aboutsummaryrefslogtreecommitdiffstats
path: root/module/zfs/vdev_indirect.c
diff options
context:
space:
mode:
authorMatthew Ahrens <[email protected]>2018-02-13 11:37:56 -0800
committerBrian Behlendorf <[email protected]>2018-04-14 12:21:39 -0700
commit9e052db4627ca945db1e3fa63ed81b156d9d7562 (patch)
tree0d49203a53a626a48897ee37f436791b601d824e /module/zfs/vdev_indirect.c
parenta1d477c24c7badc89c60955995fd84d311938486 (diff)
OpenZFS 9290 - device removal reduces redundancy of mirrors
Mirrors are supposed to provide redundancy in the face of whole-disk failure and silent damage (e.g. some data on disk is not right, but ZFS hasn't detected the whole device as being broken). However, the current device removal implementation bypasses some of the mirror's redundancy. Note that in no case is incorrect data returned, but we might get a checksum error when we should have been able to find the right data. There are two underlying problems: 1. When we remove a mirror device, we only read one side of the mirror. Since we can't verify the checksum, this side may be silently bad, but the good data is on the other side of the mirror (which we didn't read). This can cause the removal to "bake in" the busted data – all copies of the data in the new location are the same, busted version, while we left the good version behind. The fix for this is to read and copy both sides of the mirror. If the old and new vdevs are mirrors, we will read both sides of the old mirror, and write each copy to the corresponding side of the new mirror. (If the old and new vdevs have a different number of children, we will do this as best as possible.) Even though we aren't verifying checksums, this ensures that as long as there's a good copy of the data, we'll have a good copy after the removal, even if there's silent damage to one side of the mirror. If we're removing a mirror that has some silent damage, we'll have exactly the same damage in the new location (assuming that the new location is also a mirror). 2. When we read from an indirect vdev that points to a mirror vdev, we only consider one copy of the data. This can lead to reduced effective redundancy, because we might read a bad copy of the data from one side of the mirror, and not retry the other, good side of the mirror. Note that the problem is not with the removal process, but rather after the removal has completed (having copied correct data to both sides of the mirror), if one side of the new mirror is silently damaged, we encounter the problem when reading the relocated data via the indirect vdev. Also note that the problem doesn't occur when ZFS knows that one side of the mirror is bad, e.g. when a disk entirely fails or is offlined. The impact is that reads (from indirect vdevs that point to mirrors) may return a checksum error even though the good data exists on one side of the mirror, and scrub doesn't repair all data on the mirror (if some of it is pointed to via an indirect vdev). The fix for this is complicated by "split blocks" - one logical block may be split into two (or more) pieces with each piece moved to a different new location. In this case we need to read all versions of each split (one from each side of the mirror), and figure out which combination of versions results in the correct checksum, and then repair the incorrect versions. This ensures that we supply the same redundancy whether you use device removal or not. For example, if a mirror has small silent errors on all of its children, we can still reconstruct the correct data, as long as those errors are at sufficiently-separated offsets (specifically, separated by the largest block size - default of 128KB, but up to 16MB). Porting notes: * A new indirect vdev check was moved from dsl_scan_needs_resilver_cb() to dsl_scan_needs_resilver(), which was added to ZoL as part of the sequential scrub work. * Passed NULL for zfs_ereport_post_checksum()'s zbookmark_phys_t parameter. The extra parameter is unique to ZoL. * When posting indirect checksum errors the ABD can be passed directly, zfs_ereport_post_checksum() is not yet ABD-aware in OpenZFS. Authored by: Matthew Ahrens <[email protected]> Reviewed by: Tim Chase <[email protected]> Reviewed by: Brian Behlendorf <[email protected]> Ported-by: Tim Chase <[email protected]> OpenZFS-issue: https://illumos.org/issues/9290 OpenZFS-commit: https://github.com/openzfs/openzfs/pull/591 Closes #6900
Diffstat (limited to 'module/zfs/vdev_indirect.c')
-rw-r--r--module/zfs/vdev_indirect.c553
1 files changed, 536 insertions, 17 deletions
diff --git a/module/zfs/vdev_indirect.c b/module/zfs/vdev_indirect.c
index 86a05daa8..3ccdfee3b 100644
--- a/module/zfs/vdev_indirect.c
+++ b/module/zfs/vdev_indirect.c
@@ -23,6 +23,7 @@
#include <sys/vdev_impl.h>
#include <sys/fs/zfs.h>
#include <sys/zio.h>
+#include <sys/zio_checksum.h>
#include <sys/metaslab.h>
#include <sys/refcount.h>
#include <sys/dmu.h>
@@ -44,10 +45,11 @@
* "vdev_remap" operation that executes a callback on each contiguous
* segment of the new location. This function is used in multiple ways:
*
- * - reads and repair writes to this device use the callback to create
- * a child io for each mapped segment.
+ * - i/os to this vdev use the callback to determine where the
+ * data is now located, and issue child i/os for each segment's new
+ * location.
*
- * - frees and claims to this device use the callback to free or claim
+ * - frees and claims to this vdev use the callback to free or claim
* each mapped segment. (Note that we don't actually need to claim
* log blocks on indirect vdevs, because we don't allocate to
* removing vdevs. However, zdb uses zio_claim() for its leak
@@ -202,6 +204,95 @@ unsigned long zfs_condense_min_mapping_bytes = 128 * 1024;
int zfs_condense_indirect_commit_entry_delay_ms = 0;
/*
+ * If a split block contains more than this many segments, consider it too
+ * computationally expensive to check all (2^num_segments) possible
+ * combinations. Instead, try at most 2^_segments_max randomly-selected
+ * combinations.
+ *
+ * This is reasonable if only a few segment copies are damaged and the
+ * majority of segment copies are good. It allows all segment copies to
+ * participate fairly in the reconstruction and prevents repeated use of
+ * one bad copy.
+ */
+int zfs_reconstruct_indirect_segments_max = 10;
+
+/*
+ * The indirect_child_t represents the vdev that we will read from, when we
+ * need to read all copies of the data (e.g. for scrub or reconstruction).
+ * For plain (non-mirror) top-level vdevs (i.e. is_vdev is not a mirror),
+ * ic_vdev is the same as is_vdev. However, for mirror top-level vdevs,
+ * ic_vdev is a child of the mirror.
+ */
+typedef struct indirect_child {
+ abd_t *ic_data;
+ vdev_t *ic_vdev;
+} indirect_child_t;
+
+/*
+ * The indirect_split_t represents one mapped segment of an i/o to the
+ * indirect vdev. For non-split (contiguously-mapped) blocks, there will be
+ * only one indirect_split_t, with is_split_offset==0 and is_size==io_size.
+ * For split blocks, there will be several of these.
+ */
+typedef struct indirect_split {
+ list_node_t is_node; /* link on iv_splits */
+
+ /*
+ * is_split_offset is the offset into the i/o.
+ * This is the sum of the previous splits' is_size's.
+ */
+ uint64_t is_split_offset;
+
+ vdev_t *is_vdev; /* top-level vdev */
+ uint64_t is_target_offset; /* offset on is_vdev */
+ uint64_t is_size;
+ int is_children; /* number of entries in is_child[] */
+
+ /*
+ * is_good_child is the child that we are currently using to
+ * attempt reconstruction.
+ */
+ int is_good_child;
+
+ indirect_child_t is_child[1]; /* variable-length */
+} indirect_split_t;
+
+/*
+ * The indirect_vsd_t is associated with each i/o to the indirect vdev.
+ * It is the "Vdev-Specific Data" in the zio_t's io_vsd.
+ */
+typedef struct indirect_vsd {
+ boolean_t iv_split_block;
+ boolean_t iv_reconstruct;
+
+ list_t iv_splits; /* list of indirect_split_t's */
+} indirect_vsd_t;
+
+static void
+vdev_indirect_map_free(zio_t *zio)
+{
+ indirect_vsd_t *iv = zio->io_vsd;
+
+ indirect_split_t *is;
+ while ((is = list_head(&iv->iv_splits)) != NULL) {
+ for (int c = 0; c < is->is_children; c++) {
+ indirect_child_t *ic = &is->is_child[c];
+ if (ic->ic_data != NULL)
+ abd_free(ic->ic_data);
+ }
+ list_remove(&iv->iv_splits, is);
+ kmem_free(is,
+ offsetof(indirect_split_t, is_child[is->is_children]));
+ }
+ kmem_free(iv, sizeof (*iv));
+}
+
+static const zio_vsd_ops_t vdev_indirect_vsd_ops = {
+ vdev_indirect_map_free,
+ zio_vsd_default_cksum_report
+};
+
+/*
* Mark the given offset and size as being obsolete in the given txg.
*/
void
@@ -814,12 +905,6 @@ vdev_indirect_close(vdev_t *vd)
}
/* ARGSUSED */
-static void
-vdev_indirect_io_done(zio_t *zio)
-{
-}
-
-/* ARGSUSED */
static int
vdev_indirect_open(vdev_t *vd, uint64_t *psize, uint64_t *max_psize,
uint64_t *ashift)
@@ -990,41 +1075,471 @@ vdev_indirect_child_io_done(zio_t *zio)
abd_put(zio->io_abd);
}
+/*
+ * This is a callback for vdev_indirect_remap() which allocates an
+ * indirect_split_t for each split segment and adds it to iv_splits.
+ */
static void
-vdev_indirect_io_start_cb(uint64_t split_offset, vdev_t *vd, uint64_t offset,
+vdev_indirect_gather_splits(uint64_t split_offset, vdev_t *vd, uint64_t offset,
uint64_t size, void *arg)
{
zio_t *zio = arg;
+ indirect_vsd_t *iv = zio->io_vsd;
ASSERT3P(vd, !=, NULL);
if (vd->vdev_ops == &vdev_indirect_ops)
return;
- zio_nowait(zio_vdev_child_io(zio, NULL, vd, offset,
- abd_get_offset(zio->io_abd, split_offset),
- size, zio->io_type, zio->io_priority,
- 0, vdev_indirect_child_io_done, zio));
+ int n = 1;
+ if (vd->vdev_ops == &vdev_mirror_ops)
+ n = vd->vdev_children;
+
+ indirect_split_t *is =
+ kmem_zalloc(offsetof(indirect_split_t, is_child[n]), KM_SLEEP);
+
+ is->is_children = n;
+ is->is_size = size;
+ is->is_split_offset = split_offset;
+ is->is_target_offset = offset;
+ is->is_vdev = vd;
+
+ /*
+ * Note that we only consider multiple copies of the data for
+ * *mirror* vdevs. We don't for "replacing" or "spare" vdevs, even
+ * though they use the same ops as mirror, because there's only one
+ * "good" copy under the replacing/spare.
+ */
+ if (vd->vdev_ops == &vdev_mirror_ops) {
+ for (int i = 0; i < n; i++) {
+ is->is_child[i].ic_vdev = vd->vdev_child[i];
+ }
+ } else {
+ is->is_child[0].ic_vdev = vd;
+ }
+
+ list_insert_tail(&iv->iv_splits, is);
+}
+
+static void
+vdev_indirect_read_split_done(zio_t *zio)
+{
+ indirect_child_t *ic = zio->io_private;
+
+ if (zio->io_error != 0) {
+ /*
+ * Clear ic_data to indicate that we do not have data for this
+ * child.
+ */
+ abd_free(ic->ic_data);
+ ic->ic_data = NULL;
+ }
+}
+
+/*
+ * Issue reads for all copies (mirror children) of all splits.
+ */
+static void
+vdev_indirect_read_all(zio_t *zio)
+{
+ indirect_vsd_t *iv = zio->io_vsd;
+
+ for (indirect_split_t *is = list_head(&iv->iv_splits);
+ is != NULL; is = list_next(&iv->iv_splits, is)) {
+ for (int i = 0; i < is->is_children; i++) {
+ indirect_child_t *ic = &is->is_child[i];
+
+ if (!vdev_readable(ic->ic_vdev))
+ continue;
+
+ /*
+ * Note, we may read from a child whose DTL
+ * indicates that the data may not be present here.
+ * While this might result in a few i/os that will
+ * likely return incorrect data, it simplifies the
+ * code since we can treat scrub and resilver
+ * identically. (The incorrect data will be
+ * detected and ignored when we verify the
+ * checksum.)
+ */
+
+ ic->ic_data = abd_alloc_sametype(zio->io_abd,
+ is->is_size);
+
+ zio_nowait(zio_vdev_child_io(zio, NULL,
+ ic->ic_vdev, is->is_target_offset, ic->ic_data,
+ is->is_size, zio->io_type, zio->io_priority, 0,
+ vdev_indirect_read_split_done, ic));
+ }
+ }
+ iv->iv_reconstruct = B_TRUE;
}
static void
vdev_indirect_io_start(zio_t *zio)
{
ASSERTV(spa_t *spa = zio->io_spa);
+ indirect_vsd_t *iv = kmem_zalloc(sizeof (*iv), KM_SLEEP);
+ list_create(&iv->iv_splits,
+ sizeof (indirect_split_t), offsetof(indirect_split_t, is_node));
+
+ zio->io_vsd = iv;
+ zio->io_vsd_ops = &vdev_indirect_vsd_ops;
ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
if (zio->io_type != ZIO_TYPE_READ) {
ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
- ASSERT((zio->io_flags &
- (ZIO_FLAG_SELF_HEAL | ZIO_FLAG_INDUCE_DAMAGE)) != 0);
+ /*
+ * Note: this code can handle other kinds of writes,
+ * but we don't expect them.
+ */
+ ASSERT((zio->io_flags & (ZIO_FLAG_SELF_HEAL |
+ ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE)) != 0);
}
vdev_indirect_remap(zio->io_vd, zio->io_offset, zio->io_size,
- vdev_indirect_io_start_cb, zio);
+ vdev_indirect_gather_splits, zio);
+
+ indirect_split_t *first = list_head(&iv->iv_splits);
+ if (first->is_size == zio->io_size) {
+ /*
+ * This is not a split block; we are pointing to the entire
+ * data, which will checksum the same as the original data.
+ * Pass the BP down so that the child i/o can verify the
+ * checksum, and try a different location if available
+ * (e.g. on a mirror).
+ *
+ * While this special case could be handled the same as the
+ * general (split block) case, doing it this way ensures
+ * that the vast majority of blocks on indirect vdevs
+ * (which are not split) are handled identically to blocks
+ * on non-indirect vdevs. This allows us to be less strict
+ * about performance in the general (but rare) case.
+ */
+ ASSERT0(first->is_split_offset);
+ ASSERT3P(list_next(&iv->iv_splits, first), ==, NULL);
+ zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
+ first->is_vdev, first->is_target_offset,
+ abd_get_offset(zio->io_abd, 0),
+ zio->io_size, zio->io_type, zio->io_priority, 0,
+ vdev_indirect_child_io_done, zio));
+ } else {
+ iv->iv_split_block = B_TRUE;
+ if (zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER)) {
+ /*
+ * Read all copies. Note that for simplicity,
+ * we don't bother consulting the DTL in the
+ * resilver case.
+ */
+ vdev_indirect_read_all(zio);
+ } else {
+ /*
+ * Read one copy of each split segment, from the
+ * top-level vdev. Since we don't know the
+ * checksum of each split individually, the child
+ * zio can't ensure that we get the right data.
+ * E.g. if it's a mirror, it will just read from a
+ * random (healthy) leaf vdev. We have to verify
+ * the checksum in vdev_indirect_io_done().
+ */
+ for (indirect_split_t *is = list_head(&iv->iv_splits);
+ is != NULL; is = list_next(&iv->iv_splits, is)) {
+ zio_nowait(zio_vdev_child_io(zio, NULL,
+ is->is_vdev, is->is_target_offset,
+ abd_get_offset(zio->io_abd,
+ is->is_split_offset), is->is_size,
+ zio->io_type, zio->io_priority, 0,
+ vdev_indirect_child_io_done, zio));
+ }
+
+ }
+ }
zio_execute(zio);
}
+/*
+ * Report a checksum error for a child.
+ */
+static void
+vdev_indirect_checksum_error(zio_t *zio,
+ indirect_split_t *is, indirect_child_t *ic)
+{
+ vdev_t *vd = ic->ic_vdev;
+
+ if (zio->io_flags & ZIO_FLAG_SPECULATIVE)
+ return;
+
+ mutex_enter(&vd->vdev_stat_lock);
+ vd->vdev_stat.vs_checksum_errors++;
+ mutex_exit(&vd->vdev_stat_lock);
+
+ zio_bad_cksum_t zbc = {{{ 0 }}};
+ abd_t *bad_abd = ic->ic_data;
+ abd_t *good_abd = is->is_child[is->is_good_child].ic_data;
+ zfs_ereport_post_checksum(zio->io_spa, vd, NULL, zio,
+ is->is_target_offset, is->is_size, good_abd, bad_abd, &zbc);
+}
+
+/*
+ * Issue repair i/os for any incorrect copies. We do this by comparing
+ * each split segment's correct data (is_good_child's ic_data) with each
+ * other copy of the data. If they differ, then we overwrite the bad data
+ * with the good copy. Note that we do this without regard for the DTL's,
+ * which simplifies this code and also issues the optimal number of writes
+ * (based on which copies actually read bad data, as opposed to which we
+ * think might be wrong). For the same reason, we always use
+ * ZIO_FLAG_SELF_HEAL, to bypass the DTL check in zio_vdev_io_start().
+ */
+static void
+vdev_indirect_repair(zio_t *zio)
+{
+ indirect_vsd_t *iv = zio->io_vsd;
+
+ enum zio_flag flags = ZIO_FLAG_IO_REPAIR;
+
+ if (!(zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER)))
+ flags |= ZIO_FLAG_SELF_HEAL;
+
+ if (!spa_writeable(zio->io_spa))
+ return;
+
+ for (indirect_split_t *is = list_head(&iv->iv_splits);
+ is != NULL; is = list_next(&iv->iv_splits, is)) {
+ indirect_child_t *good_child = &is->is_child[is->is_good_child];
+
+ for (int c = 0; c < is->is_children; c++) {
+ indirect_child_t *ic = &is->is_child[c];
+ if (ic == good_child)
+ continue;
+ if (ic->ic_data == NULL)
+ continue;
+ if (abd_cmp(good_child->ic_data, ic->ic_data) == 0)
+ continue;
+
+ zio_nowait(zio_vdev_child_io(zio, NULL,
+ ic->ic_vdev, is->is_target_offset,
+ good_child->ic_data, is->is_size,
+ ZIO_TYPE_WRITE, ZIO_PRIORITY_ASYNC_WRITE,
+ ZIO_FLAG_IO_REPAIR | ZIO_FLAG_SELF_HEAL,
+ NULL, NULL));
+
+ vdev_indirect_checksum_error(zio, is, ic);
+ }
+ }
+}
+
+/*
+ * Report checksum errors on all children that we read from.
+ */
+static void
+vdev_indirect_all_checksum_errors(zio_t *zio)
+{
+ indirect_vsd_t *iv = zio->io_vsd;
+
+ if (zio->io_flags & ZIO_FLAG_SPECULATIVE)
+ return;
+
+ for (indirect_split_t *is = list_head(&iv->iv_splits);
+ is != NULL; is = list_next(&iv->iv_splits, is)) {
+ for (int c = 0; c < is->is_children; c++) {
+ indirect_child_t *ic = &is->is_child[c];
+
+ if (ic->ic_data == NULL)
+ continue;
+
+ vdev_t *vd = ic->ic_vdev;
+
+ mutex_enter(&vd->vdev_stat_lock);
+ vd->vdev_stat.vs_checksum_errors++;
+ mutex_exit(&vd->vdev_stat_lock);
+
+ zfs_ereport_post_checksum(zio->io_spa, vd, NULL, zio,
+ is->is_target_offset, is->is_size,
+ NULL, NULL, NULL);
+ }
+ }
+}
+
+/*
+ * This function is called when we have read all copies of the data and need
+ * to try to find a combination of copies that gives us the right checksum.
+ *
+ * If we pointed to any mirror vdevs, this effectively does the job of the
+ * mirror. The mirror vdev code can't do its own job because we don't know
+ * the checksum of each split segment individually. We have to try every
+ * combination of copies of split segments, until we find one that checksums
+ * correctly. (Or until we have tried all combinations, or have tried
+ * 2^zfs_reconstruct_indirect_segments_max combinations. In these cases we
+ * set io_error to ECKSUM to propagate the error up to the user.)
+ *
+ * For example, if we have 3 segments in the split,
+ * and each points to a 2-way mirror, we will have the following pieces of
+ * data:
+ *
+ * | mirror child
+ * split | [0] [1]
+ * ======|=====================
+ * A | data_A_0 data_A_1
+ * B | data_B_0 data_B_1
+ * C | data_C_0 data_C_1
+ *
+ * We will try the following (mirror children)^(number of splits) (2^3=8)
+ * combinations, which is similar to bitwise-little-endian counting in
+ * binary. In general each "digit" corresponds to a split segment, and the
+ * base of each digit is is_children, which can be different for each
+ * digit.
+ *
+ * "low bit" "high bit"
+ * v v
+ * data_A_0 data_B_0 data_C_0
+ * data_A_1 data_B_0 data_C_0
+ * data_A_0 data_B_1 data_C_0
+ * data_A_1 data_B_1 data_C_0
+ * data_A_0 data_B_0 data_C_1
+ * data_A_1 data_B_0 data_C_1
+ * data_A_0 data_B_1 data_C_1
+ * data_A_1 data_B_1 data_C_1
+ *
+ * Note that the split segments may be on the same or different top-level
+ * vdevs. In either case, we try lots of combinations (see
+ * zfs_reconstruct_indirect_segments_max). This ensures that if a mirror has
+ * small silent errors on all of its children, we can still reconstruct the
+ * correct data, as long as those errors are at sufficiently-separated
+ * offsets (specifically, separated by the largest block size - default of
+ * 128KB, but up to 16MB).
+ */
+static void
+vdev_indirect_reconstruct_io_done(zio_t *zio)
+{
+ indirect_vsd_t *iv = zio->io_vsd;
+ uint64_t attempts = 0;
+ uint64_t attempts_max = 1ULL << zfs_reconstruct_indirect_segments_max;
+ int segments = 0;
+
+ for (indirect_split_t *is = list_head(&iv->iv_splits);
+ is != NULL; is = list_next(&iv->iv_splits, is))
+ segments++;
+
+ for (;;) {
+ /* copy data from splits to main zio */
+ int ret;
+ for (indirect_split_t *is = list_head(&iv->iv_splits);
+ is != NULL; is = list_next(&iv->iv_splits, is)) {
+
+ /*
+ * If this child failed, its ic_data will be NULL.
+ * Skip this combination.
+ */
+ if (is->is_child[is->is_good_child].ic_data == NULL) {
+ ret = EIO;
+ goto next;
+ }
+
+ abd_copy_off(zio->io_abd,
+ is->is_child[is->is_good_child].ic_data,
+ is->is_split_offset, 0, is->is_size);
+ }
+
+ /* See if this checksum matches. */
+ zio_bad_cksum_t zbc;
+ ret = zio_checksum_error(zio, &zbc);
+ if (ret == 0) {
+ /* Found a matching checksum. Issue repair i/os. */
+ vdev_indirect_repair(zio);
+ zio_checksum_verified(zio);
+ return;
+ }
+
+ /*
+ * Checksum failed; try a different combination of split
+ * children.
+ */
+ boolean_t more;
+next:
+ more = B_FALSE;
+ if (segments <= zfs_reconstruct_indirect_segments_max) {
+ /*
+ * There are relatively few segments, so
+ * deterministically check all combinations. We do
+ * this by by adding one to the first split's
+ * good_child. If it overflows, then "carry over" to
+ * the next split (like counting in base is_children,
+ * but each digit can have a different base).
+ */
+ for (indirect_split_t *is = list_head(&iv->iv_splits);
+ is != NULL; is = list_next(&iv->iv_splits, is)) {
+ is->is_good_child++;
+ if (is->is_good_child < is->is_children) {
+ more = B_TRUE;
+ break;
+ }
+ is->is_good_child = 0;
+ }
+ } else if (++attempts < attempts_max) {
+ /*
+ * There are too many combinations to try all of them
+ * in a reasonable amount of time, so try a fixed
+ * number of random combinations, after which we'll
+ * consider the block unrecoverable.
+ */
+ for (indirect_split_t *is = list_head(&iv->iv_splits);
+ is != NULL; is = list_next(&iv->iv_splits, is)) {
+ is->is_good_child =
+ spa_get_random(is->is_children);
+ }
+ more = B_TRUE;
+ }
+ if (!more) {
+ /* All combinations failed. */
+ zio->io_error = ret;
+ vdev_indirect_all_checksum_errors(zio);
+ zio_checksum_verified(zio);
+ return;
+ }
+ }
+}
+
+static void
+vdev_indirect_io_done(zio_t *zio)
+{
+ indirect_vsd_t *iv = zio->io_vsd;
+
+ if (iv->iv_reconstruct) {
+ /*
+ * We have read all copies of the data (e.g. from mirrors),
+ * either because this was a scrub/resilver, or because the
+ * one-copy read didn't checksum correctly.
+ */
+ vdev_indirect_reconstruct_io_done(zio);
+ return;
+ }
+
+ if (!iv->iv_split_block) {
+ /*
+ * This was not a split block, so we passed the BP down,
+ * and the checksum was handled by the (one) child zio.
+ */
+ return;
+ }
+
+ zio_bad_cksum_t zbc;
+ int ret = zio_checksum_error(zio, &zbc);
+ if (ret == 0) {
+ zio_checksum_verified(zio);
+ return;
+ }
+
+ /*
+ * The checksum didn't match. Read all copies of all splits, and
+ * then we will try to reconstruct. The next time
+ * vdev_indirect_io_done() is called, iv_reconstruct will be set.
+ */
+ vdev_indirect_read_all(zio);
+
+ zio_vdev_io_redone(zio);
+}
+
vdev_ops_t vdev_indirect_ops = {
vdev_indirect_open,
vdev_indirect_close,
@@ -1061,4 +1576,8 @@ MODULE_PARM_DESC(zfs_condense_min_mapping_bytes,
module_param(zfs_condense_indirect_commit_entry_delay_ms, int, 0644);
MODULE_PARM_DESC(zfs_condense_indirect_commit_entry_delay_ms,
"Delay while condensing vdev mapping");
+
+module_param(zfs_reconstruct_indirect_segments_max, int, 0644);
+MODULE_PARM_DESC(zfs_reconstruct_indirect_segments_max,
+ "Maximum number of split segments check all combinations");
#endif