diff options
author | Brian Behlendorf <[email protected]> | 2008-12-11 11:08:09 -0800 |
---|---|---|
committer | Brian Behlendorf <[email protected]> | 2008-12-11 11:08:09 -0800 |
commit | 172bb4bd5e4afef721dd4d2972d8680d983f144b (patch) | |
tree | 18ab1e97e5e409150066c529b5a981ecf600ef80 /module/zfs/zfs_fuid.c | |
parent | 9e8b1e836caa454586797f771a7ad1817ebae315 (diff) |
Move the world out of /zfs/ and seperate out module build tree
Diffstat (limited to 'module/zfs/zfs_fuid.c')
-rw-r--r-- | module/zfs/zfs_fuid.c | 704 |
1 files changed, 704 insertions, 0 deletions
diff --git a/module/zfs/zfs_fuid.c b/module/zfs/zfs_fuid.c new file mode 100644 index 000000000..7cb505258 --- /dev/null +++ b/module/zfs/zfs_fuid.c @@ -0,0 +1,704 @@ +/* + * CDDL HEADER START + * + * The contents of this file are subject to the terms of the + * Common Development and Distribution License (the "License"). + * You may not use this file except in compliance with the License. + * + * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE + * or http://www.opensolaris.org/os/licensing. + * See the License for the specific language governing permissions + * and limitations under the License. + * + * When distributing Covered Code, include this CDDL HEADER in each + * file and include the License file at usr/src/OPENSOLARIS.LICENSE. + * If applicable, add the following below this CDDL HEADER, with the + * fields enclosed by brackets "[]" replaced with your own identifying + * information: Portions Copyright [yyyy] [name of copyright owner] + * + * CDDL HEADER END + */ +/* + * Copyright 2008 Sun Microsystems, Inc. All rights reserved. + * Use is subject to license terms. + */ + +#include <sys/zfs_context.h> +#include <sys/sunddi.h> +#include <sys/dmu.h> +#include <sys/avl.h> +#include <sys/zap.h> +#include <sys/refcount.h> +#include <sys/nvpair.h> +#ifdef _KERNEL +#include <sys/kidmap.h> +#include <sys/sid.h> +#include <sys/zfs_vfsops.h> +#include <sys/zfs_znode.h> +#endif +#include <sys/zfs_fuid.h> + +/* + * FUID Domain table(s). + * + * The FUID table is stored as a packed nvlist of an array + * of nvlists which contain an index, domain string and offset + * + * During file system initialization the nvlist(s) are read and + * two AVL trees are created. One tree is keyed by the index number + * and the other by the domain string. Nodes are never removed from + * trees, but new entries may be added. If a new entry is added then the + * on-disk packed nvlist will also be updated. + */ + +#define FUID_IDX "fuid_idx" +#define FUID_DOMAIN "fuid_domain" +#define FUID_OFFSET "fuid_offset" +#define FUID_NVP_ARRAY "fuid_nvlist" + +typedef struct fuid_domain { + avl_node_t f_domnode; + avl_node_t f_idxnode; + ksiddomain_t *f_ksid; + uint64_t f_idx; +} fuid_domain_t; + +static char *nulldomain = ""; + +/* + * Compare two indexes. + */ +static int +idx_compare(const void *arg1, const void *arg2) +{ + const fuid_domain_t *node1 = arg1; + const fuid_domain_t *node2 = arg2; + + if (node1->f_idx < node2->f_idx) + return (-1); + else if (node1->f_idx > node2->f_idx) + return (1); + return (0); +} + +/* + * Compare two domain strings. + */ +static int +domain_compare(const void *arg1, const void *arg2) +{ + const fuid_domain_t *node1 = arg1; + const fuid_domain_t *node2 = arg2; + int val; + + val = strcmp(node1->f_ksid->kd_name, node2->f_ksid->kd_name); + if (val == 0) + return (0); + return (val > 0 ? 1 : -1); +} + +/* + * load initial fuid domain and idx trees. This function is used by + * both the kernel and zdb. + */ +uint64_t +zfs_fuid_table_load(objset_t *os, uint64_t fuid_obj, avl_tree_t *idx_tree, + avl_tree_t *domain_tree) +{ + dmu_buf_t *db; + uint64_t fuid_size; + + avl_create(idx_tree, idx_compare, + sizeof (fuid_domain_t), offsetof(fuid_domain_t, f_idxnode)); + avl_create(domain_tree, domain_compare, + sizeof (fuid_domain_t), offsetof(fuid_domain_t, f_domnode)); + + VERIFY(0 == dmu_bonus_hold(os, fuid_obj, FTAG, &db)); + fuid_size = *(uint64_t *)db->db_data; + dmu_buf_rele(db, FTAG); + + if (fuid_size) { + nvlist_t **fuidnvp; + nvlist_t *nvp = NULL; + uint_t count; + char *packed; + int i; + + packed = kmem_alloc(fuid_size, KM_SLEEP); + VERIFY(dmu_read(os, fuid_obj, 0, fuid_size, packed) == 0); + VERIFY(nvlist_unpack(packed, fuid_size, + &nvp, 0) == 0); + VERIFY(nvlist_lookup_nvlist_array(nvp, FUID_NVP_ARRAY, + &fuidnvp, &count) == 0); + + for (i = 0; i != count; i++) { + fuid_domain_t *domnode; + char *domain; + uint64_t idx; + + VERIFY(nvlist_lookup_string(fuidnvp[i], FUID_DOMAIN, + &domain) == 0); + VERIFY(nvlist_lookup_uint64(fuidnvp[i], FUID_IDX, + &idx) == 0); + + domnode = kmem_alloc(sizeof (fuid_domain_t), KM_SLEEP); + + domnode->f_idx = idx; + domnode->f_ksid = ksid_lookupdomain(domain); + avl_add(idx_tree, domnode); + avl_add(domain_tree, domnode); + } + nvlist_free(nvp); + kmem_free(packed, fuid_size); + } + return (fuid_size); +} + +void +zfs_fuid_table_destroy(avl_tree_t *idx_tree, avl_tree_t *domain_tree) +{ + fuid_domain_t *domnode; + void *cookie; + + cookie = NULL; + while (domnode = avl_destroy_nodes(domain_tree, &cookie)) + ksiddomain_rele(domnode->f_ksid); + + avl_destroy(domain_tree); + cookie = NULL; + while (domnode = avl_destroy_nodes(idx_tree, &cookie)) + kmem_free(domnode, sizeof (fuid_domain_t)); + avl_destroy(idx_tree); +} + +char * +zfs_fuid_idx_domain(avl_tree_t *idx_tree, uint32_t idx) +{ + fuid_domain_t searchnode, *findnode; + avl_index_t loc; + + searchnode.f_idx = idx; + + findnode = avl_find(idx_tree, &searchnode, &loc); + + return (findnode ? findnode->f_ksid->kd_name : nulldomain); +} + +#ifdef _KERNEL +/* + * Load the fuid table(s) into memory. + */ +static void +zfs_fuid_init(zfsvfs_t *zfsvfs, dmu_tx_t *tx) +{ + int error = 0; + + rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER); + + if (zfsvfs->z_fuid_loaded) { + rw_exit(&zfsvfs->z_fuid_lock); + return; + } + + if (zfsvfs->z_fuid_obj == 0) { + + /* first make sure we need to allocate object */ + + error = zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ, + ZFS_FUID_TABLES, 8, 1, &zfsvfs->z_fuid_obj); + if (error == ENOENT && tx != NULL) { + zfsvfs->z_fuid_obj = dmu_object_alloc(zfsvfs->z_os, + DMU_OT_FUID, 1 << 14, DMU_OT_FUID_SIZE, + sizeof (uint64_t), tx); + VERIFY(zap_add(zfsvfs->z_os, MASTER_NODE_OBJ, + ZFS_FUID_TABLES, sizeof (uint64_t), 1, + &zfsvfs->z_fuid_obj, tx) == 0); + } + } + + if (zfsvfs->z_fuid_obj != 0) { + zfsvfs->z_fuid_size = zfs_fuid_table_load(zfsvfs->z_os, + zfsvfs->z_fuid_obj, &zfsvfs->z_fuid_idx, + &zfsvfs->z_fuid_domain); + zfsvfs->z_fuid_loaded = B_TRUE; + } + + rw_exit(&zfsvfs->z_fuid_lock); +} + +/* + * Query domain table for a given domain. + * + * If domain isn't found it is added to AVL trees and + * the results are pushed out to disk. + */ +int +zfs_fuid_find_by_domain(zfsvfs_t *zfsvfs, const char *domain, char **retdomain, + dmu_tx_t *tx) +{ + fuid_domain_t searchnode, *findnode; + avl_index_t loc; + krw_t rw = RW_READER; + + /* + * If the dummy "nobody" domain then return an index of 0 + * to cause the created FUID to be a standard POSIX id + * for the user nobody. + */ + if (domain[0] == '\0') { + *retdomain = nulldomain; + return (0); + } + + searchnode.f_ksid = ksid_lookupdomain(domain); + if (retdomain) { + *retdomain = searchnode.f_ksid->kd_name; + } + if (!zfsvfs->z_fuid_loaded) + zfs_fuid_init(zfsvfs, tx); + +retry: + rw_enter(&zfsvfs->z_fuid_lock, rw); + findnode = avl_find(&zfsvfs->z_fuid_domain, &searchnode, &loc); + + if (findnode) { + rw_exit(&zfsvfs->z_fuid_lock); + ksiddomain_rele(searchnode.f_ksid); + return (findnode->f_idx); + } else { + fuid_domain_t *domnode; + nvlist_t *nvp; + nvlist_t **fuids; + uint64_t retidx; + size_t nvsize = 0; + char *packed; + dmu_buf_t *db; + int i = 0; + + if (rw == RW_READER && !rw_tryupgrade(&zfsvfs->z_fuid_lock)) { + rw_exit(&zfsvfs->z_fuid_lock); + rw = RW_WRITER; + goto retry; + } + + domnode = kmem_alloc(sizeof (fuid_domain_t), KM_SLEEP); + domnode->f_ksid = searchnode.f_ksid; + + retidx = domnode->f_idx = avl_numnodes(&zfsvfs->z_fuid_idx) + 1; + + avl_add(&zfsvfs->z_fuid_domain, domnode); + avl_add(&zfsvfs->z_fuid_idx, domnode); + /* + * Now resync the on-disk nvlist. + */ + VERIFY(nvlist_alloc(&nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); + + domnode = avl_first(&zfsvfs->z_fuid_domain); + fuids = kmem_alloc(retidx * sizeof (void *), KM_SLEEP); + while (domnode) { + VERIFY(nvlist_alloc(&fuids[i], + NV_UNIQUE_NAME, KM_SLEEP) == 0); + VERIFY(nvlist_add_uint64(fuids[i], FUID_IDX, + domnode->f_idx) == 0); + VERIFY(nvlist_add_uint64(fuids[i], + FUID_OFFSET, 0) == 0); + VERIFY(nvlist_add_string(fuids[i++], FUID_DOMAIN, + domnode->f_ksid->kd_name) == 0); + domnode = AVL_NEXT(&zfsvfs->z_fuid_domain, domnode); + } + VERIFY(nvlist_add_nvlist_array(nvp, FUID_NVP_ARRAY, + fuids, retidx) == 0); + for (i = 0; i != retidx; i++) + nvlist_free(fuids[i]); + kmem_free(fuids, retidx * sizeof (void *)); + VERIFY(nvlist_size(nvp, &nvsize, NV_ENCODE_XDR) == 0); + packed = kmem_alloc(nvsize, KM_SLEEP); + VERIFY(nvlist_pack(nvp, &packed, &nvsize, + NV_ENCODE_XDR, KM_SLEEP) == 0); + nvlist_free(nvp); + zfsvfs->z_fuid_size = nvsize; + dmu_write(zfsvfs->z_os, zfsvfs->z_fuid_obj, 0, + zfsvfs->z_fuid_size, packed, tx); + kmem_free(packed, zfsvfs->z_fuid_size); + VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, zfsvfs->z_fuid_obj, + FTAG, &db)); + dmu_buf_will_dirty(db, tx); + *(uint64_t *)db->db_data = zfsvfs->z_fuid_size; + dmu_buf_rele(db, FTAG); + + rw_exit(&zfsvfs->z_fuid_lock); + return (retidx); + } +} + +/* + * Query domain table by index, returning domain string + * + * Returns a pointer from an avl node of the domain string. + * + */ +static char * +zfs_fuid_find_by_idx(zfsvfs_t *zfsvfs, uint32_t idx) +{ + char *domain; + + if (idx == 0 || !zfsvfs->z_use_fuids) + return (NULL); + + if (!zfsvfs->z_fuid_loaded) + zfs_fuid_init(zfsvfs, NULL); + + rw_enter(&zfsvfs->z_fuid_lock, RW_READER); + + if (zfsvfs->z_fuid_obj) + domain = zfs_fuid_idx_domain(&zfsvfs->z_fuid_idx, idx); + else + domain = nulldomain; + rw_exit(&zfsvfs->z_fuid_lock); + + ASSERT(domain); + return (domain); +} + +void +zfs_fuid_map_ids(znode_t *zp, cred_t *cr, uid_t *uidp, uid_t *gidp) +{ + *uidp = zfs_fuid_map_id(zp->z_zfsvfs, zp->z_phys->zp_uid, + cr, ZFS_OWNER); + *gidp = zfs_fuid_map_id(zp->z_zfsvfs, zp->z_phys->zp_gid, + cr, ZFS_GROUP); +} + +uid_t +zfs_fuid_map_id(zfsvfs_t *zfsvfs, uint64_t fuid, + cred_t *cr, zfs_fuid_type_t type) +{ + uint32_t index = FUID_INDEX(fuid); + char *domain; + uid_t id; + + if (index == 0) + return (fuid); + + domain = zfs_fuid_find_by_idx(zfsvfs, index); + ASSERT(domain != NULL); + + if (type == ZFS_OWNER || type == ZFS_ACE_USER) { + (void) kidmap_getuidbysid(crgetzone(cr), domain, + FUID_RID(fuid), &id); + } else { + (void) kidmap_getgidbysid(crgetzone(cr), domain, + FUID_RID(fuid), &id); + } + return (id); +} + +/* + * Add a FUID node to the list of fuid's being created for this + * ACL + * + * If ACL has multiple domains, then keep only one copy of each unique + * domain. + */ +static void +zfs_fuid_node_add(zfs_fuid_info_t **fuidpp, const char *domain, uint32_t rid, + uint64_t idx, uint64_t id, zfs_fuid_type_t type) +{ + zfs_fuid_t *fuid; + zfs_fuid_domain_t *fuid_domain; + zfs_fuid_info_t *fuidp; + uint64_t fuididx; + boolean_t found = B_FALSE; + + if (*fuidpp == NULL) + *fuidpp = zfs_fuid_info_alloc(); + + fuidp = *fuidpp; + /* + * First find fuid domain index in linked list + * + * If one isn't found then create an entry. + */ + + for (fuididx = 1, fuid_domain = list_head(&fuidp->z_domains); + fuid_domain; fuid_domain = list_next(&fuidp->z_domains, + fuid_domain), fuididx++) { + if (idx == fuid_domain->z_domidx) { + found = B_TRUE; + break; + } + } + + if (!found) { + fuid_domain = kmem_alloc(sizeof (zfs_fuid_domain_t), KM_SLEEP); + fuid_domain->z_domain = domain; + fuid_domain->z_domidx = idx; + list_insert_tail(&fuidp->z_domains, fuid_domain); + fuidp->z_domain_str_sz += strlen(domain) + 1; + fuidp->z_domain_cnt++; + } + + if (type == ZFS_ACE_USER || type == ZFS_ACE_GROUP) { + /* + * Now allocate fuid entry and add it on the end of the list + */ + + fuid = kmem_alloc(sizeof (zfs_fuid_t), KM_SLEEP); + fuid->z_id = id; + fuid->z_domidx = idx; + fuid->z_logfuid = FUID_ENCODE(fuididx, rid); + + list_insert_tail(&fuidp->z_fuids, fuid); + fuidp->z_fuid_cnt++; + } else { + if (type == ZFS_OWNER) + fuidp->z_fuid_owner = FUID_ENCODE(fuididx, rid); + else + fuidp->z_fuid_group = FUID_ENCODE(fuididx, rid); + } +} + +/* + * Create a file system FUID, based on information in the users cred + */ +uint64_t +zfs_fuid_create_cred(zfsvfs_t *zfsvfs, zfs_fuid_type_t type, + dmu_tx_t *tx, cred_t *cr, zfs_fuid_info_t **fuidp) +{ + uint64_t idx; + ksid_t *ksid; + uint32_t rid; + char *kdomain; + const char *domain; + uid_t id; + + VERIFY(type == ZFS_OWNER || type == ZFS_GROUP); + + ksid = crgetsid(cr, (type == ZFS_OWNER) ? KSID_OWNER : KSID_GROUP); + if (ksid) { + id = ksid_getid(ksid); + } else { + if (type == ZFS_OWNER) + id = crgetuid(cr); + else + id = crgetgid(cr); + } + + if (!zfsvfs->z_use_fuids || (!IS_EPHEMERAL(id))) + return ((uint64_t)id); + + rid = ksid_getrid(ksid); + domain = ksid_getdomain(ksid); + + idx = zfs_fuid_find_by_domain(zfsvfs, domain, &kdomain, tx); + + zfs_fuid_node_add(fuidp, kdomain, rid, idx, id, type); + + return (FUID_ENCODE(idx, rid)); +} + +/* + * Create a file system FUID for an ACL ace + * or a chown/chgrp of the file. + * This is similar to zfs_fuid_create_cred, except that + * we can't find the domain + rid information in the + * cred. Instead we have to query Winchester for the + * domain and rid. + * + * During replay operations the domain+rid information is + * found in the zfs_fuid_info_t that the replay code has + * attached to the zfsvfs of the file system. + */ +uint64_t +zfs_fuid_create(zfsvfs_t *zfsvfs, uint64_t id, cred_t *cr, + zfs_fuid_type_t type, dmu_tx_t *tx, zfs_fuid_info_t **fuidpp) +{ + const char *domain; + char *kdomain; + uint32_t fuid_idx = FUID_INDEX(id); + uint32_t rid; + idmap_stat status; + uint64_t idx; + boolean_t is_replay = (zfsvfs->z_assign >= TXG_INITIAL); + zfs_fuid_t *zfuid = NULL; + zfs_fuid_info_t *fuidp; + + /* + * If POSIX ID, or entry is already a FUID then + * just return the id + * + * We may also be handed an already FUID'ized id via + * chmod. + */ + + if (!zfsvfs->z_use_fuids || !IS_EPHEMERAL(id) || fuid_idx != 0) + return (id); + + if (is_replay) { + fuidp = zfsvfs->z_fuid_replay; + + /* + * If we are passed an ephemeral id, but no + * fuid_info was logged then return NOBODY. + * This is most likely a result of idmap service + * not being available. + */ + if (fuidp == NULL) + return (UID_NOBODY); + + switch (type) { + case ZFS_ACE_USER: + case ZFS_ACE_GROUP: + zfuid = list_head(&fuidp->z_fuids); + rid = FUID_RID(zfuid->z_logfuid); + idx = FUID_INDEX(zfuid->z_logfuid); + break; + case ZFS_OWNER: + rid = FUID_RID(fuidp->z_fuid_owner); + idx = FUID_INDEX(fuidp->z_fuid_owner); + break; + case ZFS_GROUP: + rid = FUID_RID(fuidp->z_fuid_group); + idx = FUID_INDEX(fuidp->z_fuid_group); + break; + }; + domain = fuidp->z_domain_table[idx -1]; + } else { + if (type == ZFS_OWNER || type == ZFS_ACE_USER) + status = kidmap_getsidbyuid(crgetzone(cr), id, + &domain, &rid); + else + status = kidmap_getsidbygid(crgetzone(cr), id, + &domain, &rid); + + if (status != 0) { + /* + * When returning nobody we will need to + * make a dummy fuid table entry for logging + * purposes. + */ + rid = UID_NOBODY; + domain = nulldomain; + } + } + + idx = zfs_fuid_find_by_domain(zfsvfs, domain, &kdomain, tx); + + if (!is_replay) + zfs_fuid_node_add(fuidpp, kdomain, rid, idx, id, type); + else if (zfuid != NULL) { + list_remove(&fuidp->z_fuids, zfuid); + kmem_free(zfuid, sizeof (zfs_fuid_t)); + } + return (FUID_ENCODE(idx, rid)); +} + +void +zfs_fuid_destroy(zfsvfs_t *zfsvfs) +{ + rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER); + if (!zfsvfs->z_fuid_loaded) { + rw_exit(&zfsvfs->z_fuid_lock); + return; + } + zfs_fuid_table_destroy(&zfsvfs->z_fuid_idx, &zfsvfs->z_fuid_domain); + rw_exit(&zfsvfs->z_fuid_lock); +} + +/* + * Allocate zfs_fuid_info for tracking FUIDs created during + * zfs_mknode, VOP_SETATTR() or VOP_SETSECATTR() + */ +zfs_fuid_info_t * +zfs_fuid_info_alloc(void) +{ + zfs_fuid_info_t *fuidp; + + fuidp = kmem_zalloc(sizeof (zfs_fuid_info_t), KM_SLEEP); + list_create(&fuidp->z_domains, sizeof (zfs_fuid_domain_t), + offsetof(zfs_fuid_domain_t, z_next)); + list_create(&fuidp->z_fuids, sizeof (zfs_fuid_t), + offsetof(zfs_fuid_t, z_next)); + return (fuidp); +} + +/* + * Release all memory associated with zfs_fuid_info_t + */ +void +zfs_fuid_info_free(zfs_fuid_info_t *fuidp) +{ + zfs_fuid_t *zfuid; + zfs_fuid_domain_t *zdomain; + + while ((zfuid = list_head(&fuidp->z_fuids)) != NULL) { + list_remove(&fuidp->z_fuids, zfuid); + kmem_free(zfuid, sizeof (zfs_fuid_t)); + } + + if (fuidp->z_domain_table != NULL) + kmem_free(fuidp->z_domain_table, + (sizeof (char **)) * fuidp->z_domain_cnt); + + while ((zdomain = list_head(&fuidp->z_domains)) != NULL) { + list_remove(&fuidp->z_domains, zdomain); + kmem_free(zdomain, sizeof (zfs_fuid_domain_t)); + } + + kmem_free(fuidp, sizeof (zfs_fuid_info_t)); +} + +/* + * Check to see if id is a groupmember. If cred + * has ksid info then sidlist is checked first + * and if still not found then POSIX groups are checked + * + * Will use a straight FUID compare when possible. + */ +boolean_t +zfs_groupmember(zfsvfs_t *zfsvfs, uint64_t id, cred_t *cr) +{ + ksid_t *ksid = crgetsid(cr, KSID_GROUP); + uid_t gid; + + if (ksid) { + int i; + ksid_t *ksid_groups; + ksidlist_t *ksidlist = crgetsidlist(cr); + uint32_t idx = FUID_INDEX(id); + uint32_t rid = FUID_RID(id); + + ASSERT(ksidlist); + ksid_groups = ksidlist->ksl_sids; + + for (i = 0; i != ksidlist->ksl_nsid; i++) { + if (idx == 0) { + if (id != IDMAP_WK_CREATOR_GROUP_GID && + id == ksid_groups[i].ks_id) { + return (B_TRUE); + } + } else { + char *domain; + + domain = zfs_fuid_find_by_idx(zfsvfs, idx); + ASSERT(domain != NULL); + + if (strcmp(domain, + IDMAP_WK_CREATOR_SID_AUTHORITY) == 0) + return (B_FALSE); + + if ((strcmp(domain, + ksid_groups[i].ks_domain->kd_name) == 0) && + rid == ksid_groups[i].ks_rid) + return (B_TRUE); + } + } + } + + /* + * Not found in ksidlist, check posix groups + */ + gid = zfs_fuid_map_id(zfsvfs, id, cr, ZFS_GROUP); + return (groupmember(gid, cr)); +} +#endif |