summaryrefslogtreecommitdiffstats
path: root/module/zfs/zfs_fm.c
diff options
context:
space:
mode:
authorBrian Behlendorf <[email protected]>2008-12-11 11:08:09 -0800
committerBrian Behlendorf <[email protected]>2008-12-11 11:08:09 -0800
commit172bb4bd5e4afef721dd4d2972d8680d983f144b (patch)
tree18ab1e97e5e409150066c529b5a981ecf600ef80 /module/zfs/zfs_fm.c
parent9e8b1e836caa454586797f771a7ad1817ebae315 (diff)
Move the world out of /zfs/ and seperate out module build tree
Diffstat (limited to 'module/zfs/zfs_fm.c')
-rw-r--r--module/zfs/zfs_fm.c362
1 files changed, 362 insertions, 0 deletions
diff --git a/module/zfs/zfs_fm.c b/module/zfs/zfs_fm.c
new file mode 100644
index 000000000..236d69e7e
--- /dev/null
+++ b/module/zfs/zfs_fm.c
@@ -0,0 +1,362 @@
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+/*
+ * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms.
+ */
+
+#include <sys/spa.h>
+#include <sys/spa_impl.h>
+#include <sys/vdev.h>
+#include <sys/vdev_impl.h>
+#include <sys/zio.h>
+
+#include <sys/fm/fs/zfs.h>
+#include <sys/fm/protocol.h>
+#include <sys/fm/util.h>
+#include <sys/sysevent.h>
+
+/*
+ * This general routine is responsible for generating all the different ZFS
+ * ereports. The payload is dependent on the class, and which arguments are
+ * supplied to the function:
+ *
+ * EREPORT POOL VDEV IO
+ * block X X X
+ * data X X
+ * device X X
+ * pool X
+ *
+ * If we are in a loading state, all errors are chained together by the same
+ * SPA-wide ENA (Error Numeric Association).
+ *
+ * For isolated I/O requests, we get the ENA from the zio_t. The propagation
+ * gets very complicated due to RAID-Z, gang blocks, and vdev caching. We want
+ * to chain together all ereports associated with a logical piece of data. For
+ * read I/Os, there are basically three 'types' of I/O, which form a roughly
+ * layered diagram:
+ *
+ * +---------------+
+ * | Aggregate I/O | No associated logical data or device
+ * +---------------+
+ * |
+ * V
+ * +---------------+ Reads associated with a piece of logical data.
+ * | Read I/O | This includes reads on behalf of RAID-Z,
+ * +---------------+ mirrors, gang blocks, retries, etc.
+ * |
+ * V
+ * +---------------+ Reads associated with a particular device, but
+ * | Physical I/O | no logical data. Issued as part of vdev caching
+ * +---------------+ and I/O aggregation.
+ *
+ * Note that 'physical I/O' here is not the same terminology as used in the rest
+ * of ZIO. Typically, 'physical I/O' simply means that there is no attached
+ * blockpointer. But I/O with no associated block pointer can still be related
+ * to a logical piece of data (i.e. RAID-Z requests).
+ *
+ * Purely physical I/O always have unique ENAs. They are not related to a
+ * particular piece of logical data, and therefore cannot be chained together.
+ * We still generate an ereport, but the DE doesn't correlate it with any
+ * logical piece of data. When such an I/O fails, the delegated I/O requests
+ * will issue a retry, which will trigger the 'real' ereport with the correct
+ * ENA.
+ *
+ * We keep track of the ENA for a ZIO chain through the 'io_logical' member.
+ * When a new logical I/O is issued, we set this to point to itself. Child I/Os
+ * then inherit this pointer, so that when it is first set subsequent failures
+ * will use the same ENA. For vdev cache fill and queue aggregation I/O,
+ * this pointer is set to NULL, and no ereport will be generated (since it
+ * doesn't actually correspond to any particular device or piece of data,
+ * and the caller will always retry without caching or queueing anyway).
+ */
+void
+zfs_ereport_post(const char *subclass, spa_t *spa, vdev_t *vd, zio_t *zio,
+ uint64_t stateoroffset, uint64_t size)
+{
+#ifdef _KERNEL
+ nvlist_t *ereport, *detector;
+ uint64_t ena;
+ char class[64];
+ int state;
+
+ /*
+ * If we are doing a spa_tryimport(), ignore errors.
+ */
+ if (spa->spa_load_state == SPA_LOAD_TRYIMPORT)
+ return;
+
+ /*
+ * If we are in the middle of opening a pool, and the previous attempt
+ * failed, don't bother logging any new ereports - we're just going to
+ * get the same diagnosis anyway.
+ */
+ if (spa->spa_load_state != SPA_LOAD_NONE &&
+ spa->spa_last_open_failed)
+ return;
+
+ if (zio != NULL) {
+ /*
+ * If this is not a read or write zio, ignore the error. This
+ * can occur if the DKIOCFLUSHWRITECACHE ioctl fails.
+ */
+ if (zio->io_type != ZIO_TYPE_READ &&
+ zio->io_type != ZIO_TYPE_WRITE)
+ return;
+
+ /*
+ * Ignore any errors from speculative I/Os, as failure is an
+ * expected result.
+ */
+ if (zio->io_flags & ZIO_FLAG_SPECULATIVE)
+ return;
+
+ /*
+ * If the vdev has already been marked as failing due to a
+ * failed probe, then ignore any subsequent I/O errors, as the
+ * DE will automatically fault the vdev on the first such
+ * failure.
+ */
+ if (vd != NULL &&
+ (!vdev_readable(vd) || !vdev_writeable(vd)) &&
+ strcmp(subclass, FM_EREPORT_ZFS_PROBE_FAILURE) != 0)
+ return;
+ }
+
+ if ((ereport = fm_nvlist_create(NULL)) == NULL)
+ return;
+
+ if ((detector = fm_nvlist_create(NULL)) == NULL) {
+ fm_nvlist_destroy(ereport, FM_NVA_FREE);
+ return;
+ }
+
+ /*
+ * Serialize ereport generation
+ */
+ mutex_enter(&spa->spa_errlist_lock);
+
+ /*
+ * Determine the ENA to use for this event. If we are in a loading
+ * state, use a SPA-wide ENA. Otherwise, if we are in an I/O state, use
+ * a root zio-wide ENA. Otherwise, simply use a unique ENA.
+ */
+ if (spa->spa_load_state != SPA_LOAD_NONE) {
+ if (spa->spa_ena == 0)
+ spa->spa_ena = fm_ena_generate(0, FM_ENA_FMT1);
+ ena = spa->spa_ena;
+ } else if (zio != NULL && zio->io_logical != NULL) {
+ if (zio->io_logical->io_ena == 0)
+ zio->io_logical->io_ena =
+ fm_ena_generate(0, FM_ENA_FMT1);
+ ena = zio->io_logical->io_ena;
+ } else {
+ ena = fm_ena_generate(0, FM_ENA_FMT1);
+ }
+
+ /*
+ * Construct the full class, detector, and other standard FMA fields.
+ */
+ (void) snprintf(class, sizeof (class), "%s.%s",
+ ZFS_ERROR_CLASS, subclass);
+
+ fm_fmri_zfs_set(detector, FM_ZFS_SCHEME_VERSION, spa_guid(spa),
+ vd != NULL ? vd->vdev_guid : 0);
+
+ fm_ereport_set(ereport, FM_EREPORT_VERSION, class, ena, detector, NULL);
+
+ /*
+ * Construct the per-ereport payload, depending on which parameters are
+ * passed in.
+ */
+
+ /*
+ * If we are importing a faulted pool, then we treat it like an open,
+ * not an import. Otherwise, the DE will ignore all faults during
+ * import, since the default behavior is to mark the devices as
+ * persistently unavailable, not leave them in the faulted state.
+ */
+ state = spa->spa_import_faulted ? SPA_LOAD_OPEN : spa->spa_load_state;
+
+ /*
+ * Generic payload members common to all ereports.
+ */
+ fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_POOL,
+ DATA_TYPE_STRING, spa_name(spa), FM_EREPORT_PAYLOAD_ZFS_POOL_GUID,
+ DATA_TYPE_UINT64, spa_guid(spa),
+ FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, DATA_TYPE_INT32,
+ state, NULL);
+
+ if (spa != NULL) {
+ fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_POOL_FAILMODE,
+ DATA_TYPE_STRING,
+ spa_get_failmode(spa) == ZIO_FAILURE_MODE_WAIT ?
+ FM_EREPORT_FAILMODE_WAIT :
+ spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE ?
+ FM_EREPORT_FAILMODE_CONTINUE : FM_EREPORT_FAILMODE_PANIC,
+ NULL);
+ }
+
+ if (vd != NULL) {
+ vdev_t *pvd = vd->vdev_parent;
+
+ fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID,
+ DATA_TYPE_UINT64, vd->vdev_guid,
+ FM_EREPORT_PAYLOAD_ZFS_VDEV_TYPE,
+ DATA_TYPE_STRING, vd->vdev_ops->vdev_op_type, NULL);
+ if (vd->vdev_path)
+ fm_payload_set(ereport,
+ FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH,
+ DATA_TYPE_STRING, vd->vdev_path, NULL);
+ if (vd->vdev_devid)
+ fm_payload_set(ereport,
+ FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID,
+ DATA_TYPE_STRING, vd->vdev_devid, NULL);
+
+ if (pvd != NULL) {
+ fm_payload_set(ereport,
+ FM_EREPORT_PAYLOAD_ZFS_PARENT_GUID,
+ DATA_TYPE_UINT64, pvd->vdev_guid,
+ FM_EREPORT_PAYLOAD_ZFS_PARENT_TYPE,
+ DATA_TYPE_STRING, pvd->vdev_ops->vdev_op_type,
+ NULL);
+ if (pvd->vdev_path)
+ fm_payload_set(ereport,
+ FM_EREPORT_PAYLOAD_ZFS_PARENT_PATH,
+ DATA_TYPE_STRING, pvd->vdev_path, NULL);
+ if (pvd->vdev_devid)
+ fm_payload_set(ereport,
+ FM_EREPORT_PAYLOAD_ZFS_PARENT_DEVID,
+ DATA_TYPE_STRING, pvd->vdev_devid, NULL);
+ }
+ }
+
+ if (zio != NULL) {
+ /*
+ * Payload common to all I/Os.
+ */
+ fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_ERR,
+ DATA_TYPE_INT32, zio->io_error, NULL);
+
+ /*
+ * If the 'size' parameter is non-zero, it indicates this is a
+ * RAID-Z or other I/O where the physical offset and length are
+ * provided for us, instead of within the zio_t.
+ */
+ if (vd != NULL) {
+ if (size)
+ fm_payload_set(ereport,
+ FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET,
+ DATA_TYPE_UINT64, stateoroffset,
+ FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE,
+ DATA_TYPE_UINT64, size, NULL);
+ else
+ fm_payload_set(ereport,
+ FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET,
+ DATA_TYPE_UINT64, zio->io_offset,
+ FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE,
+ DATA_TYPE_UINT64, zio->io_size, NULL);
+ }
+
+ /*
+ * Payload for I/Os with corresponding logical information.
+ */
+ if (zio->io_logical != NULL)
+ fm_payload_set(ereport,
+ FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJSET,
+ DATA_TYPE_UINT64,
+ zio->io_logical->io_bookmark.zb_objset,
+ FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJECT,
+ DATA_TYPE_UINT64,
+ zio->io_logical->io_bookmark.zb_object,
+ FM_EREPORT_PAYLOAD_ZFS_ZIO_LEVEL,
+ DATA_TYPE_INT64,
+ zio->io_logical->io_bookmark.zb_level,
+ FM_EREPORT_PAYLOAD_ZFS_ZIO_BLKID,
+ DATA_TYPE_UINT64,
+ zio->io_logical->io_bookmark.zb_blkid, NULL);
+ } else if (vd != NULL) {
+ /*
+ * If we have a vdev but no zio, this is a device fault, and the
+ * 'stateoroffset' parameter indicates the previous state of the
+ * vdev.
+ */
+ fm_payload_set(ereport,
+ FM_EREPORT_PAYLOAD_ZFS_PREV_STATE,
+ DATA_TYPE_UINT64, stateoroffset, NULL);
+ }
+ mutex_exit(&spa->spa_errlist_lock);
+
+ fm_ereport_post(ereport, EVCH_SLEEP);
+
+ fm_nvlist_destroy(ereport, FM_NVA_FREE);
+ fm_nvlist_destroy(detector, FM_NVA_FREE);
+#endif
+}
+
+static void
+zfs_post_common(spa_t *spa, vdev_t *vd, const char *name)
+{
+#ifdef _KERNEL
+ nvlist_t *resource;
+ char class[64];
+
+ if ((resource = fm_nvlist_create(NULL)) == NULL)
+ return;
+
+ (void) snprintf(class, sizeof (class), "%s.%s.%s", FM_RSRC_RESOURCE,
+ ZFS_ERROR_CLASS, name);
+ VERIFY(nvlist_add_uint8(resource, FM_VERSION, FM_RSRC_VERSION) == 0);
+ VERIFY(nvlist_add_string(resource, FM_CLASS, class) == 0);
+ VERIFY(nvlist_add_uint64(resource,
+ FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, spa_guid(spa)) == 0);
+ if (vd)
+ VERIFY(nvlist_add_uint64(resource,
+ FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, vd->vdev_guid) == 0);
+
+ fm_ereport_post(resource, EVCH_SLEEP);
+
+ fm_nvlist_destroy(resource, FM_NVA_FREE);
+#endif
+}
+
+/*
+ * The 'resource.fs.zfs.removed' event is an internal signal that the given vdev
+ * has been removed from the system. This will cause the DE to ignore any
+ * recent I/O errors, inferring that they are due to the asynchronous device
+ * removal.
+ */
+void
+zfs_post_remove(spa_t *spa, vdev_t *vd)
+{
+ zfs_post_common(spa, vd, FM_RESOURCE_REMOVED);
+}
+
+/*
+ * The 'resource.fs.zfs.autoreplace' event is an internal signal that the pool
+ * has the 'autoreplace' property set, and therefore any broken vdevs will be
+ * handled by higher level logic, and no vdev fault should be generated.
+ */
+void
+zfs_post_autoreplace(spa_t *spa, vdev_t *vd)
+{
+ zfs_post_common(spa, vd, FM_RESOURCE_AUTOREPLACE);
+}