diff options
author | Brian Behlendorf <[email protected]> | 2009-08-18 11:43:27 -0700 |
---|---|---|
committer | Brian Behlendorf <[email protected]> | 2009-08-18 11:43:27 -0700 |
commit | 45d1cae3b8c949ecc391dd7a5b81963b34c71c29 (patch) | |
tree | 69b1f860eb1f9b1ebdef392760814c5cc089f345 /module/zfs/vdev_raidz.c | |
parent | 9babb37438b58e77bad04e820d5702e15b79e6a6 (diff) |
Rebase master to b121
Diffstat (limited to 'module/zfs/vdev_raidz.c')
-rw-r--r-- | module/zfs/vdev_raidz.c | 1279 |
1 files changed, 996 insertions, 283 deletions
diff --git a/module/zfs/vdev_raidz.c b/module/zfs/vdev_raidz.c index 92753d871..b3074173e 100644 --- a/module/zfs/vdev_raidz.c +++ b/module/zfs/vdev_raidz.c @@ -35,12 +35,27 @@ /* * Virtual device vector for RAID-Z. * - * This vdev supports both single and double parity. For single parity, we - * use a simple XOR of all the data columns. For double parity, we use both - * the simple XOR as well as a technique described in "The mathematics of - * RAID-6" by H. Peter Anvin. This technique defines a Galois field, GF(2^8), - * over the integers expressable in a single byte. Briefly, the operations on - * the field are defined as follows: + * This vdev supports single, double, and triple parity. For single parity, + * we use a simple XOR of all the data columns. For double or triple parity, + * we use a special case of Reed-Solomon coding. This extends the + * technique described in "The mathematics of RAID-6" by H. Peter Anvin by + * drawing on the system described in "A Tutorial on Reed-Solomon Coding for + * Fault-Tolerance in RAID-like Systems" by James S. Plank on which the + * former is also based. The latter is designed to provide higher performance + * for writes. + * + * Note that the Plank paper claimed to support arbitrary N+M, but was then + * amended six years later identifying a critical flaw that invalidates its + * claims. Nevertheless, the technique can be adapted to work for up to + * triple parity. For additional parity, the amendment "Note: Correction to + * the 1997 Tutorial on Reed-Solomon Coding" by James S. Plank and Ying Ding + * is viable, but the additional complexity means that write performance will + * suffer. + * + * All of the methods above operate on a Galois field, defined over the + * integers mod 2^N. In our case we choose N=8 for GF(8) so that all elements + * can be expressed with a single byte. Briefly, the operations on the + * field are defined as follows: * * o addition (+) is represented by a bitwise XOR * o subtraction (-) is therefore identical to addition: A + B = A - B @@ -55,22 +70,32 @@ * (A * 2)_0 = A_7 * * In C, multiplying by 2 is therefore ((a << 1) ^ ((a & 0x80) ? 0x1d : 0)). + * As an aside, this multiplication is derived from the error correcting + * primitive polynomial x^8 + x^4 + x^3 + x^2 + 1. * * Observe that any number in the field (except for 0) can be expressed as a * power of 2 -- a generator for the field. We store a table of the powers of * 2 and logs base 2 for quick look ups, and exploit the fact that A * B can * be rewritten as 2^(log_2(A) + log_2(B)) (where '+' is normal addition rather - * than field addition). The inverse of a field element A (A^-1) is A^254. + * than field addition). The inverse of a field element A (A^-1) is therefore + * A ^ (255 - 1) = A^254. * - * The two parity columns, P and Q, over several data columns, D_0, ... D_n-1, - * can be expressed by field operations: + * The up-to-three parity columns, P, Q, R over several data columns, + * D_0, ... D_n-1, can be expressed by field operations: * * P = D_0 + D_1 + ... + D_n-2 + D_n-1 * Q = 2^n-1 * D_0 + 2^n-2 * D_1 + ... + 2^1 * D_n-2 + 2^0 * D_n-1 * = ((...((D_0) * 2 + D_1) * 2 + ...) * 2 + D_n-2) * 2 + D_n-1 + * R = 4^n-1 * D_0 + 4^n-2 * D_1 + ... + 4^1 * D_n-2 + 4^0 * D_n-1 + * = ((...((D_0) * 4 + D_1) * 4 + ...) * 4 + D_n-2) * 4 + D_n-1 * - * See the reconstruction code below for how P and Q can used individually or - * in concert to recover missing data columns. + * We chose 1, 2, and 4 as our generators because 1 corresponds to the trival + * XOR operation, and 2 and 4 can be computed quickly and generate linearly- + * independent coefficients. (There are no additional coefficients that have + * this property which is why the uncorrected Plank method breaks down.) + * + * See the reconstruction code below for how P, Q and R can used individually + * or in concert to recover missing data columns. */ typedef struct raidz_col { @@ -84,21 +109,49 @@ typedef struct raidz_col { } raidz_col_t; typedef struct raidz_map { - uint64_t rm_cols; /* Column count */ + uint64_t rm_cols; /* Regular column count */ + uint64_t rm_scols; /* Count including skipped columns */ uint64_t rm_bigcols; /* Number of oversized columns */ uint64_t rm_asize; /* Actual total I/O size */ uint64_t rm_missingdata; /* Count of missing data devices */ uint64_t rm_missingparity; /* Count of missing parity devices */ uint64_t rm_firstdatacol; /* First data column/parity count */ + uint64_t rm_skipped; /* Skipped sectors for padding */ raidz_col_t rm_col[1]; /* Flexible array of I/O columns */ } raidz_map_t; #define VDEV_RAIDZ_P 0 #define VDEV_RAIDZ_Q 1 +#define VDEV_RAIDZ_R 2 +#define VDEV_RAIDZ_MAXPARITY 3 + +#define VDEV_RAIDZ_MUL_2(x) (((x) << 1) ^ (((x) & 0x80) ? 0x1d : 0)) +#define VDEV_RAIDZ_MUL_4(x) (VDEV_RAIDZ_MUL_2(VDEV_RAIDZ_MUL_2(x))) + +/* + * We provide a mechanism to perform the field multiplication operation on a + * 64-bit value all at once rather than a byte at a time. This works by + * creating a mask from the top bit in each byte and using that to + * conditionally apply the XOR of 0x1d. + */ +#define VDEV_RAIDZ_64MUL_2(x, mask) \ +{ \ + (mask) = (x) & 0x8080808080808080ULL; \ + (mask) = ((mask) << 1) - ((mask) >> 7); \ + (x) = (((x) << 1) & 0xfefefefefefefefeULL) ^ \ + ((mask) & 0x1d1d1d1d1d1d1d1d); \ +} -#define VDEV_RAIDZ_MAXPARITY 2 +#define VDEV_RAIDZ_64MUL_4(x, mask) \ +{ \ + VDEV_RAIDZ_64MUL_2((x), mask); \ + VDEV_RAIDZ_64MUL_2((x), mask); \ +} -#define VDEV_RAIDZ_MUL_2(a) (((a) << 1) ^ (((a) & 0x80) ? 0x1d : 0)) +/* + * Force reconstruction to use the general purpose method. + */ +int vdev_raidz_default_to_general; /* * These two tables represent powers and logs of 2 in the Galois field defined @@ -201,7 +254,7 @@ vdev_raidz_map_free(zio_t *zio) for (c = 0; c < rm->rm_firstdatacol; c++) zio_buf_free(rm->rm_col[c].rc_data, rm->rm_col[c].rc_size); - kmem_free(rm, offsetof(raidz_map_t, rm_col[rm->rm_cols])); + kmem_free(rm, offsetof(raidz_map_t, rm_col[rm->rm_scols])); } static raidz_map_t * @@ -213,24 +266,35 @@ vdev_raidz_map_alloc(zio_t *zio, uint64_t unit_shift, uint64_t dcols, uint64_t s = zio->io_size >> unit_shift; uint64_t f = b % dcols; uint64_t o = (b / dcols) << unit_shift; - uint64_t q, r, c, bc, col, acols, coff, devidx; + uint64_t q, r, c, bc, col, acols, scols, coff, devidx, asize, tot; q = s / (dcols - nparity); r = s - q * (dcols - nparity); bc = (r == 0 ? 0 : r + nparity); + tot = s + nparity * (q + (r == 0 ? 0 : 1)); + + if (q == 0) { + acols = bc; + scols = MIN(dcols, roundup(bc, nparity + 1)); + } else { + acols = dcols; + scols = dcols; + } - acols = (q == 0 ? bc : dcols); + ASSERT3U(acols, <=, scols); - rm = kmem_alloc(offsetof(raidz_map_t, rm_col[acols]), KM_SLEEP); + rm = kmem_alloc(offsetof(raidz_map_t, rm_col[scols]), KM_SLEEP); rm->rm_cols = acols; + rm->rm_scols = scols; rm->rm_bigcols = bc; - rm->rm_asize = 0; rm->rm_missingdata = 0; rm->rm_missingparity = 0; rm->rm_firstdatacol = nparity; - for (c = 0; c < acols; c++) { + asize = 0; + + for (c = 0; c < scols; c++) { col = f + c; coff = o; if (col >= dcols) { @@ -239,15 +303,26 @@ vdev_raidz_map_alloc(zio_t *zio, uint64_t unit_shift, uint64_t dcols, } rm->rm_col[c].rc_devidx = col; rm->rm_col[c].rc_offset = coff; - rm->rm_col[c].rc_size = (q + (c < bc)) << unit_shift; rm->rm_col[c].rc_data = NULL; rm->rm_col[c].rc_error = 0; rm->rm_col[c].rc_tried = 0; rm->rm_col[c].rc_skipped = 0; - rm->rm_asize += rm->rm_col[c].rc_size; + + if (c >= acols) + rm->rm_col[c].rc_size = 0; + else if (c < bc) + rm->rm_col[c].rc_size = (q + 1) << unit_shift; + else + rm->rm_col[c].rc_size = q << unit_shift; + + asize += rm->rm_col[c].rc_size; } - rm->rm_asize = roundup(rm->rm_asize, (nparity + 1) << unit_shift); + ASSERT3U(asize, ==, tot << unit_shift); + rm->rm_asize = roundup(asize, (nparity + 1) << unit_shift); + rm->rm_skipped = roundup(tot, nparity + 1) - tot; + ASSERT3U(rm->rm_asize - asize, ==, rm->rm_skipped << unit_shift); + ASSERT3U(rm->rm_skipped, <=, nparity); for (c = 0; c < rm->rm_firstdatacol; c++) rm->rm_col[c].rc_data = zio_buf_alloc(rm->rm_col[c].rc_size); @@ -305,12 +380,12 @@ vdev_raidz_generate_parity_p(raidz_map_t *rm) if (c == rm->rm_firstdatacol) { ASSERT(ccount == pcount); - for (i = 0; i < ccount; i++, p++, src++) { + for (i = 0; i < ccount; i++, src++, p++) { *p = *src; } } else { ASSERT(ccount <= pcount); - for (i = 0; i < ccount; i++, p++, src++) { + for (i = 0; i < ccount; i++, src++, p++) { *p ^= *src; } } @@ -320,10 +395,10 @@ vdev_raidz_generate_parity_p(raidz_map_t *rm) static void vdev_raidz_generate_parity_pq(raidz_map_t *rm) { - uint64_t *q, *p, *src, pcount, ccount, mask, i; + uint64_t *p, *q, *src, pcnt, ccnt, mask, i; int c; - pcount = rm->rm_col[VDEV_RAIDZ_P].rc_size / sizeof (src[0]); + pcnt = rm->rm_col[VDEV_RAIDZ_P].rc_size / sizeof (src[0]); ASSERT(rm->rm_col[VDEV_RAIDZ_P].rc_size == rm->rm_col[VDEV_RAIDZ_Q].rc_size); @@ -331,55 +406,138 @@ vdev_raidz_generate_parity_pq(raidz_map_t *rm) src = rm->rm_col[c].rc_data; p = rm->rm_col[VDEV_RAIDZ_P].rc_data; q = rm->rm_col[VDEV_RAIDZ_Q].rc_data; - ccount = rm->rm_col[c].rc_size / sizeof (src[0]); + + ccnt = rm->rm_col[c].rc_size / sizeof (src[0]); if (c == rm->rm_firstdatacol) { - ASSERT(ccount == pcount || ccount == 0); - for (i = 0; i < ccount; i++, p++, q++, src++) { - *q = *src; + ASSERT(ccnt == pcnt || ccnt == 0); + for (i = 0; i < ccnt; i++, src++, p++, q++) { *p = *src; + *q = *src; } - for (; i < pcount; i++, p++, q++, src++) { - *q = 0; + for (; i < pcnt; i++, src++, p++, q++) { *p = 0; + *q = 0; } } else { - ASSERT(ccount <= pcount); + ASSERT(ccnt <= pcnt); /* - * Rather than multiplying each byte individually (as - * described above), we are able to handle 8 at once - * by generating a mask based on the high bit in each - * byte and using that to conditionally XOR in 0x1d. + * Apply the algorithm described above by multiplying + * the previous result and adding in the new value. */ - for (i = 0; i < ccount; i++, p++, q++, src++) { - mask = *q & 0x8080808080808080ULL; - mask = (mask << 1) - (mask >> 7); - *q = ((*q << 1) & 0xfefefefefefefefeULL) ^ - (mask & 0x1d1d1d1d1d1d1d1dULL); + for (i = 0; i < ccnt; i++, src++, p++, q++) { + *p ^= *src; + + VDEV_RAIDZ_64MUL_2(*q, mask); *q ^= *src; + } + + /* + * Treat short columns as though they are full of 0s. + * Note that there's therefore nothing needed for P. + */ + for (; i < pcnt; i++, q++) { + VDEV_RAIDZ_64MUL_2(*q, mask); + } + } + } +} + +static void +vdev_raidz_generate_parity_pqr(raidz_map_t *rm) +{ + uint64_t *p, *q, *r, *src, pcnt, ccnt, mask, i; + int c; + + pcnt = rm->rm_col[VDEV_RAIDZ_P].rc_size / sizeof (src[0]); + ASSERT(rm->rm_col[VDEV_RAIDZ_P].rc_size == + rm->rm_col[VDEV_RAIDZ_Q].rc_size); + ASSERT(rm->rm_col[VDEV_RAIDZ_P].rc_size == + rm->rm_col[VDEV_RAIDZ_R].rc_size); + + for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) { + src = rm->rm_col[c].rc_data; + p = rm->rm_col[VDEV_RAIDZ_P].rc_data; + q = rm->rm_col[VDEV_RAIDZ_Q].rc_data; + r = rm->rm_col[VDEV_RAIDZ_R].rc_data; + + ccnt = rm->rm_col[c].rc_size / sizeof (src[0]); + + if (c == rm->rm_firstdatacol) { + ASSERT(ccnt == pcnt || ccnt == 0); + for (i = 0; i < ccnt; i++, src++, p++, q++, r++) { + *p = *src; + *q = *src; + *r = *src; + } + for (; i < pcnt; i++, src++, p++, q++, r++) { + *p = 0; + *q = 0; + *r = 0; + } + } else { + ASSERT(ccnt <= pcnt); + + /* + * Apply the algorithm described above by multiplying + * the previous result and adding in the new value. + */ + for (i = 0; i < ccnt; i++, src++, p++, q++, r++) { *p ^= *src; + + VDEV_RAIDZ_64MUL_2(*q, mask); + *q ^= *src; + + VDEV_RAIDZ_64MUL_4(*r, mask); + *r ^= *src; } /* * Treat short columns as though they are full of 0s. + * Note that there's therefore nothing needed for P. */ - for (; i < pcount; i++, q++) { - mask = *q & 0x8080808080808080ULL; - mask = (mask << 1) - (mask >> 7); - *q = ((*q << 1) & 0xfefefefefefefefeULL) ^ - (mask & 0x1d1d1d1d1d1d1d1dULL); + for (; i < pcnt; i++, q++, r++) { + VDEV_RAIDZ_64MUL_2(*q, mask); + VDEV_RAIDZ_64MUL_4(*r, mask); } } } } +/* + * Generate RAID parity in the first virtual columns according to the number of + * parity columns available. + */ static void -vdev_raidz_reconstruct_p(raidz_map_t *rm, int x) +vdev_raidz_generate_parity(raidz_map_t *rm) +{ + switch (rm->rm_firstdatacol) { + case 1: + vdev_raidz_generate_parity_p(rm); + break; + case 2: + vdev_raidz_generate_parity_pq(rm); + break; + case 3: + vdev_raidz_generate_parity_pqr(rm); + break; + default: + cmn_err(CE_PANIC, "invalid RAID-Z configuration"); + } +} + +static int +vdev_raidz_reconstruct_p(raidz_map_t *rm, int *tgts, int ntgts) { uint64_t *dst, *src, xcount, ccount, count, i; + int x = tgts[0]; int c; + ASSERT(ntgts == 1); + ASSERT(x >= rm->rm_firstdatacol); + ASSERT(x < rm->rm_cols); + xcount = rm->rm_col[x].rc_size / sizeof (src[0]); ASSERT(xcount <= rm->rm_col[VDEV_RAIDZ_P].rc_size / sizeof (src[0])); ASSERT(xcount > 0); @@ -404,15 +562,20 @@ vdev_raidz_reconstruct_p(raidz_map_t *rm, int x) *dst ^= *src; } } + + return (1 << VDEV_RAIDZ_P); } -static void -vdev_raidz_reconstruct_q(raidz_map_t *rm, int x) +static int +vdev_raidz_reconstruct_q(raidz_map_t *rm, int *tgts, int ntgts) { uint64_t *dst, *src, xcount, ccount, count, mask, i; uint8_t *b; + int x = tgts[0]; int c, j, exp; + ASSERT(ntgts == 1); + xcount = rm->rm_col[x].rc_size / sizeof (src[0]); ASSERT(xcount <= rm->rm_col[VDEV_RAIDZ_Q].rc_size / sizeof (src[0])); @@ -436,23 +599,13 @@ vdev_raidz_reconstruct_q(raidz_map_t *rm, int x) } } else { - /* - * For an explanation of this, see the comment in - * vdev_raidz_generate_parity_pq() above. - */ for (i = 0; i < count; i++, dst++, src++) { - mask = *dst & 0x8080808080808080ULL; - mask = (mask << 1) - (mask >> 7); - *dst = ((*dst << 1) & 0xfefefefefefefefeULL) ^ - (mask & 0x1d1d1d1d1d1d1d1dULL); + VDEV_RAIDZ_64MUL_2(*dst, mask); *dst ^= *src; } for (; i < xcount; i++, dst++) { - mask = *dst & 0x8080808080808080ULL; - mask = (mask << 1) - (mask >> 7); - *dst = ((*dst << 1) & 0xfefefefefefefefeULL) ^ - (mask & 0x1d1d1d1d1d1d1d1dULL); + VDEV_RAIDZ_64MUL_2(*dst, mask); } } } @@ -467,15 +620,20 @@ vdev_raidz_reconstruct_q(raidz_map_t *rm, int x) *b = vdev_raidz_exp2(*b, exp); } } + + return (1 << VDEV_RAIDZ_Q); } -static void -vdev_raidz_reconstruct_pq(raidz_map_t *rm, int x, int y) +static int +vdev_raidz_reconstruct_pq(raidz_map_t *rm, int *tgts, int ntgts) { uint8_t *p, *q, *pxy, *qxy, *xd, *yd, tmp, a, b, aexp, bexp; void *pdata, *qdata; uint64_t xsize, ysize, i; + int x = tgts[0]; + int y = tgts[1]; + ASSERT(ntgts == 2); ASSERT(x < y); ASSERT(x >= rm->rm_firstdatacol); ASSERT(y < rm->rm_cols); @@ -553,15 +711,554 @@ vdev_raidz_reconstruct_pq(raidz_map_t *rm, int x, int y) */ rm->rm_col[VDEV_RAIDZ_P].rc_data = pdata; rm->rm_col[VDEV_RAIDZ_Q].rc_data = qdata; + + return ((1 << VDEV_RAIDZ_P) | (1 << VDEV_RAIDZ_Q)); +} + +/* BEGIN CSTYLED */ +/* + * In the general case of reconstruction, we must solve the system of linear + * equations defined by the coeffecients used to generate parity as well as + * the contents of the data and parity disks. This can be expressed with + * vectors for the original data (D) and the actual data (d) and parity (p) + * and a matrix composed of the identity matrix (I) and a dispersal matrix (V): + * + * __ __ __ __ + * | | __ __ | p_0 | + * | V | | D_0 | | p_m-1 | + * | | x | : | = | d_0 | + * | I | | D_n-1 | | : | + * | | ~~ ~~ | d_n-1 | + * ~~ ~~ ~~ ~~ + * + * I is simply a square identity matrix of size n, and V is a vandermonde + * matrix defined by the coeffecients we chose for the various parity columns + * (1, 2, 4). Note that these values were chosen both for simplicity, speedy + * computation as well as linear separability. + * + * __ __ __ __ + * | 1 .. 1 1 1 | | p_0 | + * | 2^n-1 .. 4 2 1 | __ __ | : | + * | 4^n-1 .. 16 4 1 | | D_0 | | p_m-1 | + * | 1 .. 0 0 0 | | D_1 | | d_0 | + * | 0 .. 0 0 0 | x | D_2 | = | d_1 | + * | : : : : | | : | | d_2 | + * | 0 .. 1 0 0 | | D_n-1 | | : | + * | 0 .. 0 1 0 | ~~ ~~ | : | + * | 0 .. 0 0 1 | | d_n-1 | + * ~~ ~~ ~~ ~~ + * + * Note that I, V, d, and p are known. To compute D, we must invert the + * matrix and use the known data and parity values to reconstruct the unknown + * data values. We begin by removing the rows in V|I and d|p that correspond + * to failed or missing columns; we then make V|I square (n x n) and d|p + * sized n by removing rows corresponding to unused parity from the bottom up + * to generate (V|I)' and (d|p)'. We can then generate the inverse of (V|I)' + * using Gauss-Jordan elimination. In the example below we use m=3 parity + * columns, n=8 data columns, with errors in d_1, d_2, and p_1: + * __ __ + * | 1 1 1 1 1 1 1 1 | + * | 128 64 32 16 8 4 2 1 | <-----+-+-- missing disks + * | 19 205 116 29 64 16 4 1 | / / + * | 1 0 0 0 0 0 0 0 | / / + * | 0 1 0 0 0 0 0 0 | <--' / + * (V|I) = | 0 0 1 0 0 0 0 0 | <---' + * | 0 0 0 1 0 0 0 0 | + * | 0 0 0 0 1 0 0 0 | + * | 0 0 0 0 0 1 0 0 | + * | 0 0 0 0 0 0 1 0 | + * | 0 0 0 0 0 0 0 1 | + * ~~ ~~ + * __ __ + * | 1 1 1 1 1 1 1 1 | + * | 128 64 32 16 8 4 2 1 | + * | 19 205 116 29 64 16 4 1 | + * | 1 0 0 0 0 0 0 0 | + * | 0 1 0 0 0 0 0 0 | + * (V|I)' = | 0 0 1 0 0 0 0 0 | + * | 0 0 0 1 0 0 0 0 | + * | 0 0 0 0 1 0 0 0 | + * | 0 0 0 0 0 1 0 0 | + * | 0 0 0 0 0 0 1 0 | + * | 0 0 0 0 0 0 0 1 | + * ~~ ~~ + * + * Here we employ Gauss-Jordan elimination to find the inverse of (V|I)'. We + * have carefully chosen the seed values 1, 2, and 4 to ensure that this + * matrix is not singular. + * __ __ + * | 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 | + * | 19 205 116 29 64 16 4 1 0 1 0 0 0 0 0 0 | + * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 | + * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 | + * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 | + * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 | + * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 | + * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 | + * ~~ ~~ + * __ __ + * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 | + * | 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 | + * | 19 205 116 29 64 16 4 1 0 1 0 0 0 0 0 0 | + * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 | + * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 | + * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 | + * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 | + * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 | + * ~~ ~~ + * __ __ + * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 | + * | 0 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 | + * | 0 205 116 0 0 0 0 0 0 1 19 29 64 16 4 1 | + * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 | + * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 | + * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 | + * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 | + * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 | + * ~~ ~~ + * __ __ + * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 | + * | 0 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 | + * | 0 0 185 0 0 0 0 0 205 1 222 208 141 221 201 204 | + * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 | + * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 | + * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 | + * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 | + * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 | + * ~~ ~~ + * __ __ + * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 | + * | 0 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 | + * | 0 0 1 0 0 0 0 0 166 100 4 40 158 168 216 209 | + * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 | + * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 | + * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 | + * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 | + * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 | + * ~~ ~~ + * __ __ + * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 | + * | 0 1 0 0 0 0 0 0 167 100 5 41 159 169 217 208 | + * | 0 0 1 0 0 0 0 0 166 100 4 40 158 168 216 209 | + * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 | + * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 | + * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 | + * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 | + * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 | + * ~~ ~~ + * __ __ + * | 0 0 1 0 0 0 0 0 | + * | 167 100 5 41 159 169 217 208 | + * | 166 100 4 40 158 168 216 209 | + * (V|I)'^-1 = | 0 0 0 1 0 0 0 0 | + * | 0 0 0 0 1 0 0 0 | + * | 0 0 0 0 0 1 0 0 | + * | 0 0 0 0 0 0 1 0 | + * | 0 0 0 0 0 0 0 1 | + * ~~ ~~ + * + * We can then simply compute D = (V|I)'^-1 x (d|p)' to discover the values + * of the missing data. + * + * As is apparent from the example above, the only non-trivial rows in the + * inverse matrix correspond to the data disks that we're trying to + * reconstruct. Indeed, those are the only rows we need as the others would + * only be useful for reconstructing data known or assumed to be valid. For + * that reason, we only build the coefficients in the rows that correspond to + * targeted columns. + */ +/* END CSTYLED */ + +static void +vdev_raidz_matrix_init(raidz_map_t *rm, int n, int nmap, int *map, + uint8_t **rows) +{ + int i, j; + int pow; + + ASSERT(n == rm->rm_cols - rm->rm_firstdatacol); + + /* + * Fill in the missing rows of interest. + */ + for (i = 0; i < nmap; i++) { + ASSERT3S(0, <=, map[i]); + ASSERT3S(map[i], <=, 2); + + pow = map[i] * n; + if (pow > 255) + pow -= 255; + ASSERT(pow <= 255); + + for (j = 0; j < n; j++) { + pow -= map[i]; + if (pow < 0) + pow += 255; + rows[i][j] = vdev_raidz_pow2[pow]; + } + } +} + +static void +vdev_raidz_matrix_invert(raidz_map_t *rm, int n, int nmissing, int *missing, + uint8_t **rows, uint8_t **invrows, const uint8_t *used) +{ + int i, j, ii, jj; + uint8_t log; + + /* + * Assert that the first nmissing entries from the array of used + * columns correspond to parity columns and that subsequent entries + * correspond to data columns. + */ + for (i = 0; i < nmissing; i++) { + ASSERT3S(used[i], <, rm->rm_firstdatacol); + } + for (; i < n; i++) { + ASSERT3S(used[i], >=, rm->rm_firstdatacol); + } + + /* + * First initialize the storage where we'll compute the inverse rows. + */ + for (i = 0; i < nmissing; i++) { + for (j = 0; j < n; j++) { + invrows[i][j] = (i == j) ? 1 : 0; + } + } + + /* + * Subtract all trivial rows from the rows of consequence. + */ + for (i = 0; i < nmissing; i++) { + for (j = nmissing; j < n; j++) { + ASSERT3U(used[j], >=, rm->rm_firstdatacol); + jj = used[j] - rm->rm_firstdatacol; + ASSERT3S(jj, <, n); + invrows[i][j] = rows[i][jj]; + rows[i][jj] = 0; + } + } + + /* + * For each of the rows of interest, we must normalize it and subtract + * a multiple of it from the other rows. + */ + for (i = 0; i < nmissing; i++) { + for (j = 0; j < missing[i]; j++) { + ASSERT3U(rows[i][j], ==, 0); + } + ASSERT3U(rows[i][missing[i]], !=, 0); + + /* + * Compute the inverse of the first element and multiply each + * element in the row by that value. + */ + log = 255 - vdev_raidz_log2[rows[i][missing[i]]]; + + for (j = 0; j < n; j++) { + rows[i][j] = vdev_raidz_exp2(rows[i][j], log); + invrows[i][j] = vdev_raidz_exp2(invrows[i][j], log); + } + + for (ii = 0; ii < nmissing; ii++) { + if (i == ii) + continue; + + ASSERT3U(rows[ii][missing[i]], !=, 0); + + log = vdev_raidz_log2[rows[ii][missing[i]]]; + + for (j = 0; j < n; j++) { + rows[ii][j] ^= + vdev_raidz_exp2(rows[i][j], log); + invrows[ii][j] ^= + vdev_raidz_exp2(invrows[i][j], log); + } + } + } + + /* + * Verify that the data that is left in the rows are properly part of + * an identity matrix. + */ + for (i = 0; i < nmissing; i++) { + for (j = 0; j < n; j++) { + if (j == missing[i]) { + ASSERT3U(rows[i][j], ==, 1); + } else { + ASSERT3U(rows[i][j], ==, 0); + } + } + } } +static void +vdev_raidz_matrix_reconstruct(raidz_map_t *rm, int n, int nmissing, + int *missing, uint8_t **invrows, const uint8_t *used) +{ + int i, j, x, cc, c; + uint8_t *src; + uint64_t ccount; + uint8_t *dst[VDEV_RAIDZ_MAXPARITY]; + uint64_t dcount[VDEV_RAIDZ_MAXPARITY]; + uint8_t log, val; + int ll; + uint8_t *invlog[VDEV_RAIDZ_MAXPARITY]; + uint8_t *p, *pp; + size_t psize; + + psize = sizeof (invlog[0][0]) * n * nmissing; + p = kmem_alloc(psize, KM_SLEEP); + + for (pp = p, i = 0; i < nmissing; i++) { + invlog[i] = pp; + pp += n; + } + + for (i = 0; i < nmissing; i++) { + for (j = 0; j < n; j++) { + ASSERT3U(invrows[i][j], !=, 0); + invlog[i][j] = vdev_raidz_log2[invrows[i][j]]; + } + } + + for (i = 0; i < n; i++) { + c = used[i]; + ASSERT3U(c, <, rm->rm_cols); + + src = rm->rm_col[c].rc_data; + ccount = rm->rm_col[c].rc_size; + for (j = 0; j < nmissing; j++) { + cc = missing[j] + rm->rm_firstdatacol; + ASSERT3U(cc, >=, rm->rm_firstdatacol); + ASSERT3U(cc, <, rm->rm_cols); + ASSERT3U(cc, !=, c); + + dst[j] = rm->rm_col[cc].rc_data; + dcount[j] = rm->rm_col[cc].rc_size; + } + + ASSERT(ccount >= rm->rm_col[missing[0]].rc_size || i > 0); + + for (x = 0; x < ccount; x++, src++) { + if (*src != 0) + log = vdev_raidz_log2[*src]; + + for (cc = 0; cc < nmissing; cc++) { + if (x >= dcount[cc]) + continue; + + if (*src == 0) { + val = 0; + } else { + if ((ll = log + invlog[cc][i]) >= 255) + ll -= 255; + val = vdev_raidz_pow2[ll]; + } + + if (i == 0) + dst[cc][x] = val; + else + dst[cc][x] ^= val; + } + } + } + + kmem_free(p, psize); +} + +static int +vdev_raidz_reconstruct_general(raidz_map_t *rm, int *tgts, int ntgts) +{ + int n, i, c, t, tt; + int nmissing_rows; + int missing_rows[VDEV_RAIDZ_MAXPARITY]; + int parity_map[VDEV_RAIDZ_MAXPARITY]; + + uint8_t *p, *pp; + size_t psize; + + uint8_t *rows[VDEV_RAIDZ_MAXPARITY]; + uint8_t *invrows[VDEV_RAIDZ_MAXPARITY]; + uint8_t *used; + + int code = 0; + + + n = rm->rm_cols - rm->rm_firstdatacol; + + /* + * Figure out which data columns are missing. + */ + nmissing_rows = 0; + for (t = 0; t < ntgts; t++) { + if (tgts[t] >= rm->rm_firstdatacol) { + missing_rows[nmissing_rows++] = + tgts[t] - rm->rm_firstdatacol; + } + } + + /* + * Figure out which parity columns to use to help generate the missing + * data columns. + */ + for (tt = 0, c = 0, i = 0; i < nmissing_rows; c++) { + ASSERT(tt < ntgts); + ASSERT(c < rm->rm_firstdatacol); + + /* + * Skip any targeted parity columns. + */ + if (c == tgts[tt]) { + tt++; + continue; + } + + code |= 1 << c; + + parity_map[i] = c; + i++; + } + + ASSERT(code != 0); + ASSERT3U(code, <, 1 << VDEV_RAIDZ_MAXPARITY); + + psize = (sizeof (rows[0][0]) + sizeof (invrows[0][0])) * + nmissing_rows * n + sizeof (used[0]) * n; + p = kmem_alloc(psize, KM_SLEEP); + + for (pp = p, i = 0; i < nmissing_rows; i++) { + rows[i] = pp; + pp += n; + invrows[i] = pp; + pp += n; + } + used = pp; + + for (i = 0; i < nmissing_rows; i++) { + used[i] = parity_map[i]; + } + + for (tt = 0, c = rm->rm_firstdatacol; c < rm->rm_cols; c++) { + if (tt < nmissing_rows && + c == missing_rows[tt] + rm->rm_firstdatacol) { + tt++; + continue; + } + + ASSERT3S(i, <, n); + used[i] = c; + i++; + } + + /* + * Initialize the interesting rows of the matrix. + */ + vdev_raidz_matrix_init(rm, n, nmissing_rows, parity_map, rows); + + /* + * Invert the matrix. + */ + vdev_raidz_matrix_invert(rm, n, nmissing_rows, missing_rows, rows, + invrows, used); + + /* + * Reconstruct the missing data using the generated matrix. + */ + vdev_raidz_matrix_reconstruct(rm, n, nmissing_rows, missing_rows, + invrows, used); + + kmem_free(p, psize); + + return (code); +} + +static int +vdev_raidz_reconstruct(raidz_map_t *rm, int *t, int nt) +{ + int tgts[VDEV_RAIDZ_MAXPARITY], *dt; + int ntgts; + int i, c; + int code; + int nbadparity, nbaddata; + int parity_valid[VDEV_RAIDZ_MAXPARITY]; + + /* + * The tgts list must already be sorted. + */ + for (i = 1; i < nt; i++) { + ASSERT(t[i] > t[i - 1]); + } + + nbadparity = rm->rm_firstdatacol; + nbaddata = rm->rm_cols - nbadparity; + ntgts = 0; + for (i = 0, c = 0; c < rm->rm_cols; c++) { + if (c < rm->rm_firstdatacol) + parity_valid[c] = B_FALSE; + + if (i < nt && c == t[i]) { + tgts[ntgts++] = c; + i++; + } else if (rm->rm_col[c].rc_error != 0) { + tgts[ntgts++] = c; + } else if (c >= rm->rm_firstdatacol) { + nbaddata--; + } else { + parity_valid[c] = B_TRUE; + nbadparity--; + } + } + + ASSERT(ntgts >= nt); + ASSERT(nbaddata >= 0); + ASSERT(nbaddata + nbadparity == ntgts); + + dt = &tgts[nbadparity]; + + /* + * See if we can use any of our optimized reconstruction routines. + */ + if (!vdev_raidz_default_to_general) { + switch (nbaddata) { + case 1: + if (parity_valid[VDEV_RAIDZ_P]) + return (vdev_raidz_reconstruct_p(rm, dt, 1)); + + ASSERT(rm->rm_firstdatacol > 1); + + if (parity_valid[VDEV_RAIDZ_Q]) + return (vdev_raidz_reconstruct_q(rm, dt, 1)); + + ASSERT(rm->rm_firstdatacol > 2); + break; + + case 2: + ASSERT(rm->rm_firstdatacol > 1); + + if (parity_valid[VDEV_RAIDZ_P] && + parity_valid[VDEV_RAIDZ_Q]) + return (vdev_raidz_reconstruct_pq(rm, dt, 2)); + + ASSERT(rm->rm_firstdatacol > 2); + + break; + } + } + + code = vdev_raidz_reconstruct_general(rm, tgts, ntgts); + ASSERT(code < (1 << VDEV_RAIDZ_MAXPARITY)); + ASSERT(code > 0); + return (code); +} static int vdev_raidz_open(vdev_t *vd, uint64_t *asize, uint64_t *ashift) { vdev_t *cvd; uint64_t nparity = vd->vdev_nparity; - int c, error; + int c; int lasterror = 0; int numerrors = 0; @@ -573,11 +1270,13 @@ vdev_raidz_open(vdev_t *vd, uint64_t *asize, uint64_t *ashift) return (EINVAL); } + vdev_open_children(vd); + for (c = 0; c < vd->vdev_children; c++) { cvd = vd->vdev_child[c]; - if ((error = vdev_open(cvd)) != 0) { - lasterror = error; + if (cvd->vdev_open_error != 0) { + lasterror = cvd->vdev_open_error; numerrors++; continue; } @@ -639,7 +1338,7 @@ vdev_raidz_io_start(zio_t *zio) blkptr_t *bp = zio->io_bp; raidz_map_t *rm; raidz_col_t *rc; - int c; + int c, i; rm = vdev_raidz_map_alloc(zio, tvd->vdev_ashift, vd->vdev_children, vd->vdev_nparity); @@ -647,13 +1346,7 @@ vdev_raidz_io_start(zio_t *zio) ASSERT3U(rm->rm_asize, ==, vdev_psize_to_asize(vd, zio->io_size)); if (zio->io_type == ZIO_TYPE_WRITE) { - /* - * Generate RAID parity in the first virtual columns. - */ - if (rm->rm_firstdatacol == 1) - vdev_raidz_generate_parity_p(rm); - else - vdev_raidz_generate_parity_pq(rm); + vdev_raidz_generate_parity(rm); for (c = 0; c < rm->rm_cols; c++) { rc = &rm->rm_col[c]; @@ -664,6 +1357,23 @@ vdev_raidz_io_start(zio_t *zio) vdev_raidz_child_done, rc)); } + /* + * Generate optional I/Os for any skipped sectors to improve + * aggregation contiguity. + */ + for (c = rm->rm_bigcols, i = 0; i < rm->rm_skipped; c++, i++) { + ASSERT(c <= rm->rm_scols); + if (c == rm->rm_scols) + c = 0; + rc = &rm->rm_col[c]; + cvd = vd->vdev_child[rc->rc_devidx]; + zio_nowait(zio_vdev_child_io(zio, NULL, cvd, + rc->rc_offset + rc->rc_size, NULL, + 1 << tvd->vdev_ashift, + zio->io_type, zio->io_priority, + ZIO_FLAG_NODATA | ZIO_FLAG_OPTIONAL, NULL, NULL)); + } + return (ZIO_PIPELINE_CONTINUE); } @@ -671,8 +1381,7 @@ vdev_raidz_io_start(zio_t *zio) /* * Iterate over the columns in reverse order so that we hit the parity - * last -- any errors along the way will force us to read the parity - * data. + * last -- any errors along the way will force us to read the parity. */ for (c = rm->rm_cols - 1; c >= 0; c--) { rc = &rm->rm_col[c]; @@ -748,10 +1457,7 @@ raidz_parity_verify(zio_t *zio, raidz_map_t *rm) bcopy(rc->rc_data, orig[c], rc->rc_size); } - if (rm->rm_firstdatacol == 1) - vdev_raidz_generate_parity_p(rm); - else - vdev_raidz_generate_parity_pq(rm); + vdev_raidz_generate_parity(rm); for (c = 0; c < rm->rm_firstdatacol; c++) { rc = &rm->rm_col[c]; @@ -768,9 +1474,10 @@ raidz_parity_verify(zio_t *zio, raidz_map_t *rm) return (ret); } -static uint64_t raidz_corrected_p; -static uint64_t raidz_corrected_q; -static uint64_t raidz_corrected_pq; +/* + * Keep statistics on all the ways that we used parity to correct data. + */ +static uint64_t raidz_corrected[1 << VDEV_RAIDZ_MAXPARITY]; static int vdev_raidz_worst_error(raidz_map_t *rm) @@ -783,19 +1490,176 @@ vdev_raidz_worst_error(raidz_map_t *rm) return (error); } +/* + * Iterate over all combinations of bad data and attempt a reconstruction. + * Note that the algorithm below is non-optimal because it doesn't take into + * account how reconstruction is actually performed. For example, with + * triple-parity RAID-Z the reconstruction procedure is the same if column 4 + * is targeted as invalid as if columns 1 and 4 are targeted since in both + * cases we'd only use parity information in column 0. + */ +static int +vdev_raidz_combrec(zio_t *zio, int total_errors, int data_errors) +{ + raidz_map_t *rm = zio->io_vsd; + raidz_col_t *rc; + void *orig[VDEV_RAIDZ_MAXPARITY]; + int tstore[VDEV_RAIDZ_MAXPARITY + 2]; + int *tgts = &tstore[1]; + int current, next, i, c, n; + int code, ret = 0; + + ASSERT(total_errors < rm->rm_firstdatacol); + + /* + * This simplifies one edge condition. + */ + tgts[-1] = -1; + + for (n = 1; n <= rm->rm_firstdatacol - total_errors; n++) { + /* + * Initialize the targets array by finding the first n columns + * that contain no error. + * + * If there were no data errors, we need to ensure that we're + * always explicitly attempting to reconstruct at least one + * data column. To do this, we simply push the highest target + * up into the data columns. + */ + for (c = 0, i = 0; i < n; i++) { + if (i == n - 1 && data_errors == 0 && + c < rm->rm_firstdatacol) { + c = rm->rm_firstdatacol; + } + + while (rm->rm_col[c].rc_error != 0) { + c++; + ASSERT3S(c, <, rm->rm_cols); + } + + tgts[i] = c++; + } + + /* + * Setting tgts[n] simplifies the other edge condition. + */ + tgts[n] = rm->rm_cols; + + /* + * These buffers were allocated in previous iterations. + */ + for (i = 0; i < n - 1; i++) { + ASSERT(orig[i] != NULL); + } + + orig[n - 1] = zio_buf_alloc(rm->rm_col[0].rc_size); + + current = 0; + next = tgts[current]; + + while (current != n) { + tgts[current] = next; + current = 0; + + /* + * Save off the original data that we're going to + * attempt to reconstruct. + */ + for (i = 0; i < n; i++) { + ASSERT(orig[i] != NULL); + c = tgts[i]; + ASSERT3S(c, >=, 0); + ASSERT3S(c, <, rm->rm_cols); + rc = &rm->rm_col[c]; + bcopy(rc->rc_data, orig[i], rc->rc_size); + } + + /* + * Attempt a reconstruction and exit the outer loop on + * success. + */ + code = vdev_raidz_reconstruct(rm, tgts, n); + if (zio_checksum_error(zio) == 0) { + atomic_inc_64(&raidz_corrected[code]); + + for (i = 0; i < n; i++) { + c = tgts[i]; + rc = &rm->rm_col[c]; + ASSERT(rc->rc_error == 0); + if (rc->rc_tried) + raidz_checksum_error(zio, rc); + rc->rc_error = ECKSUM; + } + + ret = code; + goto done; + } + + /* + * Restore the original data. + */ + for (i = 0; i < n; i++) { + c = tgts[i]; + rc = &rm->rm_col[c]; + bcopy(orig[i], rc->rc_data, rc->rc_size); + } + + do { + /* + * Find the next valid column after the current + * position.. + */ + for (next = tgts[current] + 1; + next < rm->rm_cols && + rm->rm_col[next].rc_error != 0; next++) + continue; + + ASSERT(next <= tgts[current + 1]); + + /* + * If that spot is available, we're done here. + */ + if (next != tgts[current + 1]) + break; + + /* + * Otherwise, find the next valid column after + * the previous position. + */ + for (c = tgts[current - 1] + 1; + rm->rm_col[c].rc_error != 0; c++) + continue; + + tgts[current] = c; + current++; + + } while (current != n); + } + } + n--; +done: + for (i = 0; i < n; i++) { + zio_buf_free(orig[i], rm->rm_col[0].rc_size); + } + + return (ret); +} + static void vdev_raidz_io_done(zio_t *zio) { vdev_t *vd = zio->io_vd; vdev_t *cvd; raidz_map_t *rm = zio->io_vsd; - raidz_col_t *rc, *rc1; + raidz_col_t *rc; int unexpected_errors = 0; int parity_errors = 0; int parity_untried = 0; int data_errors = 0; int total_errors = 0; - int n, c, c1; + int n, c; + int tgts[VDEV_RAIDZ_MAXPARITY]; + int code; ASSERT(zio->io_bp != NULL); /* XXX need to add code to enforce this */ @@ -859,8 +1723,7 @@ vdev_raidz_io_done(zio_t *zio) * any errors. */ if (total_errors <= rm->rm_firstdatacol - parity_untried) { - switch (data_errors) { - case 0: + if (data_errors == 0) { if (zio_checksum_error(zio) == 0) { /* * If we read parity information (unnecessarily @@ -880,9 +1743,7 @@ vdev_raidz_io_done(zio_t *zio) } goto done; } - break; - - case 1: + } else { /* * We either attempt to read all the parity columns or * none of them. If we didn't try to read parity, we @@ -894,45 +1755,38 @@ vdev_raidz_io_done(zio_t *zio) ASSERT(parity_errors < rm->rm_firstdatacol); /* - * Find the column that reported the error. + * Identify the data columns that reported an error. */ + n = 0; for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) { rc = &rm->rm_col[c]; - if (rc->rc_error != 0) - break; + if (rc->rc_error != 0) { + ASSERT(n < VDEV_RAIDZ_MAXPARITY); + tgts[n++] = c; + } } - ASSERT(c != rm->rm_cols); - ASSERT(!rc->rc_skipped || rc->rc_error == ENXIO || - rc->rc_error == ESTALE); - if (rm->rm_col[VDEV_RAIDZ_P].rc_error == 0) { - vdev_raidz_reconstruct_p(rm, c); - } else { - ASSERT(rm->rm_firstdatacol > 1); - vdev_raidz_reconstruct_q(rm, c); - } + ASSERT(rm->rm_firstdatacol >= n); + + code = vdev_raidz_reconstruct(rm, tgts, n); if (zio_checksum_error(zio) == 0) { - if (rm->rm_col[VDEV_RAIDZ_P].rc_error == 0) - atomic_inc_64(&raidz_corrected_p); - else - atomic_inc_64(&raidz_corrected_q); + atomic_inc_64(&raidz_corrected[code]); /* - * If there's more than one parity disk that - * was successfully read, confirm that the - * other parity disk produced the correct data. - * This routine is suboptimal in that it - * regenerates both the parity we wish to test - * as well as the parity we just used to - * perform the reconstruction, but this should - * be a relatively uncommon case, and can be - * optimized if it becomes a problem. - * We also regenerate parity when resilvering - * so we can write it out to the failed device - * later. + * If we read more parity disks than were used + * for reconstruction, confirm that the other + * parity disks produced correct data. This + * routine is suboptimal in that it regenerates + * the parity that we already used in addition + * to the parity that we're attempting to + * verify, but this should be a relatively + * uncommon case, and can be optimized if it + * becomes a problem. Note that we regenerate + * parity when resilvering so we can write it + * out to failed devices later. */ - if (parity_errors < rm->rm_firstdatacol - 1 || + if (parity_errors < rm->rm_firstdatacol - n || (zio->io_flags & ZIO_FLAG_RESILVER)) { n = raidz_parity_verify(zio, rm); unexpected_errors += n; @@ -942,46 +1796,6 @@ vdev_raidz_io_done(zio_t *zio) goto done; } - break; - - case 2: - /* - * Two data column errors require double parity. - */ - ASSERT(rm->rm_firstdatacol == 2); - - /* - * Find the two columns that reported errors. - */ - for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) { - rc = &rm->rm_col[c]; - if (rc->rc_error != 0) - break; - } - ASSERT(c != rm->rm_cols); - ASSERT(!rc->rc_skipped || rc->rc_error == ENXIO || - rc->rc_error == ESTALE); - - for (c1 = c++; c < rm->rm_cols; c++) { - rc = &rm->rm_col[c]; - if (rc->rc_error != 0) - break; - } - ASSERT(c != rm->rm_cols); - ASSERT(!rc->rc_skipped || rc->rc_error == ENXIO || - rc->rc_error == ESTALE); - - vdev_raidz_reconstruct_pq(rm, c1, c); - - if (zio_checksum_error(zio) == 0) { - atomic_inc_64(&raidz_corrected_pq); - goto done; - } - break; - - default: - ASSERT(rm->rm_firstdatacol <= 2); - ASSERT(0); } } @@ -1020,8 +1834,10 @@ vdev_raidz_io_done(zio_t *zio) * errors we detected, and we've attempted to read all columns. There * must, therefore, be one or more additional problems -- silent errors * resulting in invalid data rather than explicit I/O errors resulting - * in absent data. Before we attempt combinatorial reconstruction make - * sure we have a chance of coming up with the right answer. + * in absent data. We check if there is enough additional data to + * possibly reconstruct the data and then perform combinatorial + * reconstruction over all possible combinations. If that fails, + * we're cooked. */ if (total_errors >= rm->rm_firstdatacol) { zio->io_error = vdev_raidz_worst_error(rm); @@ -1032,133 +1848,30 @@ vdev_raidz_io_done(zio_t *zio) */ if (total_errors == rm->rm_firstdatacol) zio->io_error = zio_worst_error(zio->io_error, ECKSUM); - goto done; - } - if (rm->rm_col[VDEV_RAIDZ_P].rc_error == 0) { + } else if ((code = vdev_raidz_combrec(zio, total_errors, + data_errors)) != 0) { /* - * Attempt to reconstruct the data from parity P. + * If we didn't use all the available parity for the + * combinatorial reconstruction, verify that the remaining + * parity is correct. */ - for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) { - void *orig; - rc = &rm->rm_col[c]; - - orig = zio_buf_alloc(rc->rc_size); - bcopy(rc->rc_data, orig, rc->rc_size); - vdev_raidz_reconstruct_p(rm, c); - - if (zio_checksum_error(zio) == 0) { - zio_buf_free(orig, rc->rc_size); - atomic_inc_64(&raidz_corrected_p); - - /* - * If this child didn't know that it returned - * bad data, inform it. - */ - if (rc->rc_tried && rc->rc_error == 0) - raidz_checksum_error(zio, rc); - rc->rc_error = ECKSUM; - goto done; - } - - bcopy(orig, rc->rc_data, rc->rc_size); - zio_buf_free(orig, rc->rc_size); - } - } - - if (rm->rm_firstdatacol > 1 && rm->rm_col[VDEV_RAIDZ_Q].rc_error == 0) { + if (code != (1 << rm->rm_firstdatacol) - 1) + (void) raidz_parity_verify(zio, rm); + } else { /* - * Attempt to reconstruct the data from parity Q. + * All combinations failed to checksum. Generate checksum + * ereports for all children. */ - for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) { - void *orig; - rc = &rm->rm_col[c]; - - orig = zio_buf_alloc(rc->rc_size); - bcopy(rc->rc_data, orig, rc->rc_size); - vdev_raidz_reconstruct_q(rm, c); - - if (zio_checksum_error(zio) == 0) { - zio_buf_free(orig, rc->rc_size); - atomic_inc_64(&raidz_corrected_q); - - /* - * If this child didn't know that it returned - * bad data, inform it. - */ - if (rc->rc_tried && rc->rc_error == 0) - raidz_checksum_error(zio, rc); - rc->rc_error = ECKSUM; - goto done; - } - - bcopy(orig, rc->rc_data, rc->rc_size); - zio_buf_free(orig, rc->rc_size); - } - } + zio->io_error = ECKSUM; - if (rm->rm_firstdatacol > 1 && - rm->rm_col[VDEV_RAIDZ_P].rc_error == 0 && - rm->rm_col[VDEV_RAIDZ_Q].rc_error == 0) { - /* - * Attempt to reconstruct the data from both P and Q. - */ - for (c = rm->rm_firstdatacol; c < rm->rm_cols - 1; c++) { - void *orig, *orig1; - rc = &rm->rm_col[c]; - - orig = zio_buf_alloc(rc->rc_size); - bcopy(rc->rc_data, orig, rc->rc_size); - - for (c1 = c + 1; c1 < rm->rm_cols; c1++) { - rc1 = &rm->rm_col[c1]; - - orig1 = zio_buf_alloc(rc1->rc_size); - bcopy(rc1->rc_data, orig1, rc1->rc_size); - - vdev_raidz_reconstruct_pq(rm, c, c1); - - if (zio_checksum_error(zio) == 0) { - zio_buf_free(orig, rc->rc_size); - zio_buf_free(orig1, rc1->rc_size); - atomic_inc_64(&raidz_corrected_pq); - - /* - * If these children didn't know they - * returned bad data, inform them. - */ - if (rc->rc_tried && rc->rc_error == 0) - raidz_checksum_error(zio, rc); - if (rc1->rc_tried && rc1->rc_error == 0) - raidz_checksum_error(zio, rc1); - - rc->rc_error = ECKSUM; - rc1->rc_error = ECKSUM; - - goto done; - } - - bcopy(orig1, rc1->rc_data, rc1->rc_size); - zio_buf_free(orig1, rc1->rc_size); + if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { + for (c = 0; c < rm->rm_cols; c++) { + rc = &rm->rm_col[c]; + zfs_ereport_post(FM_EREPORT_ZFS_CHECKSUM, + zio->io_spa, vd->vdev_child[rc->rc_devidx], + zio, rc->rc_offset, rc->rc_size); } - - bcopy(orig, rc->rc_data, rc->rc_size); - zio_buf_free(orig, rc->rc_size); - } - } - - /* - * All combinations failed to checksum. Generate checksum ereports for - * all children. - */ - zio->io_error = ECKSUM; - - if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { - for (c = 0; c < rm->rm_cols; c++) { - rc = &rm->rm_col[c]; - zfs_ereport_post(FM_EREPORT_ZFS_CHECKSUM, - zio->io_spa, vd->vdev_child[rc->rc_devidx], zio, - rc->rc_offset, rc->rc_size); } } |