_min_time_ms;
scn->scn_zio_root = zio_root(spa, NULL,
NULL, ZIO_FLAG_MUSTSUCCEED);
err = bpobj_iterate(&dp->dp_free_bpobj,
@@ -3146,6 +3168,7 @@ dsl_scan_sync(dsl_pool_t *dp, dmu_tx_t *tx)
-dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
-dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
}
+
if (dp->dp_free_dir != NULL && !scn->scn_async_destroying) {
/* finished; verify that space accounting went to zero */
ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes);
@@ -3153,6 +3176,24 @@ dsl_scan_sync(dsl_pool_t *dp, dmu_tx_t *tx)
ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes);
}
+ EQUIV(bpobj_is_open(&dp->dp_obsolete_bpobj),
+ 0 == zap_contains(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
+ DMU_POOL_OBSOLETE_BPOBJ));
+ if (err == 0 && bpobj_is_open(&dp->dp_obsolete_bpobj)) {
+ ASSERT(spa_feature_is_active(dp->dp_spa,
+ SPA_FEATURE_OBSOLETE_COUNTS));
+
+ scn->scn_is_bptree = B_FALSE;
+ scn->scn_async_block_min_time_ms = zfs_obsolete_min_time_ms;
+ err = bpobj_iterate(&dp->dp_obsolete_bpobj,
+ dsl_scan_obsolete_block_cb, scn, tx);
+ if (err != 0 && err != ERESTART)
+ zfs_panic_recover("error %u from bpobj_iterate()", err);
+
+ if (bpobj_is_empty(&dp->dp_obsolete_bpobj))
+ dsl_pool_destroy_obsolete_bpobj(dp, tx);
+ }
+
if (!dsl_scan_is_running(scn) || dsl_scan_is_paused_scrub(scn))
return;
@@ -3685,8 +3726,7 @@ scan_io_queue_create(vdev_t *vd)
q->q_vd = vd;
cv_init(&q->q_zio_cv, NULL, CV_DEFAULT, NULL);
q->q_exts_by_addr = range_tree_create_impl(&rt_avl_ops,
- &q->q_exts_by_size, ext_size_compare,
- &q->q_vd->vdev_scan_io_queue_lock, zfs_scan_max_ext_gap);
+ &q->q_exts_by_size, ext_size_compare, zfs_scan_max_ext_gap);
avl_create(&q->q_sios_by_addr, sio_addr_compare,
sizeof (scan_io_t), offsetof(scan_io_t, sio_nodes.sio_addr_node));
@@ -3739,11 +3779,8 @@ dsl_scan_io_queue_vdev_xfer(vdev_t *svd, vdev_t *tvd)
VERIFY3P(tvd->vdev_scan_io_queue, ==, NULL);
tvd->vdev_scan_io_queue = svd->vdev_scan_io_queue;
svd->vdev_scan_io_queue = NULL;
- if (tvd->vdev_scan_io_queue != NULL) {
+ if (tvd->vdev_scan_io_queue != NULL)
tvd->vdev_scan_io_queue->q_vd = tvd;
- range_tree_set_lock(tvd->vdev_scan_io_queue->q_exts_by_addr,
- &tvd->vdev_scan_io_queue_lock);
- }
mutex_exit(&tvd->vdev_scan_io_queue_lock);
mutex_exit(&svd->vdev_scan_io_queue_lock);
@@ -3869,6 +3906,9 @@ MODULE_PARM_DESC(zfs_scan_vdev_limit,
module_param(zfs_scrub_min_time_ms, int, 0644);
MODULE_PARM_DESC(zfs_scrub_min_time_ms, "Min millisecs to scrub per txg");
+module_param(zfs_obsolete_min_time_ms, int, 0644);
+MODULE_PARM_DESC(zfs_obsolete_min_time_ms, "Min millisecs to obsolete per txg");
+
module_param(zfs_free_min_time_ms, int, 0644);
MODULE_PARM_DESC(zfs_free_min_time_ms, "Min millisecs to free per txg");
@@ -3882,8 +3922,9 @@ module_param(zfs_no_scrub_prefetch, int, 0644);
MODULE_PARM_DESC(zfs_no_scrub_prefetch, "Set to disable scrub prefetching");
/* CSTYLED */
-module_param(zfs_free_max_blocks, ulong, 0644);
-MODULE_PARM_DESC(zfs_free_max_blocks, "Max number of blocks freed in one txg");
+module_param(zfs_async_block_max_blocks, ulong, 0644);
+MODULE_PARM_DESC(zfs_async_block_max_blocks,
+ "Max number of blocks freed in one txg");
module_param(zfs_free_bpobj_enabled, int, 0644);
MODULE_PARM_DESC(zfs_free_bpobj_enabled, "Enable processing of the free_bpobj");
diff --git a/module/zfs/metaslab.c b/module/zfs/metaslab.c
index 6320fd388..25090f089 100644
--- a/module/zfs/metaslab.c
+++ b/module/zfs/metaslab.c
@@ -33,6 +33,7 @@
#include <sys/zio.h>
#include <sys/spa_impl.h>
#include <sys/zfeature.h>
+#include <sys/vdev_indirect_mapping.h>
#define WITH_DF_BLOCK_ALLOCATOR
@@ -47,7 +48,8 @@
*/
unsigned long metaslab_aliquot = 512 << 10;
-uint64_t metaslab_gang_bang = SPA_MAXBLOCKSIZE + 1; /* force gang blocks */
+/* force gang blocks */
+unsigned long metaslab_gang_bang = SPA_MAXBLOCKSIZE + 1;
/*
* The in-core space map representation is more compact than its on-disk form.
@@ -169,6 +171,11 @@ int metaslab_bias_enabled = B_TRUE;
/*
+ * Enable/disable remapping of indirect DVAs to their concrete vdevs.
+ */
+boolean_t zfs_remap_blkptr_enable = B_TRUE;
+
+/*
* Enable/disable segment-based metaslab selection.
*/
int zfs_metaslab_segment_weight_enabled = B_TRUE;
@@ -202,6 +209,8 @@ uint64_t metaslab_trace_max_entries = 5000;
static uint64_t metaslab_weight(metaslab_t *);
static void metaslab_set_fragmentation(metaslab_t *);
+static void metaslab_free_impl(vdev_t *, uint64_t, uint64_t, uint64_t);
+static void metaslab_check_free_impl(vdev_t *, uint64_t, uint64_t);
#ifdef _METASLAB_TRACING
kmem_cache_t *metaslab_alloc_trace_cache;
@@ -323,7 +332,7 @@ metaslab_class_histogram_verify(metaslab_class_t *mc)
* Skip any holes, uninitialized top-levels, or
* vdevs that are not in this metalab class.
*/
- if (tvd->vdev_ishole || tvd->vdev_ms_shift == 0 ||
+ if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
mg->mg_class != mc) {
continue;
}
@@ -358,10 +367,10 @@ metaslab_class_fragmentation(metaslab_class_t *mc)
metaslab_group_t *mg = tvd->vdev_mg;
/*
- * Skip any holes, uninitialized top-levels, or
- * vdevs that are not in this metalab class.
+ * Skip any holes, uninitialized top-levels,
+ * or vdevs that are not in this metalab class.
*/
- if (tvd->vdev_ishole || tvd->vdev_ms_shift == 0 ||
+ if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
mg->mg_class != mc) {
continue;
}
@@ -406,7 +415,7 @@ metaslab_class_expandable_space(metaslab_class_t *mc)
vdev_t *tvd = rvd->vdev_child[c];
metaslab_group_t *mg = tvd->vdev_mg;
- if (tvd->vdev_ishole || tvd->vdev_ms_shift == 0 ||
+ if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
mg->mg_class != mc) {
continue;
}
@@ -505,6 +514,8 @@ metaslab_group_alloc_update(metaslab_group_t *mg)
boolean_t was_initialized;
ASSERT(vd == vd->vdev_top);
+ ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_READER), ==,
+ SCL_ALLOC);
mutex_enter(&mg->mg_lock);
was_allocatable = mg->mg_allocatable;
@@ -615,7 +626,7 @@ metaslab_group_activate(metaslab_group_t *mg)
metaslab_class_t *mc = mg->mg_class;
metaslab_group_t *mgprev, *mgnext;
- ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER));
+ ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER), !=, 0);
ASSERT(mc->mc_rotor != mg);
ASSERT(mg->mg_prev == NULL);
@@ -641,13 +652,22 @@ metaslab_group_activate(metaslab_group_t *mg)
mc->mc_rotor = mg;
}
+/*
+ * Passivate a metaslab group and remove it from the allocation rotor.
+ * Callers must hold both the SCL_ALLOC and SCL_ZIO lock prior to passivating
+ * a metaslab group. This function will momentarily drop spa_config_locks
+ * that are lower than the SCL_ALLOC lock (see comment below).
+ */
void
metaslab_group_passivate(metaslab_group_t *mg)
{
metaslab_class_t *mc = mg->mg_class;
+ spa_t *spa = mc->mc_spa;
metaslab_group_t *mgprev, *mgnext;
+ int locks = spa_config_held(spa, SCL_ALL, RW_WRITER);
- ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER));
+ ASSERT3U(spa_config_held(spa, SCL_ALLOC | SCL_ZIO, RW_WRITER), ==,
+ (SCL_ALLOC | SCL_ZIO));
if (--mg->mg_activation_count != 0) {
ASSERT(mc->mc_rotor != mg);
@@ -657,7 +677,23 @@ metaslab_group_passivate(metaslab_group_t *mg)
return;
}
+ /*
+ * The spa_config_lock is an array of rwlocks, ordered as
+ * follows (from highest to lowest):
+ * SCL_CONFIG > SCL_STATE > SCL_L2ARC > SCL_ALLOC >
+ * SCL_ZIO > SCL_FREE > SCL_VDEV
+ * (For more information about the spa_config_lock see spa_misc.c)
+ * The higher the lock, the broader its coverage. When we passivate
+ * a metaslab group, we must hold both the SCL_ALLOC and the SCL_ZIO
+ * config locks. However, the metaslab group's taskq might be trying
+ * to preload metaslabs so we must drop the SCL_ZIO lock and any
+ * lower locks to allow the I/O to complete. At a minimum,
+ * we continue to hold the SCL_ALLOC lock, which prevents any future
+ * allocations from taking place and any changes to the vdev tree.
+ */
+ spa_config_exit(spa, locks & ~(SCL_ZIO - 1), spa);
taskq_wait_outstanding(mg->mg_taskq, 0);
+ spa_config_enter(spa, locks & ~(SCL_ZIO - 1), spa, RW_WRITER);
metaslab_group_alloc_update(mg);
mgprev = mg->mg_prev;
@@ -1269,6 +1305,12 @@ metaslab_load(metaslab_t *msp)
ASSERT(!msp->ms_loading);
msp->ms_loading = B_TRUE;
+ /*
+ * Nobody else can manipulate a loading metaslab, so it's now safe
+ * to drop the lock. This way we don't have to hold the lock while
+ * reading the spacemap from disk.
+ */
+ mutex_exit(&msp->ms_lock);
/*
* If the space map has not been allocated yet, then treat
@@ -1281,6 +1323,8 @@ metaslab_load(metaslab_t *msp)
range_tree_add(msp->ms_tree, msp->ms_start, msp->ms_size);
success = (error == 0);
+
+ mutex_enter(&msp->ms_lock);
msp->ms_loading = B_FALSE;
if (success) {
@@ -1318,6 +1362,7 @@ metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object, uint64_t txg,
ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL);
+ mutex_init(&ms->ms_sync_lock, NULL, MUTEX_DEFAULT, NULL);
cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL);
ms->ms_id = id;
ms->ms_start = id << vd->vdev_ms_shift;
@@ -1329,7 +1374,7 @@ metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object, uint64_t txg,
*/
if (object != 0) {
error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start,
- ms->ms_size, vd->vdev_ashift, &ms->ms_lock);
+ ms->ms_size, vd->vdev_ashift);
if (error != 0) {
kmem_free(ms, sizeof (metaslab_t));
@@ -1347,7 +1392,7 @@ metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object, uint64_t txg,
* data fault on any attempt to use this metaslab before it's ready.
*/
ms->ms_tree = range_tree_create_impl(&rt_avl_ops, &ms->ms_size_tree,
- metaslab_rangesize_compare, &ms->ms_lock, 0);
+ metaslab_rangesize_compare, 0);
metaslab_group_add(mg, ms);
metaslab_set_fragmentation(ms);
@@ -1416,6 +1461,7 @@ metaslab_fini(metaslab_t *msp)
mutex_exit(&msp->ms_lock);
cv_destroy(&msp->ms_load_cv);
mutex_destroy(&msp->ms_lock);
+ mutex_destroy(&msp->ms_sync_lock);
kmem_free(msp, sizeof (metaslab_t));
}
@@ -1780,14 +1826,11 @@ metaslab_weight(metaslab_t *msp)
ASSERT(MUTEX_HELD(&msp->ms_lock));
/*
- * This vdev is in the process of being removed so there is nothing
+ * If this vdev is in the process of being removed, there is nothing
* for us to do here.
*/
- if (vd->vdev_removing) {
- ASSERT0(space_map_allocated(msp->ms_sm));
- ASSERT0(vd->vdev_ms_shift);
+ if (vd->vdev_removing)
return (0);
- }
metaslab_set_fragmentation(msp);
@@ -1922,10 +1965,13 @@ metaslab_group_preload(metaslab_group_t *mg)
}
mutex_enter(&mg->mg_lock);
+
/*
* Load the next potential metaslabs
*/
for (msp = avl_first(t); msp != NULL; msp = AVL_NEXT(t, msp)) {
+ ASSERT3P(msp->ms_group, ==, mg);
+
/*
* We preload only the maximum number of metaslabs specified
* by metaslab_preload_limit. If a metaslab is being forced
@@ -1952,7 +1998,7 @@ metaslab_group_preload(metaslab_group_t *mg)
*
* 2. The minimal on-disk space map representation is zfs_condense_pct/100
* times the size than the free space range tree representation
- * (i.e. zfs_condense_pct = 110 and in-core = 1MB, minimal = 1.1.MB).
+ * (i.e. zfs_condense_pct = 110 and in-core = 1MB, minimal = 1.1MB).
*
* 3. The on-disk size of the space map should actually decrease.
*
@@ -2049,7 +2095,7 @@ metaslab_condense(metaslab_t *msp, uint64_t txg, dmu_tx_t *tx)
* a relatively inexpensive operation since we expect these trees to
* have a small number of nodes.
*/
- condense_tree = range_tree_create(NULL, NULL, &msp->ms_lock);
+ condense_tree = range_tree_create(NULL, NULL);
range_tree_add(condense_tree, msp->ms_start, msp->ms_size);
/*
@@ -2082,7 +2128,6 @@ metaslab_condense(metaslab_t *msp, uint64_t txg, dmu_tx_t *tx)
mutex_exit(&msp->ms_lock);
space_map_truncate(sm, tx);
- mutex_enter(&msp->ms_lock);
/*
* While we would ideally like to create a space map representation
@@ -2099,6 +2144,7 @@ metaslab_condense(metaslab_t *msp, uint64_t txg, dmu_tx_t *tx)
range_tree_destroy(condense_tree);
space_map_write(sm, msp->ms_tree, SM_FREE, tx);
+ mutex_enter(&msp->ms_lock);
msp->ms_condensing = B_FALSE;
}
@@ -2148,10 +2194,14 @@ metaslab_sync(metaslab_t *msp, uint64_t txg)
* The only state that can actually be changing concurrently with
* metaslab_sync() is the metaslab's ms_tree. No other thread can
* be modifying this txg's alloctree, freeingtree, freedtree, or
- * space_map_phys_t. Therefore, we only hold ms_lock to satify
- * space map ASSERTs. We drop it whenever we call into the DMU,
- * because the DMU can call down to us (e.g. via zio_free()) at
- * any time.
+ * space_map_phys_t. We drop ms_lock whenever we could call
+ * into the DMU, because the DMU can call down to us
+ * (e.g. via zio_free()) at any time.
+ *
+ * The spa_vdev_remove_thread() can be reading metaslab state
+ * concurrently, and it is locked out by the ms_sync_lock. Note
+ * that the ms_lock is insufficient for this, because it is dropped
+ * by space_map_write().
*/
tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
@@ -2163,11 +2213,11 @@ metaslab_sync(metaslab_t *msp, uint64_t txg)
VERIFY3U(new_object, !=, 0);
VERIFY0(space_map_open(&msp->ms_sm, mos, new_object,
- msp->ms_start, msp->ms_size, vd->vdev_ashift,
- &msp->ms_lock));
+ msp->ms_start, msp->ms_size, vd->vdev_ashift));
ASSERT(msp->ms_sm != NULL);
}
+ mutex_enter(&msp->ms_sync_lock);
mutex_enter(&msp->ms_lock);
/*
@@ -2183,13 +2233,15 @@ metaslab_sync(metaslab_t *msp, uint64_t txg)
metaslab_should_condense(msp)) {
metaslab_condense(msp, txg, tx);
} else {
+ mutex_exit(&msp->ms_lock);
space_map_write(msp->ms_sm, alloctree, SM_ALLOC, tx);
space_map_write(msp->ms_sm, msp->ms_freeingtree, SM_FREE, tx);
+ mutex_enter(&msp->ms_lock);
}
if (msp->ms_loaded) {
/*
- * When the space map is loaded, we have an accruate
+ * When the space map is loaded, we have an accurate
* histogram in the range tree. This gives us an opportunity
* to bring the space map's histogram up-to-date so we clear
* it first before updating it.
@@ -2257,6 +2309,7 @@ metaslab_sync(metaslab_t *msp, uint64_t txg)
dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
msp->ms_id, sizeof (uint64_t), &object, tx);
}
+ mutex_exit(&msp->ms_sync_lock);
dmu_tx_commit(tx);
}
@@ -2286,23 +2339,19 @@ metaslab_sync_done(metaslab_t *msp, uint64_t txg)
for (int t = 0; t < TXG_SIZE; t++) {
ASSERT(msp->ms_alloctree[t] == NULL);
- msp->ms_alloctree[t] = range_tree_create(NULL, msp,
- &msp->ms_lock);
+ msp->ms_alloctree[t] = range_tree_create(NULL, NULL);
}
ASSERT3P(msp->ms_freeingtree, ==, NULL);
- msp->ms_freeingtree = range_tree_create(NULL, msp,
- &msp->ms_lock);
+ msp->ms_freeingtree = range_tree_create(NULL, NULL);
ASSERT3P(msp->ms_freedtree, ==, NULL);
- msp->ms_freedtree = range_tree_create(NULL, msp,
- &msp->ms_lock);
+ msp->ms_freedtree = range_tree_create(NULL, NULL);
for (int t = 0; t < TXG_DEFER_SIZE; t++) {
ASSERT(msp->ms_defertree[t] == NULL);
- msp->ms_defertree[t] = range_tree_create(NULL, msp,
- &msp->ms_lock);
+ msp->ms_defertree[t] = range_tree_create(NULL, NULL);
}
vdev_space_update(vd, 0, 0, msp->ms_size);
@@ -2312,7 +2361,7 @@ metaslab_sync_done(metaslab_t *msp, uint64_t txg)
uint64_t free_space = metaslab_class_get_space(spa_normal_class(spa)) -
metaslab_class_get_alloc(spa_normal_class(spa));
- if (free_space <= spa_get_slop_space(spa)) {
+ if (free_space <= spa_get_slop_space(spa) || vd->vdev_removing) {
defer_allowed = B_FALSE;
}
@@ -2383,19 +2432,33 @@ metaslab_sync_done(metaslab_t *msp, uint64_t txg)
metaslab_unload(msp);
}
+ ASSERT0(range_tree_space(msp->ms_alloctree[txg & TXG_MASK]));
+ ASSERT0(range_tree_space(msp->ms_freeingtree));
+ ASSERT0(range_tree_space(msp->ms_freedtree));
+
mutex_exit(&msp->ms_lock);
}
void
metaslab_sync_reassess(metaslab_group_t *mg)
{
+ spa_t *spa = mg->mg_class->mc_spa;
+
+ spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
metaslab_group_alloc_update(mg);
mg->mg_fragmentation = metaslab_group_fragmentation(mg);
/*
- * Preload the next potential metaslabs
+ * Preload the next potential metaslabs but only on active
+ * metaslab groups. We can get into a state where the metaslab
+ * is no longer active since we dirty metaslabs as we remove a
+ * a device, thus potentially making the metaslab group eligible
+ * for preloading.
*/
- metaslab_group_preload(mg);
+ if (mg->mg_activation_count > 0) {
+ metaslab_group_preload(mg);
+ }
+ spa_config_exit(spa, SCL_ALLOC, FTAG);
}
static uint64_t
@@ -2875,7 +2938,7 @@ int ditto_same_vdev_distance_shift = 3;
/*
* Allocate a block for the specified i/o.
*/
-static int
+int
metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags,
zio_alloc_list_t *zal)
@@ -2921,10 +2984,11 @@ metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
/*
* It's possible the vdev we're using as the hint no
- * longer exists (i.e. removed). Consult the rotor when
+ * longer exists or its mg has been closed (e.g. by
+ * device removal). Consult the rotor when
* all else fails.
*/
- if (vd != NULL) {
+ if (vd != NULL && vd->vdev_mg != NULL) {
mg = vd->vdev_mg;
if (flags & METASLAB_HINTBP_AVOID &&
@@ -3116,18 +3180,228 @@ next:
return (SET_ERROR(ENOSPC));
}
+void
+metaslab_free_concrete(vdev_t *vd, uint64_t offset, uint64_t asize,
+ uint64_t txg)
+{
+ metaslab_t *msp;
+ ASSERTV(spa_t *spa = vd->vdev_spa);
+
+ ASSERT3U(txg, ==, spa->spa_syncing_txg);
+ ASSERT(vdev_is_concrete(vd));
+ ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
+ ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
+
+ msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
+
+ VERIFY(!msp->ms_condensing);
+ VERIFY3U(offset, >=, msp->ms_start);
+ VERIFY3U(offset + asize, <=, msp->ms_start + msp->ms_size);
+ VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
+ VERIFY0(P2PHASE(asize, 1ULL << vd->vdev_ashift));
+
+ metaslab_check_free_impl(vd, offset, asize);
+ mutex_enter(&msp->ms_lock);
+ if (range_tree_space(msp->ms_freeingtree) == 0) {
+ vdev_dirty(vd, VDD_METASLAB, msp, txg);
+ }
+ range_tree_add(msp->ms_freeingtree, offset, asize);
+ mutex_exit(&msp->ms_lock);
+}
+
+/* ARGSUSED */
+void
+metaslab_free_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
+ uint64_t size, void *arg)
+{
+ uint64_t *txgp = arg;
+
+ if (vd->vdev_ops->vdev_op_remap != NULL)
+ vdev_indirect_mark_obsolete(vd, offset, size, *txgp);
+ else
+ metaslab_free_impl(vd, offset, size, *txgp);
+}
+
+static void
+metaslab_free_impl(vdev_t *vd, uint64_t offset, uint64_t size,
+ uint64_t txg)
+{
+ spa_t *spa = vd->vdev_spa;
+
+ ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
+
+ if (txg > spa_freeze_txg(spa))
+ return;
+
+ if (spa->spa_vdev_removal != NULL &&
+ spa->spa_vdev_removal->svr_vdev == vd &&
+ vdev_is_concrete(vd)) {
+ /*
+ * Note: we check if the vdev is concrete because when
+ * we complete the removal, we first change the vdev to be
+ * an indirect vdev (in open context), and then (in syncing
+ * context) clear spa_vdev_removal.
+ */
+ free_from_removing_vdev(vd, offset, size, txg);
+ } else if (vd->vdev_ops->vdev_op_remap != NULL) {
+ vdev_indirect_mark_obsolete(vd, offset, size, txg);
+ vd->vdev_ops->vdev_op_remap(vd, offset, size,
+ metaslab_free_impl_cb, &txg);
+ } else {
+ metaslab_free_concrete(vd, offset, size, txg);
+ }
+}
+
+typedef struct remap_blkptr_cb_arg {
+ blkptr_t *rbca_bp;
+ spa_remap_cb_t rbca_cb;
+ vdev_t *rbca_remap_vd;
+ uint64_t rbca_remap_offset;
+ void *rbca_cb_arg;
+} remap_blkptr_cb_arg_t;
+
+void
+remap_blkptr_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
+ uint64_t size, void *arg)
+{
+ remap_blkptr_cb_arg_t *rbca = arg;
+ blkptr_t *bp = rbca->rbca_bp;
+
+ /* We can not remap split blocks. */
+ if (size != DVA_GET_ASIZE(&bp->blk_dva[0]))
+ return;
+ ASSERT0(inner_offset);
+
+ if (rbca->rbca_cb != NULL) {
+ /*
+ * At this point we know that we are not handling split
+ * blocks and we invoke the callback on the previous
+ * vdev which must be indirect.
+ */
+ ASSERT3P(rbca->rbca_remap_vd->vdev_ops, ==, &vdev_indirect_ops);
+
+ rbca->rbca_cb(rbca->rbca_remap_vd->vdev_id,
+ rbca->rbca_remap_offset, size, rbca->rbca_cb_arg);
+
+ /* set up remap_blkptr_cb_arg for the next call */
+ rbca->rbca_remap_vd = vd;
+ rbca->rbca_remap_offset = offset;
+ }
+
+ /*
+ * The phys birth time is that of dva[0]. This ensures that we know
+ * when each dva was written, so that resilver can determine which
+ * blocks need to be scrubbed (i.e. those written during the time
+ * the vdev was offline). It also ensures that the key used in
+ * the ARC hash table is unique (i.e. dva[0] + phys_birth). If
+ * we didn't change the phys_birth, a lookup in the ARC for a
+ * remapped BP could find the data that was previously stored at
+ * this vdev + offset.
+ */
+ vdev_t *oldvd = vdev_lookup_top(vd->vdev_spa,
+ DVA_GET_VDEV(&bp->blk_dva[0]));
+ vdev_indirect_births_t *vib = oldvd->vdev_indirect_births;
+ bp->blk_phys_birth = vdev_indirect_births_physbirth(vib,
+ DVA_GET_OFFSET(&bp->blk_dva[0]), DVA_GET_ASIZE(&bp->blk_dva[0]));
+
+ DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id);
+ DVA_SET_OFFSET(&bp->blk_dva[0], offset);
+}
+
/*
- * Free the block represented by DVA in the context of the specified
- * transaction group.
+ * If the block pointer contains any indirect DVAs, modify them to refer to
+ * concrete DVAs. Note that this will sometimes not be possible, leaving
+ * the indirect DVA in place. This happens if the indirect DVA spans multiple
+ * segments in the mapping (i.e. it is a "split block").
+ *
+ * If the BP was remapped, calls the callback on the original dva (note the
+ * callback can be called multiple times if the original indirect DVA refers
+ * to another indirect DVA, etc).
+ *
+ * Returns TRUE if the BP was remapped.
*/
-static void
-metaslab_free_dva(spa_t *spa, const dva_t *dva, uint64_t txg, boolean_t now)
+boolean_t
+spa_remap_blkptr(spa_t *spa, blkptr_t *bp, spa_remap_cb_t callback, void *arg)
{
- uint64_t vdev = DVA_GET_VDEV(dva);
+ remap_blkptr_cb_arg_t rbca;
+
+ if (!zfs_remap_blkptr_enable)
+ return (B_FALSE);
+
+ if (!spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS))
+ return (B_FALSE);
+
+ /*
+ * Dedup BP's can not be remapped, because ddt_phys_select() depends
+ * on DVA[0] being the same in the BP as in the DDT (dedup table).
+ */
+ if (BP_GET_DEDUP(bp))
+ return (B_FALSE);
+
+ /*
+ * Gang blocks can not be remapped, because
+ * zio_checksum_gang_verifier() depends on the DVA[0] that's in
+ * the BP used to read the gang block header (GBH) being the same
+ * as the DVA[0] that we allocated for the GBH.
+ */
+ if (BP_IS_GANG(bp))
+ return (B_FALSE);
+
+ /*
+ * Embedded BP's have no DVA to remap.
+ */
+ if (BP_GET_NDVAS(bp) < 1)
+ return (B_FALSE);
+
+ /*
+ * Note: we only remap dva[0]. If we remapped other dvas, we
+ * would no longer know what their phys birth txg is.
+ */
+ dva_t *dva = &bp->blk_dva[0];
+
uint64_t offset = DVA_GET_OFFSET(dva);
uint64_t size = DVA_GET_ASIZE(dva);
- vdev_t *vd;
+ vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
+
+ if (vd->vdev_ops->vdev_op_remap == NULL)
+ return (B_FALSE);
+
+ rbca.rbca_bp = bp;
+ rbca.rbca_cb = callback;
+ rbca.rbca_remap_vd = vd;
+ rbca.rbca_remap_offset = offset;
+ rbca.rbca_cb_arg = arg;
+
+ /*
+ * remap_blkptr_cb() will be called in order for each level of
+ * indirection, until a concrete vdev is reached or a split block is
+ * encountered. old_vd and old_offset are updated within the callback
+ * as we go from the one indirect vdev to the next one (either concrete
+ * or indirect again) in that order.
+ */
+ vd->vdev_ops->vdev_op_remap(vd, offset, size, remap_blkptr_cb, &rbca);
+
+ /* Check if the DVA wasn't remapped because it is a split block */
+ if (DVA_GET_VDEV(&rbca.rbca_bp->blk_dva[0]) == vd->vdev_id)
+ return (B_FALSE);
+
+ return (B_TRUE);
+}
+
+/*
+ * Undo the allocation of a DVA which happened in the given transaction group.
+ */
+void
+metaslab_unalloc_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
+{
metaslab_t *msp;
+ vdev_t *vd;
+ uint64_t vdev = DVA_GET_VDEV(dva);
+ uint64_t offset = DVA_GET_OFFSET(dva);
+ uint64_t size = DVA_GET_ASIZE(dva);
+
+ ASSERT(DVA_IS_VALID(dva));
+ ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
if (txg > spa_freeze_txg(spa))
return;
@@ -3140,91 +3414,51 @@ metaslab_free_dva(spa_t *spa, const dva_t *dva, uint64_t txg, boolean_t now)
return;
}
- msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
+ ASSERT(!vd->vdev_removing);
+ ASSERT(vdev_is_concrete(vd));
+ ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
+ ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
if (DVA_GET_GANG(dva))
size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
- mutex_enter(&msp->ms_lock);
-
- if (now) {
- range_tree_remove(msp->ms_alloctree[txg & TXG_MASK],
- offset, size);
+ msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
- VERIFY(!msp->ms_condensing);
- VERIFY3U(offset, >=, msp->ms_start);
- VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size);
- VERIFY3U(range_tree_space(msp->ms_tree) + size, <=,
- msp->ms_size);
- VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
- VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
- range_tree_add(msp->ms_tree, offset, size);
- msp->ms_max_size = metaslab_block_maxsize(msp);
- } else {
- VERIFY3U(txg, ==, spa->spa_syncing_txg);
- if (range_tree_space(msp->ms_freeingtree) == 0)
- vdev_dirty(vd, VDD_METASLAB, msp, txg);
- range_tree_add(msp->ms_freeingtree, offset, size);
- }
+ mutex_enter(&msp->ms_lock);
+ range_tree_remove(msp->ms_alloctree[txg & TXG_MASK],
+ offset, size);
+ VERIFY(!msp->ms_condensing);
+ VERIFY3U(offset, >=, msp->ms_start);
+ VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size);
+ VERIFY3U(range_tree_space(msp->ms_tree) + size, <=,
+ msp->ms_size);
+ VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
+ VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
+ range_tree_add(msp->ms_tree, offset, size);
mutex_exit(&msp->ms_lock);
}
/*
- * Intent log support: upon opening the pool after a crash, notify the SPA
- * of blocks that the intent log has allocated for immediate write, but
- * which are still considered free by the SPA because the last transaction
- * group didn't commit yet.
+ * Free the block represented by DVA in the context of the specified
+ * transaction group.
*/
-static int
-metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
+void
+metaslab_free_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
{
uint64_t vdev = DVA_GET_VDEV(dva);
uint64_t offset = DVA_GET_OFFSET(dva);
uint64_t size = DVA_GET_ASIZE(dva);
- vdev_t *vd;
- metaslab_t *msp;
- int error = 0;
+ vdev_t *vd = vdev_lookup_top(spa, vdev);
ASSERT(DVA_IS_VALID(dva));
+ ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
- if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
- (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count)
- return (SET_ERROR(ENXIO));
-
- msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
-
- if (DVA_GET_GANG(dva))
+ if (DVA_GET_GANG(dva)) {
size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
-
- mutex_enter(&msp->ms_lock);
-
- if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded)
- error = metaslab_activate(msp, METASLAB_WEIGHT_SECONDARY);
-
- if (error == 0 && !range_tree_contains(msp->ms_tree, offset, size))
- error = SET_ERROR(ENOENT);
-
- if (error || txg == 0) { /* txg == 0 indicates dry run */
- mutex_exit(&msp->ms_lock);
- return (error);
}
- VERIFY(!msp->ms_condensing);
- VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
- VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
- VERIFY3U(range_tree_space(msp->ms_tree) - size, <=, msp->ms_size);
- range_tree_remove(msp->ms_tree, offset, size);
-
- if (spa_writeable(spa)) { /* don't dirty if we're zdb(1M) */
- if (range_tree_space(msp->ms_alloctree[txg & TXG_MASK]) == 0)
- vdev_dirty(vd, VDD_METASLAB, msp, txg);
- range_tree_add(msp->ms_alloctree[txg & TXG_MASK], offset, size);
- }
-
- mutex_exit(&msp->ms_lock);
-
- return (0);
+ metaslab_free_impl(vd, offset, size, txg);
}
/*
@@ -3275,6 +3509,122 @@ metaslab_class_throttle_unreserve(metaslab_class_t *mc, int slots, zio_t *zio)
mutex_exit(&mc->mc_lock);
}
+static int
+metaslab_claim_concrete(vdev_t *vd, uint64_t offset, uint64_t size,
+ uint64_t txg)
+{
+ metaslab_t *msp;
+ spa_t *spa = vd->vdev_spa;
+ int error = 0;
+
+ if (offset >> vd->vdev_ms_shift >= vd->vdev_ms_count)
+ return (ENXIO);
+
+ ASSERT3P(vd->vdev_ms, !=, NULL);
+ msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
+
+ mutex_enter(&msp->ms_lock);
+
+ if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded)
+ error = metaslab_activate(msp, METASLAB_WEIGHT_SECONDARY);
+
+ if (error == 0 && !range_tree_contains(msp->ms_tree, offset, size))
+ error = SET_ERROR(ENOENT);
+
+ if (error || txg == 0) { /* txg == 0 indicates dry run */
+ mutex_exit(&msp->ms_lock);
+ return (error);
+ }
+
+ VERIFY(!msp->ms_condensing);
+ VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
+ VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
+ VERIFY3U(range_tree_space(msp->ms_tree) - size, <=, msp->ms_size);
+ range_tree_remove(msp->ms_tree, offset, size);
+
+ if (spa_writeable(spa)) { /* don't dirty if we're zdb(1M) */
+ if (range_tree_space(msp->ms_alloctree[txg & TXG_MASK]) == 0)
+ vdev_dirty(vd, VDD_METASLAB, msp, txg);
+ range_tree_add(msp->ms_alloctree[txg & TXG_MASK], offset, size);
+ }
+
+ mutex_exit(&msp->ms_lock);
+
+ return (0);
+}
+
+typedef struct metaslab_claim_cb_arg_t {
+ uint64_t mcca_txg;
+ int mcca_error;
+} metaslab_claim_cb_arg_t;
+
+/* ARGSUSED */
+static void
+metaslab_claim_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
+ uint64_t size, void *arg)
+{
+ metaslab_claim_cb_arg_t *mcca_arg = arg;
+
+ if (mcca_arg->mcca_error == 0) {
+ mcca_arg->mcca_error = metaslab_claim_concrete(vd, offset,
+ size, mcca_arg->mcca_txg);
+ }
+}
+
+int
+metaslab_claim_impl(vdev_t *vd, uint64_t offset, uint64_t size, uint64_t txg)
+{
+ if (vd->vdev_ops->vdev_op_remap != NULL) {
+ metaslab_claim_cb_arg_t arg;
+
+ /*
+ * Only zdb(1M) can claim on indirect vdevs. This is used
+ * to detect leaks of mapped space (that are not accounted
+ * for in the obsolete counts, spacemap, or bpobj).
+ */
+ ASSERT(!spa_writeable(vd->vdev_spa));
+ arg.mcca_error = 0;
+ arg.mcca_txg = txg;
+
+ vd->vdev_ops->vdev_op_remap(vd, offset, size,
+ metaslab_claim_impl_cb, &arg);
+
+ if (arg.mcca_error == 0) {
+ arg.mcca_error = metaslab_claim_concrete(vd,
+ offset, size, txg);
+ }
+ return (arg.mcca_error);
+ } else {
+ return (metaslab_claim_concrete(vd, offset, size, txg));
+ }
+}
+
+/*
+ * Intent log support: upon opening the pool after a crash, notify the SPA
+ * of blocks that the intent log has allocated for immediate write, but
+ * which are still considered free by the SPA because the last transaction
+ * group didn't commit yet.
+ */
+static int
+metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
+{
+ uint64_t vdev = DVA_GET_VDEV(dva);
+ uint64_t offset = DVA_GET_OFFSET(dva);
+ uint64_t size = DVA_GET_ASIZE(dva);
+ vdev_t *vd;
+
+ if ((vd = vdev_lookup_top(spa, vdev)) == NULL) {
+ return (SET_ERROR(ENXIO));
+ }
+
+ ASSERT(DVA_IS_VALID(dva));
+
+ if (DVA_GET_GANG(dva))
+ size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
+
+ return (metaslab_claim_impl(vd, offset, size, txg));
+}
+
int
metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
int ndvas, uint64_t txg, blkptr_t *hintbp, int flags,
@@ -3304,7 +3654,7 @@ metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
txg, flags, zal);
if (error != 0) {
for (d--; d >= 0; d--) {
- metaslab_free_dva(spa, &dva[d], txg, B_TRUE);
+ metaslab_unalloc_dva(spa, &dva[d], txg);
metaslab_group_alloc_decrement(spa,
DVA_GET_VDEV(&dva[d]), zio, flags);
bzero(&dva[d], sizeof (dva_t));
@@ -3342,8 +3692,13 @@ metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
- for (int d = 0; d < ndvas; d++)
- metaslab_free_dva(spa, &dva[d], txg, now);
+ for (int d = 0; d < ndvas; d++) {
+ if (now) {
+ metaslab_unalloc_dva(spa, &dva[d], txg);
+ } else {
+ metaslab_free_dva(spa, &dva[d], txg);
+ }
+ }
spa_config_exit(spa, SCL_FREE, FTAG);
}
@@ -3428,6 +3783,49 @@ metaslab_fastwrite_unmark(spa_t *spa, const blkptr_t *bp)
spa_config_exit(spa, SCL_VDEV, FTAG);
}
+/* ARGSUSED */
+static void
+metaslab_check_free_impl_cb(uint64_t inner, vdev_t *vd, uint64_t offset,
+ uint64_t size, void *arg)
+{
+ if (vd->vdev_ops == &vdev_indirect_ops)
+ return;
+
+ metaslab_check_free_impl(vd, offset, size);
+}
+
+static void
+metaslab_check_free_impl(vdev_t *vd, uint64_t offset, uint64_t size)
+{
+ metaslab_t *msp;
+ ASSERTV(spa_t *spa = vd->vdev_spa);
+
+ if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
+ return;
+
+ if (vd->vdev_ops->vdev_op_remap != NULL) {
+ vd->vdev_ops->vdev_op_remap(vd, offset, size,
+ metaslab_check_free_impl_cb, NULL);
+ return;
+ }
+
+ ASSERT(vdev_is_concrete(vd));
+ ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
+ ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
+
+ msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
+
+ mutex_enter(&msp->ms_lock);
+ if (msp->ms_loaded)
+ range_tree_verify(msp->ms_tree, offset, size);
+
+ range_tree_verify(msp->ms_freeingtree, offset, size);
+ range_tree_verify(msp->ms_freedtree, offset, size);
+ for (int j = 0; j < TXG_DEFER_SIZE; j++)
+ range_tree_verify(msp->ms_defertree[j], offset, size);
+ mutex_exit(&msp->ms_lock);
+}
+
void
metaslab_check_free(spa_t *spa, const blkptr_t *bp)
{
@@ -3440,15 +3838,13 @@ metaslab_check_free(spa_t *spa, const blkptr_t *bp)
vdev_t *vd = vdev_lookup_top(spa, vdev);
uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]);
- metaslab_t *msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
- if (msp->ms_loaded)
- range_tree_verify(msp->ms_tree, offset, size);
+ if (DVA_GET_GANG(&bp->blk_dva[i]))
+ size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
+
+ ASSERT3P(vd, !=, NULL);
- range_tree_verify(msp->ms_freeingtree, offset, size);
- range_tree_verify(msp->ms_freedtree, offset, size);
- for (int j = 0; j < TXG_DEFER_SIZE; j++)
- range_tree_verify(msp->ms_defertree[j], offset, size);
+ metaslab_check_free_impl(vd, offset, size);
}
spa_config_exit(spa, SCL_VDEV, FTAG);
}
@@ -3502,4 +3898,9 @@ MODULE_PARM_DESC(zfs_metaslab_segment_weight_enabled,
module_param(zfs_metaslab_switch_threshold, int, 0644);
MODULE_PARM_DESC(zfs_metaslab_switch_threshold,
"segment-based metaslab selection maximum buckets before switching");
+
+/* CSTYLED */
+module_param(metaslab_gang_bang, ulong, 0644);
+MODULE_PARM_DESC(metaslab_gang_bang,
+ "blocks larger than this size are forced to be gang blocks");
#endif /* _KERNEL && HAVE_SPL */
diff --git a/module/zfs/mmp.c b/module/zfs/mmp.c
index 4d3c7401e..48aab673a 100644
--- a/module/zfs/mmp.c
+++ b/module/zfs/mmp.c
@@ -210,15 +210,13 @@ mmp_random_leaf_impl(vdev_t *vd, int *fail_mask)
{
int child_idx;
- if (!vdev_writeable(vd)) {
- *fail_mask |= MMP_FAIL_NOT_WRITABLE;
- return (NULL);
- }
-
if (vd->vdev_ops->vdev_op_leaf) {
vdev_t *ret;
- if (vd->vdev_mmp_pending != 0) {
+ if (!vdev_writeable(vd)) {
+ *fail_mask |= MMP_FAIL_NOT_WRITABLE;
+ ret = NULL;
+ } else if (vd->vdev_mmp_pending != 0) {
*fail_mask |= MMP_FAIL_WRITE_PENDING;
ret = NULL;
} else {
@@ -228,6 +226,9 @@ mmp_random_leaf_impl(vdev_t *vd, int *fail_mask)
return (ret);
}
+ if (vd->vdev_children == 0)
+ return (NULL);
+
child_idx = spa_get_random(vd->vdev_children);
for (int offset = vd->vdev_children; offset > 0; offset--) {
vdev_t *leaf;
diff --git a/module/zfs/range_tree.c b/module/zfs/range_tree.c
index 01ef463ec..baa655d39 100644
--- a/module/zfs/range_tree.c
+++ b/module/zfs/range_tree.c
@@ -23,7 +23,7 @@
* Use is subject to license terms.
*/
/*
- * Copyright (c) 2013, 2014 by Delphix. All rights reserved.
+ * Copyright (c) 2013, 2015 by Delphix. All rights reserved.
*/
#include <sys/zfs_context.h>
@@ -125,18 +125,6 @@ range_tree_stat_verify(range_tree_t *rt)
}
}
-/*
- * Changes out the lock used by the range tree. Useful when you are moving
- * the range tree between containing structures without having to recreate
- * it. Both the old and new locks must be held by the caller.
- */
-void
-range_tree_set_lock(range_tree_t *rt, kmutex_t *lp)
-{
- ASSERT(MUTEX_HELD(rt->rt_lock) && MUTEX_HELD(lp));
- rt->rt_lock = lp;
-}
-
static void
range_tree_stat_incr(range_tree_t *rt, range_seg_t *rs)
{
@@ -147,7 +135,6 @@ range_tree_stat_incr(range_tree_t *rt, range_seg_t *rs)
ASSERT3U(idx, <,
sizeof (rt->rt_histogram) / sizeof (*rt->rt_histogram));
- ASSERT(MUTEX_HELD(rt->rt_lock));
rt->rt_histogram[idx]++;
ASSERT3U(rt->rt_histogram[idx], !=, 0);
}
@@ -162,7 +149,6 @@ range_tree_stat_decr(range_tree_t *rt, range_seg_t *rs)
ASSERT3U(idx, <,
sizeof (rt->rt_histogram) / sizeof (*rt->rt_histogram));
- ASSERT(MUTEX_HELD(rt->rt_lock));
ASSERT3U(rt->rt_histogram[idx], !=, 0);
rt->rt_histogram[idx]--;
}
@@ -184,14 +170,13 @@ range_tree_seg_compare(const void *x1, const void *x2)
range_tree_t *
range_tree_create_impl(range_tree_ops_t *ops, void *arg,
- int (*avl_compare) (const void *, const void *), kmutex_t *lp, uint64_t gap)
+ int (*avl_compare) (const void *, const void *), uint64_t gap)
{
range_tree_t *rt = kmem_zalloc(sizeof (range_tree_t), KM_SLEEP);
avl_create(&rt->rt_root, range_tree_seg_compare,
sizeof (range_seg_t), offsetof(range_seg_t, rs_node));
- rt->rt_lock = lp;
rt->rt_ops = ops;
rt->rt_gap = gap;
rt->rt_arg = arg;
@@ -204,9 +189,9 @@ range_tree_create_impl(range_tree_ops_t *ops, void *arg,
}
range_tree_t *
-range_tree_create(range_tree_ops_t *ops, void *arg, kmutex_t *lp)
+range_tree_create(range_tree_ops_t *ops, void *arg)
{
- return (range_tree_create_impl(ops, arg, NULL, lp, 0));
+ return (range_tree_create_impl(ops, arg, NULL, 0));
}
void
@@ -224,8 +209,6 @@ range_tree_destroy(range_tree_t *rt)
void
range_tree_adjust_fill(range_tree_t *rt, range_seg_t *rs, int64_t delta)
{
- ASSERT(MUTEX_HELD(rt->rt_lock));
-
ASSERT3U(rs->rs_fill + delta, !=, 0);
ASSERT3U(rs->rs_fill + delta, <=, rs->rs_end - rs->rs_start);
@@ -246,7 +229,6 @@ range_tree_add_impl(void *arg, uint64_t start, uint64_t size, uint64_t fill)
uint64_t bridge_size = 0;
boolean_t merge_before, merge_after;
- ASSERT(MUTEX_HELD(rt->rt_lock));
ASSERT3U(size, !=, 0);
ASSERT3U(fill, <=, size);
@@ -383,7 +365,6 @@ range_tree_remove_impl(range_tree_t *rt, uint64_t start, uint64_t size,
uint64_t end = start + size;
boolean_t left_over, right_over;
- ASSERT(MUTEX_HELD(rt->rt_lock));
VERIFY3U(size, !=, 0);
VERIFY3U(size, <=, rt->rt_space);
@@ -493,8 +474,6 @@ range_tree_resize_segment(range_tree_t *rt, range_seg_t *rs,
{
int64_t delta = newsize - (rs->rs_end - rs->rs_start);
- ASSERT(MUTEX_HELD(rt->rt_lock));
-
range_tree_stat_decr(rt, rs);
if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg);
@@ -516,7 +495,6 @@ range_tree_find_impl(range_tree_t *rt, uint64_t start, uint64_t size)
range_seg_t rsearch;
uint64_t end = start + size;
- ASSERT(MUTEX_HELD(rt->rt_lock));
VERIFY(size != 0);
rsearch.rs_start = start;
@@ -538,11 +516,9 @@ range_tree_verify(range_tree_t *rt, uint64_t off, uint64_t size)
{
range_seg_t *rs;
- mutex_enter(rt->rt_lock);
rs = range_tree_find(rt, off, size);
if (rs != NULL)
panic("freeing free block; rs=%p", (void *)rs);
- mutex_exit(rt->rt_lock);
}
boolean_t
@@ -560,6 +536,9 @@ range_tree_clear(range_tree_t *rt, uint64_t start, uint64_t size)
{
range_seg_t *rs;
+ if (size == 0)
+ return;
+
while ((rs = range_tree_find_impl(rt, start, size)) != NULL) {
uint64_t free_start = MAX(rs->rs_start, start);
uint64_t free_end = MIN(rs->rs_end, start + size);
@@ -572,7 +551,6 @@ range_tree_swap(range_tree_t **rtsrc, range_tree_t **rtdst)
{
range_tree_t *rt;
- ASSERT(MUTEX_HELD((*rtsrc)->rt_lock));
ASSERT0(range_tree_space(*rtdst));
ASSERT0(avl_numnodes(&(*rtdst)->rt_root));
@@ -587,8 +565,6 @@ range_tree_vacate(range_tree_t *rt, range_tree_func_t *func, void *arg)
range_seg_t *rs;
void *cookie = NULL;
- ASSERT(MUTEX_HELD(rt->rt_lock));
-
if (rt->rt_ops != NULL && rt->rt_ops->rtop_vacate != NULL)
rt->rt_ops->rtop_vacate(rt, rt->rt_arg);
@@ -607,8 +583,6 @@ range_tree_walk(range_tree_t *rt, range_tree_func_t *func, void *arg)
{
range_seg_t *rs;
- ASSERT(MUTEX_HELD(rt->rt_lock));
-
for (rs = avl_first(&rt->rt_root); rs; rs = AVL_NEXT(&rt->rt_root, rs))
func(arg, rs->rs_start, rs->rs_end - rs->rs_start);
}
@@ -616,7 +590,6 @@ range_tree_walk(range_tree_t *rt, range_tree_func_t *func, void *arg)
range_seg_t *
range_tree_first(range_tree_t *rt)
{
- ASSERT(MUTEX_HELD(rt->rt_lock));
return (avl_first(&rt->rt_root));
}
diff --git a/module/zfs/spa.c b/module/zfs/spa.c
index 53b5aabf0..08fc7bbda 100644
--- a/module/zfs/spa.c
+++ b/module/zfs/spa.c
@@ -52,6 +52,9 @@
#include <sys/zil.h>
#include <sys/ddt.h>
#include <sys/vdev_impl.h>
+#include <sys/vdev_removal.h>
+#include <sys/vdev_indirect_mapping.h>
+#include <sys/vdev_indirect_births.h>
#include <sys/vdev_disk.h>
#include <sys/metaslab.h>
#include <sys/metaslab_impl.h>
@@ -59,6 +62,7 @@
#include <sys/uberblock_impl.h>
#include <sys/txg.h>
#include <sys/avl.h>
+#include <sys/bpobj.h>
#include <sys/dmu_traverse.h>
#include <sys/dmu_objset.h>
#include <sys/unique.h>
@@ -96,7 +100,7 @@
* The interval, in seconds, at which failed configuration cache file writes
* should be retried.
*/
-static int zfs_ccw_retry_interval = 300;
+int zfs_ccw_retry_interval = 300;
typedef enum zti_modes {
ZTI_MODE_FIXED, /* value is # of threads (min 1) */
@@ -150,14 +154,11 @@ const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
{ ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */
};
-static sysevent_t *spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl,
- const char *name);
-static void spa_event_post(sysevent_t *ev);
static void spa_sync_version(void *arg, dmu_tx_t *tx);
static void spa_sync_props(void *arg, dmu_tx_t *tx);
static boolean_t spa_has_active_shared_spare(spa_t *spa);
static inline int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
- spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
+ spa_load_state_t state, spa_import_type_t type, boolean_t trust_config,
char **ereport);
static void spa_vdev_resilver_done(spa_t *spa);
@@ -817,7 +818,7 @@ spa_change_guid(spa_t *spa)
spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
if (error == 0) {
- spa_config_sync(spa, B_FALSE, B_TRUE);
+ spa_write_cachefile(spa, B_FALSE, B_TRUE);
spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
}
@@ -1149,6 +1150,9 @@ spa_activate(spa_t *spa, int mode)
spa_create_zio_taskqs(spa);
}
+ for (size_t i = 0; i < TXG_SIZE; i++)
+ spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL, 0);
+
list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
offsetof(vdev_t, vdev_config_dirty_node));
list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
@@ -1245,6 +1249,12 @@ spa_deactivate(spa_t *spa)
}
}
+ for (size_t i = 0; i < TXG_SIZE; i++) {
+ ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
+ VERIFY0(zio_wait(spa->spa_txg_zio[i]));
+ spa->spa_txg_zio[i] = NULL;
+ }
+
metaslab_class_destroy(spa->spa_normal_class);
spa->spa_normal_class = NULL;
@@ -1385,6 +1395,13 @@ spa_unload(spa_t *spa)
spa->spa_async_zio_root = NULL;
}
+ if (spa->spa_vdev_removal != NULL) {
+ spa_vdev_removal_destroy(spa->spa_vdev_removal);
+ spa->spa_vdev_removal = NULL;
+ }
+
+ spa_condense_fini(spa);
+
bpobj_close(&spa->spa_deferred_bpobj);
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
@@ -1442,6 +1459,8 @@ spa_unload(spa_t *spa)
spa->spa_async_suspended = 0;
+ spa->spa_indirect_vdevs_loaded = B_FALSE;
+
if (spa->spa_comment != NULL) {
spa_strfree(spa->spa_comment);
spa->spa_comment = NULL;
@@ -1456,7 +1475,7 @@ spa_unload(spa_t *spa)
* 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
* then re-generate a more complete list including status information.
*/
-static void
+void
spa_load_spares(spa_t *spa)
{
nvlist_t **spares;
@@ -1573,7 +1592,7 @@ spa_load_spares(spa_t *spa)
* Devices which are already active have their details maintained, and are
* not re-opened.
*/
-static void
+void
spa_load_l2cache(spa_t *spa)
{
nvlist_t **l2cache = NULL;
@@ -1734,7 +1753,7 @@ spa_check_removed(vdev_t *vd)
spa_check_removed(vd->vdev_child[c]);
if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
- !vd->vdev_ishole) {
+ vdev_is_concrete(vd)) {
zfs_post_autoreplace(vd->vdev_spa, vd);
spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
}
@@ -1817,27 +1836,26 @@ spa_config_valid(spa_t *spa, nvlist_t *config)
/*
* Resolve any "missing" vdevs in the current configuration.
+ * Also trust the MOS config about any "indirect" vdevs.
* If we find that the MOS config has more accurate information
* about the top-level vdev then use that vdev instead.
*/
- if (tvd->vdev_ops == &vdev_missing_ops &&
- mtvd->vdev_ops != &vdev_missing_ops) {
-
- if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
- continue;
+ if ((tvd->vdev_ops == &vdev_missing_ops &&
+ mtvd->vdev_ops != &vdev_missing_ops) ||
+ (mtvd->vdev_ops == &vdev_indirect_ops &&
+ tvd->vdev_ops != &vdev_indirect_ops)) {
/*
* Device specific actions.
*/
if (mtvd->vdev_islog) {
+ if (!(spa->spa_import_flags &
+ ZFS_IMPORT_MISSING_LOG)) {
+ continue;
+ }
+
spa_set_log_state(spa, SPA_LOG_CLEAR);
- } else {
- /*
- * XXX - once we have 'readonly' pool
- * support we should be able to handle
- * missing data devices by transitioning
- * the pool to readonly.
- */
+ } else if (mtvd->vdev_ops != &vdev_indirect_ops) {
continue;
}
@@ -1851,10 +1869,6 @@ spa_config_valid(spa_t *spa, nvlist_t *config)
vdev_add_child(rvd, mtvd);
vdev_add_child(mrvd, tvd);
- spa_config_exit(spa, SCL_ALL, FTAG);
- vdev_load(mtvd);
- spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
-
vdev_reopen(rvd);
} else {
if (mtvd->vdev_islog) {
@@ -1873,6 +1887,14 @@ spa_config_valid(spa_t *spa, nvlist_t *config)
*/
spa_config_valid_zaps(tvd, mtvd);
}
+
+ /*
+ * Never trust this info from userland; always use what's
+ * in the MOS. This prevents it from getting out of sync
+ * with the rest of the info in the MOS.
+ */
+ tvd->vdev_removing = mtvd->vdev_removing;
+ tvd->vdev_indirect_config = mtvd->vdev_indirect_config;
}
vdev_free(mrvd);
@@ -1949,11 +1971,11 @@ spa_activate_log(spa_t *spa)
}
int
-spa_offline_log(spa_t *spa)
+spa_reset_logs(spa_t *spa)
{
int error;
- error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
+ error = dmu_objset_find(spa_name(spa), zil_reset,
NULL, DS_FIND_CHILDREN);
if (error == 0) {
/*
@@ -2155,7 +2177,7 @@ static int
spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
{
vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
- return (err);
+ return (SET_ERROR(err));
}
/*
@@ -2547,7 +2569,7 @@ out:
__attribute__((always_inline))
static inline int
spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
- spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
+ spa_load_state_t state, spa_import_type_t type, boolean_t trust_config,
char **ereport)
{
int error = 0;
@@ -2566,7 +2588,7 @@ spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
* If this is an untrusted config, access the pool in read-only mode.
* This prevents things like resilvering recently removed devices.
*/
- if (!mosconfig)
+ if (!trust_config)
spa->spa_mode = FREAD;
ASSERT(MUTEX_HELD(&spa_namespace_lock));
@@ -2634,7 +2656,7 @@ spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
*/
if (type != SPA_IMPORT_ASSEMBLE) {
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
- error = vdev_validate(rvd, mosconfig);
+ error = vdev_validate(rvd, trust_config);
spa_config_exit(spa, SCL_ALL, FTAG);
if (error != 0)
@@ -2755,7 +2777,7 @@ spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
* can handle missing vdevs.
*/
if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
- &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
+ &children) != 0 && trust_config && type != SPA_IMPORT_ASSEMBLE &&
rvd->vdev_guid_sum != ub->ub_guid_sum)
return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
@@ -2779,6 +2801,13 @@ spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
spa->spa_claim_max_txg = spa->spa_first_txg;
spa->spa_prev_software_version = ub->ub_software_version;
+ /*
+ * Everything that we read before we do spa_remove_init() must
+ * have been rewritten after the last device removal was initiated.
+ * Otherwise we could be reading from indirect vdevs before
+ * we have loaded their mappings.
+ */
+
error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
if (error)
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
@@ -2787,6 +2816,41 @@ spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
+ /*
+ * Validate the config, using the MOS config to fill in any
+ * information which might be missing. If we fail to validate
+ * the config then declare the pool unfit for use. If we're
+ * assembling a pool from a split, the log is not transferred
+ * over.
+ */
+ if (type != SPA_IMPORT_ASSEMBLE) {
+ nvlist_t *mos_config;
+ if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0)
+ return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
+
+ if (!spa_config_valid(spa, mos_config)) {
+ nvlist_free(mos_config);
+ return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
+ ENXIO));
+ }
+ nvlist_free(mos_config);
+
+ /*
+ * Now that we've validated the config, check the state of the
+ * root vdev. If it can't be opened, it indicates one or
+ * more toplevel vdevs are faulted.
+ */
+ if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
+ return (SET_ERROR(ENXIO));
+ }
+
+ /*
+ * Everything that we read before spa_remove_init() must be stored
+ * on concreted vdevs. Therefore we do this as early as possible.
+ */
+ if (spa_remove_init(spa) != 0)
+ return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
+
if (spa_version(spa) >= SPA_VERSION_FEATURES) {
boolean_t missing_feat_read = B_FALSE;
nvlist_t *unsup_feat, *enabled_feat;
@@ -2894,33 +2958,34 @@ spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
if (error != 0)
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
- if (!mosconfig) {
+ if (!trust_config) {
uint64_t hostid;
- nvlist_t *policy = NULL, *nvconfig;
+ nvlist_t *policy = NULL;
+ nvlist_t *mos_config;
- if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
+ if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0)
return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
- if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
+ if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
char *hostname;
unsigned long myhostid = 0;
- VERIFY(nvlist_lookup_string(nvconfig,
+ VERIFY(nvlist_lookup_string(mos_config,
ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
myhostid = spa_get_hostid();
if (hostid && myhostid && hostid != myhostid) {
- nvlist_free(nvconfig);
+ nvlist_free(mos_config);
return (SET_ERROR(EBADF));
}
}
if (nvlist_lookup_nvlist(spa->spa_config,
ZPOOL_REWIND_POLICY, &policy) == 0)
- VERIFY(nvlist_add_nvlist(nvconfig,
+ VERIFY(nvlist_add_nvlist(mos_config,
ZPOOL_REWIND_POLICY, policy) == 0);
- spa_config_set(spa, nvconfig);
+ spa_config_set(spa, mos_config);
spa_unload(spa);
spa_deactivate(spa);
spa_activate(spa, orig_mode);
@@ -3120,7 +3185,15 @@ spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
/*
* Load the vdev state for all toplevel vdevs.
*/
- vdev_load(rvd);
+ error = vdev_load(rvd);
+ if (error != 0) {
+ return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
+ }
+
+ error = spa_condense_init(spa);
+ if (error != 0) {
+ return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
+ }
/*
* Propagate the leaf DTLs we just loaded all the way up the tree.
@@ -3138,38 +3211,10 @@ spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
spa_update_dspace(spa);
- /*
- * Validate the config, using the MOS config to fill in any
- * information which might be missing. If we fail to validate
- * the config then declare the pool unfit for use. If we're
- * assembling a pool from a split, the log is not transferred
- * over.
- */
- if (type != SPA_IMPORT_ASSEMBLE) {
- nvlist_t *nvconfig;
-
- if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
- return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
-
- if (!spa_config_valid(spa, nvconfig)) {
- nvlist_free(nvconfig);
- return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
- ENXIO));
- }
- nvlist_free(nvconfig);
-
- /*
- * Now that we've validated the config, check the state of the
- * root vdev. If it can't be opened, it indicates one or
- * more toplevel vdevs are faulted.
- */
- if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
- return (SET_ERROR(ENXIO));
-
- if (spa_writeable(spa) && spa_check_logs(spa)) {
- *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
- return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
- }
+ if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa) &&
+ spa_check_logs(spa)) {
+ *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
+ return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
}
if (missing_feat_write) {
@@ -3199,6 +3244,18 @@ spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
int need_update = B_FALSE;
dsl_pool_t *dp = spa_get_dsl(spa);
+ /*
+ * We must check this before we start the sync thread, because
+ * we only want to start a condense thread for condense
+ * operations that were in progress when the pool was
+ * imported. Once we start syncing, spa_sync() could
+ * initiate a condense (and start a thread for it). In
+ * that case it would be wrong to start a second
+ * condense thread.
+ */
+ boolean_t condense_in_progress =
+ (spa->spa_condensing_indirect != NULL);
+
ASSERT(state != SPA_LOAD_TRYIMPORT);
/*
@@ -3278,6 +3335,16 @@ spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
* Clean up any stale temporary dataset userrefs.
*/
dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
+
+ /*
+ * Note: unlike condensing, we don't need an analogous
+ * "removal_in_progress" dance because no other thread
+ * can start a removal while we hold the spa_namespace_lock.
+ */
+ spa_restart_removal(spa);
+
+ if (condense_in_progress)
+ spa_condense_indirect_restart(spa);
}
return (0);
@@ -3463,7 +3530,7 @@ spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
*/
spa_unload(spa);
spa_deactivate(spa);
- spa_config_sync(spa, B_TRUE, B_TRUE);
+ spa_write_cachefile(spa, B_TRUE, B_TRUE);
spa_remove(spa);
if (locked)
mutex_exit(&spa_namespace_lock);
@@ -4098,6 +4165,9 @@ spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
spa->spa_uberblock.ub_version = version;
spa->spa_ubsync = spa->spa_uberblock;
spa->spa_load_state = SPA_LOAD_CREATE;
+ spa->spa_removing_phys.sr_state = DSS_NONE;
+ spa->spa_removing_phys.sr_removing_vdev = -1;
+ spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
/*
* Create "The Godfather" zio to hold all async IOs
@@ -4283,7 +4353,7 @@ spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
if (dp->dp_root_dir->dd_crypto_obj != 0)
VERIFY0(spa_keystore_remove_mapping(spa, root_dsobj, FTAG));
- spa_config_sync(spa, B_FALSE, B_TRUE);
+ spa_write_cachefile(spa, B_FALSE, B_TRUE);
/*
* Don't count references from objsets that are already closed
@@ -4344,7 +4414,7 @@ spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
if (props != NULL)
spa_configfile_set(spa, props, B_FALSE);
- spa_config_sync(spa, B_FALSE, B_TRUE);
+ spa_write_cachefile(spa, B_FALSE, B_TRUE);
spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
mutex_exit(&spa_namespace_lock);
@@ -4688,7 +4758,7 @@ export_spa:
if (new_state != POOL_STATE_UNINITIALIZED) {
if (!hardforce)
- spa_config_sync(spa, B_TRUE, B_TRUE);
+ spa_write_cachefile(spa, B_TRUE, B_TRUE);
spa_remove(spa);
}
mutex_exit(&spa_namespace_lock);
@@ -4780,8 +4850,41 @@ spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
return (spa_vdev_exit(spa, vd, txg, error));
/*
- * Transfer each new top-level vdev from vd to rvd.
+ * If we are in the middle of a device removal, we can only add
+ * devices which match the existing devices in the pool.
+ * If we are in the middle of a removal, or have some indirect
+ * vdevs, we can not add raidz toplevels.
*/
+ if (spa->spa_vdev_removal != NULL ||
+ spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
+ for (int c = 0; c < vd->vdev_children; c++) {
+ tvd = vd->vdev_child[c];
+ if (spa->spa_vdev_removal != NULL &&
+ tvd->vdev_ashift !=
+ spa->spa_vdev_removal->svr_vdev->vdev_ashift) {
+ return (spa_vdev_exit(spa, vd, txg, EINVAL));
+ }
+ /* Fail if top level vdev is raidz */
+ if (tvd->vdev_ops == &vdev_raidz_ops) {
+ return (spa_vdev_exit(spa, vd, txg, EINVAL));
+ }
+ /*
+ * Need the top level mirror to be
+ * a mirror of leaf vdevs only
+ */
+ if (tvd->vdev_ops == &vdev_mirror_ops) {
+ for (uint64_t cid = 0;
+ cid < tvd->vdev_children; cid++) {
+ vdev_t *cvd = tvd->vdev_child[cid];
+ if (!cvd->vdev_ops->vdev_op_leaf) {
+ return (spa_vdev_exit(spa, vd,
+ txg, EINVAL));
+ }
+ }
+ }
+ }
+ }
+
for (int c = 0; c < vd->vdev_children; c++) {
/*
@@ -4867,6 +4970,11 @@ spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
+ if (spa->spa_vdev_removal != NULL ||
+ spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
+ return (spa_vdev_exit(spa, NULL, txg, EBUSY));
+ }
+
if (oldvd == NULL)
return (spa_vdev_exit(spa, NULL, txg, ENODEV));
@@ -5317,7 +5425,7 @@ spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
/* clear the log and flush everything up to now */
activate_slog = spa_passivate_log(spa);
(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
- error = spa_offline_log(spa);
+ error = spa_reset_logs(spa);
txg = spa_vdev_config_enter(spa);
if (activate_slog)
@@ -5345,7 +5453,7 @@ spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
vdev_t *vd = rvd->vdev_child[c];
/* don't count the holes & logs as children */
- if (vd->vdev_islog || vd->vdev_ishole) {
+ if (vd->vdev_islog || !vdev_is_concrete(vd)) {
if (lastlog == 0)
lastlog = c;
continue;
@@ -5398,7 +5506,7 @@ spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
/* make sure there's nothing stopping the split */
if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
vml[c]->vdev_islog ||
- vml[c]->vdev_ishole ||
+ !vdev_is_concrete(vml[c]) ||
vml[c]->vdev_isspare ||
vml[c]->vdev_isl2cache ||
!vdev_writeable(vml[c]) ||
@@ -5588,257 +5696,6 @@ out:
return (error);
}
-static nvlist_t *
-spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
-{
- for (int i = 0; i < count; i++) {
- uint64_t guid;
-
- VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
- &guid) == 0);
-
- if (guid == target_guid)
- return (nvpp[i]);
- }
-
- return (NULL);
-}
-
-static void
-spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
- nvlist_t *dev_to_remove)
-{
- nvlist_t **newdev = NULL;
-
- if (count > 1)
- newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
-
- for (int i = 0, j = 0; i < count; i++) {
- if (dev[i] == dev_to_remove)
- continue;
- VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
- }
-
- VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
- VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
-
- for (int i = 0; i < count - 1; i++)
- nvlist_free(newdev[i]);
-
- if (count > 1)
- kmem_free(newdev, (count - 1) * sizeof (void *));
-}
-
-/*
- * Evacuate the device.
- */
-static int
-spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
-{
- uint64_t txg;
- int error = 0;
-
- ASSERT(MUTEX_HELD(&spa_namespace_lock));
- ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
- ASSERT(vd == vd->vdev_top);
-
- /*
- * Evacuate the device. We don't hold the config lock as writer
- * since we need to do I/O but we do keep the
- * spa_namespace_lock held. Once this completes the device
- * should no longer have any blocks allocated on it.
- */
- if (vd->vdev_islog) {
- if (vd->vdev_stat.vs_alloc != 0)
- error = spa_offline_log(spa);
- } else {
- error = SET_ERROR(ENOTSUP);
- }
-
- if (error)
- return (error);
-
- /*
- * The evacuation succeeded. Remove any remaining MOS metadata
- * associated with this vdev, and wait for these changes to sync.
- */
- ASSERT0(vd->vdev_stat.vs_alloc);
- txg = spa_vdev_config_enter(spa);
- vd->vdev_removing = B_TRUE;
- vdev_dirty_leaves(vd, VDD_DTL, txg);
- vdev_config_dirty(vd);
- spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
-
- return (0);
-}
-
-/*
- * Complete the removal by cleaning up the namespace.
- */
-static void
-spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
-{
- vdev_t *rvd = spa->spa_root_vdev;
- uint64_t id = vd->vdev_id;
- boolean_t last_vdev = (id == (rvd->vdev_children - 1));
-
- ASSERT(MUTEX_HELD(&spa_namespace_lock));
- ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
- ASSERT(vd == vd->vdev_top);
-
- /*
- * Only remove any devices which are empty.
- */
- if (vd->vdev_stat.vs_alloc != 0)
- return;
-
- (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
-
- if (list_link_active(&vd->vdev_state_dirty_node))
- vdev_state_clean(vd);
- if (list_link_active(&vd->vdev_config_dirty_node))
- vdev_config_clean(vd);
-
- vdev_free(vd);
-
- if (last_vdev) {
- vdev_compact_children(rvd);
- } else {
- vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
- vdev_add_child(rvd, vd);
- }
- vdev_config_dirty(rvd);
-
- /*
- * Reassess the health of our root vdev.
- */
- vdev_reopen(rvd);
-}
-
-/*
- * Remove a device from the pool -
- *
- * Removing a device from the vdev namespace requires several steps
- * and can take a significant amount of time. As a result we use
- * the spa_vdev_config_[enter/exit] functions which allow us to
- * grab and release the spa_config_lock while still holding the namespace
- * lock. During each step the configuration is synced out.
- *
- * Currently, this supports removing only hot spares, slogs, and level 2 ARC
- * devices.
- */
-int
-spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
-{
- vdev_t *vd;
- sysevent_t *ev = NULL;
- metaslab_group_t *mg;
- nvlist_t **spares, **l2cache, *nv;
- uint64_t txg = 0;
- uint_t nspares, nl2cache;
- int error = 0;
- boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
-
- ASSERT(spa_writeable(spa));
-
- if (!locked)
- txg = spa_vdev_enter(spa);
-
- vd = spa_lookup_by_guid(spa, guid, B_FALSE);
-
- if (spa->spa_spares.sav_vdevs != NULL &&
- nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
- ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
- (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
- /*
- * Only remove the hot spare if it's not currently in use
- * in this pool.
- */
- if (vd == NULL || unspare) {
- if (vd == NULL)
- vd = spa_lookup_by_guid(spa, guid, B_TRUE);
- ev = spa_event_create(spa, vd, NULL,
- ESC_ZFS_VDEV_REMOVE_AUX);
- spa_vdev_remove_aux(spa->spa_spares.sav_config,
- ZPOOL_CONFIG_SPARES, spares, nspares, nv);
- spa_load_spares(spa);
- spa->spa_spares.sav_sync = B_TRUE;
- } else {
- error = SET_ERROR(EBUSY);
- }
- } else if (spa->spa_l2cache.sav_vdevs != NULL &&
- nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
- ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
- (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
- /*
- * Cache devices can always be removed.
- */
- vd = spa_lookup_by_guid(spa, guid, B_TRUE);
- ev = spa_event_create(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE_AUX);
- spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
- ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
- spa_load_l2cache(spa);
- spa->spa_l2cache.sav_sync = B_TRUE;
- } else if (vd != NULL && vd->vdev_islog) {
- ASSERT(!locked);
- ASSERT(vd == vd->vdev_top);
-
- mg = vd->vdev_mg;
-
- /*
- * Stop allocating from this vdev.
- */
- metaslab_group_passivate(mg);
-
- /*
- * Wait for the youngest allocations and frees to sync,
- * and then wait for the deferral of those frees to finish.
- */
- spa_vdev_config_exit(spa, NULL,
- txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
-
- /*
- * Attempt to evacuate the vdev.
- */
- error = spa_vdev_remove_evacuate(spa, vd);
-
- txg = spa_vdev_config_enter(spa);
-
- /*
- * If we couldn't evacuate the vdev, unwind.
- */
- if (error) {
- metaslab_group_activate(mg);
- return (spa_vdev_exit(spa, NULL, txg, error));
- }
-
- /*
- * Clean up the vdev namespace.
- */
- ev = spa_event_create(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE_DEV);
- spa_vdev_remove_from_namespace(spa, vd);
-
- } else if (vd != NULL) {
- /*
- * Normal vdevs cannot be removed (yet).
- */
- error = SET_ERROR(ENOTSUP);
- } else {
- /*
- * There is no vdev of any kind with the specified guid.
- */
- error = SET_ERROR(ENOENT);
- }
-
- if (!locked)
- error = spa_vdev_exit(spa, NULL, txg, error);
-
- if (ev)
- spa_event_post(ev);
-
- return (error);
-}
-
/*
* Find any device that's done replacing, or a vdev marked 'unspare' that's
* currently spared, so we can detach it.
@@ -6205,9 +6062,12 @@ spa_async_suspend(spa_t *spa)
{
mutex_enter(&spa->spa_async_lock);
spa->spa_async_suspended++;
- while (spa->spa_async_thread != NULL)
+ while (spa->spa_async_thread != NULL ||
+ spa->spa_condense_thread != NULL)
cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
mutex_exit(&spa->spa_async_lock);
+
+ spa_vdev_remove_suspend(spa);
}
void
@@ -6217,6 +6077,7 @@ spa_async_resume(spa_t *spa)
ASSERT(spa->spa_async_suspended != 0);
spa->spa_async_suspended--;
mutex_exit(&spa->spa_async_lock);
+ spa_restart_removal(spa);
}
static boolean_t
@@ -6763,6 +6624,39 @@ spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
rrw_exit(&dp->dp_config_rwlock, FTAG);
}
+static void
+vdev_indirect_state_sync_verify(vdev_t *vd)
+{
+ ASSERTV(vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping);
+ ASSERTV(vdev_indirect_births_t *vib = vd->vdev_indirect_births);
+
+ if (vd->vdev_ops == &vdev_indirect_ops) {
+ ASSERT(vim != NULL);
+ ASSERT(vib != NULL);
+ }
+
+ if (vdev_obsolete_sm_object(vd) != 0) {
+ ASSERT(vd->vdev_obsolete_sm != NULL);
+ ASSERT(vd->vdev_removing ||
+ vd->vdev_ops == &vdev_indirect_ops);
+ ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
+ ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
+
+ ASSERT3U(vdev_obsolete_sm_object(vd), ==,
+ space_map_object(vd->vdev_obsolete_sm));
+ ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
+ space_map_allocated(vd->vdev_obsolete_sm));
+ }
+ ASSERT(vd->vdev_obsolete_segments != NULL);
+
+ /*
+ * Since frees / remaps to an indirect vdev can only
+ * happen in syncing context, the obsolete segments
+ * tree must be empty when we start syncing.
+ */
+ ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
+}
+
/*
* Sync the specified transaction group. New blocks may be dirtied as
* part of the process, so we iterate until it converges.
@@ -6783,6 +6677,13 @@ spa_sync(spa_t *spa, uint64_t txg)
VERIFY(spa_writeable(spa));
/*
+ * Wait for i/os issued in open context that need to complete
+ * before this txg syncs.
+ */
+ VERIFY0(zio_wait(spa->spa_txg_zio[txg & TXG_MASK]));
+ spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL, 0);
+
+ /*
* Lock out configuration changes.
*/
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
@@ -6879,6 +6780,16 @@ spa_sync(spa_t *spa, uint64_t txg)
ASSERT3U(mc->mc_alloc_max_slots, <=,
max_queue_depth * rvd->vdev_children);
+ for (int c = 0; c < rvd->vdev_children; c++) {
+ vdev_t *vd = rvd->vdev_child[c];
+ vdev_indirect_state_sync_verify(vd);
+
+ if (vdev_indirect_should_condense(vd)) {
+ spa_condense_indirect_start_sync(vd, tx);
+ break;
+ }
+ }
+
/*
* Iterate to convergence.
*/
@@ -6908,7 +6819,11 @@ spa_sync(spa_t *spa, uint64_t txg)
ddt_sync(spa, txg);
dsl_scan_sync(dp, tx);
- while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)))
+ if (spa->spa_vdev_removal != NULL)
+ svr_sync(spa, tx);
+
+ while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
+ != NULL)
vdev_sync(vd, txg);
if (pass == 1) {
@@ -6962,6 +6877,10 @@ spa_sync(spa_t *spa, uint64_t txg)
}
#endif
+ if (spa->spa_vdev_removal != NULL) {
+ ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
+ }
+
/*
* Rewrite the vdev configuration (which includes the uberblock)
* to commit the transaction group.
@@ -6986,7 +6905,8 @@ spa_sync(spa_t *spa, uint64_t txg)
for (int c = 0; c < children; c++) {
vd = rvd->vdev_child[(c0 + c) % children];
- if (vd->vdev_ms_array == 0 || vd->vdev_islog)
+ if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
+ !vdev_is_concrete(vd))
continue;
svd[svdcount++] = vd;
if (svdcount == SPA_DVAS_PER_BP)
@@ -7223,7 +7143,7 @@ spa_has_active_shared_spare(spa_t *spa)
return (B_FALSE);
}
-static sysevent_t *
+sysevent_t *
spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
{
sysevent_t *ev = NULL;
@@ -7239,7 +7159,7 @@ spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
return (ev);
}
-static void
+void
spa_event_post(sysevent_t *ev)
{
#ifdef _KERNEL
@@ -7286,7 +7206,6 @@ EXPORT_SYMBOL(spa_scan_get_stats);
EXPORT_SYMBOL(spa_vdev_add);
EXPORT_SYMBOL(spa_vdev_attach);
EXPORT_SYMBOL(spa_vdev_detach);
-EXPORT_SYMBOL(spa_vdev_remove);
EXPORT_SYMBOL(spa_vdev_setpath);
EXPORT_SYMBOL(spa_vdev_setfru);
EXPORT_SYMBOL(spa_vdev_split_mirror);
diff --git a/module/zfs/spa_config.c b/module/zfs/spa_config.c
index ec9661b86..4e9fd6c57 100644
--- a/module/zfs/spa_config.c
+++ b/module/zfs/spa_config.c
@@ -55,7 +55,7 @@
* configuration information. When the module loads, we read this information
* from /etc/zfs/zpool.cache and populate the SPA namespace. This namespace is
* maintained independently in spa.c. Whenever the namespace is modified, or
- * the configuration of a pool is changed, we call spa_config_sync(), which
+ * the configuration of a pool is changed, we call spa_write_cachefile(), which
* walks through all the active pools and writes the configuration to disk.
*/
@@ -249,7 +249,7 @@ spa_config_write(spa_config_dirent_t *dp, nvlist_t *nvl)
* would be required.
*/
void
-spa_config_sync(spa_t *target, boolean_t removing, boolean_t postsysevent)
+spa_write_cachefile(spa_t *target, boolean_t removing, boolean_t postsysevent)
{
spa_config_dirent_t *dp, *tdp;
nvlist_t *nvl;
@@ -590,15 +590,16 @@ spa_config_update(spa_t *spa, int what)
/*
* Update the global config cache to reflect the new mosconfig.
*/
- if (!spa->spa_is_root)
- spa_config_sync(spa, B_FALSE, what != SPA_CONFIG_UPDATE_POOL);
+ if (!spa->spa_is_root) {
+ spa_write_cachefile(spa, B_FALSE,
+ what != SPA_CONFIG_UPDATE_POOL);
+ }
if (what == SPA_CONFIG_UPDATE_POOL)
spa_config_update(spa, SPA_CONFIG_UPDATE_VDEVS);
}
#if defined(_KERNEL) && defined(HAVE_SPL)
-EXPORT_SYMBOL(spa_config_sync);
EXPORT_SYMBOL(spa_config_load);
EXPORT_SYMBOL(spa_all_configs);
EXPORT_SYMBOL(spa_config_set);
diff --git a/module/zfs/spa_misc.c b/module/zfs/spa_misc.c
index 17f8c1638..5c6e82567 100644
--- a/module/zfs/spa_misc.c
+++ b/module/zfs/spa_misc.c
@@ -243,7 +243,12 @@ kmem_cache_t *spa_buffer_pool;
int spa_mode_global;
#ifdef ZFS_DEBUG
-int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SET_ERROR | ZFS_DEBUG_SPA);
+/*
+ * Everything except dprintf, set_error, spa, and indirect_remap is on
+ * by default in debug builds.
+ */
+int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SET_ERROR |
+ ZFS_DEBUG_SPA | ZFS_DEBUG_INDIRECT_REMAP);
#else
int zfs_flags = 0;
#endif
@@ -460,7 +465,7 @@ spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
(void) refcount_add(&scl->scl_count, tag);
mutex_exit(&scl->scl_lock);
}
- ASSERT(wlocks_held <= locks);
+ ASSERT3U(wlocks_held, <=, locks);
}
void
@@ -1136,7 +1141,7 @@ spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
* If the config changed, update the config cache.
*/
if (config_changed)
- spa_config_sync(spa, B_FALSE, B_TRUE);
+ spa_write_cachefile(spa, B_FALSE, B_TRUE);
}
/*
@@ -1228,7 +1233,7 @@ spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
*/
if (config_changed) {
mutex_enter(&spa_namespace_lock);
- spa_config_sync(spa, B_FALSE, B_TRUE);
+ spa_write_cachefile(spa, B_FALSE, B_TRUE);
mutex_exit(&spa_namespace_lock);
}
@@ -1306,7 +1311,7 @@ spa_rename(const char *name, const char *newname)
/*
* Sync the updated config cache.
*/
- spa_config_sync(spa, B_FALSE, B_TRUE);
+ spa_write_cachefile(spa, B_FALSE, B_TRUE);
spa_close(spa, FTAG);
@@ -1525,6 +1530,12 @@ spa_is_initializing(spa_t *spa)
return (spa->spa_is_initializing);
}
+boolean_t
+spa_indirect_vdevs_loaded(spa_t *spa)
+{
+ return (spa->spa_indirect_vdevs_loaded);
+}
+
blkptr_t *
spa_get_rootblkptr(spa_t *spa)
{
@@ -1683,6 +1694,24 @@ spa_update_dspace(spa_t *spa)
{
spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
ddt_get_dedup_dspace(spa);
+ if (spa->spa_vdev_removal != NULL) {
+ /*
+ * We can't allocate from the removing device, so
+ * subtract its size. This prevents the DMU/DSL from
+ * filling up the (now smaller) pool while we are in the
+ * middle of removing the device.
+ *
+ * Note that the DMU/DSL doesn't actually know or care
+ * how much space is allocated (it does its own tracking
+ * of how much space has been logically used). So it
+ * doesn't matter that the data we are moving may be
+ * allocated twice (on the old device and the new
+ * device).
+ */
+ vdev_t *vd = spa->spa_vdev_removal->svr_vdev;
+ spa->spa_dspace -= spa_deflate(spa) ?
+ vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space;
+ }
}
/*
@@ -2105,6 +2134,49 @@ spa_maxblocksize(spa_t *spa)
return (SPA_OLD_MAXBLOCKSIZE);
}
+
+/*
+ * Returns the txg that the last device removal completed. No indirect mappings
+ * have been added since this txg.
+ */
+uint64_t
+spa_get_last_removal_txg(spa_t *spa)
+{
+ uint64_t vdevid;
+ uint64_t ret = -1ULL;
+
+ spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
+ /*
+ * sr_prev_indirect_vdev is only modified while holding all the
+ * config locks, so it is sufficient to hold SCL_VDEV as reader when
+ * examining it.
+ */
+ vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev;
+
+ while (vdevid != -1ULL) {
+ vdev_t *vd = vdev_lookup_top(spa, vdevid);
+ vdev_indirect_births_t *vib = vd->vdev_indirect_births;
+
+ ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
+
+ /*
+ * If the removal did not remap any data, we don't care.
+ */
+ if (vdev_indirect_births_count(vib) != 0) {
+ ret = vdev_indirect_births_last_entry_txg(vib);
+ break;
+ }
+
+ vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev;
+ }
+ spa_config_exit(spa, SCL_VDEV, FTAG);
+
+ IMPLY(ret != -1ULL,
+ spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
+
+ return (ret);
+}
+
int
spa_maxdnodesize(spa_t *spa)
{
diff --git a/module/zfs/space_map.c b/module/zfs/space_map.c
index baab0610d..d84dd7583 100644
--- a/module/zfs/space_map.c
+++ b/module/zfs/space_map.c
@@ -46,42 +46,27 @@
int space_map_blksz = (1 << 12);
/*
- * Load the space map disk into the specified range tree. Segments of maptype
- * are added to the range tree, other segment types are removed.
- *
- * Note: space_map_load() will drop sm_lock across dmu_read() calls.
- * The caller must be OK with this.
+ * Iterate through the space map, invoking the callback on each (non-debug)
+ * space map entry.
*/
int
-space_map_load(space_map_t *sm, range_tree_t *rt, maptype_t maptype)
+space_map_iterate(space_map_t *sm, sm_cb_t callback, void *arg)
{
uint64_t *entry, *entry_map, *entry_map_end;
- uint64_t bufsize, size, offset, end, space;
+ uint64_t bufsize, size, offset, end;
int error = 0;
- ASSERT(MUTEX_HELD(sm->sm_lock));
-
end = space_map_length(sm);
- space = space_map_allocated(sm);
-
- VERIFY0(range_tree_space(rt));
-
- if (maptype == SM_FREE) {
- range_tree_add(rt, sm->sm_start, sm->sm_size);
- space = sm->sm_size - space;
- }
bufsize = MAX(sm->sm_blksz, SPA_MINBLOCKSIZE);
entry_map = vmem_alloc(bufsize, KM_SLEEP);
- mutex_exit(sm->sm_lock);
if (end > bufsize) {
dmu_prefetch(sm->sm_os, space_map_object(sm), 0, bufsize,
end - bufsize, ZIO_PRIORITY_SYNC_READ);
}
- mutex_enter(sm->sm_lock);
- for (offset = 0; offset < end; offset += bufsize) {
+ for (offset = 0; offset < end && error == 0; offset += bufsize) {
size = MIN(end - offset, bufsize);
VERIFY(P2PHASE(size, sizeof (uint64_t)) == 0);
VERIFY(size != 0);
@@ -90,19 +75,18 @@ space_map_load(space_map_t *sm, range_tree_t *rt, maptype_t maptype)
dprintf("object=%llu offset=%llx size=%llx\n",
space_map_object(sm), offset, size);
- mutex_exit(sm->sm_lock);
error = dmu_read(sm->sm_os, space_map_object(sm), offset, size,
entry_map, DMU_READ_PREFETCH);
- mutex_enter(sm->sm_lock);
if (error != 0)
break;
entry_map_end = entry_map + (size / sizeof (uint64_t));
- for (entry = entry_map; entry < entry_map_end; entry++) {
+ for (entry = entry_map; entry < entry_map_end && error == 0;
+ entry++) {
uint64_t e = *entry;
uint64_t offset, size;
- if (SM_DEBUG_DECODE(e)) /* Skip debug entries */
+ if (SM_DEBUG_DECODE(e)) /* Skip debug entries */
continue;
offset = (SM_OFFSET_DECODE(e) << sm->sm_shift) +
@@ -113,23 +97,67 @@ space_map_load(space_map_t *sm, range_tree_t *rt, maptype_t maptype)
VERIFY0(P2PHASE(size, 1ULL << sm->sm_shift));
VERIFY3U(offset, >=, sm->sm_start);
VERIFY3U(offset + size, <=, sm->sm_start + sm->sm_size);
- if (SM_TYPE_DECODE(e) == maptype) {
- VERIFY3U(range_tree_space(rt) + size, <=,
- sm->sm_size);
- range_tree_add(rt, offset, size);
- } else {
- range_tree_remove(rt, offset, size);
- }
+ error = callback(SM_TYPE_DECODE(e), offset, size, arg);
}
}
- if (error == 0)
+ vmem_free(entry_map, bufsize);
+ return (error);
+}
+
+typedef struct space_map_load_arg {
+ space_map_t *smla_sm;
+ range_tree_t *smla_rt;
+ maptype_t smla_type;
+} space_map_load_arg_t;
+
+static int
+space_map_load_callback(maptype_t type, uint64_t offset, uint64_t size,
+ void *arg)
+{
+ space_map_load_arg_t *smla = arg;
+ if (type == smla->smla_type) {
+ VERIFY3U(range_tree_space(smla->smla_rt) + size, <=,
+ smla->smla_sm->sm_size);
+ range_tree_add(smla->smla_rt, offset, size);
+ } else {
+ range_tree_remove(smla->smla_rt, offset, size);
+ }
+
+ return (0);
+}
+
+/*
+ * Load the space map disk into the specified range tree. Segments of maptype
+ * are added to the range tree, other segment types are removed.
+ */
+int
+space_map_load(space_map_t *sm, range_tree_t *rt, maptype_t maptype)
+{
+ uint64_t space;
+ int err;
+ space_map_load_arg_t smla;
+
+ VERIFY0(range_tree_space(rt));
+ space = space_map_allocated(sm);
+
+ if (maptype == SM_FREE) {
+ range_tree_add(rt, sm->sm_start, sm->sm_size);
+ space = sm->sm_size - space;
+ }
+
+ smla.smla_rt = rt;
+ smla.smla_sm = sm;
+ smla.smla_type = maptype;
+ err = space_map_iterate(sm, space_map_load_callback, &smla);
+
+ if (err == 0) {
VERIFY3U(range_tree_space(rt), ==, space);
- else
+ } else {
range_tree_vacate(rt, NULL, NULL);
+ }
- vmem_free(entry_map, bufsize);
- return (error);
+ return (err);
}
void
@@ -160,7 +188,6 @@ space_map_histogram_add(space_map_t *sm, range_tree_t *rt, dmu_tx_t *tx)
{
int idx = 0;
- ASSERT(MUTEX_HELD(rt->rt_lock));
ASSERT(dmu_tx_is_syncing(tx));
VERIFY3U(space_map_object(sm), !=, 0);
@@ -229,9 +256,6 @@ space_map_entries(space_map_t *sm, range_tree_t *rt)
return (entries);
}
-/*
- * Note: space_map_write() will drop sm_lock across dmu_write() calls.
- */
void
space_map_write(space_map_t *sm, range_tree_t *rt, maptype_t maptype,
dmu_tx_t *tx)
@@ -244,7 +268,6 @@ space_map_write(space_map_t *sm, range_tree_t *rt, maptype_t maptype,
uint64_t *entry, *entry_map, *entry_map_end;
uint64_t expected_entries, actual_entries = 1;
- ASSERT(MUTEX_HELD(rt->rt_lock));
ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
VERIFY3U(space_map_object(sm), !=, 0);
dmu_buf_will_dirty(sm->sm_dbuf, tx);
@@ -294,11 +317,9 @@ space_map_write(space_map_t *sm, range_tree_t *rt, maptype_t maptype,
run_len = MIN(size, SM_RUN_MAX);
if (entry == entry_map_end) {
- mutex_exit(rt->rt_lock);
dmu_write(os, space_map_object(sm),
sm->sm_phys->smp_objsize, sm->sm_blksz,
entry_map, tx);
- mutex_enter(rt->rt_lock);
sm->sm_phys->smp_objsize += sm->sm_blksz;
entry = entry_map;
}
@@ -315,10 +336,8 @@ space_map_write(space_map_t *sm, range_tree_t *rt, maptype_t maptype,
if (entry != entry_map) {
size = (entry - entry_map) * sizeof (uint64_t);
- mutex_exit(rt->rt_lock);
dmu_write(os, space_map_object(sm), sm->sm_phys->smp_objsize,
size, entry_map, tx);
- mutex_enter(rt->rt_lock);
sm->sm_phys->smp_objsize += size;
}
ASSERT3U(expected_entries, ==, actual_entries);
@@ -351,7 +370,7 @@ space_map_open_impl(space_map_t *sm)
int
space_map_open(space_map_t **smp, objset_t *os, uint64_t object,
- uint64_t start, uint64_t size, uint8_t shift, kmutex_t *lp)
+ uint64_t start, uint64_t size, uint8_t shift)
{
space_map_t *sm;
int error;
@@ -365,7 +384,6 @@ space_map_open(space_map_t **smp, objset_t *os, uint64_t object,
sm->sm_start = start;
sm->sm_size = size;
sm->sm_shift = shift;
- sm->sm_lock = lp;
sm->sm_os = os;
sm->sm_object = object;
sm->sm_length = 0;
@@ -459,8 +477,6 @@ space_map_update(space_map_t *sm)
if (sm == NULL)
return;
- ASSERT(MUTEX_HELD(sm->sm_lock));
-
sm->sm_alloc = sm->sm_phys->smp_alloc;
sm->sm_length = sm->sm_phys->smp_objsize;
}
@@ -488,27 +504,29 @@ space_map_alloc(objset_t *os, dmu_tx_t *tx)
}
void
-space_map_free(space_map_t *sm, dmu_tx_t *tx)
+space_map_free_obj(objset_t *os, uint64_t smobj, dmu_tx_t *tx)
{
- spa_t *spa;
-
- if (sm == NULL)
- return;
-
- spa = dmu_objset_spa(sm->sm_os);
+ spa_t *spa = dmu_objset_spa(os);
if (spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) {
dmu_object_info_t doi;
- dmu_object_info_from_db(sm->sm_dbuf, &doi);
+ VERIFY0(dmu_object_info(os, smobj, &doi));
if (doi.doi_bonus_size != SPACE_MAP_SIZE_V0) {
- VERIFY(spa_feature_is_active(spa,
- SPA_FEATURE_SPACEMAP_HISTOGRAM));
spa_feature_decr(spa,
SPA_FEATURE_SPACEMAP_HISTOGRAM, tx);
}
}
- VERIFY3U(dmu_object_free(sm->sm_os, space_map_object(sm), tx), ==, 0);
+ VERIFY0(dmu_object_free(os, smobj, tx));
+}
+
+void
+space_map_free(space_map_t *sm, dmu_tx_t *tx)
+{
+ if (sm == NULL)
+ return;
+
+ space_map_free_obj(sm->sm_os, space_map_object(sm), tx);
sm->sm_object = 0;
}
diff --git a/module/zfs/space_reftree.c b/module/zfs/space_reftree.c
index 038572b08..aa289ba10 100644
--- a/module/zfs/space_reftree.c
+++ b/module/zfs/space_reftree.c
@@ -111,8 +111,6 @@ space_reftree_add_map(avl_tree_t *t, range_tree_t *rt, int64_t refcnt)
{
range_seg_t *rs;
- ASSERT(MUTEX_HELD(rt->rt_lock));
-
for (rs = avl_first(&rt->rt_root); rs; rs = AVL_NEXT(&rt->rt_root, rs))
space_reftree_add_seg(t, rs->rs_start, rs->rs_end, refcnt);
}
@@ -128,8 +126,6 @@ space_reftree_generate_map(avl_tree_t *t, range_tree_t *rt, int64_t minref)
int64_t refcnt = 0;
space_ref_t *sr;
- ASSERT(MUTEX_HELD(rt->rt_lock));
-
range_tree_vacate(rt, NULL, NULL);
for (sr = avl_first(t); sr != NULL; sr = AVL_NEXT(t, sr)) {
diff --git a/module/zfs/trace.c b/module/zfs/trace.c
index e4ebf31b3..eb6efe841 100644
--- a/module/zfs/trace.c
+++ b/module/zfs/trace.c
@@ -46,6 +46,7 @@
#include <sys/trace_dnode.h>
#include <sys/trace_multilist.h>
#include <sys/trace_txg.h>
+#include <sys/trace_vdev.h>
#include <sys/trace_zil.h>
#include <sys/trace_zio.h>
#include <sys/trace_zrlock.h>
diff --git a/module/zfs/txg.c b/module/zfs/txg.c
index bf8544507..2c7f5303b 100644
--- a/module/zfs/txg.c
+++ b/module/zfs/txg.c
@@ -860,6 +860,8 @@ txg_list_remove(txg_list_t *tl, uint64_t txg)
txg_verify(tl->tl_spa, txg);
mutex_enter(&tl->tl_lock);
if ((tn = tl->tl_head[t]) != NULL) {
+ ASSERT(tn->tn_member[t]);
+ ASSERT(tn->tn_next[t] == NULL || tn->tn_next[t]->tn_member[t]);
p = (char *)tn - tl->tl_offset;
tl->tl_head[t] = tn->tn_next[t];
tn->tn_next[t] = NULL;
diff --git a/module/zfs/vdev.c b/module/zfs/vdev.c
index 8ab996434..f3e3f90fa 100644
--- a/module/zfs/vdev.c
+++ b/module/zfs/vdev.c
@@ -32,8 +32,10 @@
#include <sys/fm/fs/zfs.h>
#include <sys/spa.h>
#include <sys/spa_impl.h>
+#include <sys/bpobj.h>
#include <sys/dmu.h>
#include <sys/dmu_tx.h>
+#include <sys/dsl_dir.h>
#include <sys/vdev_impl.h>
#include <sys/uberblock_impl.h>
#include <sys/metaslab.h>
@@ -86,6 +88,7 @@ static vdev_ops_t *vdev_ops_table[] = {
&vdev_file_ops,
&vdev_missing_ops,
&vdev_hole_ops,
+ &vdev_indirect_ops,
NULL
};
@@ -310,17 +313,24 @@ vdev_compact_children(vdev_t *pvd)
ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
+ if (oldc == 0)
+ return;
+
for (int c = newc = 0; c < oldc; c++)
if (pvd->vdev_child[c])
newc++;
- newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
+ if (newc > 0) {
+ newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
- for (int c = newc = 0; c < oldc; c++) {
- if ((cvd = pvd->vdev_child[c]) != NULL) {
- newchild[newc] = cvd;
- cvd->vdev_id = newc++;
+ for (int c = newc = 0; c < oldc; c++) {
+ if ((cvd = pvd->vdev_child[c]) != NULL) {
+ newchild[newc] = cvd;
+ cvd->vdev_id = newc++;
+ }
}
+ } else {
+ newchild = NULL;
}
kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
@@ -335,8 +345,10 @@ vdev_t *
vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
{
vdev_t *vd;
+ vdev_indirect_config_t *vic;
vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
+ vic = &vd->vdev_indirect_config;
if (spa->spa_root_vdev == NULL) {
ASSERT(ops == &vdev_root_ops);
@@ -367,6 +379,11 @@ vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
vd->vdev_ops = ops;
vd->vdev_state = VDEV_STATE_CLOSED;
vd->vdev_ishole = (ops == &vdev_hole_ops);
+ vic->vic_prev_indirect_vdev = UINT64_MAX;
+
+ rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
+ mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
+ vd->vdev_obsolete_segments = range_tree_create(NULL, NULL);
/*
* Initialize rate limit structs for events. We rate limit ZIO delay
@@ -385,8 +402,7 @@ vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL);
for (int t = 0; t < DTL_TYPES; t++) {
- vd->vdev_dtl[t] = range_tree_create(NULL, NULL,
- &vd->vdev_dtl_lock);
+ vd->vdev_dtl[t] = range_tree_create(NULL, NULL);
}
txg_list_create(&vd->vdev_ms_list, spa,
offsetof(struct metaslab, ms_txg_node));
@@ -412,6 +428,7 @@ vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
char *type;
uint64_t guid = 0, islog, nparity;
vdev_t *vd;
+ vdev_indirect_config_t *vic;
char *tmp = NULL;
int rc;
@@ -501,6 +518,7 @@ vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
ASSERT(nparity != -1ULL);
vd = vdev_alloc_common(spa, id, guid, ops);
+ vic = &vd->vdev_indirect_config;
vd->vdev_islog = islog;
vd->vdev_nparity = nparity;
@@ -541,6 +559,16 @@ vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
&vd->vdev_wholedisk) != 0)
vd->vdev_wholedisk = -1ULL;
+ ASSERT0(vic->vic_mapping_object);
+ (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
+ &vic->vic_mapping_object);
+ ASSERT0(vic->vic_births_object);
+ (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
+ &vic->vic_births_object);
+ ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
+ (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
+ &vic->vic_prev_indirect_vdev);
+
/*
* Look for the 'not present' flag. This will only be set if the device
* was not present at the time of import.
@@ -754,6 +782,23 @@ vdev_free(vdev_t *vd)
}
mutex_exit(&vd->vdev_dtl_lock);
+ EQUIV(vd->vdev_indirect_births != NULL,
+ vd->vdev_indirect_mapping != NULL);
+ if (vd->vdev_indirect_births != NULL) {
+ vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
+ vdev_indirect_births_close(vd->vdev_indirect_births);
+ }
+
+ if (vd->vdev_obsolete_sm != NULL) {
+ ASSERT(vd->vdev_removing ||
+ vd->vdev_ops == &vdev_indirect_ops);
+ space_map_close(vd->vdev_obsolete_sm);
+ vd->vdev_obsolete_sm = NULL;
+ }
+ range_tree_destroy(vd->vdev_obsolete_segments);
+ rw_destroy(&vd->vdev_indirect_rwlock);
+ mutex_destroy(&vd->vdev_obsolete_lock);
+
mutex_destroy(&vd->vdev_queue_lock);
mutex_destroy(&vd->vdev_dtl_lock);
mutex_destroy(&vd->vdev_stat_lock);
@@ -869,6 +914,7 @@ vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
mvd->vdev_asize = cvd->vdev_asize;
mvd->vdev_min_asize = cvd->vdev_min_asize;
mvd->vdev_max_asize = cvd->vdev_max_asize;
+ mvd->vdev_psize = cvd->vdev_psize;
mvd->vdev_ashift = cvd->vdev_ashift;
mvd->vdev_state = cvd->vdev_state;
mvd->vdev_crtxg = cvd->vdev_crtxg;
@@ -960,15 +1006,6 @@ vdev_metaslab_init(vdev_t *vd, uint64_t txg)
ASSERT(!vd->vdev_ishole);
- /*
- * Compute the raidz-deflation ratio. Note, we hard-code
- * in 128k (1 << 17) because it is the "typical" blocksize.
- * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
- * otherwise it would inconsistently account for existing bp's.
- */
- vd->vdev_deflate_ratio = (1 << 17) /
- (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
-
ASSERT(oldc <= newc);
mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
@@ -984,7 +1021,12 @@ vdev_metaslab_init(vdev_t *vd, uint64_t txg)
for (m = oldc; m < newc; m++) {
uint64_t object = 0;
- if (txg == 0) {
+ /*
+ * vdev_ms_array may be 0 if we are creating the "fake"
+ * metaslabs for an indirect vdev for zdb's leak detection.
+ * See zdb_leak_init().
+ */
+ if (txg == 0 && vd->vdev_ms_array != 0) {
error = dmu_read(mos, vd->vdev_ms_array,
m * sizeof (uint64_t), sizeof (uint64_t), &object,
DMU_READ_PREFETCH);
@@ -1018,12 +1060,11 @@ vdev_metaslab_init(vdev_t *vd, uint64_t txg)
void
vdev_metaslab_fini(vdev_t *vd)
{
- uint64_t m;
- uint64_t count = vd->vdev_ms_count;
-
if (vd->vdev_ms != NULL) {
+ uint64_t count = vd->vdev_ms_count;
+
metaslab_group_passivate(vd->vdev_mg);
- for (m = 0; m < count; m++) {
+ for (uint64_t m = 0; m < count; m++) {
metaslab_t *msp = vd->vdev_ms[m];
if (msp != NULL)
@@ -1031,8 +1072,10 @@ vdev_metaslab_fini(vdev_t *vd)
}
vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
vd->vdev_ms = NULL;
- }
+ vd->vdev_ms_count = 0;
+ }
+ ASSERT0(vd->vdev_ms_count);
ASSERT3U(vd->vdev_pending_fastwrite, ==, 0);
}
@@ -1078,6 +1121,8 @@ vdev_probe_done(zio_t *zio)
zio->io_error = 0;
} else {
ASSERT(zio->io_error != 0);
+ zfs_dbgmsg("failed probe on vdev %llu",
+ (longlong_t)vd->vdev_id);
zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
spa, vd, NULL, NULL, 0, 0);
zio->io_error = SET_ERROR(ENXIO);
@@ -1256,6 +1301,21 @@ retry_sync:
}
/*
+ * Compute the raidz-deflation ratio. Note, we hard-code
+ * in 128k (1 << 17) because it is the "typical" blocksize.
+ * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
+ * otherwise it would inconsistently account for existing bp's.
+ */
+static void
+vdev_set_deflate_ratio(vdev_t *vd)
+{
+ if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
+ vd->vdev_deflate_ratio = (1 << 17) /
+ (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
+ }
+}
+
+/*
* Prepare a virtual device for access.
*/
int
@@ -1458,6 +1518,14 @@ vdev_open(vdev_t *vd)
return (error);
}
+ if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
+ !vd->vdev_isl2cache && !vd->vdev_islog) {
+ if (vd->vdev_ashift > spa->spa_max_ashift)
+ spa->spa_max_ashift = vd->vdev_ashift;
+ if (vd->vdev_ashift < spa->spa_min_ashift)
+ spa->spa_min_ashift = vd->vdev_ashift;
+ }
+
/*
* Track the min and max ashift values for normal data devices.
*/
@@ -1752,7 +1820,8 @@ void
vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
{
ASSERT(vd == vd->vdev_top);
- ASSERT(!vd->vdev_ishole);
+ /* indirect vdevs don't have metaslabs or dtls */
+ ASSERT(vdev_is_concrete(vd) || flags == 0);
ASSERT(ISP2(flags));
ASSERT(spa_writeable(vd->vdev_spa));
@@ -1822,10 +1891,10 @@ vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
ASSERT(vd != vd->vdev_spa->spa_root_vdev);
ASSERT(spa_writeable(vd->vdev_spa));
- mutex_enter(rt->rt_lock);
+ mutex_enter(&vd->vdev_dtl_lock);
if (!range_tree_contains(rt, txg, size))
range_tree_add(rt, txg, size);
- mutex_exit(rt->rt_lock);
+ mutex_exit(&vd->vdev_dtl_lock);
}
boolean_t
@@ -1837,10 +1906,21 @@ vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
ASSERT(t < DTL_TYPES);
ASSERT(vd != vd->vdev_spa->spa_root_vdev);
- mutex_enter(rt->rt_lock);
+ /*
+ * While we are loading the pool, the DTLs have not been loaded yet.
+ * Ignore the DTLs and try all devices. This avoids a recursive
+ * mutex enter on the vdev_dtl_lock, and also makes us try hard
+ * when loading the pool (relying on the checksum to ensure that
+ * we get the right data -- note that we while loading, we are
+ * only reading the MOS, which is always checksummed).
+ */
+ if (vd->vdev_spa->spa_load_state != SPA_LOAD_NONE)
+ return (B_FALSE);
+
+ mutex_enter(&vd->vdev_dtl_lock);
if (range_tree_space(rt) != 0)
dirty = range_tree_contains(rt, txg, size);
- mutex_exit(rt->rt_lock);
+ mutex_exit(&vd->vdev_dtl_lock);
return (dirty);
}
@@ -1851,9 +1931,9 @@ vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
range_tree_t *rt = vd->vdev_dtl[t];
boolean_t empty;
- mutex_enter(rt->rt_lock);
+ mutex_enter(&vd->vdev_dtl_lock);
empty = (range_tree_space(rt) == 0);
- mutex_exit(rt->rt_lock);
+ mutex_exit(&vd->vdev_dtl_lock);
return (empty);
}
@@ -1961,7 +2041,7 @@ vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
vdev_dtl_reassess(vd->vdev_child[c], txg,
scrub_txg, scrub_done);
- if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
+ if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
return;
if (vd->vdev_ops->vdev_op_leaf) {
@@ -2076,10 +2156,10 @@ vdev_dtl_load(vdev_t *vd)
int error = 0;
if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
- ASSERT(!vd->vdev_ishole);
+ ASSERT(vdev_is_concrete(vd));
error = space_map_open(&vd->vdev_dtl_sm, mos,
- vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock);
+ vd->vdev_dtl_object, 0, -1ULL, 0);
if (error)
return (error);
ASSERT(vd->vdev_dtl_sm != NULL);
@@ -2158,11 +2238,10 @@ vdev_dtl_sync(vdev_t *vd, uint64_t txg)
range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
objset_t *mos = spa->spa_meta_objset;
range_tree_t *rtsync;
- kmutex_t rtlock;
dmu_tx_t *tx;
uint64_t object = space_map_object(vd->vdev_dtl_sm);
- ASSERT(!vd->vdev_ishole);
+ ASSERT(vdev_is_concrete(vd));
ASSERT(vd->vdev_ops->vdev_op_leaf);
tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
@@ -2196,15 +2275,11 @@ vdev_dtl_sync(vdev_t *vd, uint64_t txg)
VERIFY3U(new_object, !=, 0);
VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
- 0, -1ULL, 0, &vd->vdev_dtl_lock));
+ 0, -1ULL, 0));
ASSERT(vd->vdev_dtl_sm != NULL);
}
- mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL);
-
- rtsync = range_tree_create(NULL, NULL, &rtlock);
-
- mutex_enter(&rtlock);
+ rtsync = range_tree_create(NULL, NULL);
mutex_enter(&vd->vdev_dtl_lock);
range_tree_walk(rt, range_tree_add, rtsync);
@@ -2216,9 +2291,6 @@ vdev_dtl_sync(vdev_t *vd, uint64_t txg)
range_tree_destroy(rtsync);
- mutex_exit(&rtlock);
- mutex_destroy(&rtlock);
-
/*
* If the object for the space map has changed then dirty
* the top level so that we update the config.
@@ -2311,29 +2383,63 @@ vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
return (needed);
}
-void
+int
vdev_load(vdev_t *vd)
{
+ int error = 0;
+
/*
* Recursively load all children.
*/
- for (int c = 0; c < vd->vdev_children; c++)
- vdev_load(vd->vdev_child[c]);
+ for (int c = 0; c < vd->vdev_children; c++) {
+ error = vdev_load(vd->vdev_child[c]);
+ if (error != 0) {
+ return (error);
+ }
+ }
+
+ vdev_set_deflate_ratio(vd);
/*
* If this is a top-level vdev, initialize its metaslabs.
*/
- if (vd == vd->vdev_top && !vd->vdev_ishole &&
- (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
- vdev_metaslab_init(vd, 0) != 0))
- vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
- VDEV_AUX_CORRUPT_DATA);
+ if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
+ if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
+ vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
+ VDEV_AUX_CORRUPT_DATA);
+ return (SET_ERROR(ENXIO));
+ } else if ((error = vdev_metaslab_init(vd, 0)) != 0) {
+ vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
+ VDEV_AUX_CORRUPT_DATA);
+ return (error);
+ }
+ }
+
/*
* If this is a leaf vdev, load its DTL.
*/
- if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
+ if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_CORRUPT_DATA);
+ return (error);
+ }
+
+ uint64_t obsolete_sm_object = vdev_obsolete_sm_object(vd);
+ if (obsolete_sm_object != 0) {
+ objset_t *mos = vd->vdev_spa->spa_meta_objset;
+ ASSERT(vd->vdev_asize != 0);
+ ASSERT(vd->vdev_obsolete_sm == NULL);
+
+ if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
+ obsolete_sm_object, 0, vd->vdev_asize, 0))) {
+ vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
+ VDEV_AUX_CORRUPT_DATA);
+ return (error);
+ }
+ space_map_update(vd->vdev_obsolete_sm);
+ }
+
+ return (0);
}
/*
@@ -2378,14 +2484,42 @@ vdev_validate_aux(vdev_t *vd)
return (0);
}
+/*
+ * Free the objects used to store this vdev's spacemaps, and the array
+ * that points to them.
+ */
void
-vdev_remove(vdev_t *vd, uint64_t txg)
+vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
+{
+ if (vd->vdev_ms_array == 0)
+ return;
+
+ objset_t *mos = vd->vdev_spa->spa_meta_objset;
+ uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
+ size_t array_bytes = array_count * sizeof (uint64_t);
+ uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
+ VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
+ array_bytes, smobj_array, 0));
+
+ for (uint64_t i = 0; i < array_count; i++) {
+ uint64_t smobj = smobj_array[i];
+ if (smobj == 0)
+ continue;
+
+ space_map_free_obj(mos, smobj, tx);
+ }
+
+ kmem_free(smobj_array, array_bytes);
+ VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
+ vd->vdev_ms_array = 0;
+}
+
+static void
+vdev_remove_empty(vdev_t *vd, uint64_t txg)
{
spa_t *spa = vd->vdev_spa;
- objset_t *mos = spa->spa_meta_objset;
dmu_tx_t *tx;
- tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
ASSERT(vd == vd->vdev_top);
ASSERT3U(txg, ==, spa_syncing_txg(spa));
@@ -2412,7 +2546,6 @@ vdev_remove(vdev_t *vd, uint64_t txg)
metaslab_group_histogram_remove(mg, msp);
VERIFY0(space_map_allocated(msp->ms_sm));
- space_map_free(msp->ms_sm, tx);
space_map_close(msp->ms_sm);
msp->ms_sm = NULL;
mutex_exit(&msp->ms_lock);
@@ -2422,13 +2555,10 @@ vdev_remove(vdev_t *vd, uint64_t txg)
metaslab_class_histogram_verify(mg->mg_class);
for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
ASSERT0(mg->mg_histogram[i]);
-
}
- if (vd->vdev_ms_array) {
- (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
- vd->vdev_ms_array = 0;
- }
+ tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
+ vdev_destroy_spacemaps(vd, tx);
if (vd->vdev_islog && vd->vdev_top_zap != 0) {
vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
@@ -2443,7 +2573,7 @@ vdev_sync_done(vdev_t *vd, uint64_t txg)
metaslab_t *msp;
boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
- ASSERT(!vd->vdev_ishole);
+ ASSERT(vdev_is_concrete(vd));
while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))))
metaslab_sync_done(msp, txg);
@@ -2460,10 +2590,33 @@ vdev_sync(vdev_t *vd, uint64_t txg)
metaslab_t *msp;
dmu_tx_t *tx;
- ASSERT(!vd->vdev_ishole);
+ if (range_tree_space(vd->vdev_obsolete_segments) > 0) {
+ dmu_tx_t *tx;
- if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
+ ASSERT(vd->vdev_removing ||
+ vd->vdev_ops == &vdev_indirect_ops);
+
+ tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
+ vdev_indirect_sync_obsolete(vd, tx);
+ dmu_tx_commit(tx);
+
+ /*
+ * If the vdev is indirect, it can't have dirty
+ * metaslabs or DTLs.
+ */
+ if (vd->vdev_ops == &vdev_indirect_ops) {
+ ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
+ ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
+ return;
+ }
+ }
+
+ ASSERT(vdev_is_concrete(vd));
+
+ if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
+ !vd->vdev_removing) {
ASSERT(vd == vd->vdev_top);
+ ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
@@ -2472,12 +2625,6 @@ vdev_sync(vdev_t *vd, uint64_t txg)
dmu_tx_commit(tx);
}
- /*
- * Remove the metadata associated with this vdev once it's empty.
- */
- if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
- vdev_remove(vd, txg);
-
while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
metaslab_sync(msp, txg);
(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
@@ -2486,6 +2633,16 @@ vdev_sync(vdev_t *vd, uint64_t txg)
while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
vdev_dtl_sync(lvd, txg);
+ /*
+ * Remove the metadata associated with this vdev once it's empty.
+ * Note that this is typically used for log/cache device removal;
+ * we don't empty toplevel vdevs when removing them. But if
+ * a toplevel happens to be emptied, this is not harmful.
+ */
+ if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) {
+ vdev_remove_empty(vd, txg);
+ }
+
(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
}
@@ -2725,7 +2882,7 @@ top:
metaslab_group_passivate(mg);
(void) spa_vdev_state_exit(spa, vd, 0);
- error = spa_offline_log(spa);
+ error = spa_reset_logs(spa);
spa_vdev_state_enter(spa, SCL_ALLOC);
@@ -2807,6 +2964,12 @@ vdev_clear(spa_t *spa, vdev_t *vd)
vdev_clear(spa, vd->vdev_child[c]);
/*
+ * It makes no sense to "clear" an indirect vdev.
+ */
+ if (!vdev_is_concrete(vd))
+ return;
+
+ /*
* If we're in the FAULTED state or have experienced failed I/O, then
* clear the persistent state and attempt to reopen the device. We
* also mark the vdev config dirty, so that the new faulted state is
@@ -2860,7 +3023,8 @@ vdev_is_dead(vdev_t *vd)
* Instead we rely on the fact that we skip over dead devices
* before issuing I/O to them.
*/
- return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
+ return (vd->vdev_state < VDEV_STATE_DEGRADED ||
+ vd->vdev_ops == &vdev_hole_ops ||
vd->vdev_ops == &vdev_missing_ops);
}
@@ -2873,7 +3037,8 @@ vdev_readable(vdev_t *vd)
boolean_t
vdev_writeable(vdev_t *vd)
{
- return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
+ return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
+ vdev_is_concrete(vd));
}
boolean_t
@@ -2890,7 +3055,7 @@ vdev_allocatable(vdev_t *vd)
* we're asking two separate questions about it.
*/
return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
- !vd->vdev_cant_write && !vd->vdev_ishole &&
+ !vd->vdev_cant_write && vdev_is_concrete(vd) &&
vd->vdev_mg->mg_initialized);
}
@@ -3033,7 +3198,7 @@ vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
}
vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
- !vd->vdev_ishole) {
+ vdev_is_concrete(vd)) {
vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
}
}
@@ -3196,7 +3361,8 @@ vdev_stat_update(zio_t *zio, uint64_t psize)
vs->vs_write_errors++;
mutex_exit(&vd->vdev_stat_lock);
- if (type == ZIO_TYPE_WRITE && txg != 0 &&
+ if (spa->spa_load_state == SPA_LOAD_NONE &&
+ type == ZIO_TYPE_WRITE && txg != 0 &&
(!(flags & ZIO_FLAG_IO_REPAIR) ||
(flags & ZIO_FLAG_SCAN_THREAD) ||
spa->spa_claiming)) {
@@ -3361,8 +3527,9 @@ vdev_config_dirty(vdev_t *vd)
ASSERT(vd == vd->vdev_top);
if (!list_link_active(&vd->vdev_config_dirty_node) &&
- !vd->vdev_ishole)
+ vdev_is_concrete(vd)) {
list_insert_head(&spa->spa_config_dirty_list, vd);
+ }
}
}
@@ -3403,7 +3570,8 @@ vdev_state_dirty(vdev_t *vd)
(dsl_pool_sync_context(spa_get_dsl(spa)) &&
spa_config_held(spa, SCL_STATE, RW_READER)));
- if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
+ if (!list_link_active(&vd->vdev_state_dirty_node) &&
+ vdev_is_concrete(vd))
list_insert_head(&spa->spa_state_dirty_list, vd);
}
@@ -3437,9 +3605,10 @@ vdev_propagate_state(vdev_t *vd)
child = vd->vdev_child[c];
/*
- * Don't factor holes into the decision.
+ * Don't factor holes or indirect vdevs into the
+ * decision.
*/
- if (child->vdev_ishole)
+ if (!vdev_is_concrete(child))
continue;
if (!vdev_readable(child) ||
@@ -3642,8 +3811,10 @@ vdev_is_bootable(vdev_t *vd)
if (!vd->vdev_ops->vdev_op_leaf) {
const char *vdev_type = vd->vdev_ops->vdev_op_type;
- if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0)
+ if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0 ||
+ strcmp(vdev_type, VDEV_TYPE_INDIRECT) == 0) {
return (B_FALSE);
+ }
}
for (int c = 0; c < vd->vdev_children; c++) {
@@ -3653,6 +3824,18 @@ vdev_is_bootable(vdev_t *vd)
return (B_TRUE);
}
+boolean_t
+vdev_is_concrete(vdev_t *vd)
+{
+ vdev_ops_t *ops = vd->vdev_ops;
+ if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
+ ops == &vdev_missing_ops || ops == &vdev_root_ops) {
+ return (B_FALSE);
+ } else {
+ return (B_TRUE);
+ }
+}
+
/*
* Load the state from the original vdev tree (ovd) which
* we've retrieved from the MOS config object. If the original
@@ -3709,7 +3892,10 @@ vdev_expand(vdev_t *vd, uint64_t txg)
ASSERT(vd->vdev_top == vd);
ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
- if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
+ vdev_set_deflate_ratio(vd);
+
+ if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count &&
+ vdev_is_concrete(vd)) {
VERIFY(vdev_metaslab_init(vd, txg) == 0);
vdev_config_dirty(vd);
}
diff --git a/module/zfs/vdev_disk.c b/module/zfs/vdev_disk.c
index 788503bcd..056381c9d 100644
--- a/module/zfs/vdev_disk.c
+++ b/module/zfs/vdev_disk.c
@@ -843,6 +843,7 @@ vdev_ops_t vdev_disk_ops = {
NULL,
vdev_disk_hold,
vdev_disk_rele,
+ NULL,
VDEV_TYPE_DISK, /* name of this vdev type */
B_TRUE /* leaf vdev */
};
diff --git a/module/zfs/vdev_file.c b/module/zfs/vdev_file.c
index 13c32e083..bd7e0bc2e 100644
--- a/module/zfs/vdev_file.c
+++ b/module/zfs/vdev_file.c
@@ -253,6 +253,7 @@ vdev_ops_t vdev_file_ops = {
NULL,
vdev_file_hold,
vdev_file_rele,
+ NULL,
VDEV_TYPE_FILE, /* name of this vdev type */
B_TRUE /* leaf vdev */
};
@@ -287,6 +288,7 @@ vdev_ops_t vdev_disk_ops = {
NULL,
vdev_file_hold,
vdev_file_rele,
+ NULL,
VDEV_TYPE_DISK, /* name of this vdev type */
B_TRUE /* leaf vdev */
};
diff --git a/module/zfs/vdev_indirect.c b/module/zfs/vdev_indirect.c
new file mode 100644
index 000000000..86a05daa8
--- /dev/null
+++ b/module/zfs/vdev_indirect.c
@@ -0,0 +1,1064 @@
+/*
+ * CDDL HEADER START
+ *
+ * This file and its contents are supplied under the terms of the
+ * Common Development and Distribution License ("CDDL"), version 1.0.
+ * You may only use this file in accordance with the terms of version
+ * 1.0 of the CDDL.
+ *
+ * A full copy of the text of the CDDL should have accompanied this
+ * source. A copy of the CDDL is also available via the Internet at
+ * http://www.illumos.org/license/CDDL.
+ *
+ * CDDL HEADER END
+ */
+
+/*
+ * Copyright (c) 2014, 2015 by Delphix. All rights reserved.
+ */
+
+#include <sys/zfs_context.h>
+#include <sys/spa.h>
+#include <sys/spa_impl.h>
+#include <sys/vdev_impl.h>
+#include <sys/fs/zfs.h>
+#include <sys/zio.h>
+#include <sys/metaslab.h>
+#include <sys/refcount.h>
+#include <sys/dmu.h>
+#include <sys/vdev_indirect_mapping.h>
+#include <sys/dmu_tx.h>
+#include <sys/dsl_synctask.h>
+#include <sys/zap.h>
+
+/*
+ * An indirect vdev corresponds to a vdev that has been removed. Since
+ * we cannot rewrite block pointers of snapshots, etc., we keep a
+ * mapping from old location on the removed device to the new location
+ * on another device in the pool and use this mapping whenever we need
+ * to access the DVA. Unfortunately, this mapping did not respect
+ * logical block boundaries when it was first created, and so a DVA on
+ * this indirect vdev may be "split" into multiple sections that each
+ * map to a different location. As a consequence, not all DVAs can be
+ * translated to an equivalent new DVA. Instead we must provide a
+ * "vdev_remap" operation that executes a callback on each contiguous
+ * segment of the new location. This function is used in multiple ways:
+ *
+ * - reads and repair writes to this device use the callback to create
+ * a child io for each mapped segment.
+ *
+ * - frees and claims to this device use the callback to free or claim
+ * each mapped segment. (Note that we don't actually need to claim
+ * log blocks on indirect vdevs, because we don't allocate to
+ * removing vdevs. However, zdb uses zio_claim() for its leak
+ * detection.)
+ */
+
+/*
+ * "Big theory statement" for how we mark blocks obsolete.
+ *
+ * When a block on an indirect vdev is freed or remapped, a section of
+ * that vdev's mapping may no longer be referenced (aka "obsolete"). We
+ * keep track of how much of each mapping entry is obsolete. When
+ * an entry becomes completely obsolete, we can remove it, thus reducing
+ * the memory used by the mapping. The complete picture of obsolescence
+ * is given by the following data structures, described below:
+ * - the entry-specific obsolete count
+ * - the vdev-specific obsolete spacemap
+ * - the pool-specific obsolete bpobj
+ *
+ * == On disk data structures used ==
+ *
+ * We track the obsolete space for the pool using several objects. Each
+ * of these objects is created on demand and freed when no longer
+ * needed, and is assumed to be empty if it does not exist.
+ * SPA_FEATURE_OBSOLETE_COUNTS includes the count of these objects.
+ *
+ * - Each vic_mapping_object (associated with an indirect vdev) can
+ * have a vimp_counts_object. This is an array of uint32_t's
+ * with the same number of entries as the vic_mapping_object. When
+ * the mapping is condensed, entries from the vic_obsolete_sm_object
+ * (see below) are folded into the counts. Therefore, each
+ * obsolete_counts entry tells us the number of bytes in the
+ * corresponding mapping entry that were not referenced when the
+ * mapping was last condensed.
+ *
+ * - Each indirect or removing vdev can have a vic_obsolete_sm_object.
+ * This is a space map containing an alloc entry for every DVA that
+ * has been obsoleted since the last time this indirect vdev was
+ * condensed. We use this object in order to improve performance
+ * when marking a DVA as obsolete. Instead of modifying an arbitrary
+ * offset of the vimp_counts_object, we only need to append an entry
+ * to the end of this object. When a DVA becomes obsolete, it is
+ * added to the obsolete space map. This happens when the DVA is
+ * freed, remapped and not referenced by a snapshot, or the last
+ * snapshot referencing it is destroyed.
+ *
+ * - Each dataset can have a ds_remap_deadlist object. This is a
+ * deadlist object containing all blocks that were remapped in this
+ * dataset but referenced in a previous snapshot. Blocks can *only*
+ * appear on this list if they were remapped (dsl_dataset_block_remapped);
+ * blocks that were killed in a head dataset are put on the normal
+ * ds_deadlist and marked obsolete when they are freed.
+ *
+ * - The pool can have a dp_obsolete_bpobj. This is a list of blocks
+ * in the pool that need to be marked obsolete. When a snapshot is
+ * destroyed, we move some of the ds_remap_deadlist to the obsolete
+ * bpobj (see dsl_destroy_snapshot_handle_remaps()). We then
+ * asynchronously process the obsolete bpobj, moving its entries to
+ * the specific vdevs' obsolete space maps.
+ *
+ * == Summary of how we mark blocks as obsolete ==
+ *
+ * - When freeing a block: if any DVA is on an indirect vdev, append to
+ * vic_obsolete_sm_object.
+ * - When remapping a block, add dva to ds_remap_deadlist (if prev snap
+ * references; otherwise append to vic_obsolete_sm_object).
+ * - When freeing a snapshot: move parts of ds_remap_deadlist to
+ * dp_obsolete_bpobj (same algorithm as ds_deadlist).
+ * - When syncing the spa: process dp_obsolete_bpobj, moving ranges to
+ * individual vdev's vic_obsolete_sm_object.
+ */
+
+/*
+ * "Big theory statement" for how we condense indirect vdevs.
+ *
+ * Condensing an indirect vdev's mapping is the process of determining
+ * the precise counts of obsolete space for each mapping entry (by
+ * integrating the obsolete spacemap into the obsolete counts) and
+ * writing out a new mapping that contains only referenced entries.
+ *
+ * We condense a vdev when we expect the mapping to shrink (see
+ * vdev_indirect_should_condense()), but only perform one condense at a
+ * time to limit the memory usage. In addition, we use a separate
+ * open-context thread (spa_condense_indirect_thread) to incrementally
+ * create the new mapping object in a way that minimizes the impact on
+ * the rest of the system.
+ *
+ * == Generating a new mapping ==
+ *
+ * To generate a new mapping, we follow these steps:
+ *
+ * 1. Save the old obsolete space map and create a new mapping object
+ * (see spa_condense_indirect_start_sync()). This initializes the
+ * spa_condensing_indirect_phys with the "previous obsolete space map",
+ * which is now read only. Newly obsolete DVAs will be added to a
+ * new (initially empty) obsolete space map, and will not be
+ * considered as part of this condense operation.
+ *
+ * 2. Construct in memory the precise counts of obsolete space for each
+ * mapping entry, by incorporating the obsolete space map into the
+ * counts. (See vdev_indirect_mapping_load_obsolete_{counts,spacemap}().)
+ *
+ * 3. Iterate through each mapping entry, writing to the new mapping any
+ * entries that are not completely obsolete (i.e. which don't have
+ * obsolete count == mapping length). (See
+ * spa_condense_indirect_generate_new_mapping().)
+ *
+ * 4. Destroy the old mapping object and switch over to the new one
+ * (spa_condense_indirect_complete_sync).
+ *
+ * == Restarting from failure ==
+ *
+ * To restart the condense when we import/open the pool, we must start
+ * at the 2nd step above: reconstruct the precise counts in memory,
+ * based on the space map + counts. Then in the 3rd step, we start
+ * iterating where we left off: at vimp_max_offset of the new mapping
+ * object.
+ */
+
+boolean_t zfs_condense_indirect_vdevs_enable = B_TRUE;
+
+/*
+ * Condense if at least this percent of the bytes in the mapping is
+ * obsolete. With the default of 25%, the amount of space mapped
+ * will be reduced to 1% of its original size after at most 16
+ * condenses. Higher values will condense less often (causing less
+ * i/o); lower values will reduce the mapping size more quickly.
+ */
+int zfs_indirect_condense_obsolete_pct = 25;
+
+/*
+ * Condense if the obsolete space map takes up more than this amount of
+ * space on disk (logically). This limits the amount of disk space
+ * consumed by the obsolete space map; the default of 1GB is small enough
+ * that we typically don't mind "wasting" it.
+ */
+uint64_t zfs_condense_max_obsolete_bytes = 1024 * 1024 * 1024;
+
+/*
+ * Don't bother condensing if the mapping uses less than this amount of
+ * memory. The default of 128KB is considered a "trivial" amount of
+ * memory and not worth reducing.
+ */
+unsigned long zfs_condense_min_mapping_bytes = 128 * 1024;
+
+/*
+ * This is used by the test suite so that it can ensure that certain
+ * actions happen while in the middle of a condense (which might otherwise
+ * complete too quickly). If used to reduce the performance impact of
+ * condensing in production, a maximum value of 1 should be sufficient.
+ */
+int zfs_condense_indirect_commit_entry_delay_ms = 0;
+
+/*
+ * Mark the given offset and size as being obsolete in the given txg.
+ */
+void
+vdev_indirect_mark_obsolete(vdev_t *vd, uint64_t offset, uint64_t size,
+ uint64_t txg)
+{
+ spa_t *spa = vd->vdev_spa;
+ ASSERT3U(spa_syncing_txg(spa), ==, txg);
+ ASSERT3U(vd->vdev_indirect_config.vic_mapping_object, !=, 0);
+ ASSERT(vd->vdev_removing || vd->vdev_ops == &vdev_indirect_ops);
+ ASSERT(size > 0);
+ VERIFY(vdev_indirect_mapping_entry_for_offset(
+ vd->vdev_indirect_mapping, offset) != NULL);
+
+ if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
+ mutex_enter(&vd->vdev_obsolete_lock);
+ range_tree_add(vd->vdev_obsolete_segments, offset, size);
+ mutex_exit(&vd->vdev_obsolete_lock);
+ vdev_dirty(vd, 0, NULL, txg);
+ }
+}
+
+/*
+ * Mark the DVA vdev_id:offset:size as being obsolete in the given tx. This
+ * wrapper is provided because the DMU does not know about vdev_t's and
+ * cannot directly call vdev_indirect_mark_obsolete.
+ */
+void
+spa_vdev_indirect_mark_obsolete(spa_t *spa, uint64_t vdev_id, uint64_t offset,
+ uint64_t size, dmu_tx_t *tx)
+{
+ vdev_t *vd = vdev_lookup_top(spa, vdev_id);
+ ASSERT(dmu_tx_is_syncing(tx));
+
+ /* The DMU can only remap indirect vdevs. */
+ ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
+ vdev_indirect_mark_obsolete(vd, offset, size, dmu_tx_get_txg(tx));
+}
+
+static spa_condensing_indirect_t *
+spa_condensing_indirect_create(spa_t *spa)
+{
+ spa_condensing_indirect_phys_t *scip =
+ &spa->spa_condensing_indirect_phys;
+ spa_condensing_indirect_t *sci = kmem_zalloc(sizeof (*sci), KM_SLEEP);
+ objset_t *mos = spa->spa_meta_objset;
+
+ for (int i = 0; i < TXG_SIZE; i++) {
+ list_create(&sci->sci_new_mapping_entries[i],
+ sizeof (vdev_indirect_mapping_entry_t),
+ offsetof(vdev_indirect_mapping_entry_t, vime_node));
+ }
+
+ sci->sci_new_mapping =
+ vdev_indirect_mapping_open(mos, scip->scip_next_mapping_object);
+
+ return (sci);
+}
+
+static void
+spa_condensing_indirect_destroy(spa_condensing_indirect_t *sci)
+{
+ for (int i = 0; i < TXG_SIZE; i++)
+ list_destroy(&sci->sci_new_mapping_entries[i]);
+
+ if (sci->sci_new_mapping != NULL)
+ vdev_indirect_mapping_close(sci->sci_new_mapping);
+
+ kmem_free(sci, sizeof (*sci));
+}
+
+boolean_t
+vdev_indirect_should_condense(vdev_t *vd)
+{
+ vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
+ spa_t *spa = vd->vdev_spa;
+
+ ASSERT(dsl_pool_sync_context(spa->spa_dsl_pool));
+
+ if (!zfs_condense_indirect_vdevs_enable)
+ return (B_FALSE);
+
+ /*
+ * We can only condense one indirect vdev at a time.
+ */
+ if (spa->spa_condensing_indirect != NULL)
+ return (B_FALSE);
+
+ if (spa_shutting_down(spa))
+ return (B_FALSE);
+
+ /*
+ * The mapping object size must not change while we are
+ * condensing, so we can only condense indirect vdevs
+ * (not vdevs that are still in the middle of being removed).
+ */
+ if (vd->vdev_ops != &vdev_indirect_ops)
+ return (B_FALSE);
+
+ /*
+ * If nothing new has been marked obsolete, there is no
+ * point in condensing.
+ */
+ if (vd->vdev_obsolete_sm == NULL) {
+ ASSERT0(vdev_obsolete_sm_object(vd));
+ return (B_FALSE);
+ }
+
+ ASSERT(vd->vdev_obsolete_sm != NULL);
+
+ ASSERT3U(vdev_obsolete_sm_object(vd), ==,
+ space_map_object(vd->vdev_obsolete_sm));
+
+ uint64_t bytes_mapped = vdev_indirect_mapping_bytes_mapped(vim);
+ uint64_t bytes_obsolete = space_map_allocated(vd->vdev_obsolete_sm);
+ uint64_t mapping_size = vdev_indirect_mapping_size(vim);
+ uint64_t obsolete_sm_size = space_map_length(vd->vdev_obsolete_sm);
+
+ ASSERT3U(bytes_obsolete, <=, bytes_mapped);
+
+ /*
+ * If a high percentage of the bytes that are mapped have become
+ * obsolete, condense (unless the mapping is already small enough).
+ * This has a good chance of reducing the amount of memory used
+ * by the mapping.
+ */
+ if (bytes_obsolete * 100 / bytes_mapped >=
+ zfs_indirect_condense_obsolete_pct &&
+ mapping_size > zfs_condense_min_mapping_bytes) {
+ zfs_dbgmsg("should condense vdev %llu because obsolete "
+ "spacemap covers %d%% of %lluMB mapping",
+ (u_longlong_t)vd->vdev_id,
+ (int)(bytes_obsolete * 100 / bytes_mapped),
+ (u_longlong_t)bytes_mapped / 1024 / 1024);
+ return (B_TRUE);
+ }
+
+ /*
+ * If the obsolete space map takes up too much space on disk,
+ * condense in order to free up this disk space.
+ */
+ if (obsolete_sm_size >= zfs_condense_max_obsolete_bytes) {
+ zfs_dbgmsg("should condense vdev %llu because obsolete sm "
+ "length %lluMB >= max size %lluMB",
+ (u_longlong_t)vd->vdev_id,
+ (u_longlong_t)obsolete_sm_size / 1024 / 1024,
+ (u_longlong_t)zfs_condense_max_obsolete_bytes /
+ 1024 / 1024);
+ return (B_TRUE);
+ }
+
+ return (B_FALSE);
+}
+
+/*
+ * This sync task completes (finishes) a condense, deleting the old
+ * mapping and replacing it with the new one.
+ */
+static void
+spa_condense_indirect_complete_sync(void *arg, dmu_tx_t *tx)
+{
+ spa_condensing_indirect_t *sci = arg;
+ spa_t *spa = dmu_tx_pool(tx)->dp_spa;
+ spa_condensing_indirect_phys_t *scip =
+ &spa->spa_condensing_indirect_phys;
+ vdev_t *vd = vdev_lookup_top(spa, scip->scip_vdev);
+ vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
+ objset_t *mos = spa->spa_meta_objset;
+ vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
+ uint64_t old_count = vdev_indirect_mapping_num_entries(old_mapping);
+ uint64_t new_count =
+ vdev_indirect_mapping_num_entries(sci->sci_new_mapping);
+
+ ASSERT(dmu_tx_is_syncing(tx));
+ ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
+ ASSERT3P(sci, ==, spa->spa_condensing_indirect);
+ for (int i = 0; i < TXG_SIZE; i++) {
+ ASSERT(list_is_empty(&sci->sci_new_mapping_entries[i]));
+ }
+ ASSERT(vic->vic_mapping_object != 0);
+ ASSERT3U(vd->vdev_id, ==, scip->scip_vdev);
+ ASSERT(scip->scip_next_mapping_object != 0);
+ ASSERT(scip->scip_prev_obsolete_sm_object != 0);
+
+ /*
+ * Reset vdev_indirect_mapping to refer to the new object.
+ */
+ rw_enter(&vd->vdev_indirect_rwlock, RW_WRITER);
+ vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
+ vd->vdev_indirect_mapping = sci->sci_new_mapping;
+ rw_exit(&vd->vdev_indirect_rwlock);
+
+ sci->sci_new_mapping = NULL;
+ vdev_indirect_mapping_free(mos, vic->vic_mapping_object, tx);
+ vic->vic_mapping_object = scip->scip_next_mapping_object;
+ scip->scip_next_mapping_object = 0;
+
+ space_map_free_obj(mos, scip->scip_prev_obsolete_sm_object, tx);
+ spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
+ scip->scip_prev_obsolete_sm_object = 0;
+
+ scip->scip_vdev = 0;
+
+ VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
+ DMU_POOL_CONDENSING_INDIRECT, tx));
+ spa_condensing_indirect_destroy(spa->spa_condensing_indirect);
+ spa->spa_condensing_indirect = NULL;
+
+ zfs_dbgmsg("finished condense of vdev %llu in txg %llu: "
+ "new mapping object %llu has %llu entries "
+ "(was %llu entries)",
+ vd->vdev_id, dmu_tx_get_txg(tx), vic->vic_mapping_object,
+ new_count, old_count);
+
+ vdev_config_dirty(spa->spa_root_vdev);
+}
+
+/*
+ * This sync task appends entries to the new mapping object.
+ */
+static void
+spa_condense_indirect_commit_sync(void *arg, dmu_tx_t *tx)
+{
+ spa_condensing_indirect_t *sci = arg;
+ uint64_t txg = dmu_tx_get_txg(tx);
+ ASSERTV(spa_t *spa = dmu_tx_pool(tx)->dp_spa);
+
+ ASSERT(dmu_tx_is_syncing(tx));
+ ASSERT3P(sci, ==, spa->spa_condensing_indirect);
+
+ vdev_indirect_mapping_add_entries(sci->sci_new_mapping,
+ &sci->sci_new_mapping_entries[txg & TXG_MASK], tx);
+ ASSERT(list_is_empty(&sci->sci_new_mapping_entries[txg & TXG_MASK]));
+}
+
+/*
+ * Open-context function to add one entry to the new mapping. The new
+ * entry will be remembered and written from syncing context.
+ */
+static void
+spa_condense_indirect_commit_entry(spa_t *spa,
+ vdev_indirect_mapping_entry_phys_t *vimep, uint32_t count)
+{
+ spa_condensing_indirect_t *sci = spa->spa_condensing_indirect;
+
+ ASSERT3U(count, <, DVA_GET_ASIZE(&vimep->vimep_dst));
+
+ dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
+ dmu_tx_hold_space(tx, sizeof (*vimep) + sizeof (count));
+ VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
+ int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
+
+ /*
+ * If we are the first entry committed this txg, kick off the sync
+ * task to write to the MOS on our behalf.
+ */
+ if (list_is_empty(&sci->sci_new_mapping_entries[txgoff])) {
+ dsl_sync_task_nowait(dmu_tx_pool(tx),
+ spa_condense_indirect_commit_sync, sci,
+ 0, ZFS_SPACE_CHECK_NONE, tx);
+ }
+
+ vdev_indirect_mapping_entry_t *vime =
+ kmem_alloc(sizeof (*vime), KM_SLEEP);
+ vime->vime_mapping = *vimep;
+ vime->vime_obsolete_count = count;
+ list_insert_tail(&sci->sci_new_mapping_entries[txgoff], vime);
+
+ dmu_tx_commit(tx);
+}
+
+static void
+spa_condense_indirect_generate_new_mapping(vdev_t *vd,
+ uint32_t *obsolete_counts, uint64_t start_index)
+{
+ spa_t *spa = vd->vdev_spa;
+ uint64_t mapi = start_index;
+ vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
+ uint64_t old_num_entries =
+ vdev_indirect_mapping_num_entries(old_mapping);
+
+ ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
+ ASSERT3U(vd->vdev_id, ==, spa->spa_condensing_indirect_phys.scip_vdev);
+
+ zfs_dbgmsg("starting condense of vdev %llu from index %llu",
+ (u_longlong_t)vd->vdev_id,
+ (u_longlong_t)mapi);
+
+ while (mapi < old_num_entries && !spa_shutting_down(spa)) {
+ vdev_indirect_mapping_entry_phys_t *entry =
+ &old_mapping->vim_entries[mapi];
+ uint64_t entry_size = DVA_GET_ASIZE(&entry->vimep_dst);
+ ASSERT3U(obsolete_counts[mapi], <=, entry_size);
+ if (obsolete_counts[mapi] < entry_size) {
+ spa_condense_indirect_commit_entry(spa, entry,
+ obsolete_counts[mapi]);
+
+ /*
+ * This delay may be requested for testing, debugging,
+ * or performance reasons.
+ */
+ hrtime_t now = gethrtime();
+ hrtime_t sleep_until = now + MSEC2NSEC(
+ zfs_condense_indirect_commit_entry_delay_ms);
+ zfs_sleep_until(sleep_until);
+ }
+
+ mapi++;
+ }
+ if (spa_shutting_down(spa)) {
+ zfs_dbgmsg("pausing condense of vdev %llu at index %llu",
+ (u_longlong_t)vd->vdev_id,
+ (u_longlong_t)mapi);
+ }
+}
+
+static void
+spa_condense_indirect_thread(void *arg)
+{
+ vdev_t *vd = arg;
+ spa_t *spa = vd->vdev_spa;
+ spa_condensing_indirect_t *sci = spa->spa_condensing_indirect;
+ spa_condensing_indirect_phys_t *scip =
+ &spa->spa_condensing_indirect_phys;
+ uint32_t *counts;
+ uint64_t start_index;
+ vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
+ space_map_t *prev_obsolete_sm = NULL;
+
+ ASSERT3U(vd->vdev_id, ==, scip->scip_vdev);
+ ASSERT(scip->scip_next_mapping_object != 0);
+ ASSERT(scip->scip_prev_obsolete_sm_object != 0);
+ ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
+
+ for (int i = 0; i < TXG_SIZE; i++) {
+ /*
+ * The list must start out empty in order for the
+ * _commit_sync() sync task to be properly registered
+ * on the first call to _commit_entry(); so it's wise
+ * to double check and ensure we actually are starting
+ * with empty lists.
+ */
+ ASSERT(list_is_empty(&sci->sci_new_mapping_entries[i]));
+ }
+
+ VERIFY0(space_map_open(&prev_obsolete_sm, spa->spa_meta_objset,
+ scip->scip_prev_obsolete_sm_object, 0, vd->vdev_asize, 0));
+ space_map_update(prev_obsolete_sm);
+ counts = vdev_indirect_mapping_load_obsolete_counts(old_mapping);
+ if (prev_obsolete_sm != NULL) {
+ vdev_indirect_mapping_load_obsolete_spacemap(old_mapping,
+ counts, prev_obsolete_sm);
+ }
+ space_map_close(prev_obsolete_sm);
+
+ /*
+ * Generate new mapping. Determine what index to continue from
+ * based on the max offset that we've already written in the
+ * new mapping.
+ */
+ uint64_t max_offset =
+ vdev_indirect_mapping_max_offset(sci->sci_new_mapping);
+ if (max_offset == 0) {
+ /* We haven't written anything to the new mapping yet. */
+ start_index = 0;
+ } else {
+ /*
+ * Pick up from where we left off. _entry_for_offset()
+ * returns a pointer into the vim_entries array. If
+ * max_offset is greater than any of the mappings
+ * contained in the table NULL will be returned and
+ * that indicates we've exhausted our iteration of the
+ * old_mapping.
+ */
+
+ vdev_indirect_mapping_entry_phys_t *entry =
+ vdev_indirect_mapping_entry_for_offset_or_next(old_mapping,
+ max_offset);
+
+ if (entry == NULL) {
+ /*
+ * We've already written the whole new mapping.
+ * This special value will cause us to skip the
+ * generate_new_mapping step and just do the sync
+ * task to complete the condense.
+ */
+ start_index = UINT64_MAX;
+ } else {
+ start_index = entry - old_mapping->vim_entries;
+ ASSERT3U(start_index, <,
+ vdev_indirect_mapping_num_entries(old_mapping));
+ }
+ }
+
+ spa_condense_indirect_generate_new_mapping(vd, counts, start_index);
+
+ vdev_indirect_mapping_free_obsolete_counts(old_mapping, counts);
+
+ /*
+ * We may have bailed early from generate_new_mapping(), if
+ * the spa is shutting down. In this case, do not complete
+ * the condense.
+ */
+ if (!spa_shutting_down(spa)) {
+ VERIFY0(dsl_sync_task(spa_name(spa), NULL,
+ spa_condense_indirect_complete_sync, sci, 0,
+ ZFS_SPACE_CHECK_NONE));
+ }
+
+ mutex_enter(&spa->spa_async_lock);
+ spa->spa_condense_thread = NULL;
+ cv_broadcast(&spa->spa_async_cv);
+ mutex_exit(&spa->spa_async_lock);
+}
+
+/*
+ * Sync task to begin the condensing process.
+ */
+void
+spa_condense_indirect_start_sync(vdev_t *vd, dmu_tx_t *tx)
+{
+ spa_t *spa = vd->vdev_spa;
+ spa_condensing_indirect_phys_t *scip =
+ &spa->spa_condensing_indirect_phys;
+
+ ASSERT0(scip->scip_next_mapping_object);
+ ASSERT0(scip->scip_prev_obsolete_sm_object);
+ ASSERT0(scip->scip_vdev);
+ ASSERT(dmu_tx_is_syncing(tx));
+ ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
+ ASSERT(spa_feature_is_active(spa, SPA_FEATURE_OBSOLETE_COUNTS));
+ ASSERT(vdev_indirect_mapping_num_entries(vd->vdev_indirect_mapping));
+
+ uint64_t obsolete_sm_obj = vdev_obsolete_sm_object(vd);
+ ASSERT(obsolete_sm_obj != 0);
+
+ scip->scip_vdev = vd->vdev_id;
+ scip->scip_next_mapping_object =
+ vdev_indirect_mapping_alloc(spa->spa_meta_objset, tx);
+
+ scip->scip_prev_obsolete_sm_object = obsolete_sm_obj;
+
+ /*
+ * We don't need to allocate a new space map object, since
+ * vdev_indirect_sync_obsolete will allocate one when needed.
+ */
+ space_map_close(vd->vdev_obsolete_sm);
+ vd->vdev_obsolete_sm = NULL;
+ VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
+ VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, tx));
+
+ VERIFY0(zap_add(spa->spa_dsl_pool->dp_meta_objset,
+ DMU_POOL_DIRECTORY_OBJECT,
+ DMU_POOL_CONDENSING_INDIRECT, sizeof (uint64_t),
+ sizeof (*scip) / sizeof (uint64_t), scip, tx));
+
+ ASSERT3P(spa->spa_condensing_indirect, ==, NULL);
+ spa->spa_condensing_indirect = spa_condensing_indirect_create(spa);
+
+ zfs_dbgmsg("starting condense of vdev %llu in txg %llu: "
+ "posm=%llu nm=%llu",
+ vd->vdev_id, dmu_tx_get_txg(tx),
+ (u_longlong_t)scip->scip_prev_obsolete_sm_object,
+ (u_longlong_t)scip->scip_next_mapping_object);
+
+ ASSERT3P(spa->spa_condense_thread, ==, NULL);
+ spa->spa_condense_thread = thread_create(NULL, 0,
+ spa_condense_indirect_thread, vd, 0, &p0, TS_RUN, minclsyspri);
+}
+
+/*
+ * Sync to the given vdev's obsolete space map any segments that are no longer
+ * referenced as of the given txg.
+ *
+ * If the obsolete space map doesn't exist yet, create and open it.
+ */
+void
+vdev_indirect_sync_obsolete(vdev_t *vd, dmu_tx_t *tx)
+{
+ spa_t *spa = vd->vdev_spa;
+ ASSERTV(vdev_indirect_config_t *vic = &vd->vdev_indirect_config);
+
+ ASSERT3U(vic->vic_mapping_object, !=, 0);
+ ASSERT(range_tree_space(vd->vdev_obsolete_segments) > 0);
+ ASSERT(vd->vdev_removing || vd->vdev_ops == &vdev_indirect_ops);
+ ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS));
+
+ if (vdev_obsolete_sm_object(vd) == 0) {
+ uint64_t obsolete_sm_object =
+ space_map_alloc(spa->spa_meta_objset, tx);
+
+ ASSERT(vd->vdev_top_zap != 0);
+ VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
+ VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM,
+ sizeof (obsolete_sm_object), 1, &obsolete_sm_object, tx));
+ ASSERT3U(vdev_obsolete_sm_object(vd), !=, 0);
+
+ spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
+ VERIFY0(space_map_open(&vd->vdev_obsolete_sm,
+ spa->spa_meta_objset, obsolete_sm_object,
+ 0, vd->vdev_asize, 0));
+ space_map_update(vd->vdev_obsolete_sm);
+ }
+
+ ASSERT(vd->vdev_obsolete_sm != NULL);
+ ASSERT3U(vdev_obsolete_sm_object(vd), ==,
+ space_map_object(vd->vdev_obsolete_sm));
+
+ space_map_write(vd->vdev_obsolete_sm,
+ vd->vdev_obsolete_segments, SM_ALLOC, tx);
+ space_map_update(vd->vdev_obsolete_sm);
+ range_tree_vacate(vd->vdev_obsolete_segments, NULL, NULL);
+}
+
+int
+spa_condense_init(spa_t *spa)
+{
+ int error = zap_lookup(spa->spa_meta_objset,
+ DMU_POOL_DIRECTORY_OBJECT,
+ DMU_POOL_CONDENSING_INDIRECT, sizeof (uint64_t),
+ sizeof (spa->spa_condensing_indirect_phys) / sizeof (uint64_t),
+ &spa->spa_condensing_indirect_phys);
+ if (error == 0) {
+ if (spa_writeable(spa)) {
+ spa->spa_condensing_indirect =
+ spa_condensing_indirect_create(spa);
+ }
+ return (0);
+ } else if (error == ENOENT) {
+ return (0);
+ } else {
+ return (error);
+ }
+}
+
+void
+spa_condense_fini(spa_t *spa)
+{
+ if (spa->spa_condensing_indirect != NULL) {
+ spa_condensing_indirect_destroy(spa->spa_condensing_indirect);
+ spa->spa_condensing_indirect = NULL;
+ }
+}
+
+/*
+ * Restart the condense - called when the pool is opened.
+ */
+void
+spa_condense_indirect_restart(spa_t *spa)
+{
+ vdev_t *vd;
+ ASSERT(spa->spa_condensing_indirect != NULL);
+ spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
+ vd = vdev_lookup_top(spa,
+ spa->spa_condensing_indirect_phys.scip_vdev);
+ ASSERT(vd != NULL);
+ spa_config_exit(spa, SCL_VDEV, FTAG);
+
+ ASSERT3P(spa->spa_condense_thread, ==, NULL);
+ spa->spa_condense_thread = thread_create(NULL, 0,
+ spa_condense_indirect_thread, vd, 0, &p0, TS_RUN,
+ minclsyspri);
+}
+
+/*
+ * Gets the obsolete spacemap object from the vdev's ZAP.
+ * Returns the spacemap object, or 0 if it wasn't in the ZAP or the ZAP doesn't
+ * exist yet.
+ */
+int
+vdev_obsolete_sm_object(vdev_t *vd)
+{
+ ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
+ if (vd->vdev_top_zap == 0) {
+ return (0);
+ }
+
+ uint64_t sm_obj = 0;
+ int err;
+ err = zap_lookup(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
+ VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, sizeof (sm_obj), 1, &sm_obj);
+
+ ASSERT(err == 0 || err == ENOENT);
+
+ return (sm_obj);
+}
+
+boolean_t
+vdev_obsolete_counts_are_precise(vdev_t *vd)
+{
+ ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
+ if (vd->vdev_top_zap == 0) {
+ return (B_FALSE);
+ }
+
+ uint64_t val = 0;
+ int err;
+ err = zap_lookup(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
+ VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, sizeof (val), 1, &val);
+
+ ASSERT(err == 0 || err == ENOENT);
+
+ return (val != 0);
+}
+
+/* ARGSUSED */
+static void
+vdev_indirect_close(vdev_t *vd)
+{
+}
+
+/* ARGSUSED */
+static void
+vdev_indirect_io_done(zio_t *zio)
+{
+}
+
+/* ARGSUSED */
+static int
+vdev_indirect_open(vdev_t *vd, uint64_t *psize, uint64_t *max_psize,
+ uint64_t *ashift)
+{
+ *psize = *max_psize = vd->vdev_asize +
+ VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
+ *ashift = vd->vdev_ashift;
+ return (0);
+}
+
+typedef struct remap_segment {
+ vdev_t *rs_vd;
+ uint64_t rs_offset;
+ uint64_t rs_asize;
+ uint64_t rs_split_offset;
+ list_node_t rs_node;
+} remap_segment_t;
+
+remap_segment_t *
+rs_alloc(vdev_t *vd, uint64_t offset, uint64_t asize, uint64_t split_offset)
+{
+ remap_segment_t *rs = kmem_alloc(sizeof (remap_segment_t), KM_SLEEP);
+ rs->rs_vd = vd;
+ rs->rs_offset = offset;
+ rs->rs_asize = asize;
+ rs->rs_split_offset = split_offset;
+ return (rs);
+}
+
+/*
+ * Goes through the relevant indirect mappings until it hits a concrete vdev
+ * and issues the callback. On the way to the concrete vdev, if any other
+ * indirect vdevs are encountered, then the callback will also be called on
+ * each of those indirect vdevs. For example, if the segment is mapped to
+ * segment A on indirect vdev 1, and then segment A on indirect vdev 1 is
+ * mapped to segment B on concrete vdev 2, then the callback will be called on
+ * both vdev 1 and vdev 2.
+ *
+ * While the callback passed to vdev_indirect_remap() is called on every vdev
+ * the function encounters, certain callbacks only care about concrete vdevs.
+ * These types of callbacks should return immediately and explicitly when they
+ * are called on an indirect vdev.
+ *
+ * Because there is a possibility that a DVA section in the indirect device
+ * has been split into multiple sections in our mapping, we keep track
+ * of the relevant contiguous segments of the new location (remap_segment_t)
+ * in a stack. This way we can call the callback for each of the new sections
+ * created by a single section of the indirect device. Note though, that in
+ * this scenario the callbacks in each split block won't occur in-order in
+ * terms of offset, so callers should not make any assumptions about that.
+ *
+ * For callbacks that don't handle split blocks and immediately return when
+ * they encounter them (as is the case for remap_blkptr_cb), the caller can
+ * assume that its callback will be applied from the first indirect vdev
+ * encountered to the last one and then the concrete vdev, in that order.
+ */
+static void
+vdev_indirect_remap(vdev_t *vd, uint64_t offset, uint64_t asize,
+ void (*func)(uint64_t, vdev_t *, uint64_t, uint64_t, void *), void *arg)
+{
+ list_t stack;
+ spa_t *spa = vd->vdev_spa;
+
+ list_create(&stack, sizeof (remap_segment_t),
+ offsetof(remap_segment_t, rs_node));
+
+ for (remap_segment_t *rs = rs_alloc(vd, offset, asize, 0);
+ rs != NULL; rs = list_remove_head(&stack)) {
+ vdev_t *v = rs->rs_vd;
+
+ /*
+ * Note: this can be called from open context
+ * (eg. zio_read()), so we need the rwlock to prevent
+ * the mapping from being changed by condensing.
+ */
+ rw_enter(&v->vdev_indirect_rwlock, RW_READER);
+ vdev_indirect_mapping_t *vim = v->vdev_indirect_mapping;
+ ASSERT3P(vim, !=, NULL);
+
+ ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
+ ASSERT(rs->rs_asize > 0);
+
+ vdev_indirect_mapping_entry_phys_t *mapping =
+ vdev_indirect_mapping_entry_for_offset(vim, rs->rs_offset);
+ ASSERT3P(mapping, !=, NULL);
+
+ while (rs->rs_asize > 0) {
+ /*
+ * Note: the vdev_indirect_mapping can not change
+ * while we are running. It only changes while the
+ * removal is in progress, and then only from syncing
+ * context. While a removal is in progress, this
+ * function is only called for frees, which also only
+ * happen from syncing context.
+ */
+
+ uint64_t size = DVA_GET_ASIZE(&mapping->vimep_dst);
+ uint64_t dst_offset =
+ DVA_GET_OFFSET(&mapping->vimep_dst);
+ uint64_t dst_vdev = DVA_GET_VDEV(&mapping->vimep_dst);
+
+ ASSERT3U(rs->rs_offset, >=,
+ DVA_MAPPING_GET_SRC_OFFSET(mapping));
+ ASSERT3U(rs->rs_offset, <,
+ DVA_MAPPING_GET_SRC_OFFSET(mapping) + size);
+ ASSERT3U(dst_vdev, !=, v->vdev_id);
+
+ uint64_t inner_offset = rs->rs_offset -
+ DVA_MAPPING_GET_SRC_OFFSET(mapping);
+ uint64_t inner_size =
+ MIN(rs->rs_asize, size - inner_offset);
+
+ vdev_t *dst_v = vdev_lookup_top(spa, dst_vdev);
+ ASSERT3P(dst_v, !=, NULL);
+
+ if (dst_v->vdev_ops == &vdev_indirect_ops) {
+ list_insert_head(&stack,
+ rs_alloc(dst_v, dst_offset + inner_offset,
+ inner_size, rs->rs_split_offset));
+
+ }
+
+ if ((zfs_flags & ZFS_DEBUG_INDIRECT_REMAP) &&
+ IS_P2ALIGNED(inner_size, 2 * SPA_MINBLOCKSIZE)) {
+ /*
+ * Note: This clause exists only solely for
+ * testing purposes. We use it to ensure that
+ * split blocks work and that the callbacks
+ * using them yield the same result if issued
+ * in reverse order.
+ */
+ uint64_t inner_half = inner_size / 2;
+
+ func(rs->rs_split_offset + inner_half, dst_v,
+ dst_offset + inner_offset + inner_half,
+ inner_half, arg);
+
+ func(rs->rs_split_offset, dst_v,
+ dst_offset + inner_offset,
+ inner_half, arg);
+ } else {
+ func(rs->rs_split_offset, dst_v,
+ dst_offset + inner_offset,
+ inner_size, arg);
+ }
+
+ rs->rs_offset += inner_size;
+ rs->rs_asize -= inner_size;
+ rs->rs_split_offset += inner_size;
+ mapping++;
+ }
+
+ rw_exit(&v->vdev_indirect_rwlock);
+ kmem_free(rs, sizeof (remap_segment_t));
+ }
+ list_destroy(&stack);
+}
+
+static void
+vdev_indirect_child_io_done(zio_t *zio)
+{
+ zio_t *pio = zio->io_private;
+
+ mutex_enter(&pio->io_lock);
+ pio->io_error = zio_worst_error(pio->io_error, zio->io_error);
+ mutex_exit(&pio->io_lock);
+
+ abd_put(zio->io_abd);
+}
+
+static void
+vdev_indirect_io_start_cb(uint64_t split_offset, vdev_t *vd, uint64_t offset,
+ uint64_t size, void *arg)
+{
+ zio_t *zio = arg;
+
+ ASSERT3P(vd, !=, NULL);
+
+ if (vd->vdev_ops == &vdev_indirect_ops)
+ return;
+
+ zio_nowait(zio_vdev_child_io(zio, NULL, vd, offset,
+ abd_get_offset(zio->io_abd, split_offset),
+ size, zio->io_type, zio->io_priority,
+ 0, vdev_indirect_child_io_done, zio));
+}
+
+static void
+vdev_indirect_io_start(zio_t *zio)
+{
+ ASSERTV(spa_t *spa = zio->io_spa);
+
+ ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
+ if (zio->io_type != ZIO_TYPE_READ) {
+ ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
+ ASSERT((zio->io_flags &
+ (ZIO_FLAG_SELF_HEAL | ZIO_FLAG_INDUCE_DAMAGE)) != 0);
+ }
+
+ vdev_indirect_remap(zio->io_vd, zio->io_offset, zio->io_size,
+ vdev_indirect_io_start_cb, zio);
+
+ zio_execute(zio);
+}
+
+vdev_ops_t vdev_indirect_ops = {
+ vdev_indirect_open,
+ vdev_indirect_close,
+ vdev_default_asize,
+ vdev_indirect_io_start,
+ vdev_indirect_io_done,
+ NULL,
+ NULL,
+ NULL,
+ NULL,
+ vdev_indirect_remap,
+ VDEV_TYPE_INDIRECT, /* name of this vdev type */
+ B_FALSE /* leaf vdev */
+};
+
+#if defined(_KERNEL) && defined(HAVE_SPL)
+EXPORT_SYMBOL(rs_alloc);
+EXPORT_SYMBOL(spa_condense_fini);
+EXPORT_SYMBOL(spa_condense_indirect_restart);
+EXPORT_SYMBOL(spa_condense_indirect_start_sync);
+EXPORT_SYMBOL(spa_condense_init);
+EXPORT_SYMBOL(spa_vdev_indirect_mark_obsolete);
+EXPORT_SYMBOL(vdev_indirect_mark_obsolete);
+EXPORT_SYMBOL(vdev_indirect_should_condense);
+EXPORT_SYMBOL(vdev_indirect_sync_obsolete);
+EXPORT_SYMBOL(vdev_obsolete_counts_are_precise);
+EXPORT_SYMBOL(vdev_obsolete_sm_object);
+
+/* CSTYLED */
+module_param(zfs_condense_min_mapping_bytes, ulong, 0644);
+MODULE_PARM_DESC(zfs_condense_min_mapping_bytes,
+ "Minimum size of vdev mapping to condense");
+
+module_param(zfs_condense_indirect_commit_entry_delay_ms, int, 0644);
+MODULE_PARM_DESC(zfs_condense_indirect_commit_entry_delay_ms,
+ "Delay while condensing vdev mapping");
+#endif
diff --git a/module/zfs/vdev_indirect_births.c b/module/zfs/vdev_indirect_births.c
new file mode 100644
index 000000000..a0163b2e5
--- /dev/null
+++ b/module/zfs/vdev_indirect_births.c
@@ -0,0 +1,226 @@
+/*
+ * CDDL HEADER START
+ *
+ * This file and its contents are supplied under the terms of the
+ * Common Development and Distribution License ("CDDL"), version 1.0.
+ * You may only use this file in accordance with the terms of version
+ * 1.0 of the CDDL.
+ *
+ * A full copy of the text of the CDDL should have accompanied this
+ * source. A copy of the CDDL is also available via the Internet at
+ * http://www.illumos.org/license/CDDL.
+ *
+ * CDDL HEADER END
+ */
+
+/*
+ * Copyright (c) 2015 by Delphix. All rights reserved.
+ */
+
+#include <sys/dmu_tx.h>
+#include <sys/spa.h>
+#include <sys/dmu.h>
+#include <sys/dsl_pool.h>
+#include <sys/vdev_indirect_births.h>
+
+#ifdef ZFS_DEBUG
+static boolean_t
+vdev_indirect_births_verify(vdev_indirect_births_t *vib)
+{
+ ASSERT(vib != NULL);
+
+ ASSERT(vib->vib_object != 0);
+ ASSERT(vib->vib_objset != NULL);
+ ASSERT(vib->vib_phys != NULL);
+ ASSERT(vib->vib_dbuf != NULL);
+
+ EQUIV(vib->vib_phys->vib_count > 0, vib->vib_entries != NULL);
+
+ return (B_TRUE);
+}
+#endif
+
+uint64_t
+vdev_indirect_births_count(vdev_indirect_births_t *vib)
+{
+ ASSERT(vdev_indirect_births_verify(vib));
+
+ return (vib->vib_phys->vib_count);
+}
+
+uint64_t
+vdev_indirect_births_object(vdev_indirect_births_t *vib)
+{
+ ASSERT(vdev_indirect_births_verify(vib));
+
+ return (vib->vib_object);
+}
+
+static uint64_t
+vdev_indirect_births_size_impl(vdev_indirect_births_t *vib)
+{
+ return (vib->vib_phys->vib_count * sizeof (*vib->vib_entries));
+}
+
+void
+vdev_indirect_births_close(vdev_indirect_births_t *vib)
+{
+ ASSERT(vdev_indirect_births_verify(vib));
+
+ if (vib->vib_phys->vib_count > 0) {
+ uint64_t births_size = vdev_indirect_births_size_impl(vib);
+
+ kmem_free(vib->vib_entries, births_size);
+ vib->vib_entries = NULL;
+ }
+
+ dmu_buf_rele(vib->vib_dbuf, vib);
+
+ vib->vib_objset = NULL;
+ vib->vib_object = 0;
+ vib->vib_dbuf = NULL;
+ vib->vib_phys = NULL;
+
+ kmem_free(vib, sizeof (*vib));
+}
+
+uint64_t
+vdev_indirect_births_alloc(objset_t *os, dmu_tx_t *tx)
+{
+ ASSERT(dmu_tx_is_syncing(tx));
+
+ return (dmu_object_alloc(os,
+ DMU_OTN_UINT64_METADATA, SPA_OLD_MAXBLOCKSIZE,
+ DMU_OTN_UINT64_METADATA, sizeof (vdev_indirect_birth_phys_t),
+ tx));
+}
+
+vdev_indirect_births_t *
+vdev_indirect_births_open(objset_t *os, uint64_t births_object)
+{
+ vdev_indirect_births_t *vib = kmem_zalloc(sizeof (*vib), KM_SLEEP);
+
+ vib->vib_objset = os;
+ vib->vib_object = births_object;
+
+ VERIFY0(dmu_bonus_hold(os, vib->vib_object, vib, &vib->vib_dbuf));
+ vib->vib_phys = vib->vib_dbuf->db_data;
+
+ if (vib->vib_phys->vib_count > 0) {
+ uint64_t births_size = vdev_indirect_births_size_impl(vib);
+ vib->vib_entries = kmem_alloc(births_size, KM_SLEEP);
+ VERIFY0(dmu_read(vib->vib_objset, vib->vib_object, 0,
+ births_size, vib->vib_entries, DMU_READ_PREFETCH));
+ }
+
+ ASSERT(vdev_indirect_births_verify(vib));
+
+ return (vib);
+}
+
+void
+vdev_indirect_births_free(objset_t *os, uint64_t object, dmu_tx_t *tx)
+{
+ VERIFY0(dmu_object_free(os, object, tx));
+}
+
+void
+vdev_indirect_births_add_entry(vdev_indirect_births_t *vib,
+ uint64_t max_offset, uint64_t txg, dmu_tx_t *tx)
+{
+ vdev_indirect_birth_entry_phys_t vibe;
+ uint64_t old_size;
+ uint64_t new_size;
+ vdev_indirect_birth_entry_phys_t *new_entries;
+
+ ASSERT(dmu_tx_is_syncing(tx));
+ ASSERT(dsl_pool_sync_context(dmu_tx_pool(tx)));
+ ASSERT(vdev_indirect_births_verify(vib));
+
+ dmu_buf_will_dirty(vib->vib_dbuf, tx);
+
+ vibe.vibe_offset = max_offset;
+ vibe.vibe_phys_birth_txg = txg;
+
+ old_size = vdev_indirect_births_size_impl(vib);
+ dmu_write(vib->vib_objset, vib->vib_object, old_size, sizeof (vibe),
+ &vibe, tx);
+ vib->vib_phys->vib_count++;
+ new_size = vdev_indirect_births_size_impl(vib);
+
+ new_entries = kmem_alloc(new_size, KM_SLEEP);
+ if (old_size > 0) {
+ bcopy(vib->vib_entries, new_entries, old_size);
+ kmem_free(vib->vib_entries, old_size);
+ }
+ new_entries[vib->vib_phys->vib_count - 1] = vibe;
+ vib->vib_entries = new_entries;
+}
+
+uint64_t
+vdev_indirect_births_last_entry_txg(vdev_indirect_births_t *vib)
+{
+ ASSERT(vdev_indirect_births_verify(vib));
+ ASSERT(vib->vib_phys->vib_count > 0);
+
+ vdev_indirect_birth_entry_phys_t *last =
+ &vib->vib_entries[vib->vib_phys->vib_count - 1];
+ return (last->vibe_phys_birth_txg);
+}
+
+/*
+ * Return the txg in which the given range was copied (i.e. its physical
+ * birth txg). The specified offset+asize must be contiguously mapped
+ * (i.e. not a split block).
+ *
+ * The entries are sorted by increasing phys_birth, and also by increasing
+ * offset. We find the specified offset by binary search. Note that we
+ * can not use bsearch() because looking at each entry independently is
+ * insufficient to find the correct entry. Each entry implicitly relies
+ * on the previous entry: an entry indicates that the offsets from the
+ * end of the previous entry to the end of this entry were written in the
+ * specified txg.
+ */
+uint64_t
+vdev_indirect_births_physbirth(vdev_indirect_births_t *vib, uint64_t offset,
+ uint64_t asize)
+{
+ vdev_indirect_birth_entry_phys_t *base;
+ vdev_indirect_birth_entry_phys_t *last;
+
+ ASSERT(vdev_indirect_births_verify(vib));
+ ASSERT(vib->vib_phys->vib_count > 0);
+
+ base = vib->vib_entries;
+ last = base + vib->vib_phys->vib_count - 1;
+
+ ASSERT3U(offset, <, last->vibe_offset);
+
+ while (last >= base) {
+ vdev_indirect_birth_entry_phys_t *p =
+ base + ((last - base) / 2);
+ if (offset >= p->vibe_offset) {
+ base = p + 1;
+ } else if (p == vib->vib_entries ||
+ offset >= (p - 1)->vibe_offset) {
+ ASSERT3U(offset + asize, <=, p->vibe_offset);
+ return (p->vibe_phys_birth_txg);
+ } else {
+ last = p - 1;
+ }
+ }
+ ASSERT(!"offset not found");
+ return (-1);
+}
+
+#if defined(_KERNEL) && defined(HAVE_SPL)
+EXPORT_SYMBOL(vdev_indirect_births_add_entry);
+EXPORT_SYMBOL(vdev_indirect_births_alloc);
+EXPORT_SYMBOL(vdev_indirect_births_close);
+EXPORT_SYMBOL(vdev_indirect_births_count);
+EXPORT_SYMBOL(vdev_indirect_births_free);
+EXPORT_SYMBOL(vdev_indirect_births_last_entry_txg);
+EXPORT_SYMBOL(vdev_indirect_births_object);
+EXPORT_SYMBOL(vdev_indirect_births_open);
+EXPORT_SYMBOL(vdev_indirect_births_physbirth);
+#endif
diff --git a/module/zfs/vdev_indirect_mapping.c b/module/zfs/vdev_indirect_mapping.c
new file mode 100644
index 000000000..dbd6a7635
--- /dev/null
+++ b/module/zfs/vdev_indirect_mapping.c
@@ -0,0 +1,616 @@
+/*
+ * CDDL HEADER START
+ *
+ * This file and its contents are supplied under the terms of the
+ * Common Development and Distribution License ("CDDL"), version 1.0.
+ * You may only use this file in accordance with the terms of version
+ * 1.0 of the CDDL.
+ *
+ * A full copy of the text of the CDDL should have accompanied this
+ * source. A copy of the CDDL is also available via the Internet at
+ * http://www.illumos.org/license/CDDL.
+ *
+ * CDDL HEADER END
+ */
+
+/*
+ * Copyright (c) 2015 by Delphix. All rights reserved.
+ */
+
+#include <sys/dmu_tx.h>
+#include <sys/dsl_pool.h>
+#include <sys/spa.h>
+#include <sys/vdev_impl.h>
+#include <sys/vdev_indirect_mapping.h>
+#include <sys/zfeature.h>
+#include <sys/dmu_objset.h>
+
+#ifdef ZFS_DEBUG
+static boolean_t
+vdev_indirect_mapping_verify(vdev_indirect_mapping_t *vim)
+{
+ ASSERT(vim != NULL);
+
+ ASSERT(vim->vim_object != 0);
+ ASSERT(vim->vim_objset != NULL);
+ ASSERT(vim->vim_phys != NULL);
+ ASSERT(vim->vim_dbuf != NULL);
+
+ EQUIV(vim->vim_phys->vimp_num_entries > 0,
+ vim->vim_entries != NULL);
+ if (vim->vim_phys->vimp_num_entries > 0) {
+ ASSERTV(vdev_indirect_mapping_entry_phys_t *last_entry =
+ &vim->vim_entries[vim->vim_phys->vimp_num_entries - 1]);
+ ASSERTV(uint64_t offset =
+ DVA_MAPPING_GET_SRC_OFFSET(last_entry));
+ ASSERTV(uint64_t size = DVA_GET_ASIZE(&last_entry->vimep_dst));
+
+ ASSERT3U(vim->vim_phys->vimp_max_offset, >=, offset + size);
+ }
+ if (vim->vim_havecounts) {
+ ASSERT(vim->vim_phys->vimp_counts_object != 0);
+ }
+
+ return (B_TRUE);
+}
+#endif
+
+uint64_t
+vdev_indirect_mapping_num_entries(vdev_indirect_mapping_t *vim)
+{
+ ASSERT(vdev_indirect_mapping_verify(vim));
+
+ return (vim->vim_phys->vimp_num_entries);
+}
+
+uint64_t
+vdev_indirect_mapping_max_offset(vdev_indirect_mapping_t *vim)
+{
+ ASSERT(vdev_indirect_mapping_verify(vim));
+
+ return (vim->vim_phys->vimp_max_offset);
+}
+
+uint64_t
+vdev_indirect_mapping_object(vdev_indirect_mapping_t *vim)
+{
+ ASSERT(vdev_indirect_mapping_verify(vim));
+
+ return (vim->vim_object);
+}
+
+uint64_t
+vdev_indirect_mapping_bytes_mapped(vdev_indirect_mapping_t *vim)
+{
+ ASSERT(vdev_indirect_mapping_verify(vim));
+
+ return (vim->vim_phys->vimp_bytes_mapped);
+}
+
+/*
+ * The length (in bytes) of the mapping object array in memory and
+ * (logically) on disk.
+ *
+ * Note that unlike most of our accessor functions,
+ * we don't assert that the struct is consistent; therefore it can be
+ * called while there may be concurrent changes, if we don't care about
+ * the value being immediately stale (e.g. from spa_removal_get_stats()).
+ */
+uint64_t
+vdev_indirect_mapping_size(vdev_indirect_mapping_t *vim)
+{
+ return (vim->vim_phys->vimp_num_entries * sizeof (*vim->vim_entries));
+}
+
+/*
+ * Compare an offset with an indirect mapping entry; there are three
+ * possible scenarios:
+ *
+ * 1. The offset is "less than" the mapping entry; meaning the
+ * offset is less than the source offset of the mapping entry. In
+ * this case, there is no overlap between the offset and the
+ * mapping entry and -1 will be returned.
+ *
+ * 2. The offset is "greater than" the mapping entry; meaning the
+ * offset is greater than the mapping entry's source offset plus
+ * the entry's size. In this case, there is no overlap between
+ * the offset and the mapping entry and 1 will be returned.
+ *
+ * NOTE: If the offset is actually equal to the entry's offset
+ * plus size, this is considered to be "greater" than the entry,
+ * and this case applies (i.e. 1 will be returned). Thus, the
+ * entry's "range" can be considered to be inclusive at its
+ * start, but exclusive at its end: e.g. [src, src + size).
+ *
+ * 3. The last case to consider is if the offset actually falls
+ * within the mapping entry's range. If this is the case, the
+ * offset is considered to be "equal to" the mapping entry and
+ * 0 will be returned.
+ *
+ * NOTE: If the offset is equal to the entry's source offset,
+ * this case applies and 0 will be returned. If the offset is
+ * equal to the entry's source plus its size, this case does
+ * *not* apply (see "NOTE" above for scenario 2), and 1 will be
+ * returned.
+ */
+static int
+dva_mapping_overlap_compare(const void *v_key, const void *v_array_elem)
+{
+ const uint64_t * const key = v_key;
+ const vdev_indirect_mapping_entry_phys_t * const array_elem =
+ v_array_elem;
+ uint64_t src_offset = DVA_MAPPING_GET_SRC_OFFSET(array_elem);
+
+ if (*key < src_offset) {
+ return (-1);
+ } else if (*key < src_offset + DVA_GET_ASIZE(&array_elem->vimep_dst)) {
+ return (0);
+ } else {
+ return (1);
+ }
+}
+
+/*
+ * Returns the mapping entry for the given offset.
+ *
+ * It's possible that the given offset will not be in the mapping table
+ * (i.e. no mapping entries contain this offset), in which case, the
+ * return value value depends on the "next_if_missing" parameter.
+ *
+ * If the offset is not found in the table and "next_if_missing" is
+ * B_FALSE, then NULL will always be returned. The behavior is intended
+ * to allow consumers to get the entry corresponding to the offset
+ * parameter, iff the offset overlaps with an entry in the table.
+ *
+ * If the offset is not found in the table and "next_if_missing" is
+ * B_TRUE, then the entry nearest to the given offset will be returned,
+ * such that the entry's source offset is greater than the offset
+ * passed in (i.e. the "next" mapping entry in the table is returned, if
+ * the offset is missing from the table). If there are no entries whose
+ * source offset is greater than the passed in offset, NULL is returned.
+ */
+static vdev_indirect_mapping_entry_phys_t *
+vdev_indirect_mapping_entry_for_offset_impl(vdev_indirect_mapping_t *vim,
+ uint64_t offset, boolean_t next_if_missing)
+{
+ ASSERT(vdev_indirect_mapping_verify(vim));
+ ASSERT(vim->vim_phys->vimp_num_entries > 0);
+
+ vdev_indirect_mapping_entry_phys_t *entry = NULL;
+
+ uint64_t last = vim->vim_phys->vimp_num_entries - 1;
+ uint64_t base = 0;
+
+ /*
+ * We don't define these inside of the while loop because we use
+ * their value in the case that offset isn't in the mapping.
+ */
+ uint64_t mid;
+ int result;
+
+ while (last >= base) {
+ mid = base + ((last - base) >> 1);
+
+ result = dva_mapping_overlap_compare(&offset,
+ &vim->vim_entries[mid]);
+
+ if (result == 0) {
+ entry = &vim->vim_entries[mid];
+ break;
+ } else if (result < 0) {
+ last = mid - 1;
+ } else {
+ base = mid + 1;
+ }
+ }
+
+ if (entry == NULL && next_if_missing) {
+ ASSERT3U(base, ==, last + 1);
+ ASSERT(mid == base || mid == last);
+ ASSERT3S(result, !=, 0);
+
+ /*
+ * The offset we're looking for isn't actually contained
+ * in the mapping table, thus we need to return the
+ * closest mapping entry that is greater than the
+ * offset. We reuse the result of the last comparison,
+ * comparing the mapping entry at index "mid" and the
+ * offset. The offset is guaranteed to lie between
+ * indices one less than "mid", and one greater than
+ * "mid"; we just need to determine if offset is greater
+ * than, or less than the mapping entry contained at
+ * index "mid".
+ */
+
+ uint64_t index;
+ if (result < 0)
+ index = mid;
+ else
+ index = mid + 1;
+
+ ASSERT3U(index, <=, vim->vim_phys->vimp_num_entries);
+
+ if (index == vim->vim_phys->vimp_num_entries) {
+ /*
+ * If "index" is past the end of the entries
+ * array, then not only is the offset not in the
+ * mapping table, but it's actually greater than
+ * all entries in the table. In this case, we
+ * can't return a mapping entry greater than the
+ * offset (since none exist), so we return NULL.
+ */
+
+ ASSERT3S(dva_mapping_overlap_compare(&offset,
+ &vim->vim_entries[index - 1]), >, 0);
+
+ return (NULL);
+ } else {
+ /*
+ * Just to be safe, we verify the offset falls
+ * in between the mapping entries at index and
+ * one less than index. Since we know the offset
+ * doesn't overlap an entry, and we're supposed
+ * to return the entry just greater than the
+ * offset, both of the following tests must be
+ * true.
+ */
+ ASSERT3S(dva_mapping_overlap_compare(&offset,
+ &vim->vim_entries[index]), <, 0);
+ IMPLY(index >= 1, dva_mapping_overlap_compare(&offset,
+ &vim->vim_entries[index - 1]) > 0);
+
+ return (&vim->vim_entries[index]);
+ }
+ } else {
+ return (entry);
+ }
+}
+
+vdev_indirect_mapping_entry_phys_t *
+vdev_indirect_mapping_entry_for_offset(vdev_indirect_mapping_t *vim,
+ uint64_t offset)
+{
+ return (vdev_indirect_mapping_entry_for_offset_impl(vim, offset,
+ B_FALSE));
+}
+
+vdev_indirect_mapping_entry_phys_t *
+vdev_indirect_mapping_entry_for_offset_or_next(vdev_indirect_mapping_t *vim,
+ uint64_t offset)
+{
+ return (vdev_indirect_mapping_entry_for_offset_impl(vim, offset,
+ B_TRUE));
+}
+
+
+void
+vdev_indirect_mapping_close(vdev_indirect_mapping_t *vim)
+{
+ ASSERT(vdev_indirect_mapping_verify(vim));
+
+ if (vim->vim_phys->vimp_num_entries > 0) {
+ uint64_t map_size = vdev_indirect_mapping_size(vim);
+ vmem_free(vim->vim_entries, map_size);
+ vim->vim_entries = NULL;
+ }
+
+ dmu_buf_rele(vim->vim_dbuf, vim);
+
+ vim->vim_objset = NULL;
+ vim->vim_object = 0;
+ vim->vim_dbuf = NULL;
+ vim->vim_phys = NULL;
+
+ kmem_free(vim, sizeof (*vim));
+}
+
+uint64_t
+vdev_indirect_mapping_alloc(objset_t *os, dmu_tx_t *tx)
+{
+ uint64_t object;
+ ASSERT(dmu_tx_is_syncing(tx));
+ uint64_t bonus_size = VDEV_INDIRECT_MAPPING_SIZE_V0;
+
+ if (spa_feature_is_enabled(os->os_spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
+ bonus_size = sizeof (vdev_indirect_mapping_phys_t);
+ }
+
+ object = dmu_object_alloc(os,
+ DMU_OTN_UINT64_METADATA, SPA_OLD_MAXBLOCKSIZE,
+ DMU_OTN_UINT64_METADATA, bonus_size,
+ tx);
+
+ if (spa_feature_is_enabled(os->os_spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
+ dmu_buf_t *dbuf;
+ vdev_indirect_mapping_phys_t *vimp;
+
+ VERIFY0(dmu_bonus_hold(os, object, FTAG, &dbuf));
+ dmu_buf_will_dirty(dbuf, tx);
+ vimp = dbuf->db_data;
+ vimp->vimp_counts_object = dmu_object_alloc(os,
+ DMU_OTN_UINT32_METADATA, SPA_OLD_MAXBLOCKSIZE,
+ DMU_OT_NONE, 0, tx);
+ spa_feature_incr(os->os_spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
+ dmu_buf_rele(dbuf, FTAG);
+ }
+
+ return (object);
+}
+
+
+vdev_indirect_mapping_t *
+vdev_indirect_mapping_open(objset_t *os, uint64_t mapping_object)
+{
+ vdev_indirect_mapping_t *vim = kmem_zalloc(sizeof (*vim), KM_SLEEP);
+ dmu_object_info_t doi;
+ VERIFY0(dmu_object_info(os, mapping_object, &doi));
+
+ vim->vim_objset = os;
+ vim->vim_object = mapping_object;
+
+ VERIFY0(dmu_bonus_hold(os, vim->vim_object, vim,
+ &vim->vim_dbuf));
+ vim->vim_phys = vim->vim_dbuf->db_data;
+
+ vim->vim_havecounts =
+ (doi.doi_bonus_size > VDEV_INDIRECT_MAPPING_SIZE_V0);
+
+ if (vim->vim_phys->vimp_num_entries > 0) {
+ uint64_t map_size = vdev_indirect_mapping_size(vim);
+ vim->vim_entries = vmem_alloc(map_size, KM_SLEEP);
+ VERIFY0(dmu_read(os, vim->vim_object, 0, map_size,
+ vim->vim_entries, DMU_READ_PREFETCH));
+ }
+
+ ASSERT(vdev_indirect_mapping_verify(vim));
+
+ return (vim);
+}
+
+void
+vdev_indirect_mapping_free(objset_t *os, uint64_t object, dmu_tx_t *tx)
+{
+ vdev_indirect_mapping_t *vim = vdev_indirect_mapping_open(os, object);
+ if (vim->vim_havecounts) {
+ VERIFY0(dmu_object_free(os, vim->vim_phys->vimp_counts_object,
+ tx));
+ spa_feature_decr(os->os_spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
+ }
+ vdev_indirect_mapping_close(vim);
+
+ VERIFY0(dmu_object_free(os, object, tx));
+}
+
+/*
+ * Append the list of vdev_indirect_mapping_entry_t's to the on-disk
+ * mapping object. Also remove the entries from the list and free them.
+ * This also implicitly extends the max_offset of the mapping (to the end
+ * of the last entry).
+ */
+void
+vdev_indirect_mapping_add_entries(vdev_indirect_mapping_t *vim,
+ list_t *list, dmu_tx_t *tx)
+{
+ vdev_indirect_mapping_entry_phys_t *mapbuf;
+ uint64_t old_size;
+ uint32_t *countbuf = NULL;
+ vdev_indirect_mapping_entry_phys_t *old_entries;
+ uint64_t old_count;
+ uint64_t entries_written = 0;
+
+ ASSERT(vdev_indirect_mapping_verify(vim));
+ ASSERT(dmu_tx_is_syncing(tx));
+ ASSERT(dsl_pool_sync_context(dmu_tx_pool(tx)));
+ ASSERT(!list_is_empty(list));
+
+ old_size = vdev_indirect_mapping_size(vim);
+ old_entries = vim->vim_entries;
+ old_count = vim->vim_phys->vimp_num_entries;
+
+ dmu_buf_will_dirty(vim->vim_dbuf, tx);
+
+ mapbuf = vmem_alloc(SPA_OLD_MAXBLOCKSIZE, KM_SLEEP);
+ if (vim->vim_havecounts) {
+ countbuf = vmem_alloc(SPA_OLD_MAXBLOCKSIZE, KM_SLEEP);
+ ASSERT(spa_feature_is_active(vim->vim_objset->os_spa,
+ SPA_FEATURE_OBSOLETE_COUNTS));
+ }
+ while (!list_is_empty(list)) {
+ uint64_t i;
+ /*
+ * Write entries from the list to the
+ * vdev_im_object in batches of size SPA_OLD_MAXBLOCKSIZE.
+ */
+ for (i = 0; i < SPA_OLD_MAXBLOCKSIZE / sizeof (*mapbuf); i++) {
+ vdev_indirect_mapping_entry_t *entry =
+ list_remove_head(list);
+ if (entry == NULL)
+ break;
+
+ uint64_t size =
+ DVA_GET_ASIZE(&entry->vime_mapping.vimep_dst);
+ uint64_t src_offset =
+ DVA_MAPPING_GET_SRC_OFFSET(&entry->vime_mapping);
+
+ /*
+ * We shouldn't be adding an entry which is fully
+ * obsolete.
+ */
+ ASSERT3U(entry->vime_obsolete_count, <, size);
+ IMPLY(entry->vime_obsolete_count != 0,
+ vim->vim_havecounts);
+
+ mapbuf[i] = entry->vime_mapping;
+ if (vim->vim_havecounts)
+ countbuf[i] = entry->vime_obsolete_count;
+
+ vim->vim_phys->vimp_bytes_mapped += size;
+ ASSERT3U(src_offset, >=,
+ vim->vim_phys->vimp_max_offset);
+ vim->vim_phys->vimp_max_offset = src_offset + size;
+
+ entries_written++;
+
+ vmem_free(entry, sizeof (*entry));
+ }
+ dmu_write(vim->vim_objset, vim->vim_object,
+ vim->vim_phys->vimp_num_entries * sizeof (*mapbuf),
+ i * sizeof (*mapbuf),
+ mapbuf, tx);
+ if (vim->vim_havecounts) {
+ dmu_write(vim->vim_objset,
+ vim->vim_phys->vimp_counts_object,
+ vim->vim_phys->vimp_num_entries *
+ sizeof (*countbuf),
+ i * sizeof (*countbuf), countbuf, tx);
+ }
+ vim->vim_phys->vimp_num_entries += i;
+ }
+ vmem_free(mapbuf, SPA_OLD_MAXBLOCKSIZE);
+ if (vim->vim_havecounts)
+ vmem_free(countbuf, SPA_OLD_MAXBLOCKSIZE);
+
+ /*
+ * Update the entry array to reflect the new entries. First, copy
+ * over any old entries then read back the new entries we just wrote.
+ */
+ uint64_t new_size = vdev_indirect_mapping_size(vim);
+ ASSERT3U(new_size, >, old_size);
+ ASSERT3U(new_size - old_size, ==,
+ entries_written * sizeof (vdev_indirect_mapping_entry_phys_t));
+ vim->vim_entries = vmem_alloc(new_size, KM_SLEEP);
+ if (old_size > 0) {
+ bcopy(old_entries, vim->vim_entries, old_size);
+ vmem_free(old_entries, old_size);
+ }
+ VERIFY0(dmu_read(vim->vim_objset, vim->vim_object, old_size,
+ new_size - old_size, &vim->vim_entries[old_count],
+ DMU_READ_PREFETCH));
+
+ zfs_dbgmsg("txg %llu: wrote %llu entries to "
+ "indirect mapping obj %llu; max offset=0x%llx",
+ (u_longlong_t)dmu_tx_get_txg(tx),
+ (u_longlong_t)entries_written,
+ (u_longlong_t)vim->vim_object,
+ (u_longlong_t)vim->vim_phys->vimp_max_offset);
+}
+
+/*
+ * Increment the relevant counts for the specified offset and length.
+ * The counts array must be obtained from
+ * vdev_indirect_mapping_load_obsolete_counts().
+ */
+void
+vdev_indirect_mapping_increment_obsolete_count(vdev_indirect_mapping_t *vim,
+ uint64_t offset, uint64_t length, uint32_t *counts)
+{
+ vdev_indirect_mapping_entry_phys_t *mapping;
+ uint64_t index;
+
+ mapping = vdev_indirect_mapping_entry_for_offset(vim, offset);
+
+ ASSERT(length > 0);
+ ASSERT3P(mapping, !=, NULL);
+
+ index = mapping - vim->vim_entries;
+
+ while (length > 0) {
+ ASSERT3U(index, <, vdev_indirect_mapping_num_entries(vim));
+
+ uint64_t size = DVA_GET_ASIZE(&mapping->vimep_dst);
+ uint64_t inner_offset = offset -
+ DVA_MAPPING_GET_SRC_OFFSET(mapping);
+ VERIFY3U(inner_offset, <, size);
+ uint64_t inner_size = MIN(length, size - inner_offset);
+
+ VERIFY3U(counts[index] + inner_size, <=, size);
+ counts[index] += inner_size;
+
+ offset += inner_size;
+ length -= inner_size;
+ mapping++;
+ index++;
+ }
+}
+
+typedef struct load_obsolete_space_map_arg {
+ vdev_indirect_mapping_t *losma_vim;
+ uint32_t *losma_counts;
+} load_obsolete_space_map_arg_t;
+
+static int
+load_obsolete_sm_callback(maptype_t type, uint64_t offset, uint64_t size,
+ void *arg)
+{
+ load_obsolete_space_map_arg_t *losma = arg;
+ ASSERT3S(type, ==, SM_ALLOC);
+
+ vdev_indirect_mapping_increment_obsolete_count(losma->losma_vim,
+ offset, size, losma->losma_counts);
+
+ return (0);
+}
+
+/*
+ * Modify the counts (increment them) based on the spacemap.
+ */
+void
+vdev_indirect_mapping_load_obsolete_spacemap(vdev_indirect_mapping_t *vim,
+ uint32_t *counts, space_map_t *obsolete_space_sm)
+{
+ load_obsolete_space_map_arg_t losma;
+ losma.losma_counts = counts;
+ losma.losma_vim = vim;
+ VERIFY0(space_map_iterate(obsolete_space_sm,
+ load_obsolete_sm_callback, &losma));
+}
+
+/*
+ * Read the obsolete counts from disk, returning them in an array.
+ */
+uint32_t *
+vdev_indirect_mapping_load_obsolete_counts(vdev_indirect_mapping_t *vim)
+{
+ ASSERT(vdev_indirect_mapping_verify(vim));
+
+ uint64_t counts_size =
+ vim->vim_phys->vimp_num_entries * sizeof (uint32_t);
+ uint32_t *counts = vmem_alloc(counts_size, KM_SLEEP);
+ if (vim->vim_havecounts) {
+ VERIFY0(dmu_read(vim->vim_objset,
+ vim->vim_phys->vimp_counts_object,
+ 0, counts_size,
+ counts, DMU_READ_PREFETCH));
+ } else {
+ bzero(counts, counts_size);
+ }
+ return (counts);
+}
+
+extern void
+vdev_indirect_mapping_free_obsolete_counts(vdev_indirect_mapping_t *vim,
+ uint32_t *counts)
+{
+ ASSERT(vdev_indirect_mapping_verify(vim));
+
+ vmem_free(counts, vim->vim_phys->vimp_num_entries * sizeof (uint32_t));
+}
+
+#if defined(_KERNEL) && defined(HAVE_SPL)
+EXPORT_SYMBOL(vdev_indirect_mapping_add_entries);
+EXPORT_SYMBOL(vdev_indirect_mapping_alloc);
+EXPORT_SYMBOL(vdev_indirect_mapping_bytes_mapped);
+EXPORT_SYMBOL(vdev_indirect_mapping_close);
+EXPORT_SYMBOL(vdev_indirect_mapping_entry_for_offset);
+EXPORT_SYMBOL(vdev_indirect_mapping_entry_for_offset_or_next);
+EXPORT_SYMBOL(vdev_indirect_mapping_free);
+EXPORT_SYMBOL(vdev_indirect_mapping_free_obsolete_counts);
+EXPORT_SYMBOL(vdev_indirect_mapping_increment_obsolete_count);
+EXPORT_SYMBOL(vdev_indirect_mapping_load_obsolete_counts);
+EXPORT_SYMBOL(vdev_indirect_mapping_load_obsolete_spacemap);
+EXPORT_SYMBOL(vdev_indirect_mapping_max_offset);
+EXPORT_SYMBOL(vdev_indirect_mapping_num_entries);
+EXPORT_SYMBOL(vdev_indirect_mapping_object);
+EXPORT_SYMBOL(vdev_indirect_mapping_open);
+EXPORT_SYMBOL(vdev_indirect_mapping_size);
+#endif
diff --git a/module/zfs/vdev_label.c b/module/zfs/vdev_label.c
index 4fee4bc7a..70d68d903 100644
--- a/module/zfs/vdev_label.c
+++ b/module/zfs/vdev_label.c
@@ -143,6 +143,7 @@
#include <sys/vdev_impl.h>
#include <sys/uberblock_impl.h>
#include <sys/metaslab.h>
+#include <sys/metaslab_impl.h>
#include <sys/zio.h>
#include <sys/dsl_scan.h>
#include <sys/abd.h>
@@ -359,6 +360,8 @@ vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
vdev_config_flag_t flags)
{
nvlist_t *nv = NULL;
+ vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
+
nv = fnvlist_alloc();
fnvlist_add_string(nv, ZPOOL_CONFIG_TYPE, vd->vdev_ops->vdev_op_type);
@@ -425,9 +428,10 @@ vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
vd->vdev_asize);
fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, vd->vdev_islog);
- if (vd->vdev_removing)
+ if (vd->vdev_removing) {
fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING,
vd->vdev_removing);
+ }
}
if (vd->vdev_dtl_sm != NULL) {
@@ -435,6 +439,21 @@ vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
space_map_object(vd->vdev_dtl_sm));
}
+ if (vic->vic_mapping_object != 0) {
+ fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
+ vic->vic_mapping_object);
+ }
+
+ if (vic->vic_births_object != 0) {
+ fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
+ vic->vic_births_object);
+ }
+
+ if (vic->vic_prev_indirect_vdev != UINT64_MAX) {
+ fnvlist_add_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
+ vic->vic_prev_indirect_vdev);
+ }
+
if (vd->vdev_crtxg)
fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg);
@@ -453,16 +472,70 @@ vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
}
if (getstats) {
- pool_scan_stat_t ps;
-
vdev_config_generate_stats(vd, nv);
/* provide either current or previous scan information */
+ pool_scan_stat_t ps;
if (spa_scan_get_stats(spa, &ps) == 0) {
fnvlist_add_uint64_array(nv,
ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps,
sizeof (pool_scan_stat_t) / sizeof (uint64_t));
}
+
+ pool_removal_stat_t prs;
+ if (spa_removal_get_stats(spa, &prs) == 0) {
+ fnvlist_add_uint64_array(nv,
+ ZPOOL_CONFIG_REMOVAL_STATS, (uint64_t *)&prs,
+ sizeof (prs) / sizeof (uint64_t));
+ }
+
+ /*
+ * Note: this can be called from open context
+ * (spa_get_stats()), so we need the rwlock to prevent
+ * the mapping from being changed by condensing.
+ */
+ rw_enter(&vd->vdev_indirect_rwlock, RW_READER);
+ if (vd->vdev_indirect_mapping != NULL) {
+ ASSERT(vd->vdev_indirect_births != NULL);
+ vdev_indirect_mapping_t *vim =
+ vd->vdev_indirect_mapping;
+ fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE,
+ vdev_indirect_mapping_size(vim));
+ }
+ rw_exit(&vd->vdev_indirect_rwlock);
+ if (vd->vdev_mg != NULL &&
+ vd->vdev_mg->mg_fragmentation != ZFS_FRAG_INVALID) {
+ /*
+ * Compute approximately how much memory would be used
+ * for the indirect mapping if this device were to
+ * be removed.
+ *
+ * Note: If the frag metric is invalid, then not
+ * enough metaslabs have been converted to have
+ * histograms.
+ */
+ uint64_t seg_count = 0;
+
+ /*
+ * There are the same number of allocated segments
+ * as free segments, so we will have at least one
+ * entry per free segment.
+ */
+ for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
+ seg_count += vd->vdev_mg->mg_histogram[i];
+ }
+
+ /*
+ * The maximum length of a mapping is SPA_MAXBLOCKSIZE,
+ * so we need at least one entry per SPA_MAXBLOCKSIZE
+ * of allocated data.
+ */
+ seg_count += vd->vdev_stat.vs_alloc / SPA_MAXBLOCKSIZE;
+
+ fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE,
+ seg_count *
+ sizeof (vdev_indirect_mapping_entry_phys_t));
+ }
}
if (!vd->vdev_ops->vdev_op_leaf) {
@@ -567,8 +640,9 @@ vdev_top_config_generate(spa_t *spa, nvlist_t *config)
for (c = 0, idx = 0; c < rvd->vdev_children; c++) {
vdev_t *tvd = rvd->vdev_child[c];
- if (tvd->vdev_ishole)
+ if (tvd->vdev_ishole) {
array[idx++] = c;
+ }
}
if (idx) {
@@ -1263,8 +1337,11 @@ vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags)
*/
zio = zio_root(spa, NULL, NULL, flags);
- for (int v = 0; v < svdcount; v++)
- zio_flush(zio, svd[v]);
+ for (int v = 0; v < svdcount; v++) {
+ if (vdev_writeable(svd[v])) {
+ zio_flush(zio, svd[v]);
+ }
+ }
(void) zio_wait(zio);
diff --git a/module/zfs/vdev_mirror.c b/module/zfs/vdev_mirror.c
index 1d5adce17..b56f955eb 100644
--- a/module/zfs/vdev_mirror.c
+++ b/module/zfs/vdev_mirror.c
@@ -679,6 +679,7 @@ vdev_ops_t vdev_mirror_ops = {
NULL,
NULL,
NULL,
+ NULL,
VDEV_TYPE_MIRROR, /* name of this vdev type */
B_FALSE /* not a leaf vdev */
};
@@ -693,6 +694,7 @@ vdev_ops_t vdev_replacing_ops = {
NULL,
NULL,
NULL,
+ NULL,
VDEV_TYPE_REPLACING, /* name of this vdev type */
B_FALSE /* not a leaf vdev */
};
@@ -707,6 +709,7 @@ vdev_ops_t vdev_spare_ops = {
NULL,
NULL,
NULL,
+ NULL,
VDEV_TYPE_SPARE, /* name of this vdev type */
B_FALSE /* not a leaf vdev */
};
diff --git a/module/zfs/vdev_missing.c b/module/zfs/vdev_missing.c
index d7d017fb8..b1c039f16 100644
--- a/module/zfs/vdev_missing.c
+++ b/module/zfs/vdev_missing.c
@@ -89,6 +89,7 @@ vdev_ops_t vdev_missing_ops = {
NULL,
NULL,
NULL,
+ NULL,
VDEV_TYPE_MISSING, /* name of this vdev type */
B_TRUE /* leaf vdev */
};
@@ -103,6 +104,7 @@ vdev_ops_t vdev_hole_ops = {
NULL,
NULL,
NULL,
+ NULL,
VDEV_TYPE_HOLE, /* name of this vdev type */
B_TRUE /* leaf vdev */
};
diff --git a/module/zfs/vdev_queue.c b/module/zfs/vdev_queue.c
index 5d2c98013..3ac31a872 100644
--- a/module/zfs/vdev_queue.c
+++ b/module/zfs/vdev_queue.c
@@ -152,6 +152,8 @@ uint32_t zfs_vdev_async_write_min_active = 2;
uint32_t zfs_vdev_async_write_max_active = 10;
uint32_t zfs_vdev_scrub_min_active = 1;
uint32_t zfs_vdev_scrub_max_active = 2;
+uint32_t zfs_vdev_removal_min_active = 1;
+uint32_t zfs_vdev_removal_max_active = 2;
/*
* When the pool has less than zfs_vdev_async_write_active_min_dirty_percent
@@ -248,6 +250,8 @@ vdev_queue_class_min_active(zio_priority_t p)
return (zfs_vdev_async_write_min_active);
case ZIO_PRIORITY_SCRUB:
return (zfs_vdev_scrub_min_active);
+ case ZIO_PRIORITY_REMOVAL:
+ return (zfs_vdev_removal_min_active);
default:
panic("invalid priority %u", p);
return (0);
@@ -316,6 +320,8 @@ vdev_queue_class_max_active(spa_t *spa, zio_priority_t p)
return (vdev_queue_max_async_writes(spa));
case ZIO_PRIORITY_SCRUB:
return (zfs_vdev_scrub_max_active);
+ case ZIO_PRIORITY_REMOVAL:
+ return (zfs_vdev_removal_max_active);
default:
panic("invalid priority %u", p);
return (0);
@@ -560,7 +566,8 @@ vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio)
while ((dio = AVL_PREV(t, first)) != NULL &&
(dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
IO_SPAN(dio, last) <= limit &&
- IO_GAP(dio, first) <= maxgap) {
+ IO_GAP(dio, first) <= maxgap &&
+ dio->io_type == zio->io_type) {
first = dio;
if (mandatory == NULL && !(first->io_flags & ZIO_FLAG_OPTIONAL))
mandatory = first;
@@ -586,7 +593,8 @@ vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio)
(IO_SPAN(first, dio) <= limit ||
(dio->io_flags & ZIO_FLAG_OPTIONAL)) &&
IO_SPAN(first, dio) <= maxblocksize &&
- IO_GAP(last, dio) <= maxgap) {
+ IO_GAP(last, dio) <= maxgap &&
+ dio->io_type == zio->io_type) {
last = dio;
if (!(last->io_flags & ZIO_FLAG_OPTIONAL))
mandatory = last;
@@ -757,12 +765,14 @@ vdev_queue_io(zio_t *zio)
if (zio->io_type == ZIO_TYPE_READ) {
if (zio->io_priority != ZIO_PRIORITY_SYNC_READ &&
zio->io_priority != ZIO_PRIORITY_ASYNC_READ &&
- zio->io_priority != ZIO_PRIORITY_SCRUB)
+ zio->io_priority != ZIO_PRIORITY_SCRUB &&
+ zio->io_priority != ZIO_PRIORITY_REMOVAL)
zio->io_priority = ZIO_PRIORITY_ASYNC_READ;
} else {
ASSERT(zio->io_type == ZIO_TYPE_WRITE);
if (zio->io_priority != ZIO_PRIORITY_SYNC_WRITE &&
- zio->io_priority != ZIO_PRIORITY_ASYNC_WRITE)
+ zio->io_priority != ZIO_PRIORITY_ASYNC_WRITE &&
+ zio->io_priority != ZIO_PRIORITY_REMOVAL)
zio->io_priority = ZIO_PRIORITY_ASYNC_WRITE;
}
diff --git a/module/zfs/vdev_raidz.c b/module/zfs/vdev_raidz.c
index ef81af6f7..a21baf9c2 100644
--- a/module/zfs/vdev_raidz.c
+++ b/module/zfs/vdev_raidz.c
@@ -2333,6 +2333,7 @@ vdev_ops_t vdev_raidz_ops = {
vdev_raidz_need_resilver,
NULL,
NULL,
+ NULL,
VDEV_TYPE_RAIDZ, /* name of this vdev type */
B_FALSE /* not a leaf vdev */
};
diff --git a/module/zfs/vdev_removal.c b/module/zfs/vdev_removal.c
new file mode 100644
index 000000000..6e81bf014
--- /dev/null
+++ b/module/zfs/vdev_removal.c
@@ -0,0 +1,1925 @@
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+
+/*
+ * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
+ * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
+ */
+
+#include <sys/zfs_context.h>
+#include <sys/spa_impl.h>
+#include <sys/dmu.h>
+#include <sys/dmu_tx.h>
+#include <sys/zap.h>
+#include <sys/vdev_impl.h>
+#include <sys/metaslab.h>
+#include <sys/metaslab_impl.h>
+#include <sys/uberblock_impl.h>
+#include <sys/txg.h>
+#include <sys/avl.h>
+#include <sys/bpobj.h>
+#include <sys/dsl_pool.h>
+#include <sys/dsl_synctask.h>
+#include <sys/dsl_dir.h>
+#include <sys/arc.h>
+#include <sys/zfeature.h>
+#include <sys/vdev_indirect_births.h>
+#include <sys/vdev_indirect_mapping.h>
+#include <sys/abd.h>
+#include <sys/trace_vdev.h>
+
+/*
+ * This file contains the necessary logic to remove vdevs from a
+ * storage pool. Currently, the only devices that can be removed
+ * are log, cache, and spare devices; and top level vdevs from a pool
+ * w/o raidz or mirrors. (Note that members of a mirror can be removed
+ * by the detach operation.)
+ *
+ * Log vdevs are removed by evacuating them and then turning the vdev
+ * into a hole vdev while holding spa config locks.
+ *
+ * Top level vdevs are removed and converted into an indirect vdev via
+ * a multi-step process:
+ *
+ * - Disable allocations from this device (spa_vdev_remove_top).
+ *
+ * - From a new thread (spa_vdev_remove_thread), copy data from
+ * the removing vdev to a different vdev. The copy happens in open
+ * context (spa_vdev_copy_impl) and issues a sync task
+ * (vdev_mapping_sync) so the sync thread can update the partial
+ * indirect mappings in core and on disk.
+ *
+ * - If a free happens during a removal, it is freed from the
+ * removing vdev, and if it has already been copied, from the new
+ * location as well (free_from_removing_vdev).
+ *
+ * - After the removal is completed, the copy thread converts the vdev
+ * into an indirect vdev (vdev_remove_complete) before instructing
+ * the sync thread to destroy the space maps and finish the removal
+ * (spa_finish_removal).
+ */
+
+typedef struct vdev_copy_arg {
+ metaslab_t *vca_msp;
+ uint64_t vca_outstanding_bytes;
+ kcondvar_t vca_cv;
+ kmutex_t vca_lock;
+} vdev_copy_arg_t;
+
+typedef struct vdev_copy_seg_arg {
+ vdev_copy_arg_t *vcsa_copy_arg;
+ uint64_t vcsa_txg;
+ dva_t *vcsa_dest_dva;
+ blkptr_t *vcsa_dest_bp;
+} vdev_copy_seg_arg_t;
+
+/*
+ * The maximum amount of allowed data we're allowed to copy from a device
+ * at a time when removing it.
+ */
+int zfs_remove_max_copy_bytes = 8 * 1024 * 1024;
+
+/*
+ * The largest contiguous segment that we will attempt to allocate when
+ * removing a device. This can be no larger than SPA_MAXBLOCKSIZE. If
+ * there is a performance problem with attempting to allocate large blocks,
+ * consider decreasing this.
+ */
+int zfs_remove_max_segment = SPA_MAXBLOCKSIZE;
+
+#define VDEV_REMOVAL_ZAP_OBJS "lzap"
+
+static void spa_vdev_remove_thread(void *arg);
+
+static void
+spa_sync_removing_state(spa_t *spa, dmu_tx_t *tx)
+{
+ VERIFY0(zap_update(spa->spa_dsl_pool->dp_meta_objset,
+ DMU_POOL_DIRECTORY_OBJECT,
+ DMU_POOL_REMOVING, sizeof (uint64_t),
+ sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
+ &spa->spa_removing_phys, tx));
+}
+
+static nvlist_t *
+spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
+{
+ for (int i = 0; i < count; i++) {
+ uint64_t guid =
+ fnvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID);
+
+ if (guid == target_guid)
+ return (nvpp[i]);
+ }
+
+ return (NULL);
+}
+
+static void
+spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
+ nvlist_t *dev_to_remove)
+{
+ nvlist_t **newdev = NULL;
+
+ if (count > 1)
+ newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
+
+ for (int i = 0, j = 0; i < count; i++) {
+ if (dev[i] == dev_to_remove)
+ continue;
+ VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
+ }
+
+ VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
+ VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
+
+ for (int i = 0; i < count - 1; i++)
+ nvlist_free(newdev[i]);
+
+ if (count > 1)
+ kmem_free(newdev, (count - 1) * sizeof (void *));
+}
+
+static spa_vdev_removal_t *
+spa_vdev_removal_create(vdev_t *vd)
+{
+ spa_vdev_removal_t *svr = kmem_zalloc(sizeof (*svr), KM_SLEEP);
+ mutex_init(&svr->svr_lock, NULL, MUTEX_DEFAULT, NULL);
+ cv_init(&svr->svr_cv, NULL, CV_DEFAULT, NULL);
+ svr->svr_allocd_segs = range_tree_create(NULL, NULL);
+ svr->svr_vdev = vd;
+
+ for (int i = 0; i < TXG_SIZE; i++) {
+ svr->svr_frees[i] = range_tree_create(NULL, NULL);
+ list_create(&svr->svr_new_segments[i],
+ sizeof (vdev_indirect_mapping_entry_t),
+ offsetof(vdev_indirect_mapping_entry_t, vime_node));
+ }
+
+ return (svr);
+}
+
+void
+spa_vdev_removal_destroy(spa_vdev_removal_t *svr)
+{
+ for (int i = 0; i < TXG_SIZE; i++) {
+ ASSERT0(svr->svr_bytes_done[i]);
+ ASSERT0(svr->svr_max_offset_to_sync[i]);
+ range_tree_destroy(svr->svr_frees[i]);
+ list_destroy(&svr->svr_new_segments[i]);
+ }
+
+ range_tree_destroy(svr->svr_allocd_segs);
+ mutex_destroy(&svr->svr_lock);
+ cv_destroy(&svr->svr_cv);
+ kmem_free(svr, sizeof (*svr));
+}
+
+/*
+ * This is called as a synctask in the txg in which we will mark this vdev
+ * as removing (in the config stored in the MOS).
+ *
+ * It begins the evacuation of a toplevel vdev by:
+ * - initializing the spa_removing_phys which tracks this removal
+ * - computing the amount of space to remove for accounting purposes
+ * - dirtying all dbufs in the spa_config_object
+ * - creating the spa_vdev_removal
+ * - starting the spa_vdev_remove_thread
+ */
+static void
+vdev_remove_initiate_sync(void *arg, dmu_tx_t *tx)
+{
+ vdev_t *vd = arg;
+ vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
+ spa_t *spa = vd->vdev_spa;
+ objset_t *mos = spa->spa_dsl_pool->dp_meta_objset;
+ spa_vdev_removal_t *svr = NULL;
+ ASSERTV(uint64_t txg = dmu_tx_get_txg(tx));
+
+ ASSERT3P(vd->vdev_ops, !=, &vdev_raidz_ops);
+ svr = spa_vdev_removal_create(vd);
+
+ ASSERT(vd->vdev_removing);
+ ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
+
+ spa_feature_incr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
+ if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
+ /*
+ * By activating the OBSOLETE_COUNTS feature, we prevent
+ * the pool from being downgraded and ensure that the
+ * refcounts are precise.
+ */
+ spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
+ uint64_t one = 1;
+ VERIFY0(zap_add(spa->spa_meta_objset, vd->vdev_top_zap,
+ VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, sizeof (one), 1,
+ &one, tx));
+ ASSERT3U(vdev_obsolete_counts_are_precise(vd), !=, 0);
+ }
+
+ vic->vic_mapping_object = vdev_indirect_mapping_alloc(mos, tx);
+ vd->vdev_indirect_mapping =
+ vdev_indirect_mapping_open(mos, vic->vic_mapping_object);
+ vic->vic_births_object = vdev_indirect_births_alloc(mos, tx);
+ vd->vdev_indirect_births =
+ vdev_indirect_births_open(mos, vic->vic_births_object);
+ spa->spa_removing_phys.sr_removing_vdev = vd->vdev_id;
+ spa->spa_removing_phys.sr_start_time = gethrestime_sec();
+ spa->spa_removing_phys.sr_end_time = 0;
+ spa->spa_removing_phys.sr_state = DSS_SCANNING;
+ spa->spa_removing_phys.sr_to_copy = 0;
+ spa->spa_removing_phys.sr_copied = 0;
+
+ /*
+ * Note: We can't use vdev_stat's vs_alloc for sr_to_copy, because
+ * there may be space in the defer tree, which is free, but still
+ * counted in vs_alloc.
+ */
+ for (uint64_t i = 0; i < vd->vdev_ms_count; i++) {
+ metaslab_t *ms = vd->vdev_ms[i];
+ if (ms->ms_sm == NULL)
+ continue;
+
+ /*
+ * Sync tasks happen before metaslab_sync(), therefore
+ * smp_alloc and sm_alloc must be the same.
+ */
+ ASSERT3U(space_map_allocated(ms->ms_sm), ==,
+ ms->ms_sm->sm_phys->smp_alloc);
+
+ spa->spa_removing_phys.sr_to_copy +=
+ space_map_allocated(ms->ms_sm);
+
+ /*
+ * Space which we are freeing this txg does not need to
+ * be copied.
+ */
+ spa->spa_removing_phys.sr_to_copy -=
+ range_tree_space(ms->ms_freeingtree);
+
+ ASSERT0(range_tree_space(ms->ms_freedtree));
+ for (int t = 0; t < TXG_SIZE; t++)
+ ASSERT0(range_tree_space(ms->ms_alloctree[t]));
+ }
+
+ /*
+ * Sync tasks are called before metaslab_sync(), so there should
+ * be no already-synced metaslabs in the TXG_CLEAN list.
+ */
+ ASSERT3P(txg_list_head(&vd->vdev_ms_list, TXG_CLEAN(txg)), ==, NULL);
+
+ spa_sync_removing_state(spa, tx);
+
+ /*
+ * All blocks that we need to read the most recent mapping must be
+ * stored on concrete vdevs. Therefore, we must dirty anything that
+ * is read before spa_remove_init(). Specifically, the
+ * spa_config_object. (Note that although we already modified the
+ * spa_config_object in spa_sync_removing_state, that may not have
+ * modified all blocks of the object.)
+ */
+ dmu_object_info_t doi;
+ VERIFY0(dmu_object_info(mos, DMU_POOL_DIRECTORY_OBJECT, &doi));
+ for (uint64_t offset = 0; offset < doi.doi_max_offset; ) {
+ dmu_buf_t *dbuf;
+ VERIFY0(dmu_buf_hold(mos, DMU_POOL_DIRECTORY_OBJECT,
+ offset, FTAG, &dbuf, 0));
+ dmu_buf_will_dirty(dbuf, tx);
+ offset += dbuf->db_size;
+ dmu_buf_rele(dbuf, FTAG);
+ }
+
+ /*
+ * Now that we've allocated the im_object, dirty the vdev to ensure
+ * that the object gets written to the config on disk.
+ */
+ vdev_config_dirty(vd);
+
+ zfs_dbgmsg("starting removal thread for vdev %llu (%p) in txg %llu "
+ "im_obj=%llu", vd->vdev_id, vd, dmu_tx_get_txg(tx),
+ vic->vic_mapping_object);
+
+ spa_history_log_internal(spa, "vdev remove started", tx,
+ "%s vdev %llu %s", spa_name(spa), vd->vdev_id,
+ (vd->vdev_path != NULL) ? vd->vdev_path : "-");
+ /*
+ * Setting spa_vdev_removal causes subsequent frees to call
+ * free_from_removing_vdev(). Note that we don't need any locking
+ * because we are the sync thread, and metaslab_free_impl() is only
+ * called from syncing context (potentially from a zio taskq thread,
+ * but in any case only when there are outstanding free i/os, which
+ * there are not).
+ */
+ ASSERT3P(spa->spa_vdev_removal, ==, NULL);
+ spa->spa_vdev_removal = svr;
+ svr->svr_thread = thread_create(NULL, 0,
+ spa_vdev_remove_thread, vd, 0, &p0, TS_RUN, minclsyspri);
+}
+
+/*
+ * When we are opening a pool, we must read the mapping for each
+ * indirect vdev in order from most recently removed to least
+ * recently removed. We do this because the blocks for the mapping
+ * of older indirect vdevs may be stored on more recently removed vdevs.
+ * In order to read each indirect mapping object, we must have
+ * initialized all more recently removed vdevs.
+ */
+int
+spa_remove_init(spa_t *spa)
+{
+ int error;
+
+ error = zap_lookup(spa->spa_dsl_pool->dp_meta_objset,
+ DMU_POOL_DIRECTORY_OBJECT,
+ DMU_POOL_REMOVING, sizeof (uint64_t),
+ sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
+ &spa->spa_removing_phys);
+
+ if (error == ENOENT) {
+ spa->spa_removing_phys.sr_state = DSS_NONE;
+ spa->spa_removing_phys.sr_removing_vdev = -1;
+ spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
+ return (0);
+ } else if (error != 0) {
+ return (error);
+ }
+
+ if (spa->spa_removing_phys.sr_state == DSS_SCANNING) {
+ /*
+ * We are currently removing a vdev. Create and
+ * initialize a spa_vdev_removal_t from the bonus
+ * buffer of the removing vdevs vdev_im_object, and
+ * initialize its partial mapping.
+ */
+ spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
+ vdev_t *vd = vdev_lookup_top(spa,
+ spa->spa_removing_phys.sr_removing_vdev);
+ spa_config_exit(spa, SCL_STATE, FTAG);
+
+ if (vd == NULL)
+ return (EINVAL);
+
+ vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
+
+ ASSERT(vdev_is_concrete(vd));
+ spa_vdev_removal_t *svr = spa_vdev_removal_create(vd);
+ ASSERT(svr->svr_vdev->vdev_removing);
+
+ vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
+ spa->spa_meta_objset, vic->vic_mapping_object);
+ vd->vdev_indirect_births = vdev_indirect_births_open(
+ spa->spa_meta_objset, vic->vic_births_object);
+
+ spa->spa_vdev_removal = svr;
+ }
+
+ spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
+ uint64_t indirect_vdev_id =
+ spa->spa_removing_phys.sr_prev_indirect_vdev;
+ while (indirect_vdev_id != UINT64_MAX) {
+ vdev_t *vd = vdev_lookup_top(spa, indirect_vdev_id);
+ vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
+
+ ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
+ vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
+ spa->spa_meta_objset, vic->vic_mapping_object);
+ vd->vdev_indirect_births = vdev_indirect_births_open(
+ spa->spa_meta_objset, vic->vic_births_object);
+
+ indirect_vdev_id = vic->vic_prev_indirect_vdev;
+ }
+ spa_config_exit(spa, SCL_STATE, FTAG);
+
+ /*
+ * Now that we've loaded all the indirect mappings, we can allow
+ * reads from other blocks (e.g. via predictive prefetch).
+ */
+ spa->spa_indirect_vdevs_loaded = B_TRUE;
+ return (0);
+}
+
+void
+spa_restart_removal(spa_t *spa)
+{
+ spa_vdev_removal_t *svr = spa->spa_vdev_removal;
+
+ if (svr == NULL)
+ return;
+
+ /*
+ * In general when this function is called there is no
+ * removal thread running. The only scenario where this
+ * is not true is during spa_import() where this function
+ * is called twice [once from spa_import_impl() and
+ * spa_async_resume()]. Thus, in the scenario where we
+ * import a pool that has an ongoing removal we don't
+ * want to spawn a second thread.
+ */
+ if (svr->svr_thread != NULL)
+ return;
+
+ if (!spa_writeable(spa))
+ return;
+
+ vdev_t *vd = svr->svr_vdev;
+ vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
+
+ ASSERT3P(vd, !=, NULL);
+ ASSERT(vd->vdev_removing);
+
+ zfs_dbgmsg("restarting removal of %llu at count=%llu",
+ vd->vdev_id, vdev_indirect_mapping_num_entries(vim));
+ svr->svr_thread = thread_create(NULL, 0, spa_vdev_remove_thread, vd,
+ 0, &p0, TS_RUN, minclsyspri);
+}
+
+/*
+ * Process freeing from a device which is in the middle of being removed.
+ * We must handle this carefully so that we attempt to copy freed data,
+ * and we correctly free already-copied data.
+ */
+void
+free_from_removing_vdev(vdev_t *vd, uint64_t offset, uint64_t size,
+ uint64_t txg)
+{
+ spa_t *spa = vd->vdev_spa;
+ spa_vdev_removal_t *svr = spa->spa_vdev_removal;
+ vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
+ uint64_t max_offset_yet = 0;
+
+ ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
+ ASSERT3U(vd->vdev_indirect_config.vic_mapping_object, ==,
+ vdev_indirect_mapping_object(vim));
+ ASSERT3P(vd, ==, svr->svr_vdev);
+ ASSERT3U(spa_syncing_txg(spa), ==, txg);
+
+ mutex_enter(&svr->svr_lock);
+
+ /*
+ * Remove the segment from the removing vdev's spacemap. This
+ * ensures that we will not attempt to copy this space (if the
+ * removal thread has not yet visited it), and also ensures
+ * that we know what is actually allocated on the new vdevs
+ * (needed if we cancel the removal).
+ *
+ * Note: we must do the metaslab_free_concrete() with the svr_lock
+ * held, so that the remove_thread can not load this metaslab and then
+ * visit this offset between the time that we metaslab_free_concrete()
+ * and when we check to see if it has been visited.
+ */
+ metaslab_free_concrete(vd, offset, size, txg);
+
+ uint64_t synced_size = 0;
+ uint64_t synced_offset = 0;
+ uint64_t max_offset_synced = vdev_indirect_mapping_max_offset(vim);
+ if (offset < max_offset_synced) {
+ /*
+ * The mapping for this offset is already on disk.
+ * Free from the new location.
+ *
+ * Note that we use svr_max_synced_offset because it is
+ * updated atomically with respect to the in-core mapping.
+ * By contrast, vim_max_offset is not.
+ *
+ * This block may be split between a synced entry and an
+ * in-flight or unvisited entry. Only process the synced
+ * portion of it here.
+ */
+ synced_size = MIN(size, max_offset_synced - offset);
+ synced_offset = offset;
+
+ ASSERT3U(max_offset_yet, <=, max_offset_synced);
+ max_offset_yet = max_offset_synced;
+
+ DTRACE_PROBE3(remove__free__synced,
+ spa_t *, spa,
+ uint64_t, offset,
+ uint64_t, synced_size);
+
+ size -= synced_size;
+ offset += synced_size;
+ }
+
+ /*
+ * Look at all in-flight txgs starting from the currently syncing one
+ * and see if a section of this free is being copied. By starting from
+ * this txg and iterating forward, we might find that this region
+ * was copied in two different txgs and handle it appropriately.
+ */
+ for (int i = 0; i < TXG_CONCURRENT_STATES; i++) {
+ int txgoff = (txg + i) & TXG_MASK;
+ if (size > 0 && offset < svr->svr_max_offset_to_sync[txgoff]) {
+ /*
+ * The mapping for this offset is in flight, and
+ * will be synced in txg+i.
+ */
+ uint64_t inflight_size = MIN(size,
+ svr->svr_max_offset_to_sync[txgoff] - offset);
+
+ DTRACE_PROBE4(remove__free__inflight,
+ spa_t *, spa,
+ uint64_t, offset,
+ uint64_t, inflight_size,
+ uint64_t, txg + i);
+
+ /*
+ * We copy data in order of increasing offset.
+ * Therefore the max_offset_to_sync[] must increase
+ * (or be zero, indicating that nothing is being
+ * copied in that txg).
+ */
+ if (svr->svr_max_offset_to_sync[txgoff] != 0) {
+ ASSERT3U(svr->svr_max_offset_to_sync[txgoff],
+ >=, max_offset_yet);
+ max_offset_yet =
+ svr->svr_max_offset_to_sync[txgoff];
+ }
+
+ /*
+ * We've already committed to copying this segment:
+ * we have allocated space elsewhere in the pool for
+ * it and have an IO outstanding to copy the data. We
+ * cannot free the space before the copy has
+ * completed, or else the copy IO might overwrite any
+ * new data. To free that space, we record the
+ * segment in the appropriate svr_frees tree and free
+ * the mapped space later, in the txg where we have
+ * completed the copy and synced the mapping (see
+ * vdev_mapping_sync).
+ */
+ range_tree_add(svr->svr_frees[txgoff],
+ offset, inflight_size);
+ size -= inflight_size;
+ offset += inflight_size;
+
+ /*
+ * This space is already accounted for as being
+ * done, because it is being copied in txg+i.
+ * However, if i!=0, then it is being copied in
+ * a future txg. If we crash after this txg
+ * syncs but before txg+i syncs, then the space
+ * will be free. Therefore we must account
+ * for the space being done in *this* txg
+ * (when it is freed) rather than the future txg
+ * (when it will be copied).
+ */
+ ASSERT3U(svr->svr_bytes_done[txgoff], >=,
+ inflight_size);
+ svr->svr_bytes_done[txgoff] -= inflight_size;
+ svr->svr_bytes_done[txg & TXG_MASK] += inflight_size;
+ }
+ }
+ ASSERT0(svr->svr_max_offset_to_sync[TXG_CLEAN(txg) & TXG_MASK]);
+
+ if (size > 0) {
+ /*
+ * The copy thread has not yet visited this offset. Ensure
+ * that it doesn't.
+ */
+
+ DTRACE_PROBE3(remove__free__unvisited,
+ spa_t *, spa,
+ uint64_t, offset,
+ uint64_t, size);
+
+ if (svr->svr_allocd_segs != NULL)
+ range_tree_clear(svr->svr_allocd_segs, offset, size);
+
+ /*
+ * Since we now do not need to copy this data, for
+ * accounting purposes we have done our job and can count
+ * it as completed.
+ */
+ svr->svr_bytes_done[txg & TXG_MASK] += size;
+ }
+ mutex_exit(&svr->svr_lock);
+
+ /*
+ * Now that we have dropped svr_lock, process the synced portion
+ * of this free.
+ */
+ if (synced_size > 0) {
+ vdev_indirect_mark_obsolete(vd, synced_offset, synced_size,
+ txg);
+ /*
+ * Note: this can only be called from syncing context,
+ * and the vdev_indirect_mapping is only changed from the
+ * sync thread, so we don't need svr_lock while doing
+ * metaslab_free_impl_cb.
+ */
+ vdev_indirect_ops.vdev_op_remap(vd, synced_offset, synced_size,
+ metaslab_free_impl_cb, &txg);
+ }
+}
+
+/*
+ * Stop an active removal and update the spa_removing phys.
+ */
+static void
+spa_finish_removal(spa_t *spa, dsl_scan_state_t state, dmu_tx_t *tx)
+{
+ spa_vdev_removal_t *svr = spa->spa_vdev_removal;
+ ASSERT3U(dmu_tx_get_txg(tx), ==, spa_syncing_txg(spa));
+
+ /* Ensure the removal thread has completed before we free the svr. */
+ spa_vdev_remove_suspend(spa);
+
+ ASSERT(state == DSS_FINISHED || state == DSS_CANCELED);
+
+ if (state == DSS_FINISHED) {
+ spa_removing_phys_t *srp = &spa->spa_removing_phys;
+ vdev_t *vd = svr->svr_vdev;
+ vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
+
+ if (srp->sr_prev_indirect_vdev != UINT64_MAX) {
+ vdev_t *pvd;
+ pvd = vdev_lookup_top(spa,
+ srp->sr_prev_indirect_vdev);
+ ASSERT3P(pvd->vdev_ops, ==, &vdev_indirect_ops);
+ }
+
+ vic->vic_prev_indirect_vdev = srp->sr_prev_indirect_vdev;
+ srp->sr_prev_indirect_vdev = vd->vdev_id;
+ }
+ spa->spa_removing_phys.sr_state = state;
+ spa->spa_removing_phys.sr_end_time = gethrestime_sec();
+
+ spa->spa_vdev_removal = NULL;
+ spa_vdev_removal_destroy(svr);
+
+ spa_sync_removing_state(spa, tx);
+
+ vdev_config_dirty(spa->spa_root_vdev);
+}
+
+static void
+free_mapped_segment_cb(void *arg, uint64_t offset, uint64_t size)
+{
+ vdev_t *vd = arg;
+ vdev_indirect_mark_obsolete(vd, offset, size,
+ vd->vdev_spa->spa_syncing_txg);
+ vdev_indirect_ops.vdev_op_remap(vd, offset, size,
+ metaslab_free_impl_cb, &vd->vdev_spa->spa_syncing_txg);
+}
+
+/*
+ * On behalf of the removal thread, syncs an incremental bit more of
+ * the indirect mapping to disk and updates the in-memory mapping.
+ * Called as a sync task in every txg that the removal thread makes progress.
+ */
+static void
+vdev_mapping_sync(void *arg, dmu_tx_t *tx)
+{
+ spa_vdev_removal_t *svr = arg;
+ spa_t *spa = dmu_tx_pool(tx)->dp_spa;
+ vdev_t *vd = svr->svr_vdev;
+ ASSERTV(vdev_indirect_config_t *vic = &vd->vdev_indirect_config);
+ uint64_t txg = dmu_tx_get_txg(tx);
+ vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
+
+ ASSERT(vic->vic_mapping_object != 0);
+ ASSERT3U(txg, ==, spa_syncing_txg(spa));
+
+ vdev_indirect_mapping_add_entries(vim,
+ &svr->svr_new_segments[txg & TXG_MASK], tx);
+ vdev_indirect_births_add_entry(vd->vdev_indirect_births,
+ vdev_indirect_mapping_max_offset(vim), dmu_tx_get_txg(tx), tx);
+
+ /*
+ * Free the copied data for anything that was freed while the
+ * mapping entries were in flight.
+ */
+ mutex_enter(&svr->svr_lock);
+ range_tree_vacate(svr->svr_frees[txg & TXG_MASK],
+ free_mapped_segment_cb, vd);
+ ASSERT3U(svr->svr_max_offset_to_sync[txg & TXG_MASK], >=,
+ vdev_indirect_mapping_max_offset(vim));
+ svr->svr_max_offset_to_sync[txg & TXG_MASK] = 0;
+ mutex_exit(&svr->svr_lock);
+
+ spa_sync_removing_state(spa, tx);
+}
+
+static void
+spa_vdev_copy_segment_write_done(zio_t *zio)
+{
+ vdev_copy_seg_arg_t *vcsa = zio->io_private;
+ vdev_copy_arg_t *vca = vcsa->vcsa_copy_arg;
+ spa_config_exit(zio->io_spa, SCL_STATE, FTAG);
+ abd_free(zio->io_abd);
+
+ mutex_enter(&vca->vca_lock);
+ vca->vca_outstanding_bytes -= zio->io_size;
+ cv_signal(&vca->vca_cv);
+ mutex_exit(&vca->vca_lock);
+
+ ASSERT0(zio->io_error);
+ kmem_free(vcsa->vcsa_dest_bp, sizeof (blkptr_t));
+ kmem_free(vcsa, sizeof (vdev_copy_seg_arg_t));
+}
+
+static void
+spa_vdev_copy_segment_read_done(zio_t *zio)
+{
+ vdev_copy_seg_arg_t *vcsa = zio->io_private;
+ dva_t *dest_dva = vcsa->vcsa_dest_dva;
+ uint64_t txg = vcsa->vcsa_txg;
+ spa_t *spa = zio->io_spa;
+ ASSERTV(vdev_t *dest_vd = vdev_lookup_top(spa, DVA_GET_VDEV(dest_dva)));
+ blkptr_t *bp = NULL;
+ dva_t *dva = NULL;
+ uint64_t size = zio->io_size;
+
+ ASSERT3P(dest_vd, !=, NULL);
+ ASSERT0(zio->io_error);
+
+ vcsa->vcsa_dest_bp = kmem_alloc(sizeof (blkptr_t), KM_SLEEP);
+ bp = vcsa->vcsa_dest_bp;
+ dva = bp->blk_dva;
+
+ BP_ZERO(bp);
+
+ /* initialize with dest_dva */
+ bcopy(dest_dva, dva, sizeof (dva_t));
+ BP_SET_BIRTH(bp, TXG_INITIAL, TXG_INITIAL);
+
+ BP_SET_LSIZE(bp, size);
+ BP_SET_PSIZE(bp, size);
+ BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF);
+ BP_SET_CHECKSUM(bp, ZIO_CHECKSUM_OFF);
+ BP_SET_TYPE(bp, DMU_OT_NONE);
+ BP_SET_LEVEL(bp, 0);
+ BP_SET_DEDUP(bp, 0);
+ BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
+
+ zio_nowait(zio_rewrite(spa->spa_txg_zio[txg & TXG_MASK], spa,
+ txg, bp, zio->io_abd, size,
+ spa_vdev_copy_segment_write_done, vcsa,
+ ZIO_PRIORITY_REMOVAL, 0, NULL));
+}
+
+static int
+spa_vdev_copy_segment(vdev_t *vd, uint64_t start, uint64_t size, uint64_t txg,
+ vdev_copy_arg_t *vca, zio_alloc_list_t *zal)
+{
+ metaslab_group_t *mg = vd->vdev_mg;
+ spa_t *spa = vd->vdev_spa;
+ spa_vdev_removal_t *svr = spa->spa_vdev_removal;
+ vdev_indirect_mapping_entry_t *entry;
+ vdev_copy_seg_arg_t *private;
+ dva_t dst = {{ 0 }};
+ blkptr_t blk, *bp = &blk;
+ dva_t *dva = bp->blk_dva;
+
+ ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
+
+ int error = metaslab_alloc_dva(spa, mg->mg_class, size,
+ &dst, 0, NULL, txg, 0, zal);
+ if (error != 0)
+ return (error);
+
+ /*
+ * We can't have any padding of the allocated size, otherwise we will
+ * misunderstand what's allocated, and the size of the mapping.
+ * The caller ensures this will be true by passing in a size that is
+ * aligned to the worst (highest) ashift in the pool.
+ */
+ ASSERT3U(DVA_GET_ASIZE(&dst), ==, size);
+
+ mutex_enter(&vca->vca_lock);
+ vca->vca_outstanding_bytes += size;
+ mutex_exit(&vca->vca_lock);
+
+ entry = kmem_zalloc(sizeof (vdev_indirect_mapping_entry_t), KM_SLEEP);
+ DVA_MAPPING_SET_SRC_OFFSET(&entry->vime_mapping, start);
+ entry->vime_mapping.vimep_dst = dst;
+
+ private = kmem_alloc(sizeof (vdev_copy_seg_arg_t), KM_SLEEP);
+ private->vcsa_dest_dva = &entry->vime_mapping.vimep_dst;
+ private->vcsa_txg = txg;
+ private->vcsa_copy_arg = vca;
+
+ /*
+ * This lock is eventually released by the donefunc for the
+ * zio_write_phys that finishes copying the data.
+ */
+ spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
+
+ /*
+ * Do logical I/O, letting the redundancy vdevs (like mirror)
+ * handle their own I/O instead of duplicating that code here.
+ */
+ BP_ZERO(bp);
+
+ DVA_SET_VDEV(&dva[0], vd->vdev_id);
+ DVA_SET_OFFSET(&dva[0], start);
+ DVA_SET_GANG(&dva[0], 0);
+ DVA_SET_ASIZE(&dva[0], vdev_psize_to_asize(vd, size));
+
+ BP_SET_BIRTH(bp, TXG_INITIAL, TXG_INITIAL);
+
+ BP_SET_LSIZE(bp, size);
+ BP_SET_PSIZE(bp, size);
+ BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF);
+ BP_SET_CHECKSUM(bp, ZIO_CHECKSUM_OFF);
+ BP_SET_TYPE(bp, DMU_OT_NONE);
+ BP_SET_LEVEL(bp, 0);
+ BP_SET_DEDUP(bp, 0);
+ BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
+
+ zio_nowait(zio_read(spa->spa_txg_zio[txg & TXG_MASK], spa,
+ bp, abd_alloc_for_io(size, B_FALSE), size,
+ spa_vdev_copy_segment_read_done, private,
+ ZIO_PRIORITY_REMOVAL, 0, NULL));
+
+ list_insert_tail(&svr->svr_new_segments[txg & TXG_MASK], entry);
+ ASSERT3U(start + size, <=, vd->vdev_ms_count << vd->vdev_ms_shift);
+ vdev_dirty(vd, 0, NULL, txg);
+
+ return (0);
+}
+
+/*
+ * Complete the removal of a toplevel vdev. This is called as a
+ * synctask in the same txg that we will sync out the new config (to the
+ * MOS object) which indicates that this vdev is indirect.
+ */
+static void
+vdev_remove_complete_sync(void *arg, dmu_tx_t *tx)
+{
+ spa_vdev_removal_t *svr = arg;
+ vdev_t *vd = svr->svr_vdev;
+ spa_t *spa = vd->vdev_spa;
+
+ ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
+
+ for (int i = 0; i < TXG_SIZE; i++) {
+ ASSERT0(svr->svr_bytes_done[i]);
+ }
+
+ ASSERT3U(spa->spa_removing_phys.sr_copied, ==,
+ spa->spa_removing_phys.sr_to_copy);
+
+ vdev_destroy_spacemaps(vd, tx);
+
+ /* destroy leaf zaps, if any */
+ ASSERT3P(svr->svr_zaplist, !=, NULL);
+ for (nvpair_t *pair = nvlist_next_nvpair(svr->svr_zaplist, NULL);
+ pair != NULL;
+ pair = nvlist_next_nvpair(svr->svr_zaplist, pair)) {
+ vdev_destroy_unlink_zap(vd, fnvpair_value_uint64(pair), tx);
+ }
+ fnvlist_free(svr->svr_zaplist);
+
+ spa_finish_removal(dmu_tx_pool(tx)->dp_spa, DSS_FINISHED, tx);
+ /* vd->vdev_path is not available here */
+ spa_history_log_internal(spa, "vdev remove completed", tx,
+ "%s vdev %llu", spa_name(spa), vd->vdev_id);
+}
+
+static void
+vdev_indirect_state_transfer(vdev_t *ivd, vdev_t *vd)
+{
+ ivd->vdev_indirect_config = vd->vdev_indirect_config;
+
+ ASSERT3P(ivd->vdev_indirect_mapping, ==, NULL);
+ ASSERT(vd->vdev_indirect_mapping != NULL);
+ ivd->vdev_indirect_mapping = vd->vdev_indirect_mapping;
+ vd->vdev_indirect_mapping = NULL;
+
+ ASSERT3P(ivd->vdev_indirect_births, ==, NULL);
+ ASSERT(vd->vdev_indirect_births != NULL);
+ ivd->vdev_indirect_births = vd->vdev_indirect_births;
+ vd->vdev_indirect_births = NULL;
+
+ ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
+ ASSERT0(range_tree_space(ivd->vdev_obsolete_segments));
+
+ if (vd->vdev_obsolete_sm != NULL) {
+ ASSERT3U(ivd->vdev_asize, ==, vd->vdev_asize);
+
+ /*
+ * We cannot use space_map_{open,close} because we hold all
+ * the config locks as writer.
+ */
+ ASSERT3P(ivd->vdev_obsolete_sm, ==, NULL);
+ ivd->vdev_obsolete_sm = vd->vdev_obsolete_sm;
+ vd->vdev_obsolete_sm = NULL;
+ }
+}
+
+static void
+vdev_remove_enlist_zaps(vdev_t *vd, nvlist_t *zlist)
+{
+ ASSERT3P(zlist, !=, NULL);
+ ASSERT3P(vd->vdev_ops, !=, &vdev_raidz_ops);
+
+ if (vd->vdev_leaf_zap != 0) {
+ char zkey[32];
+ (void) snprintf(zkey, sizeof (zkey), "%s-%llu",
+ VDEV_REMOVAL_ZAP_OBJS, (u_longlong_t)vd->vdev_leaf_zap);
+ fnvlist_add_uint64(zlist, zkey, vd->vdev_leaf_zap);
+ }
+
+ for (uint64_t id = 0; id < vd->vdev_children; id++) {
+ vdev_remove_enlist_zaps(vd->vdev_child[id], zlist);
+ }
+}
+
+static void
+vdev_remove_replace_with_indirect(vdev_t *vd, uint64_t txg)
+{
+ vdev_t *ivd;
+ dmu_tx_t *tx;
+ spa_t *spa = vd->vdev_spa;
+ spa_vdev_removal_t *svr = spa->spa_vdev_removal;
+
+ /*
+ * First, build a list of leaf zaps to be destroyed.
+ * This is passed to the sync context thread,
+ * which does the actual unlinking.
+ */
+ svr->svr_zaplist = fnvlist_alloc();
+ vdev_remove_enlist_zaps(vd, svr->svr_zaplist);
+
+ ivd = vdev_add_parent(vd, &vdev_indirect_ops);
+
+ vd->vdev_leaf_zap = 0;
+
+ vdev_remove_child(ivd, vd);
+ vdev_compact_children(ivd);
+
+ vdev_indirect_state_transfer(ivd, vd);
+
+ svr->svr_vdev = ivd;
+
+ ASSERT(!ivd->vdev_removing);
+ ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
+
+ tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
+ dsl_sync_task_nowait(spa->spa_dsl_pool, vdev_remove_complete_sync, svr,
+ 0, ZFS_SPACE_CHECK_NONE, tx);
+ dmu_tx_commit(tx);
+
+ /*
+ * Indicate that this thread has exited.
+ * After this, we can not use svr.
+ */
+ mutex_enter(&svr->svr_lock);
+ svr->svr_thread = NULL;
+ cv_broadcast(&svr->svr_cv);
+ mutex_exit(&svr->svr_lock);
+}
+
+/*
+ * Complete the removal of a toplevel vdev. This is called in open
+ * context by the removal thread after we have copied all vdev's data.
+ */
+static void
+vdev_remove_complete(vdev_t *vd)
+{
+ spa_t *spa = vd->vdev_spa;
+ uint64_t txg;
+
+ /*
+ * Wait for any deferred frees to be synced before we call
+ * vdev_metaslab_fini()
+ */
+ txg_wait_synced(spa->spa_dsl_pool, 0);
+
+ txg = spa_vdev_enter(spa);
+ zfs_dbgmsg("finishing device removal for vdev %llu in txg %llu",
+ vd->vdev_id, txg);
+
+ /*
+ * Discard allocation state.
+ */
+ if (vd->vdev_mg != NULL) {
+ vdev_metaslab_fini(vd);
+ metaslab_group_destroy(vd->vdev_mg);
+ vd->vdev_mg = NULL;
+ }
+ ASSERT0(vd->vdev_stat.vs_space);
+ ASSERT0(vd->vdev_stat.vs_dspace);
+
+ vdev_remove_replace_with_indirect(vd, txg);
+
+ /*
+ * We now release the locks, allowing spa_sync to run and finish the
+ * removal via vdev_remove_complete_sync in syncing context.
+ */
+ (void) spa_vdev_exit(spa, NULL, txg, 0);
+
+ /*
+ * Top ZAP should have been transferred to the indirect vdev in
+ * vdev_remove_replace_with_indirect.
+ */
+ ASSERT0(vd->vdev_top_zap);
+
+ /*
+ * Leaf ZAP should have been moved in vdev_remove_replace_with_indirect.
+ */
+ ASSERT0(vd->vdev_leaf_zap);
+
+ txg = spa_vdev_enter(spa);
+ (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
+ /*
+ * Request to update the config and the config cachefile.
+ */
+ vdev_config_dirty(spa->spa_root_vdev);
+ (void) spa_vdev_exit(spa, vd, txg, 0);
+}
+
+/*
+ * Evacuates a segment of size at most max_alloc from the vdev
+ * via repeated calls to spa_vdev_copy_segment. If an allocation
+ * fails, the pool is probably too fragmented to handle such a
+ * large size, so decrease max_alloc so that the caller will not try
+ * this size again this txg.
+ */
+static void
+spa_vdev_copy_impl(spa_vdev_removal_t *svr, vdev_copy_arg_t *vca,
+ uint64_t *max_alloc, dmu_tx_t *tx)
+{
+ uint64_t txg = dmu_tx_get_txg(tx);
+ spa_t *spa = dmu_tx_pool(tx)->dp_spa;
+
+ mutex_enter(&svr->svr_lock);
+
+ range_seg_t *rs = avl_first(&svr->svr_allocd_segs->rt_root);
+ if (rs == NULL) {
+ mutex_exit(&svr->svr_lock);
+ return;
+ }
+ uint64_t offset = rs->rs_start;
+ uint64_t length = MIN(rs->rs_end - rs->rs_start, *max_alloc);
+
+ range_tree_remove(svr->svr_allocd_segs, offset, length);
+
+ if (svr->svr_max_offset_to_sync[txg & TXG_MASK] == 0) {
+ dsl_sync_task_nowait(dmu_tx_pool(tx), vdev_mapping_sync,
+ svr, 0, ZFS_SPACE_CHECK_NONE, tx);
+ }
+
+ svr->svr_max_offset_to_sync[txg & TXG_MASK] = offset + length;
+
+ /*
+ * Note: this is the amount of *allocated* space
+ * that we are taking care of each txg.
+ */
+ svr->svr_bytes_done[txg & TXG_MASK] += length;
+
+ mutex_exit(&svr->svr_lock);
+
+ zio_alloc_list_t zal;
+ metaslab_trace_init(&zal);
+ uint64_t thismax = *max_alloc;
+ while (length > 0) {
+ uint64_t mylen = MIN(length, thismax);
+
+ int error = spa_vdev_copy_segment(svr->svr_vdev,
+ offset, mylen, txg, vca, &zal);
+
+ if (error == ENOSPC) {
+ /*
+ * Cut our segment in half, and don't try this
+ * segment size again this txg. Note that the
+ * allocation size must be aligned to the highest
+ * ashift in the pool, so that the allocation will
+ * not be padded out to a multiple of the ashift,
+ * which could cause us to think that this mapping
+ * is larger than we intended.
+ */
+ ASSERT3U(spa->spa_max_ashift, >=, SPA_MINBLOCKSHIFT);
+ ASSERT3U(spa->spa_max_ashift, ==, spa->spa_min_ashift);
+ thismax = P2ROUNDUP(mylen / 2,
+ 1 << spa->spa_max_ashift);
+ ASSERT3U(thismax, <, mylen);
+ /*
+ * The minimum-size allocation can not fail.
+ */
+ ASSERT3U(mylen, >, 1 << spa->spa_max_ashift);
+ *max_alloc = mylen - (1 << spa->spa_max_ashift);
+ } else {
+ ASSERT0(error);
+ length -= mylen;
+ offset += mylen;
+
+ /*
+ * We've performed an allocation, so reset the
+ * alloc trace list.
+ */
+ metaslab_trace_fini(&zal);
+ metaslab_trace_init(&zal);
+ }
+ }
+ metaslab_trace_fini(&zal);
+}
+
+/*
+ * The removal thread operates in open context. It iterates over all
+ * allocated space in the vdev, by loading each metaslab's spacemap.
+ * For each contiguous segment of allocated space (capping the segment
+ * size at SPA_MAXBLOCKSIZE), we:
+ * - Allocate space for it on another vdev.
+ * - Create a new mapping from the old location to the new location
+ * (as a record in svr_new_segments).
+ * - Initiate a physical read zio to get the data off the removing disk.
+ * - In the read zio's done callback, initiate a physical write zio to
+ * write it to the new vdev.
+ * Note that all of this will take effect when a particular TXG syncs.
+ * The sync thread ensures that all the phys reads and writes for the syncing
+ * TXG have completed (see spa_txg_zio) and writes the new mappings to disk
+ * (see vdev_mapping_sync()).
+ */
+static void
+spa_vdev_remove_thread(void *arg)
+{
+ vdev_t *vd = arg;
+ spa_t *spa = vd->vdev_spa;
+ spa_vdev_removal_t *svr = spa->spa_vdev_removal;
+ vdev_copy_arg_t vca;
+ uint64_t max_alloc = zfs_remove_max_segment;
+ uint64_t last_txg = 0;
+ vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
+ uint64_t start_offset = vdev_indirect_mapping_max_offset(vim);
+
+ ASSERT3P(vd->vdev_ops, !=, &vdev_indirect_ops);
+ ASSERT(vdev_is_concrete(vd));
+ ASSERT(vd->vdev_removing);
+ ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
+ ASSERT3P(svr->svr_vdev, ==, vd);
+ ASSERT(vim != NULL);
+
+ mutex_init(&vca.vca_lock, NULL, MUTEX_DEFAULT, NULL);
+ cv_init(&vca.vca_cv, NULL, CV_DEFAULT, NULL);
+ vca.vca_outstanding_bytes = 0;
+
+ mutex_enter(&svr->svr_lock);
+
+ /*
+ * Start from vim_max_offset so we pick up where we left off
+ * if we are restarting the removal after opening the pool.
+ */
+ uint64_t msi;
+ for (msi = start_offset >> vd->vdev_ms_shift;
+ msi < vd->vdev_ms_count && !svr->svr_thread_exit; msi++) {
+ metaslab_t *msp = vd->vdev_ms[msi];
+ ASSERT3U(msi, <=, vd->vdev_ms_count);
+
+ ASSERT0(range_tree_space(svr->svr_allocd_segs));
+
+ mutex_enter(&msp->ms_sync_lock);
+ mutex_enter(&msp->ms_lock);
+
+ /*
+ * Assert nothing in flight -- ms_*tree is empty.
+ */
+ for (int i = 0; i < TXG_SIZE; i++) {
+ ASSERT0(range_tree_space(msp->ms_alloctree[i]));
+ }
+
+ /*
+ * If the metaslab has ever been allocated from (ms_sm!=NULL),
+ * read the allocated segments from the space map object
+ * into svr_allocd_segs. Since we do this while holding
+ * svr_lock and ms_sync_lock, concurrent frees (which
+ * would have modified the space map) will wait for us
+ * to finish loading the spacemap, and then take the
+ * appropriate action (see free_from_removing_vdev()).
+ */
+ if (msp->ms_sm != NULL) {
+ space_map_t *sm = NULL;
+
+ /*
+ * We have to open a new space map here, because
+ * ms_sm's sm_length and sm_alloc may not reflect
+ * what's in the object contents, if we are in between
+ * metaslab_sync() and metaslab_sync_done().
+ */
+ VERIFY0(space_map_open(&sm,
+ spa->spa_dsl_pool->dp_meta_objset,
+ msp->ms_sm->sm_object, msp->ms_sm->sm_start,
+ msp->ms_sm->sm_size, msp->ms_sm->sm_shift));
+ space_map_update(sm);
+ VERIFY0(space_map_load(sm, svr->svr_allocd_segs,
+ SM_ALLOC));
+ space_map_close(sm);
+
+ range_tree_walk(msp->ms_freeingtree,
+ range_tree_remove, svr->svr_allocd_segs);
+
+ /*
+ * When we are resuming from a paused removal (i.e.
+ * when importing a pool with a removal in progress),
+ * discard any state that we have already processed.
+ */
+ range_tree_clear(svr->svr_allocd_segs, 0, start_offset);
+ }
+ mutex_exit(&msp->ms_lock);
+ mutex_exit(&msp->ms_sync_lock);
+
+ vca.vca_msp = msp;
+ zfs_dbgmsg("copying %llu segments for metaslab %llu",
+ avl_numnodes(&svr->svr_allocd_segs->rt_root),
+ msp->ms_id);
+
+ while (!svr->svr_thread_exit &&
+ range_tree_space(svr->svr_allocd_segs) != 0) {
+
+ mutex_exit(&svr->svr_lock);
+
+ mutex_enter(&vca.vca_lock);
+ while (vca.vca_outstanding_bytes >
+ zfs_remove_max_copy_bytes) {
+ cv_wait(&vca.vca_cv, &vca.vca_lock);
+ }
+ mutex_exit(&vca.vca_lock);
+
+ dmu_tx_t *tx =
+ dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
+ dmu_tx_hold_space(tx, SPA_MAXBLOCKSIZE);
+ VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
+ uint64_t txg = dmu_tx_get_txg(tx);
+
+ if (txg != last_txg)
+ max_alloc = zfs_remove_max_segment;
+ last_txg = txg;
+
+ spa_vdev_copy_impl(svr, &vca, &max_alloc, tx);
+
+ dmu_tx_commit(tx);
+ mutex_enter(&svr->svr_lock);
+ }
+ }
+
+ mutex_exit(&svr->svr_lock);
+ /*
+ * Wait for all copies to finish before cleaning up the vca.
+ */
+ txg_wait_synced(spa->spa_dsl_pool, 0);
+ ASSERT0(vca.vca_outstanding_bytes);
+
+ mutex_destroy(&vca.vca_lock);
+ cv_destroy(&vca.vca_cv);
+
+ if (svr->svr_thread_exit) {
+ mutex_enter(&svr->svr_lock);
+ range_tree_vacate(svr->svr_allocd_segs, NULL, NULL);
+ svr->svr_thread = NULL;
+ cv_broadcast(&svr->svr_cv);
+ mutex_exit(&svr->svr_lock);
+ } else {
+ ASSERT0(range_tree_space(svr->svr_allocd_segs));
+ vdev_remove_complete(vd);
+ }
+}
+
+void
+spa_vdev_remove_suspend(spa_t *spa)
+{
+ spa_vdev_removal_t *svr = spa->spa_vdev_removal;
+
+ if (svr == NULL)
+ return;
+
+ mutex_enter(&svr->svr_lock);
+ svr->svr_thread_exit = B_TRUE;
+ while (svr->svr_thread != NULL)
+ cv_wait(&svr->svr_cv, &svr->svr_lock);
+ svr->svr_thread_exit = B_FALSE;
+ mutex_exit(&svr->svr_lock);
+}
+
+/* ARGSUSED */
+static int
+spa_vdev_remove_cancel_check(void *arg, dmu_tx_t *tx)
+{
+ spa_t *spa = dmu_tx_pool(tx)->dp_spa;
+
+ if (spa->spa_vdev_removal == NULL)
+ return (ENOTACTIVE);
+ return (0);
+}
+
+/*
+ * Cancel a removal by freeing all entries from the partial mapping
+ * and marking the vdev as no longer being removing.
+ */
+/* ARGSUSED */
+static void
+spa_vdev_remove_cancel_sync(void *arg, dmu_tx_t *tx)
+{
+ spa_t *spa = dmu_tx_pool(tx)->dp_spa;
+ spa_vdev_removal_t *svr = spa->spa_vdev_removal;
+ vdev_t *vd = svr->svr_vdev;
+ vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
+ vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
+ objset_t *mos = spa->spa_meta_objset;
+
+ ASSERT3P(svr->svr_thread, ==, NULL);
+
+ spa_feature_decr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
+ if (vdev_obsolete_counts_are_precise(vd)) {
+ spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
+ VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
+ VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, tx));
+ }
+
+ if (vdev_obsolete_sm_object(vd) != 0) {
+ ASSERT(vd->vdev_obsolete_sm != NULL);
+ ASSERT3U(vdev_obsolete_sm_object(vd), ==,
+ space_map_object(vd->vdev_obsolete_sm));
+
+ space_map_free(vd->vdev_obsolete_sm, tx);
+ VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
+ VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, tx));
+ space_map_close(vd->vdev_obsolete_sm);
+ vd->vdev_obsolete_sm = NULL;
+ spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
+ }
+ for (int i = 0; i < TXG_SIZE; i++) {
+ ASSERT(list_is_empty(&svr->svr_new_segments[i]));
+ ASSERT3U(svr->svr_max_offset_to_sync[i], <=,
+ vdev_indirect_mapping_max_offset(vim));
+ }
+
+ for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) {
+ metaslab_t *msp = vd->vdev_ms[msi];
+
+ if (msp->ms_start >= vdev_indirect_mapping_max_offset(vim))
+ break;
+
+ ASSERT0(range_tree_space(svr->svr_allocd_segs));
+
+ mutex_enter(&msp->ms_lock);
+
+ /*
+ * Assert nothing in flight -- ms_*tree is empty.
+ */
+ for (int i = 0; i < TXG_SIZE; i++)
+ ASSERT0(range_tree_space(msp->ms_alloctree[i]));
+ for (int i = 0; i < TXG_DEFER_SIZE; i++)
+ ASSERT0(range_tree_space(msp->ms_defertree[i]));
+ ASSERT0(range_tree_space(msp->ms_freedtree));
+
+ if (msp->ms_sm != NULL) {
+ /*
+ * Assert that the in-core spacemap has the same
+ * length as the on-disk one, so we can use the
+ * existing in-core spacemap to load it from disk.
+ */
+ ASSERT3U(msp->ms_sm->sm_alloc, ==,
+ msp->ms_sm->sm_phys->smp_alloc);
+ ASSERT3U(msp->ms_sm->sm_length, ==,
+ msp->ms_sm->sm_phys->smp_objsize);
+
+ mutex_enter(&svr->svr_lock);
+ VERIFY0(space_map_load(msp->ms_sm,
+ svr->svr_allocd_segs, SM_ALLOC));
+ range_tree_walk(msp->ms_freeingtree,
+ range_tree_remove, svr->svr_allocd_segs);
+
+ /*
+ * Clear everything past what has been synced,
+ * because we have not allocated mappings for it yet.
+ */
+ uint64_t syncd = vdev_indirect_mapping_max_offset(vim);
+ range_tree_clear(svr->svr_allocd_segs, syncd,
+ msp->ms_sm->sm_start + msp->ms_sm->sm_size - syncd);
+
+ mutex_exit(&svr->svr_lock);
+ }
+ mutex_exit(&msp->ms_lock);
+
+ mutex_enter(&svr->svr_lock);
+ range_tree_vacate(svr->svr_allocd_segs,
+ free_mapped_segment_cb, vd);
+ mutex_exit(&svr->svr_lock);
+ }
+
+ /*
+ * Note: this must happen after we invoke free_mapped_segment_cb,
+ * because it adds to the obsolete_segments.
+ */
+ range_tree_vacate(vd->vdev_obsolete_segments, NULL, NULL);
+
+ ASSERT3U(vic->vic_mapping_object, ==,
+ vdev_indirect_mapping_object(vd->vdev_indirect_mapping));
+ vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
+ vd->vdev_indirect_mapping = NULL;
+ vdev_indirect_mapping_free(mos, vic->vic_mapping_object, tx);
+ vic->vic_mapping_object = 0;
+
+ ASSERT3U(vic->vic_births_object, ==,
+ vdev_indirect_births_object(vd->vdev_indirect_births));
+ vdev_indirect_births_close(vd->vdev_indirect_births);
+ vd->vdev_indirect_births = NULL;
+ vdev_indirect_births_free(mos, vic->vic_births_object, tx);
+ vic->vic_births_object = 0;
+
+ /*
+ * We may have processed some frees from the removing vdev in this
+ * txg, thus increasing svr_bytes_done; discard that here to
+ * satisfy the assertions in spa_vdev_removal_destroy().
+ * Note that future txg's can not have any bytes_done, because
+ * future TXG's are only modified from open context, and we have
+ * already shut down the copying thread.
+ */
+ svr->svr_bytes_done[dmu_tx_get_txg(tx) & TXG_MASK] = 0;
+ spa_finish_removal(spa, DSS_CANCELED, tx);
+
+ vd->vdev_removing = B_FALSE;
+ vdev_config_dirty(vd);
+
+ zfs_dbgmsg("canceled device removal for vdev %llu in %llu",
+ vd->vdev_id, dmu_tx_get_txg(tx));
+ spa_history_log_internal(spa, "vdev remove canceled", tx,
+ "%s vdev %llu %s", spa_name(spa),
+ vd->vdev_id, (vd->vdev_path != NULL) ? vd->vdev_path : "-");
+}
+
+int
+spa_vdev_remove_cancel(spa_t *spa)
+{
+ spa_vdev_remove_suspend(spa);
+
+ if (spa->spa_vdev_removal == NULL)
+ return (ENOTACTIVE);
+
+ uint64_t vdid = spa->spa_vdev_removal->svr_vdev->vdev_id;
+
+ int error = dsl_sync_task(spa->spa_name, spa_vdev_remove_cancel_check,
+ spa_vdev_remove_cancel_sync, NULL, 0, ZFS_SPACE_CHECK_NONE);
+
+ if (error == 0) {
+ spa_config_enter(spa, SCL_ALLOC | SCL_VDEV, FTAG, RW_WRITER);
+ vdev_t *vd = vdev_lookup_top(spa, vdid);
+ metaslab_group_activate(vd->vdev_mg);
+ spa_config_exit(spa, SCL_ALLOC | SCL_VDEV, FTAG);
+ }
+
+ return (error);
+}
+
+/*
+ * Called every sync pass of every txg if there's a svr.
+ */
+void
+svr_sync(spa_t *spa, dmu_tx_t *tx)
+{
+ spa_vdev_removal_t *svr = spa->spa_vdev_removal;
+ int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
+
+ /*
+ * This check is necessary so that we do not dirty the
+ * DIRECTORY_OBJECT via spa_sync_removing_state() when there
+ * is nothing to do. Dirtying it every time would prevent us
+ * from syncing-to-convergence.
+ */
+ if (svr->svr_bytes_done[txgoff] == 0)
+ return;
+
+ /*
+ * Update progress accounting.
+ */
+ spa->spa_removing_phys.sr_copied += svr->svr_bytes_done[txgoff];
+ svr->svr_bytes_done[txgoff] = 0;
+
+ spa_sync_removing_state(spa, tx);
+}
+
+static void
+vdev_remove_make_hole_and_free(vdev_t *vd)
+{
+ uint64_t id = vd->vdev_id;
+ spa_t *spa = vd->vdev_spa;
+ vdev_t *rvd = spa->spa_root_vdev;
+ boolean_t last_vdev = (id == (rvd->vdev_children - 1));
+
+ ASSERT(MUTEX_HELD(&spa_namespace_lock));
+ ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
+
+ vdev_free(vd);
+
+ if (last_vdev) {
+ vdev_compact_children(rvd);
+ } else {
+ vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
+ vdev_add_child(rvd, vd);
+ }
+ vdev_config_dirty(rvd);
+
+ /*
+ * Reassess the health of our root vdev.
+ */
+ vdev_reopen(rvd);
+}
+
+/*
+ * Remove a log device. The config lock is held for the specified TXG.
+ */
+static int
+spa_vdev_remove_log(vdev_t *vd, uint64_t *txg)
+{
+ metaslab_group_t *mg = vd->vdev_mg;
+ spa_t *spa = vd->vdev_spa;
+ int error = 0;
+
+ ASSERT(vd->vdev_islog);
+ ASSERT(vd == vd->vdev_top);
+
+ /*
+ * Stop allocating from this vdev.
+ */
+ metaslab_group_passivate(mg);
+
+ /*
+ * Wait for the youngest allocations and frees to sync,
+ * and then wait for the deferral of those frees to finish.
+ */
+ spa_vdev_config_exit(spa, NULL,
+ *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
+
+ /*
+ * Evacuate the device. We don't hold the config lock as writer
+ * since we need to do I/O but we do keep the
+ * spa_namespace_lock held. Once this completes the device
+ * should no longer have any blocks allocated on it.
+ */
+ if (vd->vdev_islog) {
+ if (vd->vdev_stat.vs_alloc != 0)
+ error = spa_reset_logs(spa);
+ }
+
+ *txg = spa_vdev_config_enter(spa);
+
+ if (error != 0) {
+ metaslab_group_activate(mg);
+ return (error);
+ }
+ ASSERT0(vd->vdev_stat.vs_alloc);
+
+ /*
+ * The evacuation succeeded. Remove any remaining MOS metadata
+ * associated with this vdev, and wait for these changes to sync.
+ */
+ vd->vdev_removing = B_TRUE;
+
+ vdev_dirty_leaves(vd, VDD_DTL, *txg);
+ vdev_config_dirty(vd);
+
+ spa_history_log_internal(spa, "vdev remove", NULL,
+ "%s vdev %llu (log) %s", spa_name(spa), vd->vdev_id,
+ (vd->vdev_path != NULL) ? vd->vdev_path : "-");
+
+ spa_vdev_config_exit(spa, NULL, *txg, 0, FTAG);
+
+ *txg = spa_vdev_config_enter(spa);
+
+ sysevent_t *ev = spa_event_create(spa, vd, NULL,
+ ESC_ZFS_VDEV_REMOVE_DEV);
+ ASSERT(MUTEX_HELD(&spa_namespace_lock));
+ ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
+
+ /* The top ZAP should have been destroyed by vdev_remove_empty. */
+ ASSERT0(vd->vdev_top_zap);
+ /* The leaf ZAP should have been destroyed by vdev_dtl_sync. */
+ ASSERT0(vd->vdev_leaf_zap);
+
+ (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
+
+ if (list_link_active(&vd->vdev_state_dirty_node))
+ vdev_state_clean(vd);
+ if (list_link_active(&vd->vdev_config_dirty_node))
+ vdev_config_clean(vd);
+
+ /*
+ * Clean up the vdev namespace.
+ */
+ vdev_remove_make_hole_and_free(vd);
+
+ if (ev != NULL)
+ spa_event_post(ev);
+
+ return (0);
+}
+
+static int
+spa_vdev_remove_top_check(vdev_t *vd)
+{
+ spa_t *spa = vd->vdev_spa;
+
+ if (vd != vd->vdev_top)
+ return (SET_ERROR(ENOTSUP));
+
+ if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REMOVAL))
+ return (SET_ERROR(ENOTSUP));
+
+ /*
+ * There has to be enough free space to remove the
+ * device and leave double the "slop" space (i.e. we
+ * must leave at least 3% of the pool free, in addition to
+ * the normal slop space).
+ */
+ if (dsl_dir_space_available(spa->spa_dsl_pool->dp_root_dir,
+ NULL, 0, B_TRUE) <
+ vd->vdev_stat.vs_dspace + spa_get_slop_space(spa)) {
+ return (SET_ERROR(ENOSPC));
+ }
+
+ /*
+ * There can not be a removal in progress.
+ */
+ if (spa->spa_removing_phys.sr_state == DSS_SCANNING)
+ return (SET_ERROR(EBUSY));
+
+ /*
+ * The device must have all its data.
+ */
+ if (!vdev_dtl_empty(vd, DTL_MISSING) ||
+ !vdev_dtl_empty(vd, DTL_OUTAGE))
+ return (SET_ERROR(EBUSY));
+
+ /*
+ * The device must be healthy.
+ */
+ if (!vdev_readable(vd))
+ return (SET_ERROR(EIO));
+
+ /*
+ * All vdevs in normal class must have the same ashift.
+ */
+ if (spa->spa_max_ashift != spa->spa_min_ashift) {
+ return (SET_ERROR(EINVAL));
+ }
+
+ /*
+ * All vdevs in normal class must have the same ashift
+ * and not be raidz.
+ */
+ vdev_t *rvd = spa->spa_root_vdev;
+ int num_indirect = 0;
+ for (uint64_t id = 0; id < rvd->vdev_children; id++) {
+ vdev_t *cvd = rvd->vdev_child[id];
+ if (cvd->vdev_ashift != 0 && !cvd->vdev_islog)
+ ASSERT3U(cvd->vdev_ashift, ==, spa->spa_max_ashift);
+ if (cvd->vdev_ops == &vdev_indirect_ops)
+ num_indirect++;
+ if (!vdev_is_concrete(cvd))
+ continue;
+ if (cvd->vdev_ops == &vdev_raidz_ops)
+ return (SET_ERROR(EINVAL));
+ /*
+ * Need the mirror to be mirror of leaf vdevs only
+ */
+ if (cvd->vdev_ops == &vdev_mirror_ops) {
+ for (uint64_t cid = 0;
+ cid < cvd->vdev_children; cid++) {
+ if (!cvd->vdev_child[cid]->vdev_ops->
+ vdev_op_leaf)
+ return (SET_ERROR(EINVAL));
+ }
+ }
+ }
+
+ return (0);
+}
+
+/*
+ * Initiate removal of a top-level vdev, reducing the total space in the pool.
+ * The config lock is held for the specified TXG. Once initiated,
+ * evacuation of all allocated space (copying it to other vdevs) happens
+ * in the background (see spa_vdev_remove_thread()), and can be canceled
+ * (see spa_vdev_remove_cancel()). If successful, the vdev will
+ * be transformed to an indirect vdev (see spa_vdev_remove_complete()).
+ */
+static int
+spa_vdev_remove_top(vdev_t *vd, uint64_t *txg)
+{
+ spa_t *spa = vd->vdev_spa;
+ int error;
+
+ /*
+ * Check for errors up-front, so that we don't waste time
+ * passivating the metaslab group and clearing the ZIL if there
+ * are errors.
+ */
+ error = spa_vdev_remove_top_check(vd);
+ if (error != 0)
+ return (error);
+
+ /*
+ * Stop allocating from this vdev. Note that we must check
+ * that this is not the only device in the pool before
+ * passivating, otherwise we will not be able to make
+ * progress because we can't allocate from any vdevs.
+ * The above check for sufficient free space serves this
+ * purpose.
+ */
+ metaslab_group_t *mg = vd->vdev_mg;
+ metaslab_group_passivate(mg);
+
+ /*
+ * Wait for the youngest allocations and frees to sync,
+ * and then wait for the deferral of those frees to finish.
+ */
+ spa_vdev_config_exit(spa, NULL,
+ *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
+
+ /*
+ * We must ensure that no "stubby" log blocks are allocated
+ * on the device to be removed. These blocks could be
+ * written at any time, including while we are in the middle
+ * of copying them.
+ */
+ error = spa_reset_logs(spa);
+
+ *txg = spa_vdev_config_enter(spa);
+
+ /*
+ * Things might have changed while the config lock was dropped
+ * (e.g. space usage). Check for errors again.
+ */
+ if (error == 0)
+ error = spa_vdev_remove_top_check(vd);
+
+ if (error != 0) {
+ metaslab_group_activate(mg);
+ return (error);
+ }
+
+ vd->vdev_removing = B_TRUE;
+
+ vdev_dirty_leaves(vd, VDD_DTL, *txg);
+ vdev_config_dirty(vd);
+ dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, *txg);
+ dsl_sync_task_nowait(spa->spa_dsl_pool,
+ vdev_remove_initiate_sync,
+ vd, 0, ZFS_SPACE_CHECK_NONE, tx);
+ dmu_tx_commit(tx);
+
+ return (0);
+}
+
+/*
+ * Remove a device from the pool.
+ *
+ * Removing a device from the vdev namespace requires several steps
+ * and can take a significant amount of time. As a result we use
+ * the spa_vdev_config_[enter/exit] functions which allow us to
+ * grab and release the spa_config_lock while still holding the namespace
+ * lock. During each step the configuration is synced out.
+ */
+int
+spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
+{
+ vdev_t *vd;
+ nvlist_t **spares, **l2cache, *nv;
+ uint64_t txg = 0;
+ uint_t nspares, nl2cache;
+ int error = 0;
+ boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
+ sysevent_t *ev = NULL;
+
+ ASSERT(spa_writeable(spa));
+
+ if (!locked)
+ txg = spa_vdev_enter(spa);
+
+ vd = spa_lookup_by_guid(spa, guid, B_FALSE);
+
+ if (spa->spa_spares.sav_vdevs != NULL &&
+ nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
+ ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
+ (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
+ /*
+ * Only remove the hot spare if it's not currently in use
+ * in this pool.
+ */
+ if (vd == NULL || unspare) {
+ if (vd == NULL)
+ vd = spa_lookup_by_guid(spa, guid, B_TRUE);
+ ev = spa_event_create(spa, vd, NULL,
+ ESC_ZFS_VDEV_REMOVE_AUX);
+
+ char *nvstr = fnvlist_lookup_string(nv,
+ ZPOOL_CONFIG_PATH);
+ spa_history_log_internal(spa, "vdev remove", NULL,
+ "%s vdev (%s) %s", spa_name(spa),
+ VDEV_TYPE_SPARE, nvstr);
+ spa_vdev_remove_aux(spa->spa_spares.sav_config,
+ ZPOOL_CONFIG_SPARES, spares, nspares, nv);
+ spa_load_spares(spa);
+ spa->spa_spares.sav_sync = B_TRUE;
+ } else {
+ error = SET_ERROR(EBUSY);
+ }
+ } else if (spa->spa_l2cache.sav_vdevs != NULL &&
+ nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
+ ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
+ (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
+ char *nvstr = fnvlist_lookup_string(nv, ZPOOL_CONFIG_PATH);
+ spa_history_log_internal(spa, "vdev remove", NULL,
+ "%s vdev (%s) %s", spa_name(spa), VDEV_TYPE_L2CACHE, nvstr);
+ /*
+ * Cache devices can always be removed.
+ */
+ vd = spa_lookup_by_guid(spa, guid, B_TRUE);
+ ev = spa_event_create(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE_AUX);
+ spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
+ ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
+ spa_load_l2cache(spa);
+ spa->spa_l2cache.sav_sync = B_TRUE;
+ } else if (vd != NULL && vd->vdev_islog) {
+ ASSERT(!locked);
+ error = spa_vdev_remove_log(vd, &txg);
+ } else if (vd != NULL) {
+ ASSERT(!locked);
+ error = spa_vdev_remove_top(vd, &txg);
+ } else {
+ /*
+ * There is no vdev of any kind with the specified guid.
+ */
+ error = SET_ERROR(ENOENT);
+ }
+
+ if (!locked)
+ error = spa_vdev_exit(spa, NULL, txg, error);
+
+ if (ev != NULL)
+ spa_event_post(ev);
+
+ return (error);
+}
+
+int
+spa_removal_get_stats(spa_t *spa, pool_removal_stat_t *prs)
+{
+ prs->prs_state = spa->spa_removing_phys.sr_state;
+
+ if (prs->prs_state == DSS_NONE)
+ return (SET_ERROR(ENOENT));
+
+ prs->prs_removing_vdev = spa->spa_removing_phys.sr_removing_vdev;
+ prs->prs_start_time = spa->spa_removing_phys.sr_start_time;
+ prs->prs_end_time = spa->spa_removing_phys.sr_end_time;
+ prs->prs_to_copy = spa->spa_removing_phys.sr_to_copy;
+ prs->prs_copied = spa->spa_removing_phys.sr_copied;
+
+ if (spa->spa_vdev_removal != NULL) {
+ for (int i = 0; i < TXG_SIZE; i++) {
+ prs->prs_copied +=
+ spa->spa_vdev_removal->svr_bytes_done[i];
+ }
+ }
+
+ prs->prs_mapping_memory = 0;
+ uint64_t indirect_vdev_id =
+ spa->spa_removing_phys.sr_prev_indirect_vdev;
+ while (indirect_vdev_id != -1) {
+ vdev_t *vd = spa->spa_root_vdev->vdev_child[indirect_vdev_id];
+ vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
+ vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
+
+ ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
+ prs->prs_mapping_memory += vdev_indirect_mapping_size(vim);
+ indirect_vdev_id = vic->vic_prev_indirect_vdev;
+ }
+
+ return (0);
+}
+
+#if defined(_KERNEL) && defined(HAVE_SPL)
+module_param(zfs_remove_max_segment, int, 0644);
+MODULE_PARM_DESC(zfs_remove_max_segment,
+ "Largest contiguous segment to allocate when removing device");
+
+EXPORT_SYMBOL(free_from_removing_vdev);
+EXPORT_SYMBOL(spa_removal_get_stats);
+EXPORT_SYMBOL(spa_remove_init);
+EXPORT_SYMBOL(spa_restart_removal);
+EXPORT_SYMBOL(spa_vdev_removal_destroy);
+EXPORT_SYMBOL(spa_vdev_remove);
+EXPORT_SYMBOL(spa_vdev_remove_cancel);
+EXPORT_SYMBOL(spa_vdev_remove_suspend);
+EXPORT_SYMBOL(svr_sync);
+#endif
diff --git a/module/zfs/vdev_root.c b/module/zfs/vdev_root.c
index 5db157d74..8ac9ce187 100644
--- a/module/zfs/vdev_root.c
+++ b/module/zfs/vdev_root.c
@@ -24,7 +24,7 @@
*/
/*
- * Copyright (c) 2013 by Delphix. All rights reserved.
+ * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
*/
#include <sys/zfs_context.h>
@@ -118,6 +118,7 @@ vdev_ops_t vdev_root_ops = {
NULL,
NULL,
NULL,
+ NULL,
VDEV_TYPE_ROOT, /* name of this vdev type */
B_FALSE /* not a leaf vdev */
};
diff --git a/module/zfs/zfs_ioctl.c b/module/zfs/zfs_ioctl.c
index 1e987dc88..b1ac149b3 100644
--- a/module/zfs/zfs_ioctl.c
+++ b/module/zfs/zfs_ioctl.c
@@ -195,6 +195,7 @@
#include <sys/zfeature.h>
#include <sys/zcp.h>
#include <sys/zio_checksum.h>
+#include <sys/vdev_removal.h>
#include <linux/miscdevice.h>
#include <linux/slab.h>
@@ -1050,6 +1051,14 @@ zfs_secpolicy_bookmark(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
/* ARGSUSED */
static int
+zfs_secpolicy_remap(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
+{
+ return (zfs_secpolicy_write_perms(zc->zc_name,
+ ZFS_DELEG_PERM_REMAP, cr));
+}
+
+/* ARGSUSED */
+static int
zfs_secpolicy_destroy_bookmarks(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr)
{
nvpair_t *pair, *nextpair;
@@ -1920,8 +1929,8 @@ zfs_ioc_vdev_add(zfs_cmd_t *zc)
/*
* inputs:
* zc_name name of the pool
- * zc_nvlist_conf nvlist of devices to remove
- * zc_cookie to stop the remove?
+ * zc_guid guid of vdev to remove
+ * zc_cookie cancel removal
*/
static int
zfs_ioc_vdev_remove(zfs_cmd_t *zc)
@@ -1932,7 +1941,11 @@ zfs_ioc_vdev_remove(zfs_cmd_t *zc)
error = spa_open(zc->zc_name, &spa, FTAG);
if (error != 0)
return (error);
- error = spa_vdev_remove(spa, zc->zc_guid, B_FALSE);
+ if (zc->zc_cookie != 0) {
+ error = spa_vdev_remove_cancel(spa);
+ } else {
+ error = spa_vdev_remove(spa, zc->zc_guid, B_FALSE);
+ }
spa_close(spa, FTAG);
return (error);
}
@@ -2920,7 +2933,7 @@ zfs_ioc_pool_set_props(zfs_cmd_t *zc)
mutex_enter(&spa_namespace_lock);
if ((spa = spa_lookup(zc->zc_name)) != NULL) {
spa_configfile_set(spa, props, B_FALSE);
- spa_config_sync(spa, B_FALSE, B_TRUE);
+ spa_write_cachefile(spa, B_FALSE, B_TRUE);
}
mutex_exit(&spa_namespace_lock);
if (spa != NULL) {
@@ -3395,6 +3408,17 @@ zfs_ioc_clone(const char *fsname, nvlist_t *innvl, nvlist_t *outnvl)
return (error);
}
+/* ARGSUSED */
+static int
+zfs_ioc_remap(const char *fsname, nvlist_t *innvl, nvlist_t *outnvl)
+{
+ if (strchr(fsname, '@') ||
+ strchr(fsname, '%'))
+ return (SET_ERROR(EINVAL));
+
+ return (dmu_objset_remap_indirects(fsname));
+}
+
/*
* innvl: {
* "snaps" -> { snapshot1, snapshot2 }
@@ -6339,6 +6363,10 @@ zfs_ioctl_init(void)
zfs_ioc_clone, zfs_secpolicy_create_clone, DATASET_NAME,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE);
+ zfs_ioctl_register("remap", ZFS_IOC_REMAP,
+ zfs_ioc_remap, zfs_secpolicy_remap, DATASET_NAME,
+ POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_FALSE, B_TRUE);
+
zfs_ioctl_register("destroy_snaps", ZFS_IOC_DESTROY_SNAPS,
zfs_ioc_destroy_snaps, zfs_secpolicy_destroy_snaps, POOL_NAME,
POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE);
diff --git a/module/zfs/zfs_vnops.c b/module/zfs/zfs_vnops.c
index fd8debdcf..f7f2f6167 100644
--- a/module/zfs/zfs_vnops.c
+++ b/module/zfs/zfs_vnops.c
@@ -1111,6 +1111,18 @@ zfs_get_data(void *arg, lr_write_t *lr, char *buf, struct lwb *lwb, zio_t *zio)
if (error == EALREADY) {
lr->lr_common.lrc_txtype = TX_WRITE2;
+ /*
+ * TX_WRITE2 relies on the data previously
+ * written by the TX_WRITE that caused
+ * EALREADY. We zero out the BP because
+ * it is the old, currently-on-disk BP,
+ * so there's no need to zio_flush() its
+ * vdevs (flushing would needlesly hurt
+ * performance, and doesn't work on
+ * indirect vdevs).
+ */
+ zgd->zgd_bp = NULL;
+ BP_ZERO(bp);
error = 0;
}
}
diff --git a/module/zfs/zil.c b/module/zfs/zil.c
index d9ae1f413..d0a100252 100644
--- a/module/zfs/zil.c
+++ b/module/zfs/zil.c
@@ -3396,7 +3396,7 @@ zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
/* ARGSUSED */
int
-zil_vdev_offline(const char *osname, void *arg)
+zil_reset(const char *osname, void *arg)
{
int error;
@@ -3419,7 +3419,6 @@ EXPORT_SYMBOL(zil_itx_create);
EXPORT_SYMBOL(zil_itx_destroy);
EXPORT_SYMBOL(zil_itx_assign);
EXPORT_SYMBOL(zil_commit);
-EXPORT_SYMBOL(zil_vdev_offline);
EXPORT_SYMBOL(zil_claim);
EXPORT_SYMBOL(zil_check_log_chain);
EXPORT_SYMBOL(zil_sync);
diff --git a/module/zfs/zio.c b/module/zfs/zio.c
index c6379bfd4..5259a0c6f 100644
--- a/module/zfs/zio.c
+++ b/module/zfs/zio.c
@@ -1018,6 +1018,8 @@ void
zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
{
+ zfs_blkptr_verify(spa, bp);
+
/*
* The check for EMBEDDED is a performance optimization. We
* process the free here (by ignoring it) rather than
@@ -1081,7 +1083,7 @@ zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
{
zio_t *zio;
- dprintf_bp(bp, "claiming in txg %llu", txg);
+ zfs_blkptr_verify(spa, bp);
if (BP_IS_EMBEDDED(bp))
return (zio_null(pio, spa, NULL, NULL, NULL, 0));
@@ -1200,8 +1202,26 @@ zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
zio_t *zio;
- ASSERT(vd->vdev_parent ==
- (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev));
+ /*
+ * vdev child I/Os do not propagate their error to the parent.
+ * Therefore, for correct operation the caller *must* check for
+ * and handle the error in the child i/o's done callback.
+ * The only exceptions are i/os that we don't care about
+ * (OPTIONAL or REPAIR).
+ */
+ ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) ||
+ done != NULL);
+
+ /*
+ * In the common case, where the parent zio was to a normal vdev,
+ * the child zio must be to a child vdev of that vdev. Otherwise,
+ * the child zio must be to a top-level vdev.
+ */
+ if (pio->io_vd != NULL && pio->io_vd->vdev_ops != &vdev_indirect_ops) {
+ ASSERT3P(vd->vdev_parent, ==, pio->io_vd);
+ } else {
+ ASSERT3P(vd, ==, vd->vdev_top);
+ }
if (type == ZIO_TYPE_READ && bp != NULL) {
/*
@@ -1214,10 +1234,12 @@ zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
}
- if (vd->vdev_children == 0)
+ if (vd->vdev_ops->vdev_op_leaf) {
+ ASSERT0(vd->vdev_children);
offset += VDEV_LABEL_START_SIZE;
+ }
- flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE;
+ flags |= ZIO_VDEV_CHILD_FLAGS(pio);
/*
* If we've decided to do a repair, the write is not speculative --
@@ -1318,6 +1340,8 @@ zio_read_bp_init(zio_t *zio)
uint64_t psize =
BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
+ ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
+
if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
zio->io_child_type == ZIO_CHILD_LOGICAL &&
!(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
@@ -1341,6 +1365,7 @@ zio_read_bp_init(zio_t *zio)
abd_return_buf_copy(zio->io_abd, data, psize);
} else {
ASSERT(!BP_IS_EMBEDDED(bp));
+ ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
}
if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
@@ -1614,6 +1639,8 @@ zio_free_bp_init(zio_t *zio)
zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
}
+ ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
+
return (ZIO_PIPELINE_CONTINUE);
}
@@ -3447,6 +3474,15 @@ zio_vdev_io_start(zio_t *zio)
}
ASSERT3P(zio->io_logical, !=, zio);
+ if (zio->io_type == ZIO_TYPE_WRITE && zio->io_vd->vdev_removing) {
+ /*
+ * Note: the code can handle other kinds of writes,
+ * but we don't expect them.
+ */
+ ASSERT(zio->io_flags &
+ (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL |
+ ZIO_FLAG_INDUCE_DAMAGE));
+ }
align = 1ULL << vd->vdev_top->vdev_ashift;