summaryrefslogtreecommitdiffstats
path: root/module/zfs/vdev_queue.c
diff options
context:
space:
mode:
authorBrian Behlendorf <[email protected]>2009-08-18 11:43:27 -0700
committerBrian Behlendorf <[email protected]>2009-08-18 11:43:27 -0700
commit45d1cae3b8c949ecc391dd7a5b81963b34c71c29 (patch)
tree69b1f860eb1f9b1ebdef392760814c5cc089f345 /module/zfs/vdev_queue.c
parent9babb37438b58e77bad04e820d5702e15b79e6a6 (diff)
Rebase master to b121
Diffstat (limited to 'module/zfs/vdev_queue.c')
-rw-r--r--module/zfs/vdev_queue.c115
1 files changed, 103 insertions, 12 deletions
diff --git a/module/zfs/vdev_queue.c b/module/zfs/vdev_queue.c
index 5e57a1513..9867d0970 100644
--- a/module/zfs/vdev_queue.c
+++ b/module/zfs/vdev_queue.c
@@ -24,7 +24,7 @@
*/
#include <sys/zfs_context.h>
-#include <sys/spa.h>
+#include <sys/spa_impl.h>
#include <sys/vdev_impl.h>
#include <sys/zio.h>
#include <sys/avl.h>
@@ -48,11 +48,14 @@ int zfs_vdev_time_shift = 6;
int zfs_vdev_ramp_rate = 2;
/*
- * To reduce IOPs, we aggregate small adjacent i/os into one large i/o.
- * For read i/os, we also aggregate across small adjacency gaps.
+ * To reduce IOPs, we aggregate small adjacent I/Os into one large I/O.
+ * For read I/Os, we also aggregate across small adjacency gaps; for writes
+ * we include spans of optional I/Os to aid aggregation at the disk even when
+ * they aren't able to help us aggregate at this level.
*/
int zfs_vdev_aggregation_limit = SPA_MAXBLOCKSIZE;
int zfs_vdev_read_gap_limit = 32 << 10;
+int zfs_vdev_write_gap_limit = 4 << 10;
/*
* Virtual device vector for disk I/O scheduling.
@@ -172,12 +175,14 @@ vdev_queue_agg_io_done(zio_t *aio)
static zio_t *
vdev_queue_io_to_issue(vdev_queue_t *vq, uint64_t pending_limit)
{
- zio_t *fio, *lio, *aio, *dio, *nio;
+ zio_t *fio, *lio, *aio, *dio, *nio, *mio;
avl_tree_t *t;
int flags;
uint64_t maxspan = zfs_vdev_aggregation_limit;
uint64_t maxgap;
+ int stretch;
+again:
ASSERT(MUTEX_HELD(&vq->vq_lock));
if (avl_numnodes(&vq->vq_pending_tree) >= pending_limit ||
@@ -192,21 +197,88 @@ vdev_queue_io_to_issue(vdev_queue_t *vq, uint64_t pending_limit)
if (!(flags & ZIO_FLAG_DONT_AGGREGATE)) {
/*
- * We can aggregate I/Os that are adjacent and of the
- * same flavor, as expressed by the AGG_INHERIT flags.
- * The latter is necessary so that certain attributes
- * of the I/O, such as whether it's a normal I/O or a
- * scrub/resilver, can be preserved in the aggregate.
+ * We can aggregate I/Os that are sufficiently adjacent and of
+ * the same flavor, as expressed by the AGG_INHERIT flags.
+ * The latter requirement is necessary so that certain
+ * attributes of the I/O, such as whether it's a normal I/O
+ * or a scrub/resilver, can be preserved in the aggregate.
+ * We can include optional I/Os, but don't allow them
+ * to begin a range as they add no benefit in that situation.
+ */
+
+ /*
+ * We keep track of the last non-optional I/O.
+ */
+ mio = (fio->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : fio;
+
+ /*
+ * Walk backwards through sufficiently contiguous I/Os
+ * recording the last non-option I/O.
*/
while ((dio = AVL_PREV(t, fio)) != NULL &&
(dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
- IO_SPAN(dio, lio) <= maxspan && IO_GAP(dio, fio) <= maxgap)
+ IO_SPAN(dio, lio) <= maxspan &&
+ IO_GAP(dio, fio) <= maxgap) {
fio = dio;
+ if (mio == NULL && !(fio->io_flags & ZIO_FLAG_OPTIONAL))
+ mio = fio;
+ }
+ /*
+ * Skip any initial optional I/Os.
+ */
+ while ((fio->io_flags & ZIO_FLAG_OPTIONAL) && fio != lio) {
+ fio = AVL_NEXT(t, fio);
+ ASSERT(fio != NULL);
+ }
+
+ /*
+ * Walk forward through sufficiently contiguous I/Os.
+ */
while ((dio = AVL_NEXT(t, lio)) != NULL &&
(dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
- IO_SPAN(fio, dio) <= maxspan && IO_GAP(lio, dio) <= maxgap)
+ IO_SPAN(fio, dio) <= maxspan &&
+ IO_GAP(lio, dio) <= maxgap) {
lio = dio;
+ if (!(lio->io_flags & ZIO_FLAG_OPTIONAL))
+ mio = lio;
+ }
+
+ /*
+ * Now that we've established the range of the I/O aggregation
+ * we must decide what to do with trailing optional I/Os.
+ * For reads, there's nothing to do. While we are unable to
+ * aggregate further, it's possible that a trailing optional
+ * I/O would allow the underlying device to aggregate with
+ * subsequent I/Os. We must therefore determine if the next
+ * non-optional I/O is close enough to make aggregation
+ * worthwhile.
+ */
+ stretch = B_FALSE;
+ if (t != &vq->vq_read_tree && mio != NULL) {
+ nio = lio;
+ while ((dio = AVL_NEXT(t, nio)) != NULL &&
+ IO_GAP(nio, dio) == 0 &&
+ IO_GAP(mio, dio) <= zfs_vdev_write_gap_limit) {
+ nio = dio;
+ if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) {
+ stretch = B_TRUE;
+ break;
+ }
+ }
+ }
+
+ if (stretch) {
+ /* This may be a no-op. */
+ VERIFY((dio = AVL_NEXT(t, lio)) != NULL);
+ dio->io_flags &= ~ZIO_FLAG_OPTIONAL;
+ } else {
+ while (lio != mio && lio != fio) {
+ ASSERT(lio->io_flags & ZIO_FLAG_OPTIONAL);
+ lio = AVL_PREV(t, lio);
+ ASSERT(lio != NULL);
+ }
+ }
}
if (fio != lio) {
@@ -225,10 +297,15 @@ vdev_queue_io_to_issue(vdev_queue_t *vq, uint64_t pending_limit)
ASSERT(dio->io_type == aio->io_type);
ASSERT(dio->io_vdev_tree == t);
- if (dio->io_type == ZIO_TYPE_WRITE)
+ if (dio->io_flags & ZIO_FLAG_NODATA) {
+ ASSERT(dio->io_type == ZIO_TYPE_WRITE);
+ bzero((char *)aio->io_data + (dio->io_offset -
+ aio->io_offset), dio->io_size);
+ } else if (dio->io_type == ZIO_TYPE_WRITE) {
bcopy(dio->io_data, (char *)aio->io_data +
(dio->io_offset - aio->io_offset),
dio->io_size);
+ }
zio_add_child(dio, aio);
vdev_queue_io_remove(vq, dio);
@@ -244,6 +321,20 @@ vdev_queue_io_to_issue(vdev_queue_t *vq, uint64_t pending_limit)
ASSERT(fio->io_vdev_tree == t);
vdev_queue_io_remove(vq, fio);
+ /*
+ * If the I/O is or was optional and therefore has no data, we need to
+ * simply discard it. We need to drop the vdev queue's lock to avoid a
+ * deadlock that we could encounter since this I/O will complete
+ * immediately.
+ */
+ if (fio->io_flags & ZIO_FLAG_NODATA) {
+ mutex_exit(&vq->vq_lock);
+ zio_vdev_io_bypass(fio);
+ zio_execute(fio);
+ mutex_enter(&vq->vq_lock);
+ goto again;
+ }
+
avl_add(&vq->vq_pending_tree, fio);
return (fio);