summaryrefslogtreecommitdiffstats
path: root/module/zfs/vdev_trim.c
diff options
context:
space:
mode:
authorBrian Behlendorf <[email protected]>2019-03-29 09:13:20 -0700
committerGitHub <[email protected]>2019-03-29 09:13:20 -0700
commit1b939560be5c51deecf875af9dada9d094633bf7 (patch)
tree2a780b838134636ddbc65f89d227e37c74abe17b /module/zfs/vdev_trim.c
parentf94b3cbf43d62f4962e71cfe7ba8c6f0602e2a45 (diff)
Add TRIM support
UNMAP/TRIM support is a frequently-requested feature to help prevent performance from degrading on SSDs and on various other SAN-like storage back-ends. By issuing UNMAP/TRIM commands for sectors which are no longer allocated the underlying device can often more efficiently manage itself. This TRIM implementation is modeled on the `zpool initialize` feature which writes a pattern to all unallocated space in the pool. The new `zpool trim` command uses the same vdev_xlate() code to calculate what sectors are unallocated, the same per- vdev TRIM thread model and locking, and the same basic CLI for a consistent user experience. The core difference is that instead of writing a pattern it will issue UNMAP/TRIM commands for those extents. The zio pipeline was updated to accommodate this by adding a new ZIO_TYPE_TRIM type and associated spa taskq. This new type makes is straight forward to add the platform specific TRIM/UNMAP calls to vdev_disk.c and vdev_file.c. These new ZIO_TYPE_TRIM zios are handled largely the same way as ZIO_TYPE_READs or ZIO_TYPE_WRITEs. This makes it possible to largely avoid changing the pipieline, one exception is that TRIM zio's may exceed the 16M block size limit since they contain no data. In addition to the manual `zpool trim` command, a background automatic TRIM was added and is controlled by the 'autotrim' property. It relies on the exact same infrastructure as the manual TRIM. However, instead of relying on the extents in a metaslab's ms_allocatable range tree, a ms_trim tree is kept per metaslab. When 'autotrim=on', ranges added back to the ms_allocatable tree are also added to the ms_free tree. The ms_free tree is then periodically consumed by an autotrim thread which systematically walks a top level vdev's metaslabs. Since the automatic TRIM will skip ranges it considers too small there is value in occasionally running a full `zpool trim`. This may occur when the freed blocks are small and not enough time was allowed to aggregate them. An automatic TRIM and a manual `zpool trim` may be run concurrently, in which case the automatic TRIM will yield to the manual TRIM. Reviewed-by: Jorgen Lundman <[email protected]> Reviewed-by: Tim Chase <[email protected]> Reviewed-by: Matt Ahrens <[email protected]> Reviewed-by: George Wilson <[email protected]> Reviewed-by: Serapheim Dimitropoulos <[email protected]> Contributions-by: Saso Kiselkov <[email protected]> Contributions-by: Tim Chase <[email protected]> Contributions-by: Chunwei Chen <[email protected]> Signed-off-by: Brian Behlendorf <[email protected]> Closes #8419 Closes #598
Diffstat (limited to 'module/zfs/vdev_trim.c')
-rw-r--r--module/zfs/vdev_trim.c1460
1 files changed, 1460 insertions, 0 deletions
diff --git a/module/zfs/vdev_trim.c b/module/zfs/vdev_trim.c
new file mode 100644
index 000000000..5ad47cccd
--- /dev/null
+++ b/module/zfs/vdev_trim.c
@@ -0,0 +1,1460 @@
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+
+/*
+ * Copyright (c) 2016 by Delphix. All rights reserved.
+ * Copyright (c) 2019 by Lawrence Livermore National Security, LLC.
+ */
+
+#include <sys/spa.h>
+#include <sys/spa_impl.h>
+#include <sys/txg.h>
+#include <sys/vdev_impl.h>
+#include <sys/vdev_trim.h>
+#include <sys/refcount.h>
+#include <sys/metaslab_impl.h>
+#include <sys/dsl_synctask.h>
+#include <sys/zap.h>
+#include <sys/dmu_tx.h>
+
+/*
+ * TRIM is a feature which is used to notify a SSD that some previously
+ * written space is no longer allocated by the pool. This is useful because
+ * writes to a SSD must be performed to blocks which have first been erased.
+ * Ensuring the SSD always has a supply of erased blocks for new writes
+ * helps prevent the performance from deteriorating.
+ *
+ * There are two supported TRIM methods; manual and automatic.
+ *
+ * Manual TRIM:
+ *
+ * A manual TRIM is initiated by running the 'zpool trim' command. A single
+ * 'vdev_trim' thread is created for each leaf vdev, and it is responsible for
+ * managing that vdev TRIM process. This involves iterating over all the
+ * metaslabs, calculating the unallocated space ranges, and then issuing the
+ * required TRIM I/Os.
+ *
+ * While a metaslab is being actively trimmed it is not eligible to perform
+ * new allocations. After traversing all of the metaslabs the thread is
+ * terminated. Finally, both the requested options and current progress of
+ * the TRIM are regularly written to the pool. This allows the TRIM to be
+ * suspended and resumed as needed.
+ *
+ * Automatic TRIM:
+ *
+ * An automatic TRIM is enabled by setting the 'autotrim' pool property
+ * to 'on'. When enabled, a `vdev_autotrim' thread is created for each
+ * top-level (not leaf) vdev in the pool. These threads perform the same
+ * core TRIM process as a manual TRIM, but with a few key differences.
+ *
+ * 1) Automatic TRIM happens continuously in the background and operates
+ * solely on recently freed blocks (ms_trim not ms_allocatable).
+ *
+ * 2) Each thread is associated with a top-level (not leaf) vdev. This has
+ * the benefit of simplifying the threading model, it makes it easier
+ * to coordinate administrative commands, and it ensures only a single
+ * metaslab is disabled at a time. Unlike manual TRIM, this means each
+ * 'vdev_autotrim' thread is responsible for issuing TRIM I/Os for its
+ * children.
+ *
+ * 3) There is no automatic TRIM progress information stored on disk, nor
+ * is it reported by 'zpool status'.
+ *
+ * While the automatic TRIM process is highly effective it is more likely
+ * than a manual TRIM to encounter tiny ranges. Ranges less than or equal to
+ * 'zfs_trim_extent_bytes_min' (32k) are considered too small to efficiently
+ * TRIM and are skipped. This means small amounts of freed space may not
+ * be automatically trimmed.
+ *
+ * Furthermore, devices with attached hot spares and devices being actively
+ * replaced are skipped. This is done to avoid adding additional stress to
+ * a potentially unhealthy device and to minimize the required rebuild time.
+ *
+ * For this reason it may be beneficial to occasionally manually TRIM a pool
+ * even when automatic TRIM is enabled.
+ */
+
+/*
+ * Maximum size of TRIM I/O, ranges will be chunked in to 128MiB lengths.
+ */
+unsigned int zfs_trim_extent_bytes_max = 128 * 1024 * 1024;
+
+/*
+ * Minimum size of TRIM I/O, extents smaller than 32Kib will be skipped.
+ */
+unsigned int zfs_trim_extent_bytes_min = 32 * 1024;
+
+/*
+ * Skip uninitialized metaslabs during the TRIM process. This option is
+ * useful for pools constructed from large thinly-provisioned devices where
+ * TRIM operations are slow. As a pool ages an increasing fraction of
+ * the pools metaslabs will be initialized progressively degrading the
+ * usefulness of this option. This setting is stored when starting a
+ * manual TRIM and will persist for the duration of the requested TRIM.
+ */
+unsigned int zfs_trim_metaslab_skip = 0;
+
+/*
+ * Maximum number of queued TRIM I/Os per leaf vdev. The number of
+ * concurrent TRIM I/Os issued to the device is controlled by the
+ * zfs_vdev_trim_min_active and zfs_vdev_trim_max_active module options.
+ */
+unsigned int zfs_trim_queue_limit = 10;
+
+/*
+ * The minimum number of transaction groups between automatic trims of a
+ * metaslab. This setting represents a trade-off between issuing more
+ * efficient TRIM operations, by allowing them to be aggregated longer,
+ * and issuing them promptly so the trimmed space is available. Note
+ * that this value is a minimum; metaslabs can be trimmed less frequently
+ * when there are a large number of ranges which need to be trimmed.
+ *
+ * Increasing this value will allow frees to be aggregated for a longer
+ * time. This can result is larger TRIM operations, and increased memory
+ * usage in order to track the ranges to be trimmed. Decreasing this value
+ * has the opposite effect. The default value of 32 was determined though
+ * testing to be a reasonable compromise.
+ */
+unsigned int zfs_trim_txg_batch = 32;
+
+/*
+ * The trim_args are a control structure which describe how a leaf vdev
+ * should be trimmed. The core elements are the vdev, the metaslab being
+ * trimmed and a range tree containing the extents to TRIM. All provided
+ * ranges must be within the metaslab.
+ */
+typedef struct trim_args {
+ /*
+ * These fields are set by the caller of vdev_trim_ranges().
+ */
+ vdev_t *trim_vdev; /* Leaf vdev to TRIM */
+ metaslab_t *trim_msp; /* Disabled metaslab */
+ range_tree_t *trim_tree; /* TRIM ranges (in metaslab) */
+ trim_type_t trim_type; /* Manual or auto TRIM */
+ uint64_t trim_extent_bytes_max; /* Maximum TRIM I/O size */
+ uint64_t trim_extent_bytes_min; /* Minimum TRIM I/O size */
+ enum trim_flag trim_flags; /* TRIM flags (secure) */
+
+ /*
+ * These fields are updated by vdev_trim_ranges().
+ */
+ hrtime_t trim_start_time; /* Start time */
+ uint64_t trim_bytes_done; /* Bytes trimmed */
+} trim_args_t;
+
+/*
+ * Determines whether a vdev_trim_thread() should be stopped.
+ */
+static boolean_t
+vdev_trim_should_stop(vdev_t *vd)
+{
+ return (vd->vdev_trim_exit_wanted || !vdev_writeable(vd) ||
+ vd->vdev_detached || vd->vdev_top->vdev_removing);
+}
+
+/*
+ * Determines whether a vdev_autotrim_thread() should be stopped.
+ */
+static boolean_t
+vdev_autotrim_should_stop(vdev_t *tvd)
+{
+ return (tvd->vdev_autotrim_exit_wanted ||
+ !vdev_writeable(tvd) || tvd->vdev_removing ||
+ spa_get_autotrim(tvd->vdev_spa) == SPA_AUTOTRIM_OFF);
+}
+
+/*
+ * The sync task for updating the on-disk state of a manual TRIM. This
+ * is scheduled by vdev_trim_change_state().
+ */
+static void
+vdev_trim_zap_update_sync(void *arg, dmu_tx_t *tx)
+{
+ /*
+ * We pass in the guid instead of the vdev_t since the vdev may
+ * have been freed prior to the sync task being processed. This
+ * happens when a vdev is detached as we call spa_config_vdev_exit(),
+ * stop the trimming thread, schedule the sync task, and free
+ * the vdev. Later when the scheduled sync task is invoked, it would
+ * find that the vdev has been freed.
+ */
+ uint64_t guid = *(uint64_t *)arg;
+ uint64_t txg = dmu_tx_get_txg(tx);
+ kmem_free(arg, sizeof (uint64_t));
+
+ vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE);
+ if (vd == NULL || vd->vdev_top->vdev_removing || !vdev_is_concrete(vd))
+ return;
+
+ uint64_t last_offset = vd->vdev_trim_offset[txg & TXG_MASK];
+ vd->vdev_trim_offset[txg & TXG_MASK] = 0;
+
+ VERIFY3U(vd->vdev_leaf_zap, !=, 0);
+
+ objset_t *mos = vd->vdev_spa->spa_meta_objset;
+
+ if (last_offset > 0 || vd->vdev_trim_last_offset == UINT64_MAX) {
+
+ if (vd->vdev_trim_last_offset == UINT64_MAX)
+ last_offset = 0;
+
+ vd->vdev_trim_last_offset = last_offset;
+ VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
+ VDEV_LEAF_ZAP_TRIM_LAST_OFFSET,
+ sizeof (last_offset), 1, &last_offset, tx));
+ }
+
+ if (vd->vdev_trim_action_time > 0) {
+ uint64_t val = (uint64_t)vd->vdev_trim_action_time;
+ VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
+ VDEV_LEAF_ZAP_TRIM_ACTION_TIME, sizeof (val),
+ 1, &val, tx));
+ }
+
+ if (vd->vdev_trim_rate > 0) {
+ uint64_t rate = (uint64_t)vd->vdev_trim_rate;
+
+ if (rate == UINT64_MAX)
+ rate = 0;
+
+ VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
+ VDEV_LEAF_ZAP_TRIM_RATE, sizeof (rate), 1, &rate, tx));
+ }
+
+ uint64_t partial = vd->vdev_trim_partial;
+ if (partial == UINT64_MAX)
+ partial = 0;
+
+ VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_PARTIAL,
+ sizeof (partial), 1, &partial, tx));
+
+ uint64_t secure = vd->vdev_trim_secure;
+ if (secure == UINT64_MAX)
+ secure = 0;
+
+ VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_SECURE,
+ sizeof (secure), 1, &secure, tx));
+
+
+ uint64_t trim_state = vd->vdev_trim_state;
+ VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_STATE,
+ sizeof (trim_state), 1, &trim_state, tx));
+}
+
+/*
+ * Update the on-disk state of a manual TRIM. This is called to request
+ * that a TRIM be started/suspended/canceled, or to change one of the
+ * TRIM options (partial, secure, rate).
+ */
+static void
+vdev_trim_change_state(vdev_t *vd, vdev_trim_state_t new_state,
+ uint64_t rate, boolean_t partial, boolean_t secure)
+{
+ ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
+ spa_t *spa = vd->vdev_spa;
+
+ if (new_state == vd->vdev_trim_state)
+ return;
+
+ /*
+ * Copy the vd's guid, this will be freed by the sync task.
+ */
+ uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
+ *guid = vd->vdev_guid;
+
+ /*
+ * If we're suspending, then preserve the original start time.
+ */
+ if (vd->vdev_trim_state != VDEV_TRIM_SUSPENDED) {
+ vd->vdev_trim_action_time = gethrestime_sec();
+ }
+
+ /*
+ * If we're activating, then preserve the requested rate and trim
+ * method. Setting the last offset and rate to UINT64_MAX is used
+ * as a sentinel to indicate they should be reset to default values.
+ */
+ if (new_state == VDEV_TRIM_ACTIVE) {
+ if (vd->vdev_trim_state == VDEV_TRIM_COMPLETE ||
+ vd->vdev_trim_state == VDEV_TRIM_CANCELED) {
+ vd->vdev_trim_last_offset = UINT64_MAX;
+ vd->vdev_trim_rate = UINT64_MAX;
+ vd->vdev_trim_partial = UINT64_MAX;
+ vd->vdev_trim_secure = UINT64_MAX;
+ }
+
+ if (rate != 0)
+ vd->vdev_trim_rate = rate;
+
+ if (partial != 0)
+ vd->vdev_trim_partial = partial;
+
+ if (secure != 0)
+ vd->vdev_trim_secure = secure;
+ }
+
+ boolean_t resumed = !!(vd->vdev_trim_state == VDEV_TRIM_SUSPENDED);
+ vd->vdev_trim_state = new_state;
+
+ dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
+ VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
+ dsl_sync_task_nowait(spa_get_dsl(spa), vdev_trim_zap_update_sync,
+ guid, 2, ZFS_SPACE_CHECK_NONE, tx);
+
+ switch (new_state) {
+ case VDEV_TRIM_ACTIVE:
+ spa_event_notify(spa, vd, NULL,
+ resumed ? ESC_ZFS_TRIM_RESUME : ESC_ZFS_TRIM_START);
+ spa_history_log_internal(spa, "trim", tx,
+ "vdev=%s activated", vd->vdev_path);
+ break;
+ case VDEV_TRIM_SUSPENDED:
+ spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_SUSPEND);
+ spa_history_log_internal(spa, "trim", tx,
+ "vdev=%s suspended", vd->vdev_path);
+ break;
+ case VDEV_TRIM_CANCELED:
+ spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_CANCEL);
+ spa_history_log_internal(spa, "trim", tx,
+ "vdev=%s canceled", vd->vdev_path);
+ break;
+ case VDEV_TRIM_COMPLETE:
+ spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_FINISH);
+ spa_history_log_internal(spa, "trim", tx,
+ "vdev=%s complete", vd->vdev_path);
+ break;
+ default:
+ panic("invalid state %llu", (unsigned long long)new_state);
+ }
+
+ dmu_tx_commit(tx);
+}
+
+/*
+ * The zio_done_func_t done callback for each manual TRIM issued. It is
+ * responsible for updating the TRIM stats, reissuing failed TRIM I/Os,
+ * and limiting the number of in flight TRIM I/Os.
+ */
+static void
+vdev_trim_cb(zio_t *zio)
+{
+ vdev_t *vd = zio->io_vd;
+
+ mutex_enter(&vd->vdev_trim_io_lock);
+ if (zio->io_error == ENXIO && !vdev_writeable(vd)) {
+ /*
+ * The I/O failed because the vdev was unavailable; roll the
+ * last offset back. (This works because spa_sync waits on
+ * spa_txg_zio before it runs sync tasks.)
+ */
+ uint64_t *offset =
+ &vd->vdev_trim_offset[zio->io_txg & TXG_MASK];
+ *offset = MIN(*offset, zio->io_offset);
+ } else {
+ if (zio->io_error != 0) {
+ vd->vdev_stat.vs_trim_errors++;
+ spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_MANUAL,
+ 0, 0, 0, 0, 1, zio->io_orig_size);
+ } else {
+ spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_MANUAL,
+ 1, zio->io_orig_size, 0, 0, 0, 0);
+ }
+
+ vd->vdev_trim_bytes_done += zio->io_orig_size;
+ }
+
+ ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_MANUAL], >, 0);
+ vd->vdev_trim_inflight[TRIM_TYPE_MANUAL]--;
+ cv_broadcast(&vd->vdev_trim_io_cv);
+ mutex_exit(&vd->vdev_trim_io_lock);
+
+ spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
+}
+
+/*
+ * The zio_done_func_t done callback for each automatic TRIM issued. It
+ * is responsible for updating the TRIM stats and limiting the number of
+ * in flight TRIM I/Os. Automatic TRIM I/Os are best effort and are
+ * never reissued on failure.
+ */
+static void
+vdev_autotrim_cb(zio_t *zio)
+{
+ vdev_t *vd = zio->io_vd;
+
+ mutex_enter(&vd->vdev_trim_io_lock);
+
+ if (zio->io_error != 0) {
+ vd->vdev_stat.vs_trim_errors++;
+ spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_AUTO,
+ 0, 0, 0, 0, 1, zio->io_orig_size);
+ } else {
+ spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_AUTO,
+ 1, zio->io_orig_size, 0, 0, 0, 0);
+ }
+
+ ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_AUTO], >, 0);
+ vd->vdev_trim_inflight[TRIM_TYPE_AUTO]--;
+ cv_broadcast(&vd->vdev_trim_io_cv);
+ mutex_exit(&vd->vdev_trim_io_lock);
+
+ spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
+}
+
+/*
+ * Returns the average trim rate in bytes/sec for the ta->trim_vdev.
+ */
+static uint64_t
+vdev_trim_calculate_rate(trim_args_t *ta)
+{
+ return (ta->trim_bytes_done * 1000 /
+ (NSEC2MSEC(gethrtime() - ta->trim_start_time) + 1));
+}
+
+/*
+ * Issues a physical TRIM and takes care of rate limiting (bytes/sec)
+ * and number of concurrent TRIM I/Os.
+ */
+static int
+vdev_trim_range(trim_args_t *ta, uint64_t start, uint64_t size)
+{
+ vdev_t *vd = ta->trim_vdev;
+ spa_t *spa = vd->vdev_spa;
+
+ mutex_enter(&vd->vdev_trim_io_lock);
+
+ /*
+ * Limit manual TRIM I/Os to the requested rate. This does not
+ * apply to automatic TRIM since no per vdev rate can be specified.
+ */
+ if (ta->trim_type == TRIM_TYPE_MANUAL) {
+ while (vd->vdev_trim_rate != 0 && !vdev_trim_should_stop(vd) &&
+ vdev_trim_calculate_rate(ta) > vd->vdev_trim_rate) {
+ cv_timedwait_sig(&vd->vdev_trim_io_cv,
+ &vd->vdev_trim_io_lock, ddi_get_lbolt() +
+ MSEC_TO_TICK(10));
+ }
+ }
+ ta->trim_bytes_done += size;
+
+ /* Limit in flight trimming I/Os */
+ while (vd->vdev_trim_inflight[0] + vd->vdev_trim_inflight[1] >=
+ zfs_trim_queue_limit) {
+ cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
+ }
+ vd->vdev_trim_inflight[ta->trim_type]++;
+ mutex_exit(&vd->vdev_trim_io_lock);
+
+ dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
+ VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
+ uint64_t txg = dmu_tx_get_txg(tx);
+
+ spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER);
+ mutex_enter(&vd->vdev_trim_lock);
+
+ if (ta->trim_type == TRIM_TYPE_MANUAL &&
+ vd->vdev_trim_offset[txg & TXG_MASK] == 0) {
+ uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
+ *guid = vd->vdev_guid;
+
+ /* This is the first write of this txg. */
+ dsl_sync_task_nowait(spa_get_dsl(spa),
+ vdev_trim_zap_update_sync, guid, 2,
+ ZFS_SPACE_CHECK_RESERVED, tx);
+ }
+
+ /*
+ * We know the vdev_t will still be around since all consumers of
+ * vdev_free must stop the trimming first.
+ */
+ if ((ta->trim_type == TRIM_TYPE_MANUAL &&
+ vdev_trim_should_stop(vd)) ||
+ (ta->trim_type == TRIM_TYPE_AUTO &&
+ vdev_autotrim_should_stop(vd->vdev_top))) {
+ mutex_enter(&vd->vdev_trim_io_lock);
+ vd->vdev_trim_inflight[ta->trim_type]--;
+ mutex_exit(&vd->vdev_trim_io_lock);
+ spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
+ mutex_exit(&vd->vdev_trim_lock);
+ dmu_tx_commit(tx);
+ return (SET_ERROR(EINTR));
+ }
+ mutex_exit(&vd->vdev_trim_lock);
+
+ if (ta->trim_type == TRIM_TYPE_MANUAL)
+ vd->vdev_trim_offset[txg & TXG_MASK] = start + size;
+
+ zio_nowait(zio_trim(spa->spa_txg_zio[txg & TXG_MASK], vd,
+ start, size, ta->trim_type == TRIM_TYPE_MANUAL ?
+ vdev_trim_cb : vdev_autotrim_cb, NULL,
+ ZIO_PRIORITY_TRIM, ZIO_FLAG_CANFAIL, ta->trim_flags));
+ /* vdev_trim_cb and vdev_autotrim_cb release SCL_STATE_ALL */
+
+ dmu_tx_commit(tx);
+
+ return (0);
+}
+
+/*
+ * Issues TRIM I/Os for all ranges in the provided ta->trim_tree range tree.
+ * Additional parameters describing how the TRIM should be performed must
+ * be set in the trim_args structure. See the trim_args definition for
+ * additional information.
+ */
+static int
+vdev_trim_ranges(trim_args_t *ta)
+{
+ vdev_t *vd = ta->trim_vdev;
+ avl_tree_t *rt = &ta->trim_tree->rt_root;
+ uint64_t extent_bytes_max = ta->trim_extent_bytes_max;
+ uint64_t extent_bytes_min = ta->trim_extent_bytes_min;
+ spa_t *spa = vd->vdev_spa;
+
+ ta->trim_start_time = gethrtime();
+ ta->trim_bytes_done = 0;
+
+ for (range_seg_t *rs = avl_first(rt); rs != NULL;
+ rs = AVL_NEXT(rt, rs)) {
+ uint64_t size = rs->rs_end - rs->rs_start;
+
+ if (extent_bytes_min && size < extent_bytes_min) {
+ spa_iostats_trim_add(spa, ta->trim_type,
+ 0, 0, 1, size, 0, 0);
+ continue;
+ }
+
+ /* Split range into legally-sized physical chunks */
+ uint64_t writes_required = ((size - 1) / extent_bytes_max) + 1;
+
+ for (uint64_t w = 0; w < writes_required; w++) {
+ int error;
+
+ error = vdev_trim_range(ta, VDEV_LABEL_START_SIZE +
+ rs->rs_start + (w * extent_bytes_max),
+ MIN(size - (w * extent_bytes_max),
+ extent_bytes_max));
+ if (error != 0) {
+ return (error);
+ }
+ }
+ }
+
+ return (0);
+}
+
+/*
+ * Calculates the completion percentage of a manual TRIM.
+ */
+static void
+vdev_trim_calculate_progress(vdev_t *vd)
+{
+ ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
+ spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
+ ASSERT(vd->vdev_leaf_zap != 0);
+
+ vd->vdev_trim_bytes_est = 0;
+ vd->vdev_trim_bytes_done = 0;
+
+ for (uint64_t i = 0; i < vd->vdev_top->vdev_ms_count; i++) {
+ metaslab_t *msp = vd->vdev_top->vdev_ms[i];
+ mutex_enter(&msp->ms_lock);
+
+ uint64_t ms_free = msp->ms_size -
+ metaslab_allocated_space(msp);
+
+ if (vd->vdev_top->vdev_ops == &vdev_raidz_ops)
+ ms_free /= vd->vdev_top->vdev_children;
+
+ /*
+ * Convert the metaslab range to a physical range
+ * on our vdev. We use this to determine if we are
+ * in the middle of this metaslab range.
+ */
+ range_seg_t logical_rs, physical_rs;
+ logical_rs.rs_start = msp->ms_start;
+ logical_rs.rs_end = msp->ms_start + msp->ms_size;
+ vdev_xlate(vd, &logical_rs, &physical_rs);
+
+ if (vd->vdev_trim_last_offset <= physical_rs.rs_start) {
+ vd->vdev_trim_bytes_est += ms_free;
+ mutex_exit(&msp->ms_lock);
+ continue;
+ } else if (vd->vdev_trim_last_offset > physical_rs.rs_end) {
+ vd->vdev_trim_bytes_done += ms_free;
+ vd->vdev_trim_bytes_est += ms_free;
+ mutex_exit(&msp->ms_lock);
+ continue;
+ }
+
+ /*
+ * If we get here, we're in the middle of trimming this
+ * metaslab. Load it and walk the free tree for more
+ * accurate progress estimation.
+ */
+ VERIFY0(metaslab_load(msp));
+
+ for (range_seg_t *rs = avl_first(&msp->ms_allocatable->rt_root);
+ rs; rs = AVL_NEXT(&msp->ms_allocatable->rt_root, rs)) {
+ logical_rs.rs_start = rs->rs_start;
+ logical_rs.rs_end = rs->rs_end;
+ vdev_xlate(vd, &logical_rs, &physical_rs);
+
+ uint64_t size = physical_rs.rs_end -
+ physical_rs.rs_start;
+ vd->vdev_trim_bytes_est += size;
+ if (vd->vdev_trim_last_offset >= physical_rs.rs_end) {
+ vd->vdev_trim_bytes_done += size;
+ } else if (vd->vdev_trim_last_offset >
+ physical_rs.rs_start &&
+ vd->vdev_trim_last_offset <=
+ physical_rs.rs_end) {
+ vd->vdev_trim_bytes_done +=
+ vd->vdev_trim_last_offset -
+ physical_rs.rs_start;
+ }
+ }
+ mutex_exit(&msp->ms_lock);
+ }
+}
+
+/*
+ * Load from disk the vdev's manual TRIM information. This includes the
+ * state, progress, and options provided when initiating the manual TRIM.
+ */
+static int
+vdev_trim_load(vdev_t *vd)
+{
+ int err = 0;
+ ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
+ spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
+ ASSERT(vd->vdev_leaf_zap != 0);
+
+ if (vd->vdev_trim_state == VDEV_TRIM_ACTIVE ||
+ vd->vdev_trim_state == VDEV_TRIM_SUSPENDED) {
+ err = zap_lookup(vd->vdev_spa->spa_meta_objset,
+ vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_LAST_OFFSET,
+ sizeof (vd->vdev_trim_last_offset), 1,
+ &vd->vdev_trim_last_offset);
+ if (err == ENOENT) {
+ vd->vdev_trim_last_offset = 0;
+ err = 0;
+ }
+
+ if (err == 0) {
+ err = zap_lookup(vd->vdev_spa->spa_meta_objset,
+ vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_RATE,
+ sizeof (vd->vdev_trim_rate), 1,
+ &vd->vdev_trim_rate);
+ if (err == ENOENT) {
+ vd->vdev_trim_rate = 0;
+ err = 0;
+ }
+ }
+
+ if (err == 0) {
+ err = zap_lookup(vd->vdev_spa->spa_meta_objset,
+ vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_PARTIAL,
+ sizeof (vd->vdev_trim_partial), 1,
+ &vd->vdev_trim_partial);
+ if (err == ENOENT) {
+ vd->vdev_trim_partial = 0;
+ err = 0;
+ }
+ }
+
+ if (err == 0) {
+ err = zap_lookup(vd->vdev_spa->spa_meta_objset,
+ vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_SECURE,
+ sizeof (vd->vdev_trim_secure), 1,
+ &vd->vdev_trim_secure);
+ if (err == ENOENT) {
+ vd->vdev_trim_secure = 0;
+ err = 0;
+ }
+ }
+ }
+
+ vdev_trim_calculate_progress(vd);
+
+ return (err);
+}
+
+/*
+ * Convert the logical range into a physical range and add it to the
+ * range tree passed in the trim_args_t.
+ */
+static void
+vdev_trim_range_add(void *arg, uint64_t start, uint64_t size)
+{
+ trim_args_t *ta = arg;
+ vdev_t *vd = ta->trim_vdev;
+ range_seg_t logical_rs, physical_rs;
+ logical_rs.rs_start = start;
+ logical_rs.rs_end = start + size;
+
+ /*
+ * Every range to be trimmed must be part of ms_allocatable.
+ * When ZFS_DEBUG_TRIM is set load the metaslab to verify this
+ * is always the case.
+ */
+ if (zfs_flags & ZFS_DEBUG_TRIM) {
+ metaslab_t *msp = ta->trim_msp;
+ VERIFY0(metaslab_load(msp));
+ VERIFY3B(msp->ms_loaded, ==, B_TRUE);
+ VERIFY(range_tree_find(msp->ms_allocatable, start, size));
+ }
+
+ ASSERT(vd->vdev_ops->vdev_op_leaf);
+ vdev_xlate(vd, &logical_rs, &physical_rs);
+
+ IMPLY(vd->vdev_top == vd,
+ logical_rs.rs_start == physical_rs.rs_start);
+ IMPLY(vd->vdev_top == vd,
+ logical_rs.rs_end == physical_rs.rs_end);
+
+ /*
+ * Only a manual trim will be traversing the vdev sequentially.
+ * For an auto trim all valid ranges should be added.
+ */
+ if (ta->trim_type == TRIM_TYPE_MANUAL) {
+
+ /* Only add segments that we have not visited yet */
+ if (physical_rs.rs_end <= vd->vdev_trim_last_offset)
+ return;
+
+ /* Pick up where we left off mid-range. */
+ if (vd->vdev_trim_last_offset > physical_rs.rs_start) {
+ ASSERT3U(physical_rs.rs_end, >,
+ vd->vdev_trim_last_offset);
+ physical_rs.rs_start = vd->vdev_trim_last_offset;
+ }
+ }
+
+ ASSERT3U(physical_rs.rs_end, >=, physical_rs.rs_start);
+
+ /*
+ * With raidz, it's possible that the logical range does not live on
+ * this leaf vdev. We only add the physical range to this vdev's if it
+ * has a length greater than 0.
+ */
+ if (physical_rs.rs_end > physical_rs.rs_start) {
+ range_tree_add(ta->trim_tree, physical_rs.rs_start,
+ physical_rs.rs_end - physical_rs.rs_start);
+ } else {
+ ASSERT3U(physical_rs.rs_end, ==, physical_rs.rs_start);
+ }
+}
+
+/*
+ * Each manual TRIM thread is responsible for trimming the unallocated
+ * space for each leaf vdev. This is accomplished by sequentially iterating
+ * over its top-level metaslabs and issuing TRIM I/O for the space described
+ * by its ms_allocatable. While a metaslab is undergoing trimming it is
+ * not eligible for new allocations.
+ */
+static void
+vdev_trim_thread(void *arg)
+{
+ vdev_t *vd = arg;
+ spa_t *spa = vd->vdev_spa;
+ trim_args_t ta;
+ int error = 0;
+
+ /*
+ * The VDEV_LEAF_ZAP_TRIM_* entries may have been updated by
+ * vdev_trim(). Wait for the updated values to be reflected
+ * in the zap in order to start with the requested settings.
+ */
+ txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
+
+ ASSERT(vdev_is_concrete(vd));
+ spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
+
+ vd->vdev_trim_last_offset = 0;
+ vd->vdev_trim_rate = 0;
+ vd->vdev_trim_partial = 0;
+ vd->vdev_trim_secure = 0;
+
+ VERIFY0(vdev_trim_load(vd));
+
+ ta.trim_vdev = vd;
+ ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max;
+ ta.trim_extent_bytes_min = zfs_trim_extent_bytes_min;
+ ta.trim_tree = range_tree_create(NULL, NULL);
+ ta.trim_type = TRIM_TYPE_MANUAL;
+ ta.trim_flags = 0;
+
+ /*
+ * When a secure TRIM has been requested infer that the intent
+ * is that everything must be trimmed. Override the default
+ * minimum TRIM size to prevent ranges from being skipped.
+ */
+ if (vd->vdev_trim_secure) {
+ ta.trim_flags |= ZIO_TRIM_SECURE;
+ ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE;
+ }
+
+ uint64_t ms_count = 0;
+ for (uint64_t i = 0; !vd->vdev_detached &&
+ i < vd->vdev_top->vdev_ms_count; i++) {
+ metaslab_t *msp = vd->vdev_top->vdev_ms[i];
+
+ /*
+ * If we've expanded the top-level vdev or it's our
+ * first pass, calculate our progress.
+ */
+ if (vd->vdev_top->vdev_ms_count != ms_count) {
+ vdev_trim_calculate_progress(vd);
+ ms_count = vd->vdev_top->vdev_ms_count;
+ }
+
+ spa_config_exit(spa, SCL_CONFIG, FTAG);
+ metaslab_disable(msp);
+ mutex_enter(&msp->ms_lock);
+ VERIFY0(metaslab_load(msp));
+
+ /*
+ * If a partial TRIM was requested skip metaslabs which have
+ * never been initialized and thus have never been written.
+ */
+ if (msp->ms_sm == NULL && vd->vdev_trim_partial) {
+ mutex_exit(&msp->ms_lock);
+ metaslab_enable(msp, B_FALSE);
+ spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
+ vdev_trim_calculate_progress(vd);
+ continue;
+ }
+
+ ta.trim_msp = msp;
+ range_tree_walk(msp->ms_allocatable, vdev_trim_range_add, &ta);
+ range_tree_vacate(msp->ms_trim, NULL, NULL);
+ mutex_exit(&msp->ms_lock);
+
+ error = vdev_trim_ranges(&ta);
+ metaslab_enable(msp, B_TRUE);
+ spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
+
+ range_tree_vacate(ta.trim_tree, NULL, NULL);
+ if (error != 0)
+ break;
+ }
+
+ spa_config_exit(spa, SCL_CONFIG, FTAG);
+ mutex_enter(&vd->vdev_trim_io_lock);
+ while (vd->vdev_trim_inflight[0] > 0) {
+ cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
+ }
+ mutex_exit(&vd->vdev_trim_io_lock);
+
+ range_tree_destroy(ta.trim_tree);
+
+ mutex_enter(&vd->vdev_trim_lock);
+ if (!vd->vdev_trim_exit_wanted && vdev_writeable(vd)) {
+ vdev_trim_change_state(vd, VDEV_TRIM_COMPLETE,
+ vd->vdev_trim_rate, vd->vdev_trim_partial,
+ vd->vdev_trim_secure);
+ }
+ ASSERT(vd->vdev_trim_thread != NULL || vd->vdev_trim_inflight[0] == 0);
+
+ /*
+ * Drop the vdev_trim_lock while we sync out the txg since it's
+ * possible that a device might be trying to come online and must
+ * check to see if it needs to restart a trim. That thread will be
+ * holding the spa_config_lock which would prevent the txg_wait_synced
+ * from completing.
+ */
+ mutex_exit(&vd->vdev_trim_lock);
+ txg_wait_synced(spa_get_dsl(spa), 0);
+ mutex_enter(&vd->vdev_trim_lock);
+
+ vd->vdev_trim_thread = NULL;
+ cv_broadcast(&vd->vdev_trim_cv);
+ mutex_exit(&vd->vdev_trim_lock);
+}
+
+/*
+ * Initiates a manual TRIM for the vdev_t. Callers must hold vdev_trim_lock,
+ * the vdev_t must be a leaf and cannot already be manually trimming.
+ */
+void
+vdev_trim(vdev_t *vd, uint64_t rate, boolean_t partial, boolean_t secure)
+{
+ ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
+ ASSERT(vd->vdev_ops->vdev_op_leaf);
+ ASSERT(vdev_is_concrete(vd));
+ ASSERT3P(vd->vdev_trim_thread, ==, NULL);
+ ASSERT(!vd->vdev_detached);
+ ASSERT(!vd->vdev_trim_exit_wanted);
+ ASSERT(!vd->vdev_top->vdev_removing);
+
+ vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, rate, partial, secure);
+ vd->vdev_trim_thread = thread_create(NULL, 0,
+ vdev_trim_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
+}
+
+/*
+ * Wait for the trimming thread to be terminated (canceled or stopped).
+ */
+static void
+vdev_trim_stop_wait_impl(vdev_t *vd)
+{
+ ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
+
+ while (vd->vdev_trim_thread != NULL)
+ cv_wait(&vd->vdev_trim_cv, &vd->vdev_trim_lock);
+
+ ASSERT3P(vd->vdev_trim_thread, ==, NULL);
+ vd->vdev_trim_exit_wanted = B_FALSE;
+}
+
+/*
+ * Wait for vdev trim threads which were listed to cleanly exit.
+ */
+void
+vdev_trim_stop_wait(spa_t *spa, list_t *vd_list)
+{
+ vdev_t *vd;
+
+ ASSERT(MUTEX_HELD(&spa_namespace_lock));
+
+ while ((vd = list_remove_head(vd_list)) != NULL) {
+ mutex_enter(&vd->vdev_trim_lock);
+ vdev_trim_stop_wait_impl(vd);
+ mutex_exit(&vd->vdev_trim_lock);
+ }
+}
+
+/*
+ * Stop trimming a device, with the resultant trimming state being tgt_state.
+ * For blocking behavior pass NULL for vd_list. Otherwise, when a list_t is
+ * provided the stopping vdev is inserted in to the list. Callers are then
+ * required to call vdev_trim_stop_wait() to block for all the trim threads
+ * to exit. The caller must hold vdev_trim_lock and must not be writing to
+ * the spa config, as the trimming thread may try to enter the config as a
+ * reader before exiting.
+ */
+void
+vdev_trim_stop(vdev_t *vd, vdev_trim_state_t tgt_state, list_t *vd_list)
+{
+ ASSERT(!spa_config_held(vd->vdev_spa, SCL_CONFIG|SCL_STATE, RW_WRITER));
+ ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
+ ASSERT(vd->vdev_ops->vdev_op_leaf);
+ ASSERT(vdev_is_concrete(vd));
+
+ /*
+ * Allow cancel requests to proceed even if the trim thread has
+ * stopped.
+ */
+ if (vd->vdev_trim_thread == NULL && tgt_state != VDEV_TRIM_CANCELED)
+ return;
+
+ vdev_trim_change_state(vd, tgt_state, 0, 0, 0);
+ vd->vdev_trim_exit_wanted = B_TRUE;
+
+ if (vd_list == NULL) {
+ vdev_trim_stop_wait_impl(vd);
+ } else {
+ ASSERT(MUTEX_HELD(&spa_namespace_lock));
+ list_insert_tail(vd_list, vd);
+ }
+}
+
+/*
+ * Requests that all listed vdevs stop trimming.
+ */
+static void
+vdev_trim_stop_all_impl(vdev_t *vd, vdev_trim_state_t tgt_state,
+ list_t *vd_list)
+{
+ if (vd->vdev_ops->vdev_op_leaf && vdev_is_concrete(vd)) {
+ mutex_enter(&vd->vdev_trim_lock);
+ vdev_trim_stop(vd, tgt_state, vd_list);
+ mutex_exit(&vd->vdev_trim_lock);
+ return;
+ }
+
+ for (uint64_t i = 0; i < vd->vdev_children; i++) {
+ vdev_trim_stop_all_impl(vd->vdev_child[i], tgt_state,
+ vd_list);
+ }
+}
+
+/*
+ * Convenience function to stop trimming of a vdev tree and set all trim
+ * thread pointers to NULL.
+ */
+void
+vdev_trim_stop_all(vdev_t *vd, vdev_trim_state_t tgt_state)
+{
+ spa_t *spa = vd->vdev_spa;
+ list_t vd_list;
+
+ ASSERT(MUTEX_HELD(&spa_namespace_lock));
+
+ list_create(&vd_list, sizeof (vdev_t),
+ offsetof(vdev_t, vdev_trim_node));
+
+ vdev_trim_stop_all_impl(vd, tgt_state, &vd_list);
+ vdev_trim_stop_wait(spa, &vd_list);
+
+ if (vd->vdev_spa->spa_sync_on) {
+ /* Make sure that our state has been synced to disk */
+ txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
+ }
+
+ list_destroy(&vd_list);
+}
+
+/*
+ * Conditionally restarts a manual TRIM given its on-disk state.
+ */
+void
+vdev_trim_restart(vdev_t *vd)
+{
+ ASSERT(MUTEX_HELD(&spa_namespace_lock));
+ ASSERT(!spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
+
+ if (vd->vdev_leaf_zap != 0) {
+ mutex_enter(&vd->vdev_trim_lock);
+ uint64_t trim_state = VDEV_TRIM_NONE;
+ int err = zap_lookup(vd->vdev_spa->spa_meta_objset,
+ vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_STATE,
+ sizeof (trim_state), 1, &trim_state);
+ ASSERT(err == 0 || err == ENOENT);
+ vd->vdev_trim_state = trim_state;
+
+ uint64_t timestamp = 0;
+ err = zap_lookup(vd->vdev_spa->spa_meta_objset,
+ vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_ACTION_TIME,
+ sizeof (timestamp), 1, &timestamp);
+ ASSERT(err == 0 || err == ENOENT);
+ vd->vdev_trim_action_time = (time_t)timestamp;
+
+ if (vd->vdev_trim_state == VDEV_TRIM_SUSPENDED ||
+ vd->vdev_offline) {
+ /* load progress for reporting, but don't resume */
+ VERIFY0(vdev_trim_load(vd));
+ } else if (vd->vdev_trim_state == VDEV_TRIM_ACTIVE &&
+ vdev_writeable(vd) && !vd->vdev_top->vdev_removing &&
+ vd->vdev_trim_thread == NULL) {
+ VERIFY0(vdev_trim_load(vd));
+ vdev_trim(vd, vd->vdev_trim_rate,
+ vd->vdev_trim_partial, vd->vdev_trim_secure);
+ }
+
+ mutex_exit(&vd->vdev_trim_lock);
+ }
+
+ for (uint64_t i = 0; i < vd->vdev_children; i++) {
+ vdev_trim_restart(vd->vdev_child[i]);
+ }
+}
+
+/*
+ * Used by the automatic TRIM when ZFS_DEBUG_TRIM is set to verify that
+ * every TRIM range is contained within ms_allocatable.
+ */
+static void
+vdev_trim_range_verify(void *arg, uint64_t start, uint64_t size)
+{
+ trim_args_t *ta = arg;
+ metaslab_t *msp = ta->trim_msp;
+
+ VERIFY3B(msp->ms_loaded, ==, B_TRUE);
+ VERIFY3U(msp->ms_disabled, >, 0);
+ VERIFY(range_tree_find(msp->ms_allocatable, start, size) != NULL);
+}
+
+/*
+ * Each automatic TRIM thread is responsible for managing the trimming of a
+ * top-level vdev in the pool. No automatic TRIM state is maintained on-disk.
+ *
+ * N.B. This behavior is different from a manual TRIM where a thread
+ * is created for each leaf vdev, instead of each top-level vdev.
+ */
+static void
+vdev_autotrim_thread(void *arg)
+{
+ vdev_t *vd = arg;
+ spa_t *spa = vd->vdev_spa;
+ int shift = 0;
+
+ mutex_enter(&vd->vdev_autotrim_lock);
+ ASSERT3P(vd->vdev_top, ==, vd);
+ ASSERT3P(vd->vdev_autotrim_thread, !=, NULL);
+ mutex_exit(&vd->vdev_autotrim_lock);
+ spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
+
+ uint64_t extent_bytes_max = zfs_trim_extent_bytes_max;
+ uint64_t extent_bytes_min = zfs_trim_extent_bytes_min;
+
+ while (!vdev_autotrim_should_stop(vd)) {
+ int txgs_per_trim = MAX(zfs_trim_txg_batch, 1);
+ boolean_t issued_trim = B_FALSE;
+
+ /*
+ * All of the metaslabs are divided in to groups of size
+ * num_metaslabs / zfs_trim_txg_batch. Each of these groups
+ * is composed of metaslabs which are spread evenly over the
+ * device.
+ *
+ * For example, when zfs_trim_txg_batch = 32 (default) then
+ * group 0 will contain metaslabs 0, 32, 64, ...;
+ * group 1 will contain metaslabs 1, 33, 65, ...;
+ * group 2 will contain metaslabs 2, 34, 66, ...; and so on.
+ *
+ * On each pass through the while() loop one of these groups
+ * is selected. This is accomplished by using a shift value
+ * to select the starting metaslab, then striding over the
+ * metaslabs using the zfs_trim_txg_batch size. This is
+ * done to accomplish two things.
+ *
+ * 1) By dividing the metaslabs in to groups, and making sure
+ * that each group takes a minimum of one txg to process.
+ * Then zfs_trim_txg_batch controls the minimum number of
+ * txgs which must occur before a metaslab is revisited.
+ *
+ * 2) Selecting non-consecutive metaslabs distributes the
+ * TRIM commands for a group evenly over the entire device.
+ * This can be advantageous for certain types of devices.
+ */
+ for (uint64_t i = shift % txgs_per_trim; i < vd->vdev_ms_count;
+ i += txgs_per_trim) {
+ metaslab_t *msp = vd->vdev_ms[i];
+ range_tree_t *trim_tree;
+
+ spa_config_exit(spa, SCL_CONFIG, FTAG);
+ metaslab_disable(msp);
+ spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
+
+ mutex_enter(&msp->ms_lock);
+
+ /*
+ * Skip the metaslab when it has never been allocated
+ * or when there are no recent frees to trim.
+ */
+ if (msp->ms_sm == NULL ||
+ range_tree_is_empty(msp->ms_trim)) {
+ mutex_exit(&msp->ms_lock);
+ metaslab_enable(msp, B_FALSE);
+ continue;
+ }
+
+ /*
+ * Skip the metaslab when it has already been disabled.
+ * This may happen when a manual TRIM or initialize
+ * operation is running concurrently. In the case
+ * of a manual TRIM, the ms_trim tree will have been
+ * vacated. Only ranges added after the manual TRIM
+ * disabled the metaslab will be included in the tree.
+ * These will be processed when the automatic TRIM
+ * next revisits this metaslab.
+ */
+ if (msp->ms_disabled > 1) {
+ mutex_exit(&msp->ms_lock);
+ metaslab_enable(msp, B_FALSE);
+ continue;
+ }
+
+ /*
+ * Allocate an empty range tree which is swapped in
+ * for the existing ms_trim tree while it is processed.
+ */
+ trim_tree = range_tree_create(NULL, NULL);
+ range_tree_swap(&msp->ms_trim, &trim_tree);
+ ASSERT(range_tree_is_empty(msp->ms_trim));
+
+ /*
+ * There are two cases when constructing the per-vdev
+ * trim trees for a metaslab. If the top-level vdev
+ * has no children then it is also a leaf and should
+ * be trimmed. Otherwise our children are the leaves
+ * and a trim tree should be constructed for each.
+ */
+ trim_args_t *tap;
+ uint64_t children = vd->vdev_children;
+ if (children == 0) {
+ children = 1;
+ tap = kmem_zalloc(sizeof (trim_args_t) *
+ children, KM_SLEEP);
+ tap[0].trim_vdev = vd;
+ } else {
+ tap = kmem_zalloc(sizeof (trim_args_t) *
+ children, KM_SLEEP);
+
+ for (uint64_t c = 0; c < children; c++) {
+ tap[c].trim_vdev = vd->vdev_child[c];
+ }
+ }
+
+ for (uint64_t c = 0; c < children; c++) {
+ trim_args_t *ta = &tap[c];
+ vdev_t *cvd = ta->trim_vdev;
+
+ ta->trim_msp = msp;
+ ta->trim_extent_bytes_max = extent_bytes_max;
+ ta->trim_extent_bytes_min = extent_bytes_min;
+ ta->trim_type = TRIM_TYPE_AUTO;
+ ta->trim_flags = 0;
+
+ if (cvd->vdev_detached ||
+ !vdev_writeable(cvd) ||
+ !cvd->vdev_has_trim ||
+ cvd->vdev_trim_thread != NULL) {
+ continue;
+ }
+
+ /*
+ * When a device has an attached hot spare, or
+ * is being replaced it will not be trimmed.
+ * This is done to avoid adding additional
+ * stress to a potentially unhealthy device,
+ * and to minimize the required rebuild time.
+ */
+ if (!cvd->vdev_ops->vdev_op_leaf)
+ continue;
+
+ ta->trim_tree = range_tree_create(NULL, NULL);
+ range_tree_walk(trim_tree,
+ vdev_trim_range_add, ta);
+ }
+
+ mutex_exit(&msp->ms_lock);
+ spa_config_exit(spa, SCL_CONFIG, FTAG);
+
+ /*
+ * Issue the TRIM I/Os for all ranges covered by the
+ * TRIM trees. These ranges are safe to TRIM because
+ * no new allocations will be performed until the call
+ * to metaslab_enabled() below.
+ */
+ for (uint64_t c = 0; c < children; c++) {
+ trim_args_t *ta = &tap[c];
+
+ /*
+ * Always yield to a manual TRIM if one has
+ * been started for the child vdev.
+ */
+ if (ta->trim_tree == NULL ||
+ ta->trim_vdev->vdev_trim_thread != NULL) {
+ continue;
+ }
+
+ /*
+ * After this point metaslab_enable() must be
+ * called with the sync flag set. This is done
+ * here because vdev_trim_ranges() is allowed
+ * to be interrupted (EINTR) before issuing all
+ * of the required TRIM I/Os.
+ */
+ issued_trim = B_TRUE;
+
+ int error = vdev_trim_ranges(ta);
+ if (error)
+ break;
+ }
+
+ /*
+ * Verify every range which was trimmed is still
+ * contained within the ms_allocatable tree.
+ */
+ if (zfs_flags & ZFS_DEBUG_TRIM) {
+ mutex_enter(&msp->ms_lock);
+ VERIFY0(metaslab_load(msp));
+ VERIFY3P(tap[0].trim_msp, ==, msp);
+ range_tree_walk(trim_tree,
+ vdev_trim_range_verify, &tap[0]);
+ mutex_exit(&msp->ms_lock);
+ }
+
+ range_tree_vacate(trim_tree, NULL, NULL);
+ range_tree_destroy(trim_tree);
+
+ metaslab_enable(msp, issued_trim);
+ spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
+
+ for (uint64_t c = 0; c < children; c++) {
+ trim_args_t *ta = &tap[c];
+
+ if (ta->trim_tree == NULL)
+ continue;
+
+ range_tree_vacate(ta->trim_tree, NULL, NULL);
+ range_tree_destroy(ta->trim_tree);
+ }
+
+ kmem_free(tap, sizeof (trim_args_t) * children);
+ }
+
+ spa_config_exit(spa, SCL_CONFIG, FTAG);
+
+ /*
+ * After completing the group of metaslabs wait for the next
+ * open txg. This is done to make sure that a minimum of
+ * zfs_trim_txg_batch txgs will occur before these metaslabs
+ * are trimmed again.
+ */
+ txg_wait_open(spa_get_dsl(spa), 0, issued_trim);
+
+ shift++;
+ spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
+ }
+
+ for (uint64_t c = 0; c < vd->vdev_children; c++) {
+ vdev_t *cvd = vd->vdev_child[c];
+ mutex_enter(&cvd->vdev_trim_io_lock);
+
+ while (cvd->vdev_trim_inflight[1] > 0) {
+ cv_wait(&cvd->vdev_trim_io_cv,
+ &cvd->vdev_trim_io_lock);
+ }
+ mutex_exit(&cvd->vdev_trim_io_lock);
+ }
+
+ spa_config_exit(spa, SCL_CONFIG, FTAG);
+
+ /*
+ * When exiting because the autotrim property was set to off, then
+ * abandon any unprocessed ms_trim ranges to reclaim the memory.
+ */
+ if (spa_get_autotrim(spa) == SPA_AUTOTRIM_OFF) {
+ for (uint64_t i = 0; i < vd->vdev_ms_count; i++) {
+ metaslab_t *msp = vd->vdev_ms[i];
+
+ mutex_enter(&msp->ms_lock);
+ range_tree_vacate(msp->ms_trim, NULL, NULL);
+ mutex_exit(&msp->ms_lock);
+ }
+ }
+
+ mutex_enter(&vd->vdev_autotrim_lock);
+ ASSERT(vd->vdev_autotrim_thread != NULL);
+ vd->vdev_autotrim_thread = NULL;
+ cv_broadcast(&vd->vdev_autotrim_cv);
+ mutex_exit(&vd->vdev_autotrim_lock);
+}
+
+/*
+ * Starts an autotrim thread, if needed, for each top-level vdev which can be
+ * trimmed. A top-level vdev which has been evacuated will never be trimmed.
+ */
+void
+vdev_autotrim(spa_t *spa)
+{
+ vdev_t *root_vd = spa->spa_root_vdev;
+
+ for (uint64_t i = 0; i < root_vd->vdev_children; i++) {
+ vdev_t *tvd = root_vd->vdev_child[i];
+
+ mutex_enter(&tvd->vdev_autotrim_lock);
+ if (vdev_writeable(tvd) && !tvd->vdev_removing &&
+ tvd->vdev_autotrim_thread == NULL) {
+ ASSERT3P(tvd->vdev_top, ==, tvd);
+
+ tvd->vdev_autotrim_thread = thread_create(NULL, 0,
+ vdev_autotrim_thread, tvd, 0, &p0, TS_RUN,
+ maxclsyspri);
+ ASSERT(tvd->vdev_autotrim_thread != NULL);
+ }
+ mutex_exit(&tvd->vdev_autotrim_lock);
+ }
+}
+
+/*
+ * Wait for the vdev_autotrim_thread associated with the passed top-level
+ * vdev to be terminated (canceled or stopped).
+ */
+void
+vdev_autotrim_stop_wait(vdev_t *tvd)
+{
+ mutex_enter(&tvd->vdev_autotrim_lock);
+ if (tvd->vdev_autotrim_thread != NULL) {
+ tvd->vdev_autotrim_exit_wanted = B_TRUE;
+
+ while (tvd->vdev_autotrim_thread != NULL) {
+ cv_wait(&tvd->vdev_autotrim_cv,
+ &tvd->vdev_autotrim_lock);
+ }
+
+ ASSERT3P(tvd->vdev_autotrim_thread, ==, NULL);
+ tvd->vdev_autotrim_exit_wanted = B_FALSE;
+ }
+ mutex_exit(&tvd->vdev_autotrim_lock);
+}
+
+/*
+ * Wait for all of the vdev_autotrim_thread associated with the pool to
+ * be terminated (canceled or stopped).
+ */
+void
+vdev_autotrim_stop_all(spa_t *spa)
+{
+ vdev_t *root_vd = spa->spa_root_vdev;
+
+ for (uint64_t i = 0; i < root_vd->vdev_children; i++)
+ vdev_autotrim_stop_wait(root_vd->vdev_child[i]);
+}
+
+/*
+ * Conditionally restart all of the vdev_autotrim_thread's for the pool.
+ */
+void
+vdev_autotrim_restart(spa_t *spa)
+{
+ ASSERT(MUTEX_HELD(&spa_namespace_lock));
+
+ if (spa->spa_autotrim)
+ vdev_autotrim(spa);
+}
+
+#if defined(_KERNEL)
+EXPORT_SYMBOL(vdev_trim);
+EXPORT_SYMBOL(vdev_trim_stop);
+EXPORT_SYMBOL(vdev_trim_stop_all);
+EXPORT_SYMBOL(vdev_trim_stop_wait);
+EXPORT_SYMBOL(vdev_trim_restart);
+EXPORT_SYMBOL(vdev_autotrim);
+EXPORT_SYMBOL(vdev_autotrim_stop_all);
+EXPORT_SYMBOL(vdev_autotrim_stop_wait);
+EXPORT_SYMBOL(vdev_autotrim_restart);
+
+/* BEGIN CSTYLED */
+module_param(zfs_trim_extent_bytes_max, uint, 0644);
+MODULE_PARM_DESC(zfs_trim_extent_bytes_max,
+ "Max size of TRIM commands, larger will be split");
+
+module_param(zfs_trim_extent_bytes_min, uint, 0644);
+MODULE_PARM_DESC(zfs_trim_extent_bytes_min,
+ "Min size of TRIM commands, smaller will be skipped");
+
+module_param(zfs_trim_metaslab_skip, uint, 0644);
+MODULE_PARM_DESC(zfs_trim_metaslab_skip,
+ "Skip metaslabs which have never been initialized");
+
+module_param(zfs_trim_txg_batch, uint, 0644);
+MODULE_PARM_DESC(zfs_trim_txg_batch,
+ "Min number of txgs to aggregate frees before issuing TRIM");
+
+module_param(zfs_trim_queue_limit, uint, 0644);
+MODULE_PARM_DESC(zfs_trim_queue_limit,
+ "Max queued TRIMs outstanding per leaf vdev");
+/* END CSTYLED */
+#endif