summaryrefslogtreecommitdiffstats
path: root/module/zfs/vdev_raidz.c
diff options
context:
space:
mode:
authorGvozden Neskovic <[email protected]>2016-04-25 10:04:31 +0200
committerBrian Behlendorf <[email protected]>2016-06-21 09:27:26 -0700
commitab9f4b0b824ab4cc64a4fa382c037f4154de12d6 (patch)
treee38dea4c254c26e528aa0410bc39031f7901c520 /module/zfs/vdev_raidz.c
parent09fb30e5e91d9f2ed622db6b616084ce1d073384 (diff)
SIMD implementation of vdev_raidz generate and reconstruct routines
This is a new implementation of RAIDZ1/2/3 routines using x86_64 scalar, SSE, and AVX2 instruction sets. Included are 3 parity generation routines (P, PQ, and PQR) and 7 reconstruction routines, for all RAIDZ level. On module load, a quick benchmark of supported routines will select the fastest for each operation and they will be used at runtime. Original implementation is still present and can be selected via module parameter. Patch contains: - specialized gen/rec routines for all RAIDZ levels, - new scalar raidz implementation (unrolled), - two x86_64 SIMD implementations (SSE and AVX2 instructions sets), - fastest routines selected on module load (benchmark). - cmd/raidz_test - verify and benchmark all implementations - added raidz_test to the ZFS Test Suite New zfs module parameters: - zfs_vdev_raidz_impl (str): selects the implementation to use. On module load, the parameter will only accept first 3 options, and the other implementations can be set once module is finished loading. Possible values for this option are: "fastest" - use the fastest math available "original" - use the original raidz code "scalar" - new scalar impl "sse" - new SSE impl if available "avx2" - new AVX2 impl if available See contents of `/sys/module/zfs/parameters/zfs_vdev_raidz_impl` to get the list of supported values. If an implementation is not supported on the system, it will not be shown. Currently selected option is enclosed in `[]`. Signed-off-by: Gvozden Neskovic <[email protected]> Signed-off-by: Brian Behlendorf <[email protected]> Closes #4328
Diffstat (limited to 'module/zfs/vdev_raidz.c')
-rw-r--r--module/zfs/vdev_raidz.c198
1 files changed, 42 insertions, 156 deletions
diff --git a/module/zfs/vdev_raidz.c b/module/zfs/vdev_raidz.c
index b9479092c..7f17d18b6 100644
--- a/module/zfs/vdev_raidz.c
+++ b/module/zfs/vdev_raidz.c
@@ -22,6 +22,7 @@
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012, 2014 by Delphix. All rights reserved.
+ * Copyright (c) 2016 Gvozden Nešković. All rights reserved.
*/
#include <sys/zfs_context.h>
@@ -31,6 +32,8 @@
#include <sys/zio_checksum.h>
#include <sys/fs/zfs.h>
#include <sys/fm/fs/zfs.h>
+#include <sys/vdev_raidz.h>
+#include <sys/vdev_raidz_impl.h>
/*
* Virtual device vector for RAID-Z.
@@ -99,34 +102,6 @@
* or in concert to recover missing data columns.
*/
-typedef struct raidz_col {
- uint64_t rc_devidx; /* child device index for I/O */
- uint64_t rc_offset; /* device offset */
- uint64_t rc_size; /* I/O size */
- void *rc_data; /* I/O data */
- void *rc_gdata; /* used to store the "good" version */
- int rc_error; /* I/O error for this device */
- uint8_t rc_tried; /* Did we attempt this I/O column? */
- uint8_t rc_skipped; /* Did we skip this I/O column? */
-} raidz_col_t;
-
-typedef struct raidz_map {
- uint64_t rm_cols; /* Regular column count */
- uint64_t rm_scols; /* Count including skipped columns */
- uint64_t rm_bigcols; /* Number of oversized columns */
- uint64_t rm_asize; /* Actual total I/O size */
- uint64_t rm_missingdata; /* Count of missing data devices */
- uint64_t rm_missingparity; /* Count of missing parity devices */
- uint64_t rm_firstdatacol; /* First data column/parity count */
- uint64_t rm_nskip; /* Skipped sectors for padding */
- uint64_t rm_skipstart; /* Column index of padding start */
- void *rm_datacopy; /* rm_asize-buffer of copied data */
- uintptr_t rm_reports; /* # of referencing checksum reports */
- uint8_t rm_freed; /* map no longer has referencing ZIO */
- uint8_t rm_ecksuminjected; /* checksum error was injected */
- raidz_col_t rm_col[1]; /* Flexible array of I/O columns */
-} raidz_map_t;
-
#define VDEV_RAIDZ_P 0
#define VDEV_RAIDZ_Q 1
#define VDEV_RAIDZ_R 2
@@ -154,104 +129,7 @@ typedef struct raidz_map {
VDEV_RAIDZ_64MUL_2((x), mask); \
}
-/*
- * Force reconstruction to use the general purpose method.
- */
-int vdev_raidz_default_to_general;
-
-/* Powers of 2 in the Galois field defined above. */
-static const uint8_t vdev_raidz_pow2[256] = {
- 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
- 0x1d, 0x3a, 0x74, 0xe8, 0xcd, 0x87, 0x13, 0x26,
- 0x4c, 0x98, 0x2d, 0x5a, 0xb4, 0x75, 0xea, 0xc9,
- 0x8f, 0x03, 0x06, 0x0c, 0x18, 0x30, 0x60, 0xc0,
- 0x9d, 0x27, 0x4e, 0x9c, 0x25, 0x4a, 0x94, 0x35,
- 0x6a, 0xd4, 0xb5, 0x77, 0xee, 0xc1, 0x9f, 0x23,
- 0x46, 0x8c, 0x05, 0x0a, 0x14, 0x28, 0x50, 0xa0,
- 0x5d, 0xba, 0x69, 0xd2, 0xb9, 0x6f, 0xde, 0xa1,
- 0x5f, 0xbe, 0x61, 0xc2, 0x99, 0x2f, 0x5e, 0xbc,
- 0x65, 0xca, 0x89, 0x0f, 0x1e, 0x3c, 0x78, 0xf0,
- 0xfd, 0xe7, 0xd3, 0xbb, 0x6b, 0xd6, 0xb1, 0x7f,
- 0xfe, 0xe1, 0xdf, 0xa3, 0x5b, 0xb6, 0x71, 0xe2,
- 0xd9, 0xaf, 0x43, 0x86, 0x11, 0x22, 0x44, 0x88,
- 0x0d, 0x1a, 0x34, 0x68, 0xd0, 0xbd, 0x67, 0xce,
- 0x81, 0x1f, 0x3e, 0x7c, 0xf8, 0xed, 0xc7, 0x93,
- 0x3b, 0x76, 0xec, 0xc5, 0x97, 0x33, 0x66, 0xcc,
- 0x85, 0x17, 0x2e, 0x5c, 0xb8, 0x6d, 0xda, 0xa9,
- 0x4f, 0x9e, 0x21, 0x42, 0x84, 0x15, 0x2a, 0x54,
- 0xa8, 0x4d, 0x9a, 0x29, 0x52, 0xa4, 0x55, 0xaa,
- 0x49, 0x92, 0x39, 0x72, 0xe4, 0xd5, 0xb7, 0x73,
- 0xe6, 0xd1, 0xbf, 0x63, 0xc6, 0x91, 0x3f, 0x7e,
- 0xfc, 0xe5, 0xd7, 0xb3, 0x7b, 0xf6, 0xf1, 0xff,
- 0xe3, 0xdb, 0xab, 0x4b, 0x96, 0x31, 0x62, 0xc4,
- 0x95, 0x37, 0x6e, 0xdc, 0xa5, 0x57, 0xae, 0x41,
- 0x82, 0x19, 0x32, 0x64, 0xc8, 0x8d, 0x07, 0x0e,
- 0x1c, 0x38, 0x70, 0xe0, 0xdd, 0xa7, 0x53, 0xa6,
- 0x51, 0xa2, 0x59, 0xb2, 0x79, 0xf2, 0xf9, 0xef,
- 0xc3, 0x9b, 0x2b, 0x56, 0xac, 0x45, 0x8a, 0x09,
- 0x12, 0x24, 0x48, 0x90, 0x3d, 0x7a, 0xf4, 0xf5,
- 0xf7, 0xf3, 0xfb, 0xeb, 0xcb, 0x8b, 0x0b, 0x16,
- 0x2c, 0x58, 0xb0, 0x7d, 0xfa, 0xe9, 0xcf, 0x83,
- 0x1b, 0x36, 0x6c, 0xd8, 0xad, 0x47, 0x8e, 0x01
-};
-/* Logs of 2 in the Galois field defined above. */
-static const uint8_t vdev_raidz_log2[256] = {
- 0x00, 0x00, 0x01, 0x19, 0x02, 0x32, 0x1a, 0xc6,
- 0x03, 0xdf, 0x33, 0xee, 0x1b, 0x68, 0xc7, 0x4b,
- 0x04, 0x64, 0xe0, 0x0e, 0x34, 0x8d, 0xef, 0x81,
- 0x1c, 0xc1, 0x69, 0xf8, 0xc8, 0x08, 0x4c, 0x71,
- 0x05, 0x8a, 0x65, 0x2f, 0xe1, 0x24, 0x0f, 0x21,
- 0x35, 0x93, 0x8e, 0xda, 0xf0, 0x12, 0x82, 0x45,
- 0x1d, 0xb5, 0xc2, 0x7d, 0x6a, 0x27, 0xf9, 0xb9,
- 0xc9, 0x9a, 0x09, 0x78, 0x4d, 0xe4, 0x72, 0xa6,
- 0x06, 0xbf, 0x8b, 0x62, 0x66, 0xdd, 0x30, 0xfd,
- 0xe2, 0x98, 0x25, 0xb3, 0x10, 0x91, 0x22, 0x88,
- 0x36, 0xd0, 0x94, 0xce, 0x8f, 0x96, 0xdb, 0xbd,
- 0xf1, 0xd2, 0x13, 0x5c, 0x83, 0x38, 0x46, 0x40,
- 0x1e, 0x42, 0xb6, 0xa3, 0xc3, 0x48, 0x7e, 0x6e,
- 0x6b, 0x3a, 0x28, 0x54, 0xfa, 0x85, 0xba, 0x3d,
- 0xca, 0x5e, 0x9b, 0x9f, 0x0a, 0x15, 0x79, 0x2b,
- 0x4e, 0xd4, 0xe5, 0xac, 0x73, 0xf3, 0xa7, 0x57,
- 0x07, 0x70, 0xc0, 0xf7, 0x8c, 0x80, 0x63, 0x0d,
- 0x67, 0x4a, 0xde, 0xed, 0x31, 0xc5, 0xfe, 0x18,
- 0xe3, 0xa5, 0x99, 0x77, 0x26, 0xb8, 0xb4, 0x7c,
- 0x11, 0x44, 0x92, 0xd9, 0x23, 0x20, 0x89, 0x2e,
- 0x37, 0x3f, 0xd1, 0x5b, 0x95, 0xbc, 0xcf, 0xcd,
- 0x90, 0x87, 0x97, 0xb2, 0xdc, 0xfc, 0xbe, 0x61,
- 0xf2, 0x56, 0xd3, 0xab, 0x14, 0x2a, 0x5d, 0x9e,
- 0x84, 0x3c, 0x39, 0x53, 0x47, 0x6d, 0x41, 0xa2,
- 0x1f, 0x2d, 0x43, 0xd8, 0xb7, 0x7b, 0xa4, 0x76,
- 0xc4, 0x17, 0x49, 0xec, 0x7f, 0x0c, 0x6f, 0xf6,
- 0x6c, 0xa1, 0x3b, 0x52, 0x29, 0x9d, 0x55, 0xaa,
- 0xfb, 0x60, 0x86, 0xb1, 0xbb, 0xcc, 0x3e, 0x5a,
- 0xcb, 0x59, 0x5f, 0xb0, 0x9c, 0xa9, 0xa0, 0x51,
- 0x0b, 0xf5, 0x16, 0xeb, 0x7a, 0x75, 0x2c, 0xd7,
- 0x4f, 0xae, 0xd5, 0xe9, 0xe6, 0xe7, 0xad, 0xe8,
- 0x74, 0xd6, 0xf4, 0xea, 0xa8, 0x50, 0x58, 0xaf,
-};
-
-static void vdev_raidz_generate_parity(raidz_map_t *rm);
-
-/*
- * Multiply a given number by 2 raised to the given power.
- */
-static uint8_t
-vdev_raidz_exp2(uint_t a, int exp)
-{
- if (a == 0)
- return (0);
-
- ASSERT(exp >= 0);
- ASSERT(vdev_raidz_log2[a] > 0 || a == 1);
-
- exp += vdev_raidz_log2[a];
- if (exp > 255)
- exp -= 255;
-
- return (vdev_raidz_pow2[exp]);
-}
-
-static void
+void
vdev_raidz_map_free(raidz_map_t *rm)
{
int c;
@@ -437,7 +315,7 @@ static const zio_vsd_ops_t vdev_raidz_vsd_ops = {
* Avoid inlining the function to keep vdev_raidz_io_start(), which
* is this functions only caller, as small as possible on the stack.
*/
-noinline static raidz_map_t *
+noinline raidz_map_t *
vdev_raidz_map_alloc(zio_t *zio, uint64_t unit_shift, uint64_t dcols,
uint64_t nparity)
{
@@ -579,6 +457,10 @@ vdev_raidz_map_alloc(zio_t *zio, uint64_t unit_shift, uint64_t dcols,
zio->io_vsd = rm;
zio->io_vsd_ops = &vdev_raidz_vsd_ops;
+
+ /* RAIDZ ops init */
+ vdev_raidz_math_get_ops(rm);
+
return (rm);
}
@@ -726,9 +608,14 @@ vdev_raidz_generate_parity_pqr(raidz_map_t *rm)
* Generate RAID parity in the first virtual columns according to the number of
* parity columns available.
*/
-static void
+void
vdev_raidz_generate_parity(raidz_map_t *rm)
{
+ if (rm->rm_ops) {
+ vdev_raidz_math_generate(rm);
+ return;
+ }
+
switch (rm->rm_firstdatacol) {
case 1:
vdev_raidz_generate_parity_p(rm);
@@ -1392,8 +1279,8 @@ vdev_raidz_reconstruct_general(raidz_map_t *rm, int *tgts, int ntgts)
return (code);
}
-static int
-vdev_raidz_reconstruct(raidz_map_t *rm, int *t, int nt)
+int
+vdev_raidz_reconstruct(raidz_map_t *rm, const int *t, int nt)
{
int tgts[VDEV_RAIDZ_MAXPARITY], *dt;
int ntgts;
@@ -1436,33 +1323,40 @@ vdev_raidz_reconstruct(raidz_map_t *rm, int *t, int nt)
dt = &tgts[nbadparity];
/*
+ * Reconstruct using the new math implementation if
+ * rm_ops is set.
+ */
+ if (rm->rm_ops) {
+ return (vdev_raidz_math_reconstruct(rm, parity_valid, dt,
+ nbaddata));
+ }
+
+ /*
* See if we can use any of our optimized reconstruction routines.
*/
- if (!vdev_raidz_default_to_general) {
- switch (nbaddata) {
- case 1:
- if (parity_valid[VDEV_RAIDZ_P])
- return (vdev_raidz_reconstruct_p(rm, dt, 1));
+ switch (nbaddata) {
+ case 1:
+ if (parity_valid[VDEV_RAIDZ_P])
+ return (vdev_raidz_reconstruct_p(rm, dt, 1));
- ASSERT(rm->rm_firstdatacol > 1);
+ ASSERT(rm->rm_firstdatacol > 1);
- if (parity_valid[VDEV_RAIDZ_Q])
- return (vdev_raidz_reconstruct_q(rm, dt, 1));
+ if (parity_valid[VDEV_RAIDZ_Q])
+ return (vdev_raidz_reconstruct_q(rm, dt, 1));
- ASSERT(rm->rm_firstdatacol > 2);
- break;
+ ASSERT(rm->rm_firstdatacol > 2);
+ break;
- case 2:
- ASSERT(rm->rm_firstdatacol > 1);
+ case 2:
+ ASSERT(rm->rm_firstdatacol > 1);
- if (parity_valid[VDEV_RAIDZ_P] &&
- parity_valid[VDEV_RAIDZ_Q])
- return (vdev_raidz_reconstruct_pq(rm, dt, 2));
+ if (parity_valid[VDEV_RAIDZ_P] &&
+ parity_valid[VDEV_RAIDZ_Q])
+ return (vdev_raidz_reconstruct_pq(rm, dt, 2));
- ASSERT(rm->rm_firstdatacol > 2);
+ ASSERT(rm->rm_firstdatacol > 2);
- break;
- }
+ break;
}
code = vdev_raidz_reconstruct_general(rm, tgts, ntgts);
@@ -1739,11 +1633,6 @@ raidz_parity_verify(zio_t *zio, raidz_map_t *rm)
return (ret);
}
-/*
- * Keep statistics on all the ways that we used parity to correct data.
- */
-static uint64_t raidz_corrected[1 << VDEV_RAIDZ_MAXPARITY];
-
static int
vdev_raidz_worst_error(raidz_map_t *rm)
{
@@ -1845,7 +1734,6 @@ vdev_raidz_combrec(zio_t *zio, int total_errors, int data_errors)
*/
code = vdev_raidz_reconstruct(rm, tgts, n);
if (raidz_checksum_verify(zio) == 0) {
- atomic_inc_64(&raidz_corrected[code]);
for (i = 0; i < n; i++) {
c = tgts[i];
@@ -2058,8 +1946,6 @@ vdev_raidz_io_done(zio_t *zio)
code = vdev_raidz_reconstruct(rm, tgts, n);
if (raidz_checksum_verify(zio) == 0) {
- atomic_inc_64(&raidz_corrected[code]);
-
/*
* If we read more parity disks than were used
* for reconstruction, confirm that the other