diff options
author | Brian Behlendorf <[email protected]> | 2008-12-11 11:08:09 -0800 |
---|---|---|
committer | Brian Behlendorf <[email protected]> | 2008-12-11 11:08:09 -0800 |
commit | 172bb4bd5e4afef721dd4d2972d8680d983f144b (patch) | |
tree | 18ab1e97e5e409150066c529b5a981ecf600ef80 /module/zfs/zfs_fm.c | |
parent | 9e8b1e836caa454586797f771a7ad1817ebae315 (diff) |
Move the world out of /zfs/ and seperate out module build tree
Diffstat (limited to 'module/zfs/zfs_fm.c')
-rw-r--r-- | module/zfs/zfs_fm.c | 362 |
1 files changed, 362 insertions, 0 deletions
diff --git a/module/zfs/zfs_fm.c b/module/zfs/zfs_fm.c new file mode 100644 index 000000000..236d69e7e --- /dev/null +++ b/module/zfs/zfs_fm.c @@ -0,0 +1,362 @@ +/* + * CDDL HEADER START + * + * The contents of this file are subject to the terms of the + * Common Development and Distribution License (the "License"). + * You may not use this file except in compliance with the License. + * + * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE + * or http://www.opensolaris.org/os/licensing. + * See the License for the specific language governing permissions + * and limitations under the License. + * + * When distributing Covered Code, include this CDDL HEADER in each + * file and include the License file at usr/src/OPENSOLARIS.LICENSE. + * If applicable, add the following below this CDDL HEADER, with the + * fields enclosed by brackets "[]" replaced with your own identifying + * information: Portions Copyright [yyyy] [name of copyright owner] + * + * CDDL HEADER END + */ +/* + * Copyright 2008 Sun Microsystems, Inc. All rights reserved. + * Use is subject to license terms. + */ + +#include <sys/spa.h> +#include <sys/spa_impl.h> +#include <sys/vdev.h> +#include <sys/vdev_impl.h> +#include <sys/zio.h> + +#include <sys/fm/fs/zfs.h> +#include <sys/fm/protocol.h> +#include <sys/fm/util.h> +#include <sys/sysevent.h> + +/* + * This general routine is responsible for generating all the different ZFS + * ereports. The payload is dependent on the class, and which arguments are + * supplied to the function: + * + * EREPORT POOL VDEV IO + * block X X X + * data X X + * device X X + * pool X + * + * If we are in a loading state, all errors are chained together by the same + * SPA-wide ENA (Error Numeric Association). + * + * For isolated I/O requests, we get the ENA from the zio_t. The propagation + * gets very complicated due to RAID-Z, gang blocks, and vdev caching. We want + * to chain together all ereports associated with a logical piece of data. For + * read I/Os, there are basically three 'types' of I/O, which form a roughly + * layered diagram: + * + * +---------------+ + * | Aggregate I/O | No associated logical data or device + * +---------------+ + * | + * V + * +---------------+ Reads associated with a piece of logical data. + * | Read I/O | This includes reads on behalf of RAID-Z, + * +---------------+ mirrors, gang blocks, retries, etc. + * | + * V + * +---------------+ Reads associated with a particular device, but + * | Physical I/O | no logical data. Issued as part of vdev caching + * +---------------+ and I/O aggregation. + * + * Note that 'physical I/O' here is not the same terminology as used in the rest + * of ZIO. Typically, 'physical I/O' simply means that there is no attached + * blockpointer. But I/O with no associated block pointer can still be related + * to a logical piece of data (i.e. RAID-Z requests). + * + * Purely physical I/O always have unique ENAs. They are not related to a + * particular piece of logical data, and therefore cannot be chained together. + * We still generate an ereport, but the DE doesn't correlate it with any + * logical piece of data. When such an I/O fails, the delegated I/O requests + * will issue a retry, which will trigger the 'real' ereport with the correct + * ENA. + * + * We keep track of the ENA for a ZIO chain through the 'io_logical' member. + * When a new logical I/O is issued, we set this to point to itself. Child I/Os + * then inherit this pointer, so that when it is first set subsequent failures + * will use the same ENA. For vdev cache fill and queue aggregation I/O, + * this pointer is set to NULL, and no ereport will be generated (since it + * doesn't actually correspond to any particular device or piece of data, + * and the caller will always retry without caching or queueing anyway). + */ +void +zfs_ereport_post(const char *subclass, spa_t *spa, vdev_t *vd, zio_t *zio, + uint64_t stateoroffset, uint64_t size) +{ +#ifdef _KERNEL + nvlist_t *ereport, *detector; + uint64_t ena; + char class[64]; + int state; + + /* + * If we are doing a spa_tryimport(), ignore errors. + */ + if (spa->spa_load_state == SPA_LOAD_TRYIMPORT) + return; + + /* + * If we are in the middle of opening a pool, and the previous attempt + * failed, don't bother logging any new ereports - we're just going to + * get the same diagnosis anyway. + */ + if (spa->spa_load_state != SPA_LOAD_NONE && + spa->spa_last_open_failed) + return; + + if (zio != NULL) { + /* + * If this is not a read or write zio, ignore the error. This + * can occur if the DKIOCFLUSHWRITECACHE ioctl fails. + */ + if (zio->io_type != ZIO_TYPE_READ && + zio->io_type != ZIO_TYPE_WRITE) + return; + + /* + * Ignore any errors from speculative I/Os, as failure is an + * expected result. + */ + if (zio->io_flags & ZIO_FLAG_SPECULATIVE) + return; + + /* + * If the vdev has already been marked as failing due to a + * failed probe, then ignore any subsequent I/O errors, as the + * DE will automatically fault the vdev on the first such + * failure. + */ + if (vd != NULL && + (!vdev_readable(vd) || !vdev_writeable(vd)) && + strcmp(subclass, FM_EREPORT_ZFS_PROBE_FAILURE) != 0) + return; + } + + if ((ereport = fm_nvlist_create(NULL)) == NULL) + return; + + if ((detector = fm_nvlist_create(NULL)) == NULL) { + fm_nvlist_destroy(ereport, FM_NVA_FREE); + return; + } + + /* + * Serialize ereport generation + */ + mutex_enter(&spa->spa_errlist_lock); + + /* + * Determine the ENA to use for this event. If we are in a loading + * state, use a SPA-wide ENA. Otherwise, if we are in an I/O state, use + * a root zio-wide ENA. Otherwise, simply use a unique ENA. + */ + if (spa->spa_load_state != SPA_LOAD_NONE) { + if (spa->spa_ena == 0) + spa->spa_ena = fm_ena_generate(0, FM_ENA_FMT1); + ena = spa->spa_ena; + } else if (zio != NULL && zio->io_logical != NULL) { + if (zio->io_logical->io_ena == 0) + zio->io_logical->io_ena = + fm_ena_generate(0, FM_ENA_FMT1); + ena = zio->io_logical->io_ena; + } else { + ena = fm_ena_generate(0, FM_ENA_FMT1); + } + + /* + * Construct the full class, detector, and other standard FMA fields. + */ + (void) snprintf(class, sizeof (class), "%s.%s", + ZFS_ERROR_CLASS, subclass); + + fm_fmri_zfs_set(detector, FM_ZFS_SCHEME_VERSION, spa_guid(spa), + vd != NULL ? vd->vdev_guid : 0); + + fm_ereport_set(ereport, FM_EREPORT_VERSION, class, ena, detector, NULL); + + /* + * Construct the per-ereport payload, depending on which parameters are + * passed in. + */ + + /* + * If we are importing a faulted pool, then we treat it like an open, + * not an import. Otherwise, the DE will ignore all faults during + * import, since the default behavior is to mark the devices as + * persistently unavailable, not leave them in the faulted state. + */ + state = spa->spa_import_faulted ? SPA_LOAD_OPEN : spa->spa_load_state; + + /* + * Generic payload members common to all ereports. + */ + fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_POOL, + DATA_TYPE_STRING, spa_name(spa), FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, + DATA_TYPE_UINT64, spa_guid(spa), + FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, DATA_TYPE_INT32, + state, NULL); + + if (spa != NULL) { + fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_POOL_FAILMODE, + DATA_TYPE_STRING, + spa_get_failmode(spa) == ZIO_FAILURE_MODE_WAIT ? + FM_EREPORT_FAILMODE_WAIT : + spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE ? + FM_EREPORT_FAILMODE_CONTINUE : FM_EREPORT_FAILMODE_PANIC, + NULL); + } + + if (vd != NULL) { + vdev_t *pvd = vd->vdev_parent; + + fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, + DATA_TYPE_UINT64, vd->vdev_guid, + FM_EREPORT_PAYLOAD_ZFS_VDEV_TYPE, + DATA_TYPE_STRING, vd->vdev_ops->vdev_op_type, NULL); + if (vd->vdev_path) + fm_payload_set(ereport, + FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH, + DATA_TYPE_STRING, vd->vdev_path, NULL); + if (vd->vdev_devid) + fm_payload_set(ereport, + FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID, + DATA_TYPE_STRING, vd->vdev_devid, NULL); + + if (pvd != NULL) { + fm_payload_set(ereport, + FM_EREPORT_PAYLOAD_ZFS_PARENT_GUID, + DATA_TYPE_UINT64, pvd->vdev_guid, + FM_EREPORT_PAYLOAD_ZFS_PARENT_TYPE, + DATA_TYPE_STRING, pvd->vdev_ops->vdev_op_type, + NULL); + if (pvd->vdev_path) + fm_payload_set(ereport, + FM_EREPORT_PAYLOAD_ZFS_PARENT_PATH, + DATA_TYPE_STRING, pvd->vdev_path, NULL); + if (pvd->vdev_devid) + fm_payload_set(ereport, + FM_EREPORT_PAYLOAD_ZFS_PARENT_DEVID, + DATA_TYPE_STRING, pvd->vdev_devid, NULL); + } + } + + if (zio != NULL) { + /* + * Payload common to all I/Os. + */ + fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_ERR, + DATA_TYPE_INT32, zio->io_error, NULL); + + /* + * If the 'size' parameter is non-zero, it indicates this is a + * RAID-Z or other I/O where the physical offset and length are + * provided for us, instead of within the zio_t. + */ + if (vd != NULL) { + if (size) + fm_payload_set(ereport, + FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET, + DATA_TYPE_UINT64, stateoroffset, + FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE, + DATA_TYPE_UINT64, size, NULL); + else + fm_payload_set(ereport, + FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET, + DATA_TYPE_UINT64, zio->io_offset, + FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE, + DATA_TYPE_UINT64, zio->io_size, NULL); + } + + /* + * Payload for I/Os with corresponding logical information. + */ + if (zio->io_logical != NULL) + fm_payload_set(ereport, + FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJSET, + DATA_TYPE_UINT64, + zio->io_logical->io_bookmark.zb_objset, + FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJECT, + DATA_TYPE_UINT64, + zio->io_logical->io_bookmark.zb_object, + FM_EREPORT_PAYLOAD_ZFS_ZIO_LEVEL, + DATA_TYPE_INT64, + zio->io_logical->io_bookmark.zb_level, + FM_EREPORT_PAYLOAD_ZFS_ZIO_BLKID, + DATA_TYPE_UINT64, + zio->io_logical->io_bookmark.zb_blkid, NULL); + } else if (vd != NULL) { + /* + * If we have a vdev but no zio, this is a device fault, and the + * 'stateoroffset' parameter indicates the previous state of the + * vdev. + */ + fm_payload_set(ereport, + FM_EREPORT_PAYLOAD_ZFS_PREV_STATE, + DATA_TYPE_UINT64, stateoroffset, NULL); + } + mutex_exit(&spa->spa_errlist_lock); + + fm_ereport_post(ereport, EVCH_SLEEP); + + fm_nvlist_destroy(ereport, FM_NVA_FREE); + fm_nvlist_destroy(detector, FM_NVA_FREE); +#endif +} + +static void +zfs_post_common(spa_t *spa, vdev_t *vd, const char *name) +{ +#ifdef _KERNEL + nvlist_t *resource; + char class[64]; + + if ((resource = fm_nvlist_create(NULL)) == NULL) + return; + + (void) snprintf(class, sizeof (class), "%s.%s.%s", FM_RSRC_RESOURCE, + ZFS_ERROR_CLASS, name); + VERIFY(nvlist_add_uint8(resource, FM_VERSION, FM_RSRC_VERSION) == 0); + VERIFY(nvlist_add_string(resource, FM_CLASS, class) == 0); + VERIFY(nvlist_add_uint64(resource, + FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, spa_guid(spa)) == 0); + if (vd) + VERIFY(nvlist_add_uint64(resource, + FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, vd->vdev_guid) == 0); + + fm_ereport_post(resource, EVCH_SLEEP); + + fm_nvlist_destroy(resource, FM_NVA_FREE); +#endif +} + +/* + * The 'resource.fs.zfs.removed' event is an internal signal that the given vdev + * has been removed from the system. This will cause the DE to ignore any + * recent I/O errors, inferring that they are due to the asynchronous device + * removal. + */ +void +zfs_post_remove(spa_t *spa, vdev_t *vd) +{ + zfs_post_common(spa, vd, FM_RESOURCE_REMOVED); +} + +/* + * The 'resource.fs.zfs.autoreplace' event is an internal signal that the pool + * has the 'autoreplace' property set, and therefore any broken vdevs will be + * handled by higher level logic, and no vdev fault should be generated. + */ +void +zfs_post_autoreplace(spa_t *spa, vdev_t *vd) +{ + zfs_post_common(spa, vd, FM_RESOURCE_AUTOREPLACE); +} |