diff options
author | Brian Behlendorf <[email protected]> | 2008-12-11 11:08:09 -0800 |
---|---|---|
committer | Brian Behlendorf <[email protected]> | 2008-12-11 11:08:09 -0800 |
commit | 172bb4bd5e4afef721dd4d2972d8680d983f144b (patch) | |
tree | 18ab1e97e5e409150066c529b5a981ecf600ef80 /module/zfs/vdev.c | |
parent | 9e8b1e836caa454586797f771a7ad1817ebae315 (diff) |
Move the world out of /zfs/ and seperate out module build tree
Diffstat (limited to 'module/zfs/vdev.c')
-rw-r--r-- | module/zfs/vdev.c | 2425 |
1 files changed, 2425 insertions, 0 deletions
diff --git a/module/zfs/vdev.c b/module/zfs/vdev.c new file mode 100644 index 000000000..16a27e514 --- /dev/null +++ b/module/zfs/vdev.c @@ -0,0 +1,2425 @@ +/* + * CDDL HEADER START + * + * The contents of this file are subject to the terms of the + * Common Development and Distribution License (the "License"). + * You may not use this file except in compliance with the License. + * + * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE + * or http://www.opensolaris.org/os/licensing. + * See the License for the specific language governing permissions + * and limitations under the License. + * + * When distributing Covered Code, include this CDDL HEADER in each + * file and include the License file at usr/src/OPENSOLARIS.LICENSE. + * If applicable, add the following below this CDDL HEADER, with the + * fields enclosed by brackets "[]" replaced with your own identifying + * information: Portions Copyright [yyyy] [name of copyright owner] + * + * CDDL HEADER END + */ + +/* + * Copyright 2008 Sun Microsystems, Inc. All rights reserved. + * Use is subject to license terms. + */ + +#include <sys/zfs_context.h> +#include <sys/fm/fs/zfs.h> +#include <sys/spa.h> +#include <sys/spa_impl.h> +#include <sys/dmu.h> +#include <sys/dmu_tx.h> +#include <sys/vdev_impl.h> +#include <sys/uberblock_impl.h> +#include <sys/metaslab.h> +#include <sys/metaslab_impl.h> +#include <sys/space_map.h> +#include <sys/zio.h> +#include <sys/zap.h> +#include <sys/fs/zfs.h> +#include <sys/arc.h> + +/* + * Virtual device management. + */ + +static vdev_ops_t *vdev_ops_table[] = { + &vdev_root_ops, + &vdev_raidz_ops, + &vdev_mirror_ops, + &vdev_replacing_ops, + &vdev_spare_ops, + &vdev_disk_ops, + &vdev_file_ops, + &vdev_missing_ops, + NULL +}; + +/* maximum scrub/resilver I/O queue per leaf vdev */ +int zfs_scrub_limit = 10; + +/* + * Given a vdev type, return the appropriate ops vector. + */ +static vdev_ops_t * +vdev_getops(const char *type) +{ + vdev_ops_t *ops, **opspp; + + for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) + if (strcmp(ops->vdev_op_type, type) == 0) + break; + + return (ops); +} + +/* + * Default asize function: return the MAX of psize with the asize of + * all children. This is what's used by anything other than RAID-Z. + */ +uint64_t +vdev_default_asize(vdev_t *vd, uint64_t psize) +{ + uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); + uint64_t csize; + uint64_t c; + + for (c = 0; c < vd->vdev_children; c++) { + csize = vdev_psize_to_asize(vd->vdev_child[c], psize); + asize = MAX(asize, csize); + } + + return (asize); +} + +/* + * Get the replaceable or attachable device size. + * If the parent is a mirror or raidz, the replaceable size is the minimum + * psize of all its children. For the rest, just return our own psize. + * + * e.g. + * psize rsize + * root - - + * mirror/raidz - - + * disk1 20g 20g + * disk2 40g 20g + * disk3 80g 80g + */ +uint64_t +vdev_get_rsize(vdev_t *vd) +{ + vdev_t *pvd, *cvd; + uint64_t c, rsize; + + pvd = vd->vdev_parent; + + /* + * If our parent is NULL or the root, just return our own psize. + */ + if (pvd == NULL || pvd->vdev_parent == NULL) + return (vd->vdev_psize); + + rsize = 0; + + for (c = 0; c < pvd->vdev_children; c++) { + cvd = pvd->vdev_child[c]; + rsize = MIN(rsize - 1, cvd->vdev_psize - 1) + 1; + } + + return (rsize); +} + +vdev_t * +vdev_lookup_top(spa_t *spa, uint64_t vdev) +{ + vdev_t *rvd = spa->spa_root_vdev; + + ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); + + if (vdev < rvd->vdev_children) { + ASSERT(rvd->vdev_child[vdev] != NULL); + return (rvd->vdev_child[vdev]); + } + + return (NULL); +} + +vdev_t * +vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) +{ + int c; + vdev_t *mvd; + + if (vd->vdev_guid == guid) + return (vd); + + for (c = 0; c < vd->vdev_children; c++) + if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != + NULL) + return (mvd); + + return (NULL); +} + +void +vdev_add_child(vdev_t *pvd, vdev_t *cvd) +{ + size_t oldsize, newsize; + uint64_t id = cvd->vdev_id; + vdev_t **newchild; + + ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); + ASSERT(cvd->vdev_parent == NULL); + + cvd->vdev_parent = pvd; + + if (pvd == NULL) + return; + + ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); + + oldsize = pvd->vdev_children * sizeof (vdev_t *); + pvd->vdev_children = MAX(pvd->vdev_children, id + 1); + newsize = pvd->vdev_children * sizeof (vdev_t *); + + newchild = kmem_zalloc(newsize, KM_SLEEP); + if (pvd->vdev_child != NULL) { + bcopy(pvd->vdev_child, newchild, oldsize); + kmem_free(pvd->vdev_child, oldsize); + } + + pvd->vdev_child = newchild; + pvd->vdev_child[id] = cvd; + + cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); + ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); + + /* + * Walk up all ancestors to update guid sum. + */ + for (; pvd != NULL; pvd = pvd->vdev_parent) + pvd->vdev_guid_sum += cvd->vdev_guid_sum; + + if (cvd->vdev_ops->vdev_op_leaf) + cvd->vdev_spa->spa_scrub_maxinflight += zfs_scrub_limit; +} + +void +vdev_remove_child(vdev_t *pvd, vdev_t *cvd) +{ + int c; + uint_t id = cvd->vdev_id; + + ASSERT(cvd->vdev_parent == pvd); + + if (pvd == NULL) + return; + + ASSERT(id < pvd->vdev_children); + ASSERT(pvd->vdev_child[id] == cvd); + + pvd->vdev_child[id] = NULL; + cvd->vdev_parent = NULL; + + for (c = 0; c < pvd->vdev_children; c++) + if (pvd->vdev_child[c]) + break; + + if (c == pvd->vdev_children) { + kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); + pvd->vdev_child = NULL; + pvd->vdev_children = 0; + } + + /* + * Walk up all ancestors to update guid sum. + */ + for (; pvd != NULL; pvd = pvd->vdev_parent) + pvd->vdev_guid_sum -= cvd->vdev_guid_sum; + + if (cvd->vdev_ops->vdev_op_leaf) + cvd->vdev_spa->spa_scrub_maxinflight -= zfs_scrub_limit; +} + +/* + * Remove any holes in the child array. + */ +void +vdev_compact_children(vdev_t *pvd) +{ + vdev_t **newchild, *cvd; + int oldc = pvd->vdev_children; + int newc, c; + + ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); + + for (c = newc = 0; c < oldc; c++) + if (pvd->vdev_child[c]) + newc++; + + newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP); + + for (c = newc = 0; c < oldc; c++) { + if ((cvd = pvd->vdev_child[c]) != NULL) { + newchild[newc] = cvd; + cvd->vdev_id = newc++; + } + } + + kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); + pvd->vdev_child = newchild; + pvd->vdev_children = newc; +} + +/* + * Allocate and minimally initialize a vdev_t. + */ +static vdev_t * +vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) +{ + vdev_t *vd; + + vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); + + if (spa->spa_root_vdev == NULL) { + ASSERT(ops == &vdev_root_ops); + spa->spa_root_vdev = vd; + } + + if (guid == 0) { + if (spa->spa_root_vdev == vd) { + /* + * The root vdev's guid will also be the pool guid, + * which must be unique among all pools. + */ + while (guid == 0 || spa_guid_exists(guid, 0)) + guid = spa_get_random(-1ULL); + } else { + /* + * Any other vdev's guid must be unique within the pool. + */ + while (guid == 0 || + spa_guid_exists(spa_guid(spa), guid)) + guid = spa_get_random(-1ULL); + } + ASSERT(!spa_guid_exists(spa_guid(spa), guid)); + } + + vd->vdev_spa = spa; + vd->vdev_id = id; + vd->vdev_guid = guid; + vd->vdev_guid_sum = guid; + vd->vdev_ops = ops; + vd->vdev_state = VDEV_STATE_CLOSED; + + mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL); + mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); + mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); + space_map_create(&vd->vdev_dtl_map, 0, -1ULL, 0, &vd->vdev_dtl_lock); + space_map_create(&vd->vdev_dtl_scrub, 0, -1ULL, 0, &vd->vdev_dtl_lock); + txg_list_create(&vd->vdev_ms_list, + offsetof(struct metaslab, ms_txg_node)); + txg_list_create(&vd->vdev_dtl_list, + offsetof(struct vdev, vdev_dtl_node)); + vd->vdev_stat.vs_timestamp = gethrtime(); + vdev_queue_init(vd); + vdev_cache_init(vd); + + return (vd); +} + +/* + * Allocate a new vdev. The 'alloctype' is used to control whether we are + * creating a new vdev or loading an existing one - the behavior is slightly + * different for each case. + */ +int +vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, + int alloctype) +{ + vdev_ops_t *ops; + char *type; + uint64_t guid = 0, islog, nparity; + vdev_t *vd; + + ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); + + if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) + return (EINVAL); + + if ((ops = vdev_getops(type)) == NULL) + return (EINVAL); + + /* + * If this is a load, get the vdev guid from the nvlist. + * Otherwise, vdev_alloc_common() will generate one for us. + */ + if (alloctype == VDEV_ALLOC_LOAD) { + uint64_t label_id; + + if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || + label_id != id) + return (EINVAL); + + if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) + return (EINVAL); + } else if (alloctype == VDEV_ALLOC_SPARE) { + if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) + return (EINVAL); + } else if (alloctype == VDEV_ALLOC_L2CACHE) { + if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) + return (EINVAL); + } + + /* + * The first allocated vdev must be of type 'root'. + */ + if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) + return (EINVAL); + + /* + * Determine whether we're a log vdev. + */ + islog = 0; + (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); + if (islog && spa_version(spa) < SPA_VERSION_SLOGS) + return (ENOTSUP); + + /* + * Set the nparity property for RAID-Z vdevs. + */ + nparity = -1ULL; + if (ops == &vdev_raidz_ops) { + if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, + &nparity) == 0) { + /* + * Currently, we can only support 2 parity devices. + */ + if (nparity == 0 || nparity > 2) + return (EINVAL); + /* + * Older versions can only support 1 parity device. + */ + if (nparity == 2 && + spa_version(spa) < SPA_VERSION_RAID6) + return (ENOTSUP); + } else { + /* + * We require the parity to be specified for SPAs that + * support multiple parity levels. + */ + if (spa_version(spa) >= SPA_VERSION_RAID6) + return (EINVAL); + /* + * Otherwise, we default to 1 parity device for RAID-Z. + */ + nparity = 1; + } + } else { + nparity = 0; + } + ASSERT(nparity != -1ULL); + + vd = vdev_alloc_common(spa, id, guid, ops); + + vd->vdev_islog = islog; + vd->vdev_nparity = nparity; + + if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) + vd->vdev_path = spa_strdup(vd->vdev_path); + if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) + vd->vdev_devid = spa_strdup(vd->vdev_devid); + if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, + &vd->vdev_physpath) == 0) + vd->vdev_physpath = spa_strdup(vd->vdev_physpath); + + /* + * Set the whole_disk property. If it's not specified, leave the value + * as -1. + */ + if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, + &vd->vdev_wholedisk) != 0) + vd->vdev_wholedisk = -1ULL; + + /* + * Look for the 'not present' flag. This will only be set if the device + * was not present at the time of import. + */ + if (!spa->spa_import_faulted) + (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, + &vd->vdev_not_present); + + /* + * Get the alignment requirement. + */ + (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); + + /* + * If we're a top-level vdev, try to load the allocation parameters. + */ + if (parent && !parent->vdev_parent && alloctype == VDEV_ALLOC_LOAD) { + (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, + &vd->vdev_ms_array); + (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, + &vd->vdev_ms_shift); + (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, + &vd->vdev_asize); + } + + /* + * If we're a leaf vdev, try to load the DTL object and other state. + */ + if (vd->vdev_ops->vdev_op_leaf && + (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE)) { + if (alloctype == VDEV_ALLOC_LOAD) { + (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, + &vd->vdev_dtl.smo_object); + (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, + &vd->vdev_unspare); + } + (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, + &vd->vdev_offline); + + /* + * When importing a pool, we want to ignore the persistent fault + * state, as the diagnosis made on another system may not be + * valid in the current context. + */ + if (spa->spa_load_state == SPA_LOAD_OPEN) { + (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, + &vd->vdev_faulted); + (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, + &vd->vdev_degraded); + (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, + &vd->vdev_removed); + } + } + + /* + * Add ourselves to the parent's list of children. + */ + vdev_add_child(parent, vd); + + *vdp = vd; + + return (0); +} + +void +vdev_free(vdev_t *vd) +{ + int c; + spa_t *spa = vd->vdev_spa; + + /* + * vdev_free() implies closing the vdev first. This is simpler than + * trying to ensure complicated semantics for all callers. + */ + vdev_close(vd); + + ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); + + /* + * Free all children. + */ + for (c = 0; c < vd->vdev_children; c++) + vdev_free(vd->vdev_child[c]); + + ASSERT(vd->vdev_child == NULL); + ASSERT(vd->vdev_guid_sum == vd->vdev_guid); + + /* + * Discard allocation state. + */ + if (vd == vd->vdev_top) + vdev_metaslab_fini(vd); + + ASSERT3U(vd->vdev_stat.vs_space, ==, 0); + ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0); + ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0); + + /* + * Remove this vdev from its parent's child list. + */ + vdev_remove_child(vd->vdev_parent, vd); + + ASSERT(vd->vdev_parent == NULL); + + /* + * Clean up vdev structure. + */ + vdev_queue_fini(vd); + vdev_cache_fini(vd); + + if (vd->vdev_path) + spa_strfree(vd->vdev_path); + if (vd->vdev_devid) + spa_strfree(vd->vdev_devid); + if (vd->vdev_physpath) + spa_strfree(vd->vdev_physpath); + + if (vd->vdev_isspare) + spa_spare_remove(vd); + if (vd->vdev_isl2cache) + spa_l2cache_remove(vd); + + txg_list_destroy(&vd->vdev_ms_list); + txg_list_destroy(&vd->vdev_dtl_list); + mutex_enter(&vd->vdev_dtl_lock); + space_map_unload(&vd->vdev_dtl_map); + space_map_destroy(&vd->vdev_dtl_map); + space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL); + space_map_destroy(&vd->vdev_dtl_scrub); + mutex_exit(&vd->vdev_dtl_lock); + mutex_destroy(&vd->vdev_dtl_lock); + mutex_destroy(&vd->vdev_stat_lock); + mutex_destroy(&vd->vdev_probe_lock); + + if (vd == spa->spa_root_vdev) + spa->spa_root_vdev = NULL; + + kmem_free(vd, sizeof (vdev_t)); +} + +/* + * Transfer top-level vdev state from svd to tvd. + */ +static void +vdev_top_transfer(vdev_t *svd, vdev_t *tvd) +{ + spa_t *spa = svd->vdev_spa; + metaslab_t *msp; + vdev_t *vd; + int t; + + ASSERT(tvd == tvd->vdev_top); + + tvd->vdev_ms_array = svd->vdev_ms_array; + tvd->vdev_ms_shift = svd->vdev_ms_shift; + tvd->vdev_ms_count = svd->vdev_ms_count; + + svd->vdev_ms_array = 0; + svd->vdev_ms_shift = 0; + svd->vdev_ms_count = 0; + + tvd->vdev_mg = svd->vdev_mg; + tvd->vdev_ms = svd->vdev_ms; + + svd->vdev_mg = NULL; + svd->vdev_ms = NULL; + + if (tvd->vdev_mg != NULL) + tvd->vdev_mg->mg_vd = tvd; + + tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; + tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; + tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; + + svd->vdev_stat.vs_alloc = 0; + svd->vdev_stat.vs_space = 0; + svd->vdev_stat.vs_dspace = 0; + + for (t = 0; t < TXG_SIZE; t++) { + while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) + (void) txg_list_add(&tvd->vdev_ms_list, msp, t); + while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) + (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); + if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) + (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); + } + + if (list_link_active(&svd->vdev_config_dirty_node)) { + vdev_config_clean(svd); + vdev_config_dirty(tvd); + } + + if (list_link_active(&svd->vdev_state_dirty_node)) { + vdev_state_clean(svd); + vdev_state_dirty(tvd); + } + + tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; + svd->vdev_deflate_ratio = 0; + + tvd->vdev_islog = svd->vdev_islog; + svd->vdev_islog = 0; +} + +static void +vdev_top_update(vdev_t *tvd, vdev_t *vd) +{ + int c; + + if (vd == NULL) + return; + + vd->vdev_top = tvd; + + for (c = 0; c < vd->vdev_children; c++) + vdev_top_update(tvd, vd->vdev_child[c]); +} + +/* + * Add a mirror/replacing vdev above an existing vdev. + */ +vdev_t * +vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) +{ + spa_t *spa = cvd->vdev_spa; + vdev_t *pvd = cvd->vdev_parent; + vdev_t *mvd; + + ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); + + mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); + + mvd->vdev_asize = cvd->vdev_asize; + mvd->vdev_ashift = cvd->vdev_ashift; + mvd->vdev_state = cvd->vdev_state; + + vdev_remove_child(pvd, cvd); + vdev_add_child(pvd, mvd); + cvd->vdev_id = mvd->vdev_children; + vdev_add_child(mvd, cvd); + vdev_top_update(cvd->vdev_top, cvd->vdev_top); + + if (mvd == mvd->vdev_top) + vdev_top_transfer(cvd, mvd); + + return (mvd); +} + +/* + * Remove a 1-way mirror/replacing vdev from the tree. + */ +void +vdev_remove_parent(vdev_t *cvd) +{ + vdev_t *mvd = cvd->vdev_parent; + vdev_t *pvd = mvd->vdev_parent; + + ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); + + ASSERT(mvd->vdev_children == 1); + ASSERT(mvd->vdev_ops == &vdev_mirror_ops || + mvd->vdev_ops == &vdev_replacing_ops || + mvd->vdev_ops == &vdev_spare_ops); + cvd->vdev_ashift = mvd->vdev_ashift; + + vdev_remove_child(mvd, cvd); + vdev_remove_child(pvd, mvd); + /* + * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. + * Otherwise, we could have detached an offline device, and when we + * go to import the pool we'll think we have two top-level vdevs, + * instead of a different version of the same top-level vdev. + */ + if (mvd->vdev_top == mvd) + cvd->vdev_guid = cvd->vdev_guid_sum = mvd->vdev_guid; + cvd->vdev_id = mvd->vdev_id; + vdev_add_child(pvd, cvd); + vdev_top_update(cvd->vdev_top, cvd->vdev_top); + + if (cvd == cvd->vdev_top) + vdev_top_transfer(mvd, cvd); + + ASSERT(mvd->vdev_children == 0); + vdev_free(mvd); +} + +int +vdev_metaslab_init(vdev_t *vd, uint64_t txg) +{ + spa_t *spa = vd->vdev_spa; + objset_t *mos = spa->spa_meta_objset; + metaslab_class_t *mc; + uint64_t m; + uint64_t oldc = vd->vdev_ms_count; + uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; + metaslab_t **mspp; + int error; + + if (vd->vdev_ms_shift == 0) /* not being allocated from yet */ + return (0); + + ASSERT(oldc <= newc); + + if (vd->vdev_islog) + mc = spa->spa_log_class; + else + mc = spa->spa_normal_class; + + if (vd->vdev_mg == NULL) + vd->vdev_mg = metaslab_group_create(mc, vd); + + mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); + + if (oldc != 0) { + bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); + kmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); + } + + vd->vdev_ms = mspp; + vd->vdev_ms_count = newc; + + for (m = oldc; m < newc; m++) { + space_map_obj_t smo = { 0, 0, 0 }; + if (txg == 0) { + uint64_t object = 0; + error = dmu_read(mos, vd->vdev_ms_array, + m * sizeof (uint64_t), sizeof (uint64_t), &object); + if (error) + return (error); + if (object != 0) { + dmu_buf_t *db; + error = dmu_bonus_hold(mos, object, FTAG, &db); + if (error) + return (error); + ASSERT3U(db->db_size, >=, sizeof (smo)); + bcopy(db->db_data, &smo, sizeof (smo)); + ASSERT3U(smo.smo_object, ==, object); + dmu_buf_rele(db, FTAG); + } + } + vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo, + m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg); + } + + return (0); +} + +void +vdev_metaslab_fini(vdev_t *vd) +{ + uint64_t m; + uint64_t count = vd->vdev_ms_count; + + if (vd->vdev_ms != NULL) { + for (m = 0; m < count; m++) + if (vd->vdev_ms[m] != NULL) + metaslab_fini(vd->vdev_ms[m]); + kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); + vd->vdev_ms = NULL; + } +} + +typedef struct vdev_probe_stats { + boolean_t vps_readable; + boolean_t vps_writeable; + int vps_flags; + zio_t *vps_root; + vdev_t *vps_vd; +} vdev_probe_stats_t; + +static void +vdev_probe_done(zio_t *zio) +{ + vdev_probe_stats_t *vps = zio->io_private; + vdev_t *vd = vps->vps_vd; + + if (zio->io_type == ZIO_TYPE_READ) { + ASSERT(zio->io_vd == vd); + if (zio->io_error == 0) + vps->vps_readable = 1; + if (zio->io_error == 0 && (spa_mode & FWRITE)) { + zio_nowait(zio_write_phys(vps->vps_root, vd, + zio->io_offset, zio->io_size, zio->io_data, + ZIO_CHECKSUM_OFF, vdev_probe_done, vps, + ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); + } else { + zio_buf_free(zio->io_data, zio->io_size); + } + } else if (zio->io_type == ZIO_TYPE_WRITE) { + ASSERT(zio->io_vd == vd); + if (zio->io_error == 0) + vps->vps_writeable = 1; + zio_buf_free(zio->io_data, zio->io_size); + } else if (zio->io_type == ZIO_TYPE_NULL) { + ASSERT(zio->io_vd == NULL); + ASSERT(zio == vps->vps_root); + + vd->vdev_cant_read |= !vps->vps_readable; + vd->vdev_cant_write |= !vps->vps_writeable; + + if (vdev_readable(vd) && + (vdev_writeable(vd) || !(spa_mode & FWRITE))) { + zio->io_error = 0; + } else { + ASSERT(zio->io_error != 0); + zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, + zio->io_spa, vd, NULL, 0, 0); + zio->io_error = ENXIO; + } + kmem_free(vps, sizeof (*vps)); + } +} + +/* + * Determine whether this device is accessible by reading and writing + * to several known locations: the pad regions of each vdev label + * but the first (which we leave alone in case it contains a VTOC). + */ +zio_t * +vdev_probe(vdev_t *vd, zio_t *pio) +{ + spa_t *spa = vd->vdev_spa; + vdev_probe_stats_t *vps; + zio_t *zio; + + vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); + + vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | + ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | ZIO_FLAG_DONT_RETRY; + + if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { + /* + * vdev_cant_read and vdev_cant_write can only transition + * from TRUE to FALSE when we have the SCL_ZIO lock as writer; + * otherwise they can only transition from FALSE to TRUE. + * This ensures that any zio looking at these values can + * assume that failures persist for the life of the I/O. + * That's important because when a device has intermittent + * connectivity problems, we want to ensure that they're + * ascribed to the device (ENXIO) and not the zio (EIO). + * + * Since we hold SCL_ZIO as writer here, clear both values + * so the probe can reevaluate from first principles. + */ + vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; + vd->vdev_cant_read = B_FALSE; + vd->vdev_cant_write = B_FALSE; + } + + ASSERT(vd->vdev_ops->vdev_op_leaf); + + zio = zio_null(pio, spa, vdev_probe_done, vps, vps->vps_flags); + + vps->vps_root = zio; + vps->vps_vd = vd; + + for (int l = 1; l < VDEV_LABELS; l++) { + zio_nowait(zio_read_phys(zio, vd, + vdev_label_offset(vd->vdev_psize, l, + offsetof(vdev_label_t, vl_pad)), + VDEV_SKIP_SIZE, zio_buf_alloc(VDEV_SKIP_SIZE), + ZIO_CHECKSUM_OFF, vdev_probe_done, vps, + ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); + } + + return (zio); +} + +/* + * Prepare a virtual device for access. + */ +int +vdev_open(vdev_t *vd) +{ + int error; + int c; + uint64_t osize = 0; + uint64_t asize, psize; + uint64_t ashift = 0; + + ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || + vd->vdev_state == VDEV_STATE_CANT_OPEN || + vd->vdev_state == VDEV_STATE_OFFLINE); + + vd->vdev_stat.vs_aux = VDEV_AUX_NONE; + + if (!vd->vdev_removed && vd->vdev_faulted) { + ASSERT(vd->vdev_children == 0); + vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, + VDEV_AUX_ERR_EXCEEDED); + return (ENXIO); + } else if (vd->vdev_offline) { + ASSERT(vd->vdev_children == 0); + vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); + return (ENXIO); + } + + error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift); + + if (zio_injection_enabled && error == 0) + error = zio_handle_device_injection(vd, ENXIO); + + if (error) { + if (vd->vdev_removed && + vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) + vd->vdev_removed = B_FALSE; + + vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, + vd->vdev_stat.vs_aux); + return (error); + } + + vd->vdev_removed = B_FALSE; + + if (vd->vdev_degraded) { + ASSERT(vd->vdev_children == 0); + vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, + VDEV_AUX_ERR_EXCEEDED); + } else { + vd->vdev_state = VDEV_STATE_HEALTHY; + } + + for (c = 0; c < vd->vdev_children; c++) + if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { + vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, + VDEV_AUX_NONE); + break; + } + + osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); + + if (vd->vdev_children == 0) { + if (osize < SPA_MINDEVSIZE) { + vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, + VDEV_AUX_TOO_SMALL); + return (EOVERFLOW); + } + psize = osize; + asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); + } else { + if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - + (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { + vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, + VDEV_AUX_TOO_SMALL); + return (EOVERFLOW); + } + psize = 0; + asize = osize; + } + + vd->vdev_psize = psize; + + if (vd->vdev_asize == 0) { + /* + * This is the first-ever open, so use the computed values. + * For testing purposes, a higher ashift can be requested. + */ + vd->vdev_asize = asize; + vd->vdev_ashift = MAX(ashift, vd->vdev_ashift); + } else { + /* + * Make sure the alignment requirement hasn't increased. + */ + if (ashift > vd->vdev_top->vdev_ashift) { + vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, + VDEV_AUX_BAD_LABEL); + return (EINVAL); + } + + /* + * Make sure the device hasn't shrunk. + */ + if (asize < vd->vdev_asize) { + vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, + VDEV_AUX_BAD_LABEL); + return (EINVAL); + } + + /* + * If all children are healthy and the asize has increased, + * then we've experienced dynamic LUN growth. + */ + if (vd->vdev_state == VDEV_STATE_HEALTHY && + asize > vd->vdev_asize) { + vd->vdev_asize = asize; + } + } + + /* + * Ensure we can issue some IO before declaring the + * vdev open for business. + */ + if (vd->vdev_ops->vdev_op_leaf && + (error = zio_wait(vdev_probe(vd, NULL))) != 0) { + vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, + VDEV_AUX_IO_FAILURE); + return (error); + } + + /* + * If this is a top-level vdev, compute the raidz-deflation + * ratio. Note, we hard-code in 128k (1<<17) because it is the + * current "typical" blocksize. Even if SPA_MAXBLOCKSIZE + * changes, this algorithm must never change, or we will + * inconsistently account for existing bp's. + */ + if (vd->vdev_top == vd) { + vd->vdev_deflate_ratio = (1<<17) / + (vdev_psize_to_asize(vd, 1<<17) >> SPA_MINBLOCKSHIFT); + } + + /* + * If a leaf vdev has a DTL, and seems healthy, then kick off a + * resilver. But don't do this if we are doing a reopen for a + * scrub, since this would just restart the scrub we are already + * doing. + */ + if (vd->vdev_children == 0 && !vd->vdev_spa->spa_scrub_reopen) { + mutex_enter(&vd->vdev_dtl_lock); + if (vd->vdev_dtl_map.sm_space != 0 && vdev_writeable(vd)) + spa_async_request(vd->vdev_spa, SPA_ASYNC_RESILVER); + mutex_exit(&vd->vdev_dtl_lock); + } + + return (0); +} + +/* + * Called once the vdevs are all opened, this routine validates the label + * contents. This needs to be done before vdev_load() so that we don't + * inadvertently do repair I/Os to the wrong device. + * + * This function will only return failure if one of the vdevs indicates that it + * has since been destroyed or exported. This is only possible if + * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state + * will be updated but the function will return 0. + */ +int +vdev_validate(vdev_t *vd) +{ + spa_t *spa = vd->vdev_spa; + int c; + nvlist_t *label; + uint64_t guid, top_guid; + uint64_t state; + + for (c = 0; c < vd->vdev_children; c++) + if (vdev_validate(vd->vdev_child[c]) != 0) + return (EBADF); + + /* + * If the device has already failed, or was marked offline, don't do + * any further validation. Otherwise, label I/O will fail and we will + * overwrite the previous state. + */ + if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { + + if ((label = vdev_label_read_config(vd)) == NULL) { + vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, + VDEV_AUX_BAD_LABEL); + return (0); + } + + if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, + &guid) != 0 || guid != spa_guid(spa)) { + vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, + VDEV_AUX_CORRUPT_DATA); + nvlist_free(label); + return (0); + } + + /* + * If this vdev just became a top-level vdev because its + * sibling was detached, it will have adopted the parent's + * vdev guid -- but the label may or may not be on disk yet. + * Fortunately, either version of the label will have the + * same top guid, so if we're a top-level vdev, we can + * safely compare to that instead. + */ + if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, + &guid) != 0 || + nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, + &top_guid) != 0 || + (vd->vdev_guid != guid && + (vd->vdev_guid != top_guid || vd != vd->vdev_top))) { + vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, + VDEV_AUX_CORRUPT_DATA); + nvlist_free(label); + return (0); + } + + if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, + &state) != 0) { + vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, + VDEV_AUX_CORRUPT_DATA); + nvlist_free(label); + return (0); + } + + nvlist_free(label); + + if (spa->spa_load_state == SPA_LOAD_OPEN && + state != POOL_STATE_ACTIVE) + return (EBADF); + + /* + * If we were able to open and validate a vdev that was + * previously marked permanently unavailable, clear that state + * now. + */ + if (vd->vdev_not_present) + vd->vdev_not_present = 0; + } + + return (0); +} + +/* + * Close a virtual device. + */ +void +vdev_close(vdev_t *vd) +{ + vd->vdev_ops->vdev_op_close(vd); + + vdev_cache_purge(vd); + + /* + * We record the previous state before we close it, so that if we are + * doing a reopen(), we don't generate FMA ereports if we notice that + * it's still faulted. + */ + vd->vdev_prevstate = vd->vdev_state; + + if (vd->vdev_offline) + vd->vdev_state = VDEV_STATE_OFFLINE; + else + vd->vdev_state = VDEV_STATE_CLOSED; + vd->vdev_stat.vs_aux = VDEV_AUX_NONE; +} + +void +vdev_reopen(vdev_t *vd) +{ + spa_t *spa = vd->vdev_spa; + + ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); + + vdev_close(vd); + (void) vdev_open(vd); + + /* + * Call vdev_validate() here to make sure we have the same device. + * Otherwise, a device with an invalid label could be successfully + * opened in response to vdev_reopen(). + */ + if (vd->vdev_aux) { + (void) vdev_validate_aux(vd); + if (vdev_readable(vd) && vdev_writeable(vd) && + !l2arc_vdev_present(vd)) { + uint64_t size = vdev_get_rsize(vd); + l2arc_add_vdev(spa, vd, + VDEV_LABEL_START_SIZE, + size - VDEV_LABEL_START_SIZE); + } + } else { + (void) vdev_validate(vd); + } + + /* + * Reassess parent vdev's health. + */ + vdev_propagate_state(vd); +} + +int +vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) +{ + int error; + + /* + * Normally, partial opens (e.g. of a mirror) are allowed. + * For a create, however, we want to fail the request if + * there are any components we can't open. + */ + error = vdev_open(vd); + + if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { + vdev_close(vd); + return (error ? error : ENXIO); + } + + /* + * Recursively initialize all labels. + */ + if ((error = vdev_label_init(vd, txg, isreplacing ? + VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { + vdev_close(vd); + return (error); + } + + return (0); +} + +/* + * The is the latter half of vdev_create(). It is distinct because it + * involves initiating transactions in order to do metaslab creation. + * For creation, we want to try to create all vdevs at once and then undo it + * if anything fails; this is much harder if we have pending transactions. + */ +void +vdev_init(vdev_t *vd, uint64_t txg) +{ + /* + * Aim for roughly 200 metaslabs per vdev. + */ + vd->vdev_ms_shift = highbit(vd->vdev_asize / 200); + vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT); + + /* + * Initialize the vdev's metaslabs. This can't fail because + * there's nothing to read when creating all new metaslabs. + */ + VERIFY(vdev_metaslab_init(vd, txg) == 0); +} + +void +vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) +{ + ASSERT(vd == vd->vdev_top); + ASSERT(ISP2(flags)); + + if (flags & VDD_METASLAB) + (void) txg_list_add(&vd->vdev_ms_list, arg, txg); + + if (flags & VDD_DTL) + (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); + + (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); +} + +void +vdev_dtl_dirty(space_map_t *sm, uint64_t txg, uint64_t size) +{ + mutex_enter(sm->sm_lock); + if (!space_map_contains(sm, txg, size)) + space_map_add(sm, txg, size); + mutex_exit(sm->sm_lock); +} + +int +vdev_dtl_contains(space_map_t *sm, uint64_t txg, uint64_t size) +{ + int dirty; + + /* + * Quick test without the lock -- covers the common case that + * there are no dirty time segments. + */ + if (sm->sm_space == 0) + return (0); + + mutex_enter(sm->sm_lock); + dirty = space_map_contains(sm, txg, size); + mutex_exit(sm->sm_lock); + + return (dirty); +} + +/* + * Reassess DTLs after a config change or scrub completion. + */ +void +vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done) +{ + spa_t *spa = vd->vdev_spa; + int c; + + ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); + + if (vd->vdev_children == 0) { + mutex_enter(&vd->vdev_dtl_lock); + if (scrub_txg != 0 && + (spa->spa_scrub_started || spa->spa_scrub_errors == 0)) { + /* XXX should check scrub_done? */ + /* + * We completed a scrub up to scrub_txg. If we + * did it without rebooting, then the scrub dtl + * will be valid, so excise the old region and + * fold in the scrub dtl. Otherwise, leave the + * dtl as-is if there was an error. + */ + space_map_excise(&vd->vdev_dtl_map, 0, scrub_txg); + space_map_union(&vd->vdev_dtl_map, &vd->vdev_dtl_scrub); + } + if (scrub_done) + space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL); + mutex_exit(&vd->vdev_dtl_lock); + + if (txg != 0) + vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); + return; + } + + /* + * Make sure the DTLs are always correct under the scrub lock. + */ + if (vd == spa->spa_root_vdev) + mutex_enter(&spa->spa_scrub_lock); + + mutex_enter(&vd->vdev_dtl_lock); + space_map_vacate(&vd->vdev_dtl_map, NULL, NULL); + space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL); + mutex_exit(&vd->vdev_dtl_lock); + + for (c = 0; c < vd->vdev_children; c++) { + vdev_t *cvd = vd->vdev_child[c]; + vdev_dtl_reassess(cvd, txg, scrub_txg, scrub_done); + mutex_enter(&vd->vdev_dtl_lock); + space_map_union(&vd->vdev_dtl_map, &cvd->vdev_dtl_map); + space_map_union(&vd->vdev_dtl_scrub, &cvd->vdev_dtl_scrub); + mutex_exit(&vd->vdev_dtl_lock); + } + + if (vd == spa->spa_root_vdev) + mutex_exit(&spa->spa_scrub_lock); +} + +static int +vdev_dtl_load(vdev_t *vd) +{ + spa_t *spa = vd->vdev_spa; + space_map_obj_t *smo = &vd->vdev_dtl; + objset_t *mos = spa->spa_meta_objset; + dmu_buf_t *db; + int error; + + ASSERT(vd->vdev_children == 0); + + if (smo->smo_object == 0) + return (0); + + if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0) + return (error); + + ASSERT3U(db->db_size, >=, sizeof (*smo)); + bcopy(db->db_data, smo, sizeof (*smo)); + dmu_buf_rele(db, FTAG); + + mutex_enter(&vd->vdev_dtl_lock); + error = space_map_load(&vd->vdev_dtl_map, NULL, SM_ALLOC, smo, mos); + mutex_exit(&vd->vdev_dtl_lock); + + return (error); +} + +void +vdev_dtl_sync(vdev_t *vd, uint64_t txg) +{ + spa_t *spa = vd->vdev_spa; + space_map_obj_t *smo = &vd->vdev_dtl; + space_map_t *sm = &vd->vdev_dtl_map; + objset_t *mos = spa->spa_meta_objset; + space_map_t smsync; + kmutex_t smlock; + dmu_buf_t *db; + dmu_tx_t *tx; + + tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); + + if (vd->vdev_detached) { + if (smo->smo_object != 0) { + int err = dmu_object_free(mos, smo->smo_object, tx); + ASSERT3U(err, ==, 0); + smo->smo_object = 0; + } + dmu_tx_commit(tx); + return; + } + + if (smo->smo_object == 0) { + ASSERT(smo->smo_objsize == 0); + ASSERT(smo->smo_alloc == 0); + smo->smo_object = dmu_object_alloc(mos, + DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT, + DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx); + ASSERT(smo->smo_object != 0); + vdev_config_dirty(vd->vdev_top); + } + + mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL); + + space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift, + &smlock); + + mutex_enter(&smlock); + + mutex_enter(&vd->vdev_dtl_lock); + space_map_walk(sm, space_map_add, &smsync); + mutex_exit(&vd->vdev_dtl_lock); + + space_map_truncate(smo, mos, tx); + space_map_sync(&smsync, SM_ALLOC, smo, mos, tx); + + space_map_destroy(&smsync); + + mutex_exit(&smlock); + mutex_destroy(&smlock); + + VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)); + dmu_buf_will_dirty(db, tx); + ASSERT3U(db->db_size, >=, sizeof (*smo)); + bcopy(smo, db->db_data, sizeof (*smo)); + dmu_buf_rele(db, FTAG); + + dmu_tx_commit(tx); +} + +/* + * Determine if resilver is needed, and if so the txg range. + */ +boolean_t +vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) +{ + boolean_t needed = B_FALSE; + uint64_t thismin = UINT64_MAX; + uint64_t thismax = 0; + + if (vd->vdev_children == 0) { + mutex_enter(&vd->vdev_dtl_lock); + if (vd->vdev_dtl_map.sm_space != 0 && vdev_writeable(vd)) { + space_seg_t *ss; + + ss = avl_first(&vd->vdev_dtl_map.sm_root); + thismin = ss->ss_start - 1; + ss = avl_last(&vd->vdev_dtl_map.sm_root); + thismax = ss->ss_end; + needed = B_TRUE; + } + mutex_exit(&vd->vdev_dtl_lock); + } else { + int c; + for (c = 0; c < vd->vdev_children; c++) { + vdev_t *cvd = vd->vdev_child[c]; + uint64_t cmin, cmax; + + if (vdev_resilver_needed(cvd, &cmin, &cmax)) { + thismin = MIN(thismin, cmin); + thismax = MAX(thismax, cmax); + needed = B_TRUE; + } + } + } + + if (needed && minp) { + *minp = thismin; + *maxp = thismax; + } + return (needed); +} + +void +vdev_load(vdev_t *vd) +{ + int c; + + /* + * Recursively load all children. + */ + for (c = 0; c < vd->vdev_children; c++) + vdev_load(vd->vdev_child[c]); + + /* + * If this is a top-level vdev, initialize its metaslabs. + */ + if (vd == vd->vdev_top && + (vd->vdev_ashift == 0 || vd->vdev_asize == 0 || + vdev_metaslab_init(vd, 0) != 0)) + vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, + VDEV_AUX_CORRUPT_DATA); + + /* + * If this is a leaf vdev, load its DTL. + */ + if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0) + vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, + VDEV_AUX_CORRUPT_DATA); +} + +/* + * The special vdev case is used for hot spares and l2cache devices. Its + * sole purpose it to set the vdev state for the associated vdev. To do this, + * we make sure that we can open the underlying device, then try to read the + * label, and make sure that the label is sane and that it hasn't been + * repurposed to another pool. + */ +int +vdev_validate_aux(vdev_t *vd) +{ + nvlist_t *label; + uint64_t guid, version; + uint64_t state; + + if (!vdev_readable(vd)) + return (0); + + if ((label = vdev_label_read_config(vd)) == NULL) { + vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, + VDEV_AUX_CORRUPT_DATA); + return (-1); + } + + if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || + version > SPA_VERSION || + nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || + guid != vd->vdev_guid || + nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { + vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, + VDEV_AUX_CORRUPT_DATA); + nvlist_free(label); + return (-1); + } + + /* + * We don't actually check the pool state here. If it's in fact in + * use by another pool, we update this fact on the fly when requested. + */ + nvlist_free(label); + return (0); +} + +void +vdev_sync_done(vdev_t *vd, uint64_t txg) +{ + metaslab_t *msp; + + while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) + metaslab_sync_done(msp, txg); +} + +void +vdev_sync(vdev_t *vd, uint64_t txg) +{ + spa_t *spa = vd->vdev_spa; + vdev_t *lvd; + metaslab_t *msp; + dmu_tx_t *tx; + + if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) { + ASSERT(vd == vd->vdev_top); + tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); + vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, + DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); + ASSERT(vd->vdev_ms_array != 0); + vdev_config_dirty(vd); + dmu_tx_commit(tx); + } + + while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { + metaslab_sync(msp, txg); + (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); + } + + while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) + vdev_dtl_sync(lvd, txg); + + (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); +} + +uint64_t +vdev_psize_to_asize(vdev_t *vd, uint64_t psize) +{ + return (vd->vdev_ops->vdev_op_asize(vd, psize)); +} + +/* + * Mark the given vdev faulted. A faulted vdev behaves as if the device could + * not be opened, and no I/O is attempted. + */ +int +vdev_fault(spa_t *spa, uint64_t guid) +{ + vdev_t *vd; + + spa_vdev_state_enter(spa); + + if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) + return (spa_vdev_state_exit(spa, NULL, ENODEV)); + + if (!vd->vdev_ops->vdev_op_leaf) + return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); + + /* + * Faulted state takes precedence over degraded. + */ + vd->vdev_faulted = 1ULL; + vd->vdev_degraded = 0ULL; + vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, VDEV_AUX_ERR_EXCEEDED); + + /* + * If marking the vdev as faulted cause the top-level vdev to become + * unavailable, then back off and simply mark the vdev as degraded + * instead. + */ + if (vdev_is_dead(vd->vdev_top) && vd->vdev_aux == NULL) { + vd->vdev_degraded = 1ULL; + vd->vdev_faulted = 0ULL; + + /* + * If we reopen the device and it's not dead, only then do we + * mark it degraded. + */ + vdev_reopen(vd); + + if (vdev_readable(vd)) { + vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, + VDEV_AUX_ERR_EXCEEDED); + } + } + + return (spa_vdev_state_exit(spa, vd, 0)); +} + +/* + * Mark the given vdev degraded. A degraded vdev is purely an indication to the + * user that something is wrong. The vdev continues to operate as normal as far + * as I/O is concerned. + */ +int +vdev_degrade(spa_t *spa, uint64_t guid) +{ + vdev_t *vd; + + spa_vdev_state_enter(spa); + + if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) + return (spa_vdev_state_exit(spa, NULL, ENODEV)); + + if (!vd->vdev_ops->vdev_op_leaf) + return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); + + /* + * If the vdev is already faulted, then don't do anything. + */ + if (vd->vdev_faulted || vd->vdev_degraded) + return (spa_vdev_state_exit(spa, NULL, 0)); + + vd->vdev_degraded = 1ULL; + if (!vdev_is_dead(vd)) + vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, + VDEV_AUX_ERR_EXCEEDED); + + return (spa_vdev_state_exit(spa, vd, 0)); +} + +/* + * Online the given vdev. If 'unspare' is set, it implies two things. First, + * any attached spare device should be detached when the device finishes + * resilvering. Second, the online should be treated like a 'test' online case, + * so no FMA events are generated if the device fails to open. + */ +int +vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) +{ + vdev_t *vd; + + spa_vdev_state_enter(spa); + + if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) + return (spa_vdev_state_exit(spa, NULL, ENODEV)); + + if (!vd->vdev_ops->vdev_op_leaf) + return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); + + vd->vdev_offline = B_FALSE; + vd->vdev_tmpoffline = B_FALSE; + vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); + vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); + vdev_reopen(vd->vdev_top); + vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; + + if (newstate) + *newstate = vd->vdev_state; + if ((flags & ZFS_ONLINE_UNSPARE) && + !vdev_is_dead(vd) && vd->vdev_parent && + vd->vdev_parent->vdev_ops == &vdev_spare_ops && + vd->vdev_parent->vdev_child[0] == vd) + vd->vdev_unspare = B_TRUE; + + (void) spa_vdev_state_exit(spa, vd, 0); + + VERIFY3U(spa_scrub(spa, POOL_SCRUB_RESILVER), ==, 0); + + return (0); +} + +int +vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) +{ + vdev_t *vd; + + spa_vdev_state_enter(spa); + + if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) + return (spa_vdev_state_exit(spa, NULL, ENODEV)); + + if (!vd->vdev_ops->vdev_op_leaf) + return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); + + /* + * If the device isn't already offline, try to offline it. + */ + if (!vd->vdev_offline) { + /* + * If this device's top-level vdev has a non-empty DTL, + * don't allow the device to be offlined. + * + * XXX -- make this more precise by allowing the offline + * as long as the remaining devices don't have any DTL holes. + */ + if (vd->vdev_top->vdev_dtl_map.sm_space != 0) + return (spa_vdev_state_exit(spa, NULL, EBUSY)); + + /* + * Offline this device and reopen its top-level vdev. + * If this action results in the top-level vdev becoming + * unusable, undo it and fail the request. + */ + vd->vdev_offline = B_TRUE; + vdev_reopen(vd->vdev_top); + if (vdev_is_dead(vd->vdev_top) && vd->vdev_aux == NULL) { + vd->vdev_offline = B_FALSE; + vdev_reopen(vd->vdev_top); + return (spa_vdev_state_exit(spa, NULL, EBUSY)); + } + } + + vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); + + return (spa_vdev_state_exit(spa, vd, 0)); +} + +/* + * Clear the error counts associated with this vdev. Unlike vdev_online() and + * vdev_offline(), we assume the spa config is locked. We also clear all + * children. If 'vd' is NULL, then the user wants to clear all vdevs. + */ +void +vdev_clear(spa_t *spa, vdev_t *vd) +{ + vdev_t *rvd = spa->spa_root_vdev; + + ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); + + if (vd == NULL) + vd = rvd; + + vd->vdev_stat.vs_read_errors = 0; + vd->vdev_stat.vs_write_errors = 0; + vd->vdev_stat.vs_checksum_errors = 0; + + for (int c = 0; c < vd->vdev_children; c++) + vdev_clear(spa, vd->vdev_child[c]); + + /* + * If we're in the FAULTED state or have experienced failed I/O, then + * clear the persistent state and attempt to reopen the device. We + * also mark the vdev config dirty, so that the new faulted state is + * written out to disk. + */ + if (vd->vdev_faulted || vd->vdev_degraded || + !vdev_readable(vd) || !vdev_writeable(vd)) { + + vd->vdev_faulted = vd->vdev_degraded = 0; + vd->vdev_cant_read = B_FALSE; + vd->vdev_cant_write = B_FALSE; + + vdev_reopen(vd); + + if (vd != rvd) + vdev_state_dirty(vd->vdev_top); + + if (vd->vdev_aux == NULL && !vdev_is_dead(vd)) + spa_async_request(spa, SPA_ASYNC_RESILVER); + + spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR); + } +} + +boolean_t +vdev_is_dead(vdev_t *vd) +{ + return (vd->vdev_state < VDEV_STATE_DEGRADED); +} + +boolean_t +vdev_readable(vdev_t *vd) +{ + return (!vdev_is_dead(vd) && !vd->vdev_cant_read); +} + +boolean_t +vdev_writeable(vdev_t *vd) +{ + return (!vdev_is_dead(vd) && !vd->vdev_cant_write); +} + +boolean_t +vdev_allocatable(vdev_t *vd) +{ + /* + * We currently allow allocations from vdevs which maybe in the + * process of reopening (i.e. VDEV_STATE_CLOSED). If the device + * fails to reopen then we'll catch it later when we're holding + * the proper locks. + */ + return (!(vdev_is_dead(vd) && vd->vdev_state != VDEV_STATE_CLOSED) && + !vd->vdev_cant_write); +} + +boolean_t +vdev_accessible(vdev_t *vd, zio_t *zio) +{ + ASSERT(zio->io_vd == vd); + + if (vdev_is_dead(vd) || vd->vdev_remove_wanted) + return (B_FALSE); + + if (zio->io_type == ZIO_TYPE_READ) + return (!vd->vdev_cant_read); + + if (zio->io_type == ZIO_TYPE_WRITE) + return (!vd->vdev_cant_write); + + return (B_TRUE); +} + +/* + * Get statistics for the given vdev. + */ +void +vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) +{ + vdev_t *rvd = vd->vdev_spa->spa_root_vdev; + + mutex_enter(&vd->vdev_stat_lock); + bcopy(&vd->vdev_stat, vs, sizeof (*vs)); + vs->vs_scrub_errors = vd->vdev_spa->spa_scrub_errors; + vs->vs_timestamp = gethrtime() - vs->vs_timestamp; + vs->vs_state = vd->vdev_state; + vs->vs_rsize = vdev_get_rsize(vd); + mutex_exit(&vd->vdev_stat_lock); + + /* + * If we're getting stats on the root vdev, aggregate the I/O counts + * over all top-level vdevs (i.e. the direct children of the root). + */ + if (vd == rvd) { + for (int c = 0; c < rvd->vdev_children; c++) { + vdev_t *cvd = rvd->vdev_child[c]; + vdev_stat_t *cvs = &cvd->vdev_stat; + + mutex_enter(&vd->vdev_stat_lock); + for (int t = 0; t < ZIO_TYPES; t++) { + vs->vs_ops[t] += cvs->vs_ops[t]; + vs->vs_bytes[t] += cvs->vs_bytes[t]; + } + vs->vs_scrub_examined += cvs->vs_scrub_examined; + mutex_exit(&vd->vdev_stat_lock); + } + } +} + +void +vdev_clear_stats(vdev_t *vd) +{ + mutex_enter(&vd->vdev_stat_lock); + vd->vdev_stat.vs_space = 0; + vd->vdev_stat.vs_dspace = 0; + vd->vdev_stat.vs_alloc = 0; + mutex_exit(&vd->vdev_stat_lock); +} + +void +vdev_stat_update(zio_t *zio, uint64_t psize) +{ + vdev_t *rvd = zio->io_spa->spa_root_vdev; + vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; + vdev_t *pvd; + uint64_t txg = zio->io_txg; + vdev_stat_t *vs = &vd->vdev_stat; + zio_type_t type = zio->io_type; + int flags = zio->io_flags; + + /* + * If this i/o is a gang leader, it didn't do any actual work. + */ + if (zio->io_gang_tree) + return; + + if (zio->io_error == 0) { + /* + * If this is a root i/o, don't count it -- we've already + * counted the top-level vdevs, and vdev_get_stats() will + * aggregate them when asked. This reduces contention on + * the root vdev_stat_lock and implicitly handles blocks + * that compress away to holes, for which there is no i/o. + * (Holes never create vdev children, so all the counters + * remain zero, which is what we want.) + * + * Note: this only applies to successful i/o (io_error == 0) + * because unlike i/o counts, errors are not additive. + * When reading a ditto block, for example, failure of + * one top-level vdev does not imply a root-level error. + */ + if (vd == rvd) + return; + + ASSERT(vd == zio->io_vd); + if (!(flags & ZIO_FLAG_IO_BYPASS)) { + mutex_enter(&vd->vdev_stat_lock); + vs->vs_ops[type]++; + vs->vs_bytes[type] += psize; + mutex_exit(&vd->vdev_stat_lock); + } + if (flags & ZIO_FLAG_IO_REPAIR) { + ASSERT(zio->io_delegate_list == NULL); + mutex_enter(&vd->vdev_stat_lock); + if (flags & ZIO_FLAG_SCRUB_THREAD) + vs->vs_scrub_repaired += psize; + else + vs->vs_self_healed += psize; + mutex_exit(&vd->vdev_stat_lock); + } + return; + } + + if (flags & ZIO_FLAG_SPECULATIVE) + return; + + mutex_enter(&vd->vdev_stat_lock); + if (type == ZIO_TYPE_READ) { + if (zio->io_error == ECKSUM) + vs->vs_checksum_errors++; + else + vs->vs_read_errors++; + } + if (type == ZIO_TYPE_WRITE) + vs->vs_write_errors++; + mutex_exit(&vd->vdev_stat_lock); + + if (type == ZIO_TYPE_WRITE && txg != 0 && vd->vdev_children == 0) { + if (flags & ZIO_FLAG_SCRUB_THREAD) { + ASSERT(flags & ZIO_FLAG_IO_REPAIR); + for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) + vdev_dtl_dirty(&pvd->vdev_dtl_scrub, txg, 1); + } + if (!(flags & ZIO_FLAG_IO_REPAIR)) { + if (vdev_dtl_contains(&vd->vdev_dtl_map, txg, 1)) + return; + vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); + for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) + vdev_dtl_dirty(&pvd->vdev_dtl_map, txg, 1); + } + } +} + +void +vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete) +{ + int c; + vdev_stat_t *vs = &vd->vdev_stat; + + for (c = 0; c < vd->vdev_children; c++) + vdev_scrub_stat_update(vd->vdev_child[c], type, complete); + + mutex_enter(&vd->vdev_stat_lock); + + if (type == POOL_SCRUB_NONE) { + /* + * Update completion and end time. Leave everything else alone + * so we can report what happened during the previous scrub. + */ + vs->vs_scrub_complete = complete; + vs->vs_scrub_end = gethrestime_sec(); + } else { + vs->vs_scrub_type = type; + vs->vs_scrub_complete = 0; + vs->vs_scrub_examined = 0; + vs->vs_scrub_repaired = 0; + vs->vs_scrub_start = gethrestime_sec(); + vs->vs_scrub_end = 0; + } + + mutex_exit(&vd->vdev_stat_lock); +} + +/* + * Update the in-core space usage stats for this vdev and the root vdev. + */ +void +vdev_space_update(vdev_t *vd, int64_t space_delta, int64_t alloc_delta, + boolean_t update_root) +{ + int64_t dspace_delta = space_delta; + spa_t *spa = vd->vdev_spa; + vdev_t *rvd = spa->spa_root_vdev; + + ASSERT(vd == vd->vdev_top); + + /* + * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion + * factor. We must calculate this here and not at the root vdev + * because the root vdev's psize-to-asize is simply the max of its + * childrens', thus not accurate enough for us. + */ + ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0); + dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) * + vd->vdev_deflate_ratio; + + mutex_enter(&vd->vdev_stat_lock); + vd->vdev_stat.vs_space += space_delta; + vd->vdev_stat.vs_alloc += alloc_delta; + vd->vdev_stat.vs_dspace += dspace_delta; + mutex_exit(&vd->vdev_stat_lock); + + if (update_root) { + ASSERT(rvd == vd->vdev_parent); + ASSERT(vd->vdev_ms_count != 0); + + /* + * Don't count non-normal (e.g. intent log) space as part of + * the pool's capacity. + */ + if (vd->vdev_mg->mg_class != spa->spa_normal_class) + return; + + mutex_enter(&rvd->vdev_stat_lock); + rvd->vdev_stat.vs_space += space_delta; + rvd->vdev_stat.vs_alloc += alloc_delta; + rvd->vdev_stat.vs_dspace += dspace_delta; + mutex_exit(&rvd->vdev_stat_lock); + } +} + +/* + * Mark a top-level vdev's config as dirty, placing it on the dirty list + * so that it will be written out next time the vdev configuration is synced. + * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. + */ +void +vdev_config_dirty(vdev_t *vd) +{ + spa_t *spa = vd->vdev_spa; + vdev_t *rvd = spa->spa_root_vdev; + int c; + + /* + * If this is an aux vdev (as with l2cache devices), then we update the + * vdev config manually and set the sync flag. + */ + if (vd->vdev_aux != NULL) { + spa_aux_vdev_t *sav = vd->vdev_aux; + nvlist_t **aux; + uint_t naux; + + for (c = 0; c < sav->sav_count; c++) { + if (sav->sav_vdevs[c] == vd) + break; + } + + if (c == sav->sav_count) { + /* + * We're being removed. There's nothing more to do. + */ + ASSERT(sav->sav_sync == B_TRUE); + return; + } + + sav->sav_sync = B_TRUE; + + VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, + ZPOOL_CONFIG_L2CACHE, &aux, &naux) == 0); + + ASSERT(c < naux); + + /* + * Setting the nvlist in the middle if the array is a little + * sketchy, but it will work. + */ + nvlist_free(aux[c]); + aux[c] = vdev_config_generate(spa, vd, B_TRUE, B_FALSE, B_TRUE); + + return; + } + + /* + * The dirty list is protected by the SCL_CONFIG lock. The caller + * must either hold SCL_CONFIG as writer, or must be the sync thread + * (which holds SCL_CONFIG as reader). There's only one sync thread, + * so this is sufficient to ensure mutual exclusion. + */ + ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || + (dsl_pool_sync_context(spa_get_dsl(spa)) && + spa_config_held(spa, SCL_CONFIG, RW_READER))); + + if (vd == rvd) { + for (c = 0; c < rvd->vdev_children; c++) + vdev_config_dirty(rvd->vdev_child[c]); + } else { + ASSERT(vd == vd->vdev_top); + + if (!list_link_active(&vd->vdev_config_dirty_node)) + list_insert_head(&spa->spa_config_dirty_list, vd); + } +} + +void +vdev_config_clean(vdev_t *vd) +{ + spa_t *spa = vd->vdev_spa; + + ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || + (dsl_pool_sync_context(spa_get_dsl(spa)) && + spa_config_held(spa, SCL_CONFIG, RW_READER))); + + ASSERT(list_link_active(&vd->vdev_config_dirty_node)); + list_remove(&spa->spa_config_dirty_list, vd); +} + +/* + * Mark a top-level vdev's state as dirty, so that the next pass of + * spa_sync() can convert this into vdev_config_dirty(). We distinguish + * the state changes from larger config changes because they require + * much less locking, and are often needed for administrative actions. + */ +void +vdev_state_dirty(vdev_t *vd) +{ + spa_t *spa = vd->vdev_spa; + + ASSERT(vd == vd->vdev_top); + + /* + * The state list is protected by the SCL_STATE lock. The caller + * must either hold SCL_STATE as writer, or must be the sync thread + * (which holds SCL_STATE as reader). There's only one sync thread, + * so this is sufficient to ensure mutual exclusion. + */ + ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || + (dsl_pool_sync_context(spa_get_dsl(spa)) && + spa_config_held(spa, SCL_STATE, RW_READER))); + + if (!list_link_active(&vd->vdev_state_dirty_node)) + list_insert_head(&spa->spa_state_dirty_list, vd); +} + +void +vdev_state_clean(vdev_t *vd) +{ + spa_t *spa = vd->vdev_spa; + + ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || + (dsl_pool_sync_context(spa_get_dsl(spa)) && + spa_config_held(spa, SCL_STATE, RW_READER))); + + ASSERT(list_link_active(&vd->vdev_state_dirty_node)); + list_remove(&spa->spa_state_dirty_list, vd); +} + +/* + * Propagate vdev state up from children to parent. + */ +void +vdev_propagate_state(vdev_t *vd) +{ + vdev_t *rvd = vd->vdev_spa->spa_root_vdev; + int degraded = 0, faulted = 0; + int corrupted = 0; + int c; + vdev_t *child; + + if (vd->vdev_children > 0) { + for (c = 0; c < vd->vdev_children; c++) { + child = vd->vdev_child[c]; + + if (!vdev_readable(child) || + (!vdev_writeable(child) && (spa_mode & FWRITE))) { + /* + * Root special: if there is a top-level log + * device, treat the root vdev as if it were + * degraded. + */ + if (child->vdev_islog && vd == rvd) + degraded++; + else + faulted++; + } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { + degraded++; + } + + if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) + corrupted++; + } + + vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); + + /* + * Root special: if there is a top-level vdev that cannot be + * opened due to corrupted metadata, then propagate the root + * vdev's aux state as 'corrupt' rather than 'insufficient + * replicas'. + */ + if (corrupted && vd == rvd && + rvd->vdev_state == VDEV_STATE_CANT_OPEN) + vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, + VDEV_AUX_CORRUPT_DATA); + } + + if (vd->vdev_parent) + vdev_propagate_state(vd->vdev_parent); +} + +/* + * Set a vdev's state. If this is during an open, we don't update the parent + * state, because we're in the process of opening children depth-first. + * Otherwise, we propagate the change to the parent. + * + * If this routine places a device in a faulted state, an appropriate ereport is + * generated. + */ +void +vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) +{ + uint64_t save_state; + spa_t *spa = vd->vdev_spa; + + if (state == vd->vdev_state) { + vd->vdev_stat.vs_aux = aux; + return; + } + + save_state = vd->vdev_state; + + vd->vdev_state = state; + vd->vdev_stat.vs_aux = aux; + + /* + * If we are setting the vdev state to anything but an open state, then + * always close the underlying device. Otherwise, we keep accessible + * but invalid devices open forever. We don't call vdev_close() itself, + * because that implies some extra checks (offline, etc) that we don't + * want here. This is limited to leaf devices, because otherwise + * closing the device will affect other children. + */ + if (vdev_is_dead(vd) && vd->vdev_ops->vdev_op_leaf) + vd->vdev_ops->vdev_op_close(vd); + + if (vd->vdev_removed && + state == VDEV_STATE_CANT_OPEN && + (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { + /* + * If the previous state is set to VDEV_STATE_REMOVED, then this + * device was previously marked removed and someone attempted to + * reopen it. If this failed due to a nonexistent device, then + * keep the device in the REMOVED state. We also let this be if + * it is one of our special test online cases, which is only + * attempting to online the device and shouldn't generate an FMA + * fault. + */ + vd->vdev_state = VDEV_STATE_REMOVED; + vd->vdev_stat.vs_aux = VDEV_AUX_NONE; + } else if (state == VDEV_STATE_REMOVED) { + /* + * Indicate to the ZFS DE that this device has been removed, and + * any recent errors should be ignored. + */ + zfs_post_remove(spa, vd); + vd->vdev_removed = B_TRUE; + } else if (state == VDEV_STATE_CANT_OPEN) { + /* + * If we fail to open a vdev during an import, we mark it as + * "not available", which signifies that it was never there to + * begin with. Failure to open such a device is not considered + * an error. + */ + if (spa->spa_load_state == SPA_LOAD_IMPORT && + !spa->spa_import_faulted && + vd->vdev_ops->vdev_op_leaf) + vd->vdev_not_present = 1; + + /* + * Post the appropriate ereport. If the 'prevstate' field is + * set to something other than VDEV_STATE_UNKNOWN, it indicates + * that this is part of a vdev_reopen(). In this case, we don't + * want to post the ereport if the device was already in the + * CANT_OPEN state beforehand. + * + * If the 'checkremove' flag is set, then this is an attempt to + * online the device in response to an insertion event. If we + * hit this case, then we have detected an insertion event for a + * faulted or offline device that wasn't in the removed state. + * In this scenario, we don't post an ereport because we are + * about to replace the device, or attempt an online with + * vdev_forcefault, which will generate the fault for us. + */ + if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && + !vd->vdev_not_present && !vd->vdev_checkremove && + vd != spa->spa_root_vdev) { + const char *class; + + switch (aux) { + case VDEV_AUX_OPEN_FAILED: + class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; + break; + case VDEV_AUX_CORRUPT_DATA: + class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; + break; + case VDEV_AUX_NO_REPLICAS: + class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; + break; + case VDEV_AUX_BAD_GUID_SUM: + class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; + break; + case VDEV_AUX_TOO_SMALL: + class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; + break; + case VDEV_AUX_BAD_LABEL: + class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; + break; + case VDEV_AUX_IO_FAILURE: + class = FM_EREPORT_ZFS_IO_FAILURE; + break; + default: + class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; + } + + zfs_ereport_post(class, spa, vd, NULL, save_state, 0); + } + + /* Erase any notion of persistent removed state */ + vd->vdev_removed = B_FALSE; + } else { + vd->vdev_removed = B_FALSE; + } + + if (!isopen) + vdev_propagate_state(vd); +} + +/* + * Check the vdev configuration to ensure that it's capable of supporting + * a root pool. Currently, we do not support RAID-Z or partial configuration. + * In addition, only a single top-level vdev is allowed and none of the leaves + * can be wholedisks. + */ +boolean_t +vdev_is_bootable(vdev_t *vd) +{ + int c; + + if (!vd->vdev_ops->vdev_op_leaf) { + char *vdev_type = vd->vdev_ops->vdev_op_type; + + if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 && + vd->vdev_children > 1) { + return (B_FALSE); + } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 || + strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) { + return (B_FALSE); + } + } else if (vd->vdev_wholedisk == 1) { + return (B_FALSE); + } + + for (c = 0; c < vd->vdev_children; c++) { + if (!vdev_is_bootable(vd->vdev_child[c])) + return (B_FALSE); + } + return (B_TRUE); +} |