diff options
author | George Amanakis <[email protected]> | 2020-06-09 13:15:08 -0400 |
---|---|---|
committer | GitHub <[email protected]> | 2020-06-09 10:15:08 -0700 |
commit | b7654bd7940618f1b02835d565e04920c8c4403f (patch) | |
tree | a346410e1da29cedeb9663447a59abf2dd4844ec /module/zfs | |
parent | 32f26eaa70fe9e8aea79311123879f885f674d45 (diff) |
Trim L2ARC
The l2arc_evict() function is responsible for evicting buffers which
reference the next bytes of the L2ARC device to be overwritten. Teach
this function to additionally TRIM that vdev space before it is
overwritten if the device has been filled with data. This is done by
vdev_trim_simple() which trims by issuing a new type of TRIM,
TRIM_TYPE_SIMPLE.
We also implement a "Trim Ahead" feature. It is a zfs module parameter,
expressed in % of the current write size. This trims ahead of the
current write size. A minimum of 64MB will be trimmed. The default is 0
which disables TRIM on L2ARC as it can put significant stress to
underlying storage devices. To enable TRIM on L2ARC we set
l2arc_trim_ahead > 0.
We also implement TRIM of the whole cache device upon addition to a
pool, pool creation or when the header of the device is invalid upon
importing a pool or onlining a cache device. This is dependent on
l2arc_trim_ahead > 0. TRIM of the whole device is done with
TRIM_TYPE_MANUAL so that its status can be monitored by zpool status -t.
We save the TRIM state for the whole device and the time of completion
on-disk in the header, and restore these upon L2ARC rebuild so that
zpool status -t can correctly report them. Whole device TRIM is done
asynchronously so that the user can export of the pool or remove the
cache device while it is trimming (ie if it is too slow).
We do not TRIM the whole device if persistent L2ARC has been disabled by
l2arc_rebuild_enabled = 0 because we may not want to lose all cached
buffers (eg we may want to import the pool with
l2arc_rebuild_enabled = 0 only once because of memory pressure). If
persistent L2ARC has been disabled by setting the module parameter
l2arc_rebuild_blocks_min_l2size to a value greater than the size of the
cache device then the whole device is trimmed upon creation or import of
a pool if l2arc_trim_ahead > 0.
Reviewed-by: Brian Behlendorf <[email protected]>
Reviewed-by: Adam D. Moss <[email protected]>
Signed-off-by: George Amanakis <[email protected]>
Closes #9713
Closes #9789
Closes #10224
Diffstat (limited to 'module/zfs')
-rw-r--r-- | module/zfs/arc.c | 141 | ||||
-rw-r--r-- | module/zfs/spa.c | 20 | ||||
-rw-r--r-- | module/zfs/vdev.c | 13 | ||||
-rw-r--r-- | module/zfs/vdev_removal.c | 14 | ||||
-rw-r--r-- | module/zfs/vdev_trim.c | 245 |
5 files changed, 392 insertions, 41 deletions
diff --git a/module/zfs/arc.c b/module/zfs/arc.c index 29da08a49..e7ad976af 100644 --- a/module/zfs/arc.c +++ b/module/zfs/arc.c @@ -301,6 +301,7 @@ #include <sys/trace_zfs.h> #include <sys/aggsum.h> #include <cityhash.h> +#include <sys/vdev_trim.h> #ifndef _KERNEL /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */ @@ -854,7 +855,6 @@ static void arc_hdr_alloc_abd(arc_buf_hdr_t *, boolean_t); static void arc_access(arc_buf_hdr_t *, kmutex_t *); static boolean_t arc_is_overflowing(void); static void arc_buf_watch(arc_buf_t *); -static l2arc_dev_t *l2arc_vdev_get(vdev_t *vd); static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *); static uint32_t arc_bufc_to_flags(arc_buf_contents_t); @@ -865,6 +865,23 @@ static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *); static void l2arc_read_done(zio_t *); /* + * L2ARC TRIM + * l2arc_trim_ahead : A ZFS module parameter that controls how much ahead of + * the current write size (l2arc_write_max) we should TRIM if we + * have filled the device. It is defined as a percentage of the + * write size. If set to 100 we trim twice the space required to + * accommodate upcoming writes. A minimum of 64MB will be trimmed. + * It also enables TRIM of the whole L2ARC device upon creation or + * addition to an existing pool or if the header of the device is + * invalid upon importing a pool or onlining a cache device. The + * default is 0, which disables TRIM on L2ARC altogether as it can + * put significant stress on the underlying storage devices. This + * will vary depending of how well the specific device handles + * these commands. + */ +unsigned long l2arc_trim_ahead = 0; + +/* * Performance tuning of L2ARC persistence: * * l2arc_rebuild_enabled : A ZFS module parameter that controls whether adding @@ -902,7 +919,6 @@ static void l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, l2arc_dev_t *dev); /* L2ARC persistence write I/O routines. */ -static void l2arc_dev_hdr_update(l2arc_dev_t *dev); static void l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, l2arc_write_callback_t *cb); @@ -7709,7 +7725,7 @@ l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr) static uint64_t l2arc_write_size(l2arc_dev_t *dev) { - uint64_t size, dev_size; + uint64_t size, dev_size, tsize; /* * Make sure our globals have meaningful values in case the user @@ -7732,7 +7748,12 @@ l2arc_write_size(l2arc_dev_t *dev) * iteration can occur. */ dev_size = dev->l2ad_end - dev->l2ad_start; - if ((size + l2arc_log_blk_overhead(size, dev)) >= dev_size) { + tsize = size + l2arc_log_blk_overhead(size, dev); + if (dev->l2ad_vdev->vdev_has_trim && l2arc_trim_ahead > 0) + tsize += MAX(64 * 1024 * 1024, + (tsize * l2arc_trim_ahead) / 100); + + if (tsize >= dev_size) { cmn_err(CE_NOTE, "l2arc_write_max or l2arc_write_boost " "plus the overhead of log blocks (persistent L2ARC, " "%llu bytes) exceeds the size of the cache device " @@ -7810,10 +7831,12 @@ l2arc_dev_get_next(void) else if (next == first) break; - } while (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild); + } while (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild || + next->l2ad_trim_all); /* if we were unable to find any usable vdevs, return NULL */ - if (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild) + if (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild || + next->l2ad_trim_all) next = NULL; l2arc_dev_last = next; @@ -8336,8 +8359,9 @@ l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) arc_buf_hdr_t *hdr, *hdr_prev; kmutex_t *hash_lock; uint64_t taddr; - boolean_t rerun; l2arc_lb_ptr_buf_t *lb_ptr_buf, *lb_ptr_buf_prev; + vdev_t *vd = dev->l2ad_vdev; + boolean_t rerun; buflist = &dev->l2ad_buflist; @@ -8345,6 +8369,14 @@ l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) * We need to add in the worst case scenario of log block overhead. */ distance += l2arc_log_blk_overhead(distance, dev); + if (vd->vdev_has_trim && l2arc_trim_ahead > 0) { + /* + * Trim ahead of the write size 64MB or (l2arc_trim_ahead/100) + * times the write size, whichever is greater. + */ + distance += MAX(64 * 1024 * 1024, + (distance * l2arc_trim_ahead) / 100); + } top: rerun = B_FALSE; @@ -8365,25 +8397,51 @@ top: DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, uint64_t, taddr, boolean_t, all); - /* - * This check has to be placed after deciding whether to iterate - * (rerun). - */ - if (!all && dev->l2ad_first) { + if (!all) { /* - * This is the first sweep through the device. There is - * nothing to evict. + * This check has to be placed after deciding whether to + * iterate (rerun). */ - goto out; - } + if (dev->l2ad_first) { + /* + * This is the first sweep through the device. There is + * nothing to evict. We have already trimmmed the + * whole device. + */ + goto out; + } else { + /* + * Trim the space to be evicted. + */ + if (vd->vdev_has_trim && dev->l2ad_evict < taddr && + l2arc_trim_ahead > 0) { + /* + * We have to drop the spa_config lock because + * vdev_trim_range() will acquire it. + * l2ad_evict already accounts for the label + * size. To prevent vdev_trim_ranges() from + * adding it again, we subtract it from + * l2ad_evict. + */ + spa_config_exit(dev->l2ad_spa, SCL_L2ARC, dev); + vdev_trim_simple(vd, + dev->l2ad_evict - VDEV_LABEL_START_SIZE, + taddr - dev->l2ad_evict); + spa_config_enter(dev->l2ad_spa, SCL_L2ARC, dev, + RW_READER); + } - /* - * When rebuilding L2ARC we retrieve the evict hand from the header of - * the device. Of note, l2arc_evict() does not actually delete buffers - * from the cache device, but keeping track of the evict hand will be - * useful when TRIM is implemented. - */ - dev->l2ad_evict = MAX(dev->l2ad_evict, taddr); + /* + * When rebuilding L2ARC we retrieve the evict hand + * from the header of the device. Of note, l2arc_evict() + * does not actually delete buffers from the cache + * device, but trimming may do so depending on the + * hardware implementation. Thus keeping track of the + * evict hand is useful. + */ + dev->l2ad_evict = MAX(dev->l2ad_evict, taddr); + } + } retry: mutex_enter(&dev->l2ad_mtx); @@ -8410,7 +8468,7 @@ retry: if (!all && l2arc_log_blkptr_valid(dev, lb_ptr_buf->lb_ptr)) { break; } else { - vdev_space_update(dev->l2ad_vdev, -asize, 0, 0); + vdev_space_update(vd, -asize, 0, 0); ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize); ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count); zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize, @@ -9015,7 +9073,7 @@ l2arc_vdev_present(vdev_t *vd) * Returns the l2arc_dev_t associated with a particular vdev_t or NULL if * the vdev_t isn't an L2ARC device. */ -static l2arc_dev_t * +l2arc_dev_t * l2arc_vdev_get(vdev_t *vd) { l2arc_dev_t *dev; @@ -9059,6 +9117,7 @@ l2arc_add_vdev(spa_t *spa, vdev_t *vd) adddev->l2ad_evict = adddev->l2ad_start; adddev->l2ad_first = B_TRUE; adddev->l2ad_writing = B_FALSE; + adddev->l2ad_trim_all = B_FALSE; list_link_init(&adddev->l2ad_node); adddev->l2ad_dev_hdr = kmem_zalloc(l2dhdr_asize, KM_SLEEP); @@ -9164,11 +9223,21 @@ l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen) dev->l2ad_rebuild = B_TRUE; } else if (spa_writeable(spa)) { /* - * In this case create a new header. We zero out the memory - * holding the header to reset dh_start_lbps. + * In this case TRIM the whole device if l2arc_trim_ahead > 0, + * otherwise create a new header. We zero out the memory holding + * the header to reset dh_start_lbps. If we TRIM the whole + * device the new header will be written by + * vdev_trim_l2arc_thread() at the end of the TRIM to update the + * trim_state in the header too. When reading the header, if + * trim_state is not VDEV_TRIM_COMPLETE and l2arc_trim_ahead > 0 + * we opt to TRIM the whole device again. */ - bzero(l2dhdr, l2dhdr_asize); - l2arc_dev_hdr_update(dev); + if (l2arc_trim_ahead > 0) { + dev->l2ad_trim_all = B_TRUE; + } else { + bzero(l2dhdr, l2dhdr_asize); + l2arc_dev_hdr_update(dev); + } } } @@ -9385,6 +9454,9 @@ l2arc_rebuild(l2arc_dev_t *dev) dev->l2ad_start); dev->l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST); + vd->vdev_trim_action_time = l2dhdr->dh_trim_action_time; + vd->vdev_trim_state = l2dhdr->dh_trim_state; + /* * In case the zfs module parameter l2arc_rebuild_enabled is false * we do not start the rebuild process. @@ -9594,7 +9666,9 @@ l2arc_dev_hdr_read(l2arc_dev_t *dev) l2dhdr->dh_log_entries != dev->l2ad_log_entries || l2dhdr->dh_end != dev->l2ad_end || !l2arc_range_check_overlap(dev->l2ad_start, dev->l2ad_end, - l2dhdr->dh_evict)) { + l2dhdr->dh_evict) || + (l2dhdr->dh_trim_state != VDEV_TRIM_COMPLETE && + l2arc_trim_ahead > 0)) { /* * Attempt to rebuild a device containing no actual dev hdr * or containing a header from some other pool or from another @@ -9903,7 +9977,7 @@ l2arc_log_blk_fetch_abort(zio_t *zio) * Creates a zio to update the device header on an l2arc device. The zio is * initiated as a child of `pio'. */ -static void +void l2arc_dev_hdr_update(l2arc_dev_t *dev) { l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; @@ -9924,6 +9998,8 @@ l2arc_dev_hdr_update(l2arc_dev_t *dev) l2dhdr->dh_lb_asize = zfs_refcount_count(&dev->l2ad_lb_asize); l2dhdr->dh_lb_count = zfs_refcount_count(&dev->l2ad_lb_count); l2dhdr->dh_flags = 0; + l2dhdr->dh_trim_action_time = dev->l2ad_vdev->vdev_trim_action_time; + l2dhdr->dh_trim_state = dev->l2ad_vdev->vdev_trim_state; if (dev->l2ad_first) l2dhdr->dh_flags |= L2ARC_DEV_HDR_EVICT_FIRST; @@ -10260,6 +10336,9 @@ ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom, ULONG, ZMOD_RW, ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom_boost, ULONG, ZMOD_RW, "Compressed l2arc_headroom multiplier"); +ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, trim_ahead, ULONG, ZMOD_RW, + "TRIM ahead L2ARC write size multiplier"); + ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_secs, ULONG, ZMOD_RW, "Seconds between L2ARC writing"); diff --git a/module/zfs/spa.c b/module/zfs/spa.c index 87af3073a..ba9a0dce3 100644 --- a/module/zfs/spa.c +++ b/module/zfs/spa.c @@ -1896,6 +1896,15 @@ spa_load_l2cache(spa_t *spa) if (!vdev_is_dead(vd)) l2arc_add_vdev(spa, vd); + + /* + * Upon cache device addition to a pool or pool + * creation with a cache device or if the header + * of the device is invalid we issue an async + * TRIM command for the whole device which will + * execute if l2arc_trim_ahead > 0. + */ + spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM); } } @@ -7994,6 +8003,17 @@ spa_async_thread(void *arg) } /* + * Kick off L2 cache whole device TRIM. + */ + if (tasks & SPA_ASYNC_L2CACHE_TRIM) { + mutex_enter(&spa_namespace_lock); + spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); + vdev_trim_l2arc(spa); + spa_config_exit(spa, SCL_CONFIG, FTAG); + mutex_exit(&spa_namespace_lock); + } + + /* * Kick off L2 cache rebuilding. */ if (tasks & SPA_ASYNC_L2CACHE_REBUILD) { diff --git a/module/zfs/vdev.c b/module/zfs/vdev.c index 923bf2e33..83c39d119 100644 --- a/module/zfs/vdev.c +++ b/module/zfs/vdev.c @@ -2281,9 +2281,6 @@ vdev_reopen(vdev_t *vd) if (vdev_readable(vd) && vdev_writeable(vd) && vd->vdev_aux == &spa->spa_l2cache) { /* - * When reopening we can assume the device label has - * already the attribute l2cache_persistent, since we've - * opened the device in the past and updated the label. * In case the vdev is present we should evict all ARC * buffers and pointers to log blocks and reclaim their * space before restoring its contents to L2ARC. @@ -2294,6 +2291,7 @@ vdev_reopen(vdev_t *vd) l2arc_add_vdev(spa, vd); } spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD); + spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM); } } else { (void) vdev_validate(vd); @@ -3542,9 +3540,14 @@ vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) } mutex_exit(&vd->vdev_initialize_lock); - /* Restart trimming if necessary */ + /* + * Restart trimming if necessary. We do not restart trimming for cache + * devices here. This is triggered by l2arc_rebuild_vdev() + * asynchronously for the whole device or in l2arc_evict() as it evicts + * space for upcoming writes. + */ mutex_enter(&vd->vdev_trim_lock); - if (vdev_writeable(vd) && + if (vdev_writeable(vd) && !vd->vdev_isl2cache && vd->vdev_trim_thread == NULL && vd->vdev_trim_state == VDEV_TRIM_ACTIVE) { (void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial, diff --git a/module/zfs/vdev_removal.c b/module/zfs/vdev_removal.c index 3f4f9091f..56e420871 100644 --- a/module/zfs/vdev_removal.c +++ b/module/zfs/vdev_removal.c @@ -2224,6 +2224,20 @@ spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare) * Cache devices can always be removed. */ vd = spa_lookup_by_guid(spa, guid, B_TRUE); + + /* + * Stop trimming the cache device. We need to release the + * config lock to allow the syncing of TRIM transactions + * without releasing the spa_namespace_lock. The same + * strategy is employed in spa_vdev_remove_top(). + */ + spa_vdev_config_exit(spa, NULL, + txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); + mutex_enter(&vd->vdev_trim_lock); + vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL); + mutex_exit(&vd->vdev_trim_lock); + txg = spa_vdev_config_enter(spa); + ev = spa_event_create(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE_AUX); spa_vdev_remove_aux(spa->spa_l2cache.sav_config, ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv); diff --git a/module/zfs/vdev_trim.c b/module/zfs/vdev_trim.c index b0cd40f68..0254c2904 100644 --- a/module/zfs/vdev_trim.c +++ b/module/zfs/vdev_trim.c @@ -34,6 +34,7 @@ #include <sys/dsl_synctask.h> #include <sys/zap.h> #include <sys/dmu_tx.h> +#include <sys/arc_impl.h> /* * TRIM is a feature which is used to notify a SSD that some previously @@ -423,6 +424,35 @@ vdev_autotrim_cb(zio_t *zio) } /* + * The zio_done_func_t done callback for each TRIM issued via + * vdev_trim_simple(). It is responsible for updating the TRIM stats and + * limiting the number of in flight TRIM I/Os. Simple TRIM I/Os are best + * effort and are never reissued on failure. + */ +static void +vdev_trim_simple_cb(zio_t *zio) +{ + vdev_t *vd = zio->io_vd; + + mutex_enter(&vd->vdev_trim_io_lock); + + if (zio->io_error != 0) { + vd->vdev_stat.vs_trim_errors++; + spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_SIMPLE, + 0, 0, 0, 0, 1, zio->io_orig_size); + } else { + spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_SIMPLE, + 1, zio->io_orig_size, 0, 0, 0, 0); + } + + ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE], >, 0); + vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE]--; + cv_broadcast(&vd->vdev_trim_io_cv); + mutex_exit(&vd->vdev_trim_io_lock); + + spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd); +} +/* * Returns the average trim rate in bytes/sec for the ta->trim_vdev. */ static uint64_t @@ -441,6 +471,7 @@ vdev_trim_range(trim_args_t *ta, uint64_t start, uint64_t size) { vdev_t *vd = ta->trim_vdev; spa_t *spa = vd->vdev_spa; + void *cb; mutex_enter(&vd->vdev_trim_io_lock); @@ -459,8 +490,8 @@ vdev_trim_range(trim_args_t *ta, uint64_t start, uint64_t size) ta->trim_bytes_done += size; /* Limit in flight trimming I/Os */ - while (vd->vdev_trim_inflight[0] + vd->vdev_trim_inflight[1] >= - zfs_trim_queue_limit) { + while (vd->vdev_trim_inflight[0] + vd->vdev_trim_inflight[1] + + vd->vdev_trim_inflight[2] >= zfs_trim_queue_limit) { cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock); } vd->vdev_trim_inflight[ta->trim_type]++; @@ -505,10 +536,17 @@ vdev_trim_range(trim_args_t *ta, uint64_t start, uint64_t size) if (ta->trim_type == TRIM_TYPE_MANUAL) vd->vdev_trim_offset[txg & TXG_MASK] = start + size; + if (ta->trim_type == TRIM_TYPE_MANUAL) { + cb = vdev_trim_cb; + } else if (ta->trim_type == TRIM_TYPE_AUTO) { + cb = vdev_autotrim_cb; + } else { + cb = vdev_trim_simple_cb; + } + zio_nowait(zio_trim(spa->spa_txg_zio[txg & TXG_MASK], vd, - start, size, ta->trim_type == TRIM_TYPE_MANUAL ? - vdev_trim_cb : vdev_autotrim_cb, NULL, - ZIO_PRIORITY_TRIM, ZIO_FLAG_CANFAIL, ta->trim_flags)); + start, size, cb, NULL, ZIO_PRIORITY_TRIM, ZIO_FLAG_CANFAIL, + ta->trim_flags)); /* vdev_trim_cb and vdev_autotrim_cb release SCL_STATE_ALL */ dmu_tx_commit(tx); @@ -1016,6 +1054,7 @@ vdev_trim_stop_all(vdev_t *vd, vdev_trim_state_t tgt_state) { spa_t *spa = vd->vdev_spa; list_t vd_list; + vdev_t *vd_l2cache; ASSERT(MUTEX_HELD(&spa_namespace_lock)); @@ -1023,6 +1062,17 @@ vdev_trim_stop_all(vdev_t *vd, vdev_trim_state_t tgt_state) offsetof(vdev_t, vdev_trim_node)); vdev_trim_stop_all_impl(vd, tgt_state, &vd_list); + + /* + * Iterate over cache devices and request stop trimming the + * whole device in case we export the pool or remove the cache + * device prematurely. + */ + for (int i = 0; i < spa->spa_l2cache.sav_count; i++) { + vd_l2cache = spa->spa_l2cache.sav_vdevs[i]; + vdev_trim_stop_all_impl(vd_l2cache, tgt_state, &vd_list); + } + vdev_trim_stop_wait(spa, &vd_list); if (vd->vdev_spa->spa_sync_on) { @@ -1437,6 +1487,189 @@ vdev_autotrim_restart(spa_t *spa) vdev_autotrim(spa); } +static void +vdev_trim_l2arc_thread(void *arg) +{ + vdev_t *vd = arg; + spa_t *spa = vd->vdev_spa; + l2arc_dev_t *dev = l2arc_vdev_get(vd); + trim_args_t ta; + range_seg64_t physical_rs; + + ASSERT(vdev_is_concrete(vd)); + spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); + + vd->vdev_trim_last_offset = 0; + vd->vdev_trim_rate = 0; + vd->vdev_trim_partial = 0; + vd->vdev_trim_secure = 0; + + bzero(&ta, sizeof (ta)); + ta.trim_vdev = vd; + ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); + ta.trim_type = TRIM_TYPE_MANUAL; + ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max; + ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE; + ta.trim_flags = 0; + + physical_rs.rs_start = vd->vdev_trim_bytes_done = 0; + physical_rs.rs_end = vd->vdev_trim_bytes_est = + vdev_get_min_asize(vd); + + range_tree_add(ta.trim_tree, physical_rs.rs_start, + physical_rs.rs_end - physical_rs.rs_start); + + mutex_enter(&vd->vdev_trim_lock); + vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, 0, 0, 0); + mutex_exit(&vd->vdev_trim_lock); + + (void) vdev_trim_ranges(&ta); + + spa_config_exit(spa, SCL_CONFIG, FTAG); + mutex_enter(&vd->vdev_trim_io_lock); + while (vd->vdev_trim_inflight[TRIM_TYPE_MANUAL] > 0) { + cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock); + } + mutex_exit(&vd->vdev_trim_io_lock); + + range_tree_vacate(ta.trim_tree, NULL, NULL); + range_tree_destroy(ta.trim_tree); + + mutex_enter(&vd->vdev_trim_lock); + if (!vd->vdev_trim_exit_wanted && vdev_writeable(vd)) { + vdev_trim_change_state(vd, VDEV_TRIM_COMPLETE, + vd->vdev_trim_rate, vd->vdev_trim_partial, + vd->vdev_trim_secure); + } + ASSERT(vd->vdev_trim_thread != NULL || + vd->vdev_trim_inflight[TRIM_TYPE_MANUAL] == 0); + + /* + * Drop the vdev_trim_lock while we sync out the txg since it's + * possible that a device might be trying to come online and + * must check to see if it needs to restart a trim. That thread + * will be holding the spa_config_lock which would prevent the + * txg_wait_synced from completing. Same strategy as in + * vdev_trim_thread(). + */ + mutex_exit(&vd->vdev_trim_lock); + txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0); + mutex_enter(&vd->vdev_trim_lock); + + /* + * Update the header of the cache device here, before + * broadcasting vdev_trim_cv which may lead to the removal + * of the device. The same applies for setting l2ad_trim_all to + * false. + */ + spa_config_enter(vd->vdev_spa, SCL_L2ARC, vd, + RW_READER); + bzero(dev->l2ad_dev_hdr, dev->l2ad_dev_hdr_asize); + l2arc_dev_hdr_update(dev); + spa_config_exit(vd->vdev_spa, SCL_L2ARC, vd); + + vd->vdev_trim_thread = NULL; + if (vd->vdev_trim_state == VDEV_TRIM_COMPLETE) + dev->l2ad_trim_all = B_FALSE; + + cv_broadcast(&vd->vdev_trim_cv); + mutex_exit(&vd->vdev_trim_lock); + + thread_exit(); +} + +/* + * Punches out TRIM threads for the L2ARC devices in a spa and assigns them + * to vd->vdev_trim_thread variable. This facilitates the management of + * trimming the whole cache device using TRIM_TYPE_MANUAL upon addition + * to a pool or pool creation or when the header of the device is invalid. + */ +void +vdev_trim_l2arc(spa_t *spa) +{ + ASSERT(MUTEX_HELD(&spa_namespace_lock)); + + /* + * Locate the spa's l2arc devices and kick off TRIM threads. + */ + for (int i = 0; i < spa->spa_l2cache.sav_count; i++) { + vdev_t *vd = spa->spa_l2cache.sav_vdevs[i]; + l2arc_dev_t *dev = l2arc_vdev_get(vd); + + if (dev == NULL || !dev->l2ad_trim_all) { + /* + * Don't attempt TRIM if the vdev is UNAVAIL or if the + * cache device was not marked for whole device TRIM + * (ie l2arc_trim_ahead = 0, or the L2ARC device header + * is valid with trim_state = VDEV_TRIM_COMPLETE and + * l2ad_log_entries > 0). + */ + continue; + } + + mutex_enter(&vd->vdev_trim_lock); + ASSERT(vd->vdev_ops->vdev_op_leaf); + ASSERT(vdev_is_concrete(vd)); + ASSERT3P(vd->vdev_trim_thread, ==, NULL); + ASSERT(!vd->vdev_detached); + ASSERT(!vd->vdev_trim_exit_wanted); + ASSERT(!vd->vdev_top->vdev_removing); + vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, 0, 0, 0); + vd->vdev_trim_thread = thread_create(NULL, 0, + vdev_trim_l2arc_thread, vd, 0, &p0, TS_RUN, maxclsyspri); + mutex_exit(&vd->vdev_trim_lock); + } +} + +/* + * A wrapper which calls vdev_trim_ranges(). It is intended to be called + * on leaf vdevs. + */ +int +vdev_trim_simple(vdev_t *vd, uint64_t start, uint64_t size) +{ + trim_args_t ta; + range_seg64_t physical_rs; + int error; + physical_rs.rs_start = start; + physical_rs.rs_end = start + size; + + ASSERT(vdev_is_concrete(vd)); + ASSERT(vd->vdev_ops->vdev_op_leaf); + ASSERT(!vd->vdev_detached); + ASSERT(!vd->vdev_top->vdev_removing); + + bzero(&ta, sizeof (ta)); + ta.trim_vdev = vd; + ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); + ta.trim_type = TRIM_TYPE_SIMPLE; + ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max; + ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE; + ta.trim_flags = 0; + + ASSERT3U(physical_rs.rs_end, >=, physical_rs.rs_start); + + if (physical_rs.rs_end > physical_rs.rs_start) { + range_tree_add(ta.trim_tree, physical_rs.rs_start, + physical_rs.rs_end - physical_rs.rs_start); + } else { + ASSERT3U(physical_rs.rs_end, ==, physical_rs.rs_start); + } + + error = vdev_trim_ranges(&ta); + + mutex_enter(&vd->vdev_trim_io_lock); + while (vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE] > 0) { + cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock); + } + mutex_exit(&vd->vdev_trim_io_lock); + + range_tree_vacate(ta.trim_tree, NULL, NULL); + range_tree_destroy(ta.trim_tree); + + return (error); +} + EXPORT_SYMBOL(vdev_trim); EXPORT_SYMBOL(vdev_trim_stop); EXPORT_SYMBOL(vdev_trim_stop_all); @@ -1446,6 +1679,8 @@ EXPORT_SYMBOL(vdev_autotrim); EXPORT_SYMBOL(vdev_autotrim_stop_all); EXPORT_SYMBOL(vdev_autotrim_stop_wait); EXPORT_SYMBOL(vdev_autotrim_restart); +EXPORT_SYMBOL(vdev_trim_l2arc); +EXPORT_SYMBOL(vdev_trim_simple); /* BEGIN CSTYLED */ ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, extent_bytes_max, UINT, ZMOD_RW, |