summaryrefslogtreecommitdiffstats
path: root/module/zfs/vdev.c
diff options
context:
space:
mode:
authorBrian Behlendorf <[email protected]>2008-12-11 11:24:51 -0800
committerBrian Behlendorf <[email protected]>2008-12-11 11:24:51 -0800
commitb342e90e44ae4c3f30d15bf2fafa920ef7de87f4 (patch)
tree6245a3b0b6f0ea307a793b62cad8447134b9f216 /module/zfs/vdev.c
parentae3da3aecc3b24095e9f3d43e12ae2af1fb48139 (diff)
parentb453b61272db34cd097f8636f57033785b00d932 (diff)
Merge commit 'refs/top-bases/gcc-cast' into gcc-cast
Diffstat (limited to 'module/zfs/vdev.c')
-rw-r--r--module/zfs/vdev.c2425
1 files changed, 2425 insertions, 0 deletions
diff --git a/module/zfs/vdev.c b/module/zfs/vdev.c
new file mode 100644
index 000000000..16a27e514
--- /dev/null
+++ b/module/zfs/vdev.c
@@ -0,0 +1,2425 @@
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+
+/*
+ * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms.
+ */
+
+#include <sys/zfs_context.h>
+#include <sys/fm/fs/zfs.h>
+#include <sys/spa.h>
+#include <sys/spa_impl.h>
+#include <sys/dmu.h>
+#include <sys/dmu_tx.h>
+#include <sys/vdev_impl.h>
+#include <sys/uberblock_impl.h>
+#include <sys/metaslab.h>
+#include <sys/metaslab_impl.h>
+#include <sys/space_map.h>
+#include <sys/zio.h>
+#include <sys/zap.h>
+#include <sys/fs/zfs.h>
+#include <sys/arc.h>
+
+/*
+ * Virtual device management.
+ */
+
+static vdev_ops_t *vdev_ops_table[] = {
+ &vdev_root_ops,
+ &vdev_raidz_ops,
+ &vdev_mirror_ops,
+ &vdev_replacing_ops,
+ &vdev_spare_ops,
+ &vdev_disk_ops,
+ &vdev_file_ops,
+ &vdev_missing_ops,
+ NULL
+};
+
+/* maximum scrub/resilver I/O queue per leaf vdev */
+int zfs_scrub_limit = 10;
+
+/*
+ * Given a vdev type, return the appropriate ops vector.
+ */
+static vdev_ops_t *
+vdev_getops(const char *type)
+{
+ vdev_ops_t *ops, **opspp;
+
+ for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
+ if (strcmp(ops->vdev_op_type, type) == 0)
+ break;
+
+ return (ops);
+}
+
+/*
+ * Default asize function: return the MAX of psize with the asize of
+ * all children. This is what's used by anything other than RAID-Z.
+ */
+uint64_t
+vdev_default_asize(vdev_t *vd, uint64_t psize)
+{
+ uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
+ uint64_t csize;
+ uint64_t c;
+
+ for (c = 0; c < vd->vdev_children; c++) {
+ csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
+ asize = MAX(asize, csize);
+ }
+
+ return (asize);
+}
+
+/*
+ * Get the replaceable or attachable device size.
+ * If the parent is a mirror or raidz, the replaceable size is the minimum
+ * psize of all its children. For the rest, just return our own psize.
+ *
+ * e.g.
+ * psize rsize
+ * root - -
+ * mirror/raidz - -
+ * disk1 20g 20g
+ * disk2 40g 20g
+ * disk3 80g 80g
+ */
+uint64_t
+vdev_get_rsize(vdev_t *vd)
+{
+ vdev_t *pvd, *cvd;
+ uint64_t c, rsize;
+
+ pvd = vd->vdev_parent;
+
+ /*
+ * If our parent is NULL or the root, just return our own psize.
+ */
+ if (pvd == NULL || pvd->vdev_parent == NULL)
+ return (vd->vdev_psize);
+
+ rsize = 0;
+
+ for (c = 0; c < pvd->vdev_children; c++) {
+ cvd = pvd->vdev_child[c];
+ rsize = MIN(rsize - 1, cvd->vdev_psize - 1) + 1;
+ }
+
+ return (rsize);
+}
+
+vdev_t *
+vdev_lookup_top(spa_t *spa, uint64_t vdev)
+{
+ vdev_t *rvd = spa->spa_root_vdev;
+
+ ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
+
+ if (vdev < rvd->vdev_children) {
+ ASSERT(rvd->vdev_child[vdev] != NULL);
+ return (rvd->vdev_child[vdev]);
+ }
+
+ return (NULL);
+}
+
+vdev_t *
+vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
+{
+ int c;
+ vdev_t *mvd;
+
+ if (vd->vdev_guid == guid)
+ return (vd);
+
+ for (c = 0; c < vd->vdev_children; c++)
+ if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
+ NULL)
+ return (mvd);
+
+ return (NULL);
+}
+
+void
+vdev_add_child(vdev_t *pvd, vdev_t *cvd)
+{
+ size_t oldsize, newsize;
+ uint64_t id = cvd->vdev_id;
+ vdev_t **newchild;
+
+ ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
+ ASSERT(cvd->vdev_parent == NULL);
+
+ cvd->vdev_parent = pvd;
+
+ if (pvd == NULL)
+ return;
+
+ ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
+
+ oldsize = pvd->vdev_children * sizeof (vdev_t *);
+ pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
+ newsize = pvd->vdev_children * sizeof (vdev_t *);
+
+ newchild = kmem_zalloc(newsize, KM_SLEEP);
+ if (pvd->vdev_child != NULL) {
+ bcopy(pvd->vdev_child, newchild, oldsize);
+ kmem_free(pvd->vdev_child, oldsize);
+ }
+
+ pvd->vdev_child = newchild;
+ pvd->vdev_child[id] = cvd;
+
+ cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
+ ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
+
+ /*
+ * Walk up all ancestors to update guid sum.
+ */
+ for (; pvd != NULL; pvd = pvd->vdev_parent)
+ pvd->vdev_guid_sum += cvd->vdev_guid_sum;
+
+ if (cvd->vdev_ops->vdev_op_leaf)
+ cvd->vdev_spa->spa_scrub_maxinflight += zfs_scrub_limit;
+}
+
+void
+vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
+{
+ int c;
+ uint_t id = cvd->vdev_id;
+
+ ASSERT(cvd->vdev_parent == pvd);
+
+ if (pvd == NULL)
+ return;
+
+ ASSERT(id < pvd->vdev_children);
+ ASSERT(pvd->vdev_child[id] == cvd);
+
+ pvd->vdev_child[id] = NULL;
+ cvd->vdev_parent = NULL;
+
+ for (c = 0; c < pvd->vdev_children; c++)
+ if (pvd->vdev_child[c])
+ break;
+
+ if (c == pvd->vdev_children) {
+ kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
+ pvd->vdev_child = NULL;
+ pvd->vdev_children = 0;
+ }
+
+ /*
+ * Walk up all ancestors to update guid sum.
+ */
+ for (; pvd != NULL; pvd = pvd->vdev_parent)
+ pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
+
+ if (cvd->vdev_ops->vdev_op_leaf)
+ cvd->vdev_spa->spa_scrub_maxinflight -= zfs_scrub_limit;
+}
+
+/*
+ * Remove any holes in the child array.
+ */
+void
+vdev_compact_children(vdev_t *pvd)
+{
+ vdev_t **newchild, *cvd;
+ int oldc = pvd->vdev_children;
+ int newc, c;
+
+ ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
+
+ for (c = newc = 0; c < oldc; c++)
+ if (pvd->vdev_child[c])
+ newc++;
+
+ newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
+
+ for (c = newc = 0; c < oldc; c++) {
+ if ((cvd = pvd->vdev_child[c]) != NULL) {
+ newchild[newc] = cvd;
+ cvd->vdev_id = newc++;
+ }
+ }
+
+ kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
+ pvd->vdev_child = newchild;
+ pvd->vdev_children = newc;
+}
+
+/*
+ * Allocate and minimally initialize a vdev_t.
+ */
+static vdev_t *
+vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
+{
+ vdev_t *vd;
+
+ vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
+
+ if (spa->spa_root_vdev == NULL) {
+ ASSERT(ops == &vdev_root_ops);
+ spa->spa_root_vdev = vd;
+ }
+
+ if (guid == 0) {
+ if (spa->spa_root_vdev == vd) {
+ /*
+ * The root vdev's guid will also be the pool guid,
+ * which must be unique among all pools.
+ */
+ while (guid == 0 || spa_guid_exists(guid, 0))
+ guid = spa_get_random(-1ULL);
+ } else {
+ /*
+ * Any other vdev's guid must be unique within the pool.
+ */
+ while (guid == 0 ||
+ spa_guid_exists(spa_guid(spa), guid))
+ guid = spa_get_random(-1ULL);
+ }
+ ASSERT(!spa_guid_exists(spa_guid(spa), guid));
+ }
+
+ vd->vdev_spa = spa;
+ vd->vdev_id = id;
+ vd->vdev_guid = guid;
+ vd->vdev_guid_sum = guid;
+ vd->vdev_ops = ops;
+ vd->vdev_state = VDEV_STATE_CLOSED;
+
+ mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
+ mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
+ mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
+ space_map_create(&vd->vdev_dtl_map, 0, -1ULL, 0, &vd->vdev_dtl_lock);
+ space_map_create(&vd->vdev_dtl_scrub, 0, -1ULL, 0, &vd->vdev_dtl_lock);
+ txg_list_create(&vd->vdev_ms_list,
+ offsetof(struct metaslab, ms_txg_node));
+ txg_list_create(&vd->vdev_dtl_list,
+ offsetof(struct vdev, vdev_dtl_node));
+ vd->vdev_stat.vs_timestamp = gethrtime();
+ vdev_queue_init(vd);
+ vdev_cache_init(vd);
+
+ return (vd);
+}
+
+/*
+ * Allocate a new vdev. The 'alloctype' is used to control whether we are
+ * creating a new vdev or loading an existing one - the behavior is slightly
+ * different for each case.
+ */
+int
+vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
+ int alloctype)
+{
+ vdev_ops_t *ops;
+ char *type;
+ uint64_t guid = 0, islog, nparity;
+ vdev_t *vd;
+
+ ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
+
+ if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
+ return (EINVAL);
+
+ if ((ops = vdev_getops(type)) == NULL)
+ return (EINVAL);
+
+ /*
+ * If this is a load, get the vdev guid from the nvlist.
+ * Otherwise, vdev_alloc_common() will generate one for us.
+ */
+ if (alloctype == VDEV_ALLOC_LOAD) {
+ uint64_t label_id;
+
+ if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
+ label_id != id)
+ return (EINVAL);
+
+ if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
+ return (EINVAL);
+ } else if (alloctype == VDEV_ALLOC_SPARE) {
+ if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
+ return (EINVAL);
+ } else if (alloctype == VDEV_ALLOC_L2CACHE) {
+ if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
+ return (EINVAL);
+ }
+
+ /*
+ * The first allocated vdev must be of type 'root'.
+ */
+ if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
+ return (EINVAL);
+
+ /*
+ * Determine whether we're a log vdev.
+ */
+ islog = 0;
+ (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
+ if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
+ return (ENOTSUP);
+
+ /*
+ * Set the nparity property for RAID-Z vdevs.
+ */
+ nparity = -1ULL;
+ if (ops == &vdev_raidz_ops) {
+ if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
+ &nparity) == 0) {
+ /*
+ * Currently, we can only support 2 parity devices.
+ */
+ if (nparity == 0 || nparity > 2)
+ return (EINVAL);
+ /*
+ * Older versions can only support 1 parity device.
+ */
+ if (nparity == 2 &&
+ spa_version(spa) < SPA_VERSION_RAID6)
+ return (ENOTSUP);
+ } else {
+ /*
+ * We require the parity to be specified for SPAs that
+ * support multiple parity levels.
+ */
+ if (spa_version(spa) >= SPA_VERSION_RAID6)
+ return (EINVAL);
+ /*
+ * Otherwise, we default to 1 parity device for RAID-Z.
+ */
+ nparity = 1;
+ }
+ } else {
+ nparity = 0;
+ }
+ ASSERT(nparity != -1ULL);
+
+ vd = vdev_alloc_common(spa, id, guid, ops);
+
+ vd->vdev_islog = islog;
+ vd->vdev_nparity = nparity;
+
+ if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
+ vd->vdev_path = spa_strdup(vd->vdev_path);
+ if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
+ vd->vdev_devid = spa_strdup(vd->vdev_devid);
+ if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
+ &vd->vdev_physpath) == 0)
+ vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
+
+ /*
+ * Set the whole_disk property. If it's not specified, leave the value
+ * as -1.
+ */
+ if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
+ &vd->vdev_wholedisk) != 0)
+ vd->vdev_wholedisk = -1ULL;
+
+ /*
+ * Look for the 'not present' flag. This will only be set if the device
+ * was not present at the time of import.
+ */
+ if (!spa->spa_import_faulted)
+ (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
+ &vd->vdev_not_present);
+
+ /*
+ * Get the alignment requirement.
+ */
+ (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
+
+ /*
+ * If we're a top-level vdev, try to load the allocation parameters.
+ */
+ if (parent && !parent->vdev_parent && alloctype == VDEV_ALLOC_LOAD) {
+ (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
+ &vd->vdev_ms_array);
+ (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
+ &vd->vdev_ms_shift);
+ (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
+ &vd->vdev_asize);
+ }
+
+ /*
+ * If we're a leaf vdev, try to load the DTL object and other state.
+ */
+ if (vd->vdev_ops->vdev_op_leaf &&
+ (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE)) {
+ if (alloctype == VDEV_ALLOC_LOAD) {
+ (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
+ &vd->vdev_dtl.smo_object);
+ (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
+ &vd->vdev_unspare);
+ }
+ (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
+ &vd->vdev_offline);
+
+ /*
+ * When importing a pool, we want to ignore the persistent fault
+ * state, as the diagnosis made on another system may not be
+ * valid in the current context.
+ */
+ if (spa->spa_load_state == SPA_LOAD_OPEN) {
+ (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
+ &vd->vdev_faulted);
+ (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
+ &vd->vdev_degraded);
+ (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
+ &vd->vdev_removed);
+ }
+ }
+
+ /*
+ * Add ourselves to the parent's list of children.
+ */
+ vdev_add_child(parent, vd);
+
+ *vdp = vd;
+
+ return (0);
+}
+
+void
+vdev_free(vdev_t *vd)
+{
+ int c;
+ spa_t *spa = vd->vdev_spa;
+
+ /*
+ * vdev_free() implies closing the vdev first. This is simpler than
+ * trying to ensure complicated semantics for all callers.
+ */
+ vdev_close(vd);
+
+ ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
+
+ /*
+ * Free all children.
+ */
+ for (c = 0; c < vd->vdev_children; c++)
+ vdev_free(vd->vdev_child[c]);
+
+ ASSERT(vd->vdev_child == NULL);
+ ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
+
+ /*
+ * Discard allocation state.
+ */
+ if (vd == vd->vdev_top)
+ vdev_metaslab_fini(vd);
+
+ ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
+ ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0);
+ ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
+
+ /*
+ * Remove this vdev from its parent's child list.
+ */
+ vdev_remove_child(vd->vdev_parent, vd);
+
+ ASSERT(vd->vdev_parent == NULL);
+
+ /*
+ * Clean up vdev structure.
+ */
+ vdev_queue_fini(vd);
+ vdev_cache_fini(vd);
+
+ if (vd->vdev_path)
+ spa_strfree(vd->vdev_path);
+ if (vd->vdev_devid)
+ spa_strfree(vd->vdev_devid);
+ if (vd->vdev_physpath)
+ spa_strfree(vd->vdev_physpath);
+
+ if (vd->vdev_isspare)
+ spa_spare_remove(vd);
+ if (vd->vdev_isl2cache)
+ spa_l2cache_remove(vd);
+
+ txg_list_destroy(&vd->vdev_ms_list);
+ txg_list_destroy(&vd->vdev_dtl_list);
+ mutex_enter(&vd->vdev_dtl_lock);
+ space_map_unload(&vd->vdev_dtl_map);
+ space_map_destroy(&vd->vdev_dtl_map);
+ space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL);
+ space_map_destroy(&vd->vdev_dtl_scrub);
+ mutex_exit(&vd->vdev_dtl_lock);
+ mutex_destroy(&vd->vdev_dtl_lock);
+ mutex_destroy(&vd->vdev_stat_lock);
+ mutex_destroy(&vd->vdev_probe_lock);
+
+ if (vd == spa->spa_root_vdev)
+ spa->spa_root_vdev = NULL;
+
+ kmem_free(vd, sizeof (vdev_t));
+}
+
+/*
+ * Transfer top-level vdev state from svd to tvd.
+ */
+static void
+vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
+{
+ spa_t *spa = svd->vdev_spa;
+ metaslab_t *msp;
+ vdev_t *vd;
+ int t;
+
+ ASSERT(tvd == tvd->vdev_top);
+
+ tvd->vdev_ms_array = svd->vdev_ms_array;
+ tvd->vdev_ms_shift = svd->vdev_ms_shift;
+ tvd->vdev_ms_count = svd->vdev_ms_count;
+
+ svd->vdev_ms_array = 0;
+ svd->vdev_ms_shift = 0;
+ svd->vdev_ms_count = 0;
+
+ tvd->vdev_mg = svd->vdev_mg;
+ tvd->vdev_ms = svd->vdev_ms;
+
+ svd->vdev_mg = NULL;
+ svd->vdev_ms = NULL;
+
+ if (tvd->vdev_mg != NULL)
+ tvd->vdev_mg->mg_vd = tvd;
+
+ tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
+ tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
+ tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
+
+ svd->vdev_stat.vs_alloc = 0;
+ svd->vdev_stat.vs_space = 0;
+ svd->vdev_stat.vs_dspace = 0;
+
+ for (t = 0; t < TXG_SIZE; t++) {
+ while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
+ (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
+ while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
+ (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
+ if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
+ (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
+ }
+
+ if (list_link_active(&svd->vdev_config_dirty_node)) {
+ vdev_config_clean(svd);
+ vdev_config_dirty(tvd);
+ }
+
+ if (list_link_active(&svd->vdev_state_dirty_node)) {
+ vdev_state_clean(svd);
+ vdev_state_dirty(tvd);
+ }
+
+ tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
+ svd->vdev_deflate_ratio = 0;
+
+ tvd->vdev_islog = svd->vdev_islog;
+ svd->vdev_islog = 0;
+}
+
+static void
+vdev_top_update(vdev_t *tvd, vdev_t *vd)
+{
+ int c;
+
+ if (vd == NULL)
+ return;
+
+ vd->vdev_top = tvd;
+
+ for (c = 0; c < vd->vdev_children; c++)
+ vdev_top_update(tvd, vd->vdev_child[c]);
+}
+
+/*
+ * Add a mirror/replacing vdev above an existing vdev.
+ */
+vdev_t *
+vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
+{
+ spa_t *spa = cvd->vdev_spa;
+ vdev_t *pvd = cvd->vdev_parent;
+ vdev_t *mvd;
+
+ ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
+
+ mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
+
+ mvd->vdev_asize = cvd->vdev_asize;
+ mvd->vdev_ashift = cvd->vdev_ashift;
+ mvd->vdev_state = cvd->vdev_state;
+
+ vdev_remove_child(pvd, cvd);
+ vdev_add_child(pvd, mvd);
+ cvd->vdev_id = mvd->vdev_children;
+ vdev_add_child(mvd, cvd);
+ vdev_top_update(cvd->vdev_top, cvd->vdev_top);
+
+ if (mvd == mvd->vdev_top)
+ vdev_top_transfer(cvd, mvd);
+
+ return (mvd);
+}
+
+/*
+ * Remove a 1-way mirror/replacing vdev from the tree.
+ */
+void
+vdev_remove_parent(vdev_t *cvd)
+{
+ vdev_t *mvd = cvd->vdev_parent;
+ vdev_t *pvd = mvd->vdev_parent;
+
+ ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
+
+ ASSERT(mvd->vdev_children == 1);
+ ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
+ mvd->vdev_ops == &vdev_replacing_ops ||
+ mvd->vdev_ops == &vdev_spare_ops);
+ cvd->vdev_ashift = mvd->vdev_ashift;
+
+ vdev_remove_child(mvd, cvd);
+ vdev_remove_child(pvd, mvd);
+ /*
+ * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
+ * Otherwise, we could have detached an offline device, and when we
+ * go to import the pool we'll think we have two top-level vdevs,
+ * instead of a different version of the same top-level vdev.
+ */
+ if (mvd->vdev_top == mvd)
+ cvd->vdev_guid = cvd->vdev_guid_sum = mvd->vdev_guid;
+ cvd->vdev_id = mvd->vdev_id;
+ vdev_add_child(pvd, cvd);
+ vdev_top_update(cvd->vdev_top, cvd->vdev_top);
+
+ if (cvd == cvd->vdev_top)
+ vdev_top_transfer(mvd, cvd);
+
+ ASSERT(mvd->vdev_children == 0);
+ vdev_free(mvd);
+}
+
+int
+vdev_metaslab_init(vdev_t *vd, uint64_t txg)
+{
+ spa_t *spa = vd->vdev_spa;
+ objset_t *mos = spa->spa_meta_objset;
+ metaslab_class_t *mc;
+ uint64_t m;
+ uint64_t oldc = vd->vdev_ms_count;
+ uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
+ metaslab_t **mspp;
+ int error;
+
+ if (vd->vdev_ms_shift == 0) /* not being allocated from yet */
+ return (0);
+
+ ASSERT(oldc <= newc);
+
+ if (vd->vdev_islog)
+ mc = spa->spa_log_class;
+ else
+ mc = spa->spa_normal_class;
+
+ if (vd->vdev_mg == NULL)
+ vd->vdev_mg = metaslab_group_create(mc, vd);
+
+ mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
+
+ if (oldc != 0) {
+ bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
+ kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
+ }
+
+ vd->vdev_ms = mspp;
+ vd->vdev_ms_count = newc;
+
+ for (m = oldc; m < newc; m++) {
+ space_map_obj_t smo = { 0, 0, 0 };
+ if (txg == 0) {
+ uint64_t object = 0;
+ error = dmu_read(mos, vd->vdev_ms_array,
+ m * sizeof (uint64_t), sizeof (uint64_t), &object);
+ if (error)
+ return (error);
+ if (object != 0) {
+ dmu_buf_t *db;
+ error = dmu_bonus_hold(mos, object, FTAG, &db);
+ if (error)
+ return (error);
+ ASSERT3U(db->db_size, >=, sizeof (smo));
+ bcopy(db->db_data, &smo, sizeof (smo));
+ ASSERT3U(smo.smo_object, ==, object);
+ dmu_buf_rele(db, FTAG);
+ }
+ }
+ vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
+ m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
+ }
+
+ return (0);
+}
+
+void
+vdev_metaslab_fini(vdev_t *vd)
+{
+ uint64_t m;
+ uint64_t count = vd->vdev_ms_count;
+
+ if (vd->vdev_ms != NULL) {
+ for (m = 0; m < count; m++)
+ if (vd->vdev_ms[m] != NULL)
+ metaslab_fini(vd->vdev_ms[m]);
+ kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
+ vd->vdev_ms = NULL;
+ }
+}
+
+typedef struct vdev_probe_stats {
+ boolean_t vps_readable;
+ boolean_t vps_writeable;
+ int vps_flags;
+ zio_t *vps_root;
+ vdev_t *vps_vd;
+} vdev_probe_stats_t;
+
+static void
+vdev_probe_done(zio_t *zio)
+{
+ vdev_probe_stats_t *vps = zio->io_private;
+ vdev_t *vd = vps->vps_vd;
+
+ if (zio->io_type == ZIO_TYPE_READ) {
+ ASSERT(zio->io_vd == vd);
+ if (zio->io_error == 0)
+ vps->vps_readable = 1;
+ if (zio->io_error == 0 && (spa_mode & FWRITE)) {
+ zio_nowait(zio_write_phys(vps->vps_root, vd,
+ zio->io_offset, zio->io_size, zio->io_data,
+ ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
+ ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
+ } else {
+ zio_buf_free(zio->io_data, zio->io_size);
+ }
+ } else if (zio->io_type == ZIO_TYPE_WRITE) {
+ ASSERT(zio->io_vd == vd);
+ if (zio->io_error == 0)
+ vps->vps_writeable = 1;
+ zio_buf_free(zio->io_data, zio->io_size);
+ } else if (zio->io_type == ZIO_TYPE_NULL) {
+ ASSERT(zio->io_vd == NULL);
+ ASSERT(zio == vps->vps_root);
+
+ vd->vdev_cant_read |= !vps->vps_readable;
+ vd->vdev_cant_write |= !vps->vps_writeable;
+
+ if (vdev_readable(vd) &&
+ (vdev_writeable(vd) || !(spa_mode & FWRITE))) {
+ zio->io_error = 0;
+ } else {
+ ASSERT(zio->io_error != 0);
+ zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
+ zio->io_spa, vd, NULL, 0, 0);
+ zio->io_error = ENXIO;
+ }
+ kmem_free(vps, sizeof (*vps));
+ }
+}
+
+/*
+ * Determine whether this device is accessible by reading and writing
+ * to several known locations: the pad regions of each vdev label
+ * but the first (which we leave alone in case it contains a VTOC).
+ */
+zio_t *
+vdev_probe(vdev_t *vd, zio_t *pio)
+{
+ spa_t *spa = vd->vdev_spa;
+ vdev_probe_stats_t *vps;
+ zio_t *zio;
+
+ vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
+
+ vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
+ ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | ZIO_FLAG_DONT_RETRY;
+
+ if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
+ /*
+ * vdev_cant_read and vdev_cant_write can only transition
+ * from TRUE to FALSE when we have the SCL_ZIO lock as writer;
+ * otherwise they can only transition from FALSE to TRUE.
+ * This ensures that any zio looking at these values can
+ * assume that failures persist for the life of the I/O.
+ * That's important because when a device has intermittent
+ * connectivity problems, we want to ensure that they're
+ * ascribed to the device (ENXIO) and not the zio (EIO).
+ *
+ * Since we hold SCL_ZIO as writer here, clear both values
+ * so the probe can reevaluate from first principles.
+ */
+ vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
+ vd->vdev_cant_read = B_FALSE;
+ vd->vdev_cant_write = B_FALSE;
+ }
+
+ ASSERT(vd->vdev_ops->vdev_op_leaf);
+
+ zio = zio_null(pio, spa, vdev_probe_done, vps, vps->vps_flags);
+
+ vps->vps_root = zio;
+ vps->vps_vd = vd;
+
+ for (int l = 1; l < VDEV_LABELS; l++) {
+ zio_nowait(zio_read_phys(zio, vd,
+ vdev_label_offset(vd->vdev_psize, l,
+ offsetof(vdev_label_t, vl_pad)),
+ VDEV_SKIP_SIZE, zio_buf_alloc(VDEV_SKIP_SIZE),
+ ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
+ ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
+ }
+
+ return (zio);
+}
+
+/*
+ * Prepare a virtual device for access.
+ */
+int
+vdev_open(vdev_t *vd)
+{
+ int error;
+ int c;
+ uint64_t osize = 0;
+ uint64_t asize, psize;
+ uint64_t ashift = 0;
+
+ ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
+ vd->vdev_state == VDEV_STATE_CANT_OPEN ||
+ vd->vdev_state == VDEV_STATE_OFFLINE);
+
+ vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
+
+ if (!vd->vdev_removed && vd->vdev_faulted) {
+ ASSERT(vd->vdev_children == 0);
+ vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
+ VDEV_AUX_ERR_EXCEEDED);
+ return (ENXIO);
+ } else if (vd->vdev_offline) {
+ ASSERT(vd->vdev_children == 0);
+ vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
+ return (ENXIO);
+ }
+
+ error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift);
+
+ if (zio_injection_enabled && error == 0)
+ error = zio_handle_device_injection(vd, ENXIO);
+
+ if (error) {
+ if (vd->vdev_removed &&
+ vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
+ vd->vdev_removed = B_FALSE;
+
+ vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
+ vd->vdev_stat.vs_aux);
+ return (error);
+ }
+
+ vd->vdev_removed = B_FALSE;
+
+ if (vd->vdev_degraded) {
+ ASSERT(vd->vdev_children == 0);
+ vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
+ VDEV_AUX_ERR_EXCEEDED);
+ } else {
+ vd->vdev_state = VDEV_STATE_HEALTHY;
+ }
+
+ for (c = 0; c < vd->vdev_children; c++)
+ if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
+ vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
+ VDEV_AUX_NONE);
+ break;
+ }
+
+ osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
+
+ if (vd->vdev_children == 0) {
+ if (osize < SPA_MINDEVSIZE) {
+ vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
+ VDEV_AUX_TOO_SMALL);
+ return (EOVERFLOW);
+ }
+ psize = osize;
+ asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
+ } else {
+ if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
+ (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
+ vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
+ VDEV_AUX_TOO_SMALL);
+ return (EOVERFLOW);
+ }
+ psize = 0;
+ asize = osize;
+ }
+
+ vd->vdev_psize = psize;
+
+ if (vd->vdev_asize == 0) {
+ /*
+ * This is the first-ever open, so use the computed values.
+ * For testing purposes, a higher ashift can be requested.
+ */
+ vd->vdev_asize = asize;
+ vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
+ } else {
+ /*
+ * Make sure the alignment requirement hasn't increased.
+ */
+ if (ashift > vd->vdev_top->vdev_ashift) {
+ vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
+ VDEV_AUX_BAD_LABEL);
+ return (EINVAL);
+ }
+
+ /*
+ * Make sure the device hasn't shrunk.
+ */
+ if (asize < vd->vdev_asize) {
+ vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
+ VDEV_AUX_BAD_LABEL);
+ return (EINVAL);
+ }
+
+ /*
+ * If all children are healthy and the asize has increased,
+ * then we've experienced dynamic LUN growth.
+ */
+ if (vd->vdev_state == VDEV_STATE_HEALTHY &&
+ asize > vd->vdev_asize) {
+ vd->vdev_asize = asize;
+ }
+ }
+
+ /*
+ * Ensure we can issue some IO before declaring the
+ * vdev open for business.
+ */
+ if (vd->vdev_ops->vdev_op_leaf &&
+ (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
+ vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
+ VDEV_AUX_IO_FAILURE);
+ return (error);
+ }
+
+ /*
+ * If this is a top-level vdev, compute the raidz-deflation
+ * ratio. Note, we hard-code in 128k (1<<17) because it is the
+ * current "typical" blocksize. Even if SPA_MAXBLOCKSIZE
+ * changes, this algorithm must never change, or we will
+ * inconsistently account for existing bp's.
+ */
+ if (vd->vdev_top == vd) {
+ vd->vdev_deflate_ratio = (1<<17) /
+ (vdev_psize_to_asize(vd, 1<<17) >> SPA_MINBLOCKSHIFT);
+ }
+
+ /*
+ * If a leaf vdev has a DTL, and seems healthy, then kick off a
+ * resilver. But don't do this if we are doing a reopen for a
+ * scrub, since this would just restart the scrub we are already
+ * doing.
+ */
+ if (vd->vdev_children == 0 && !vd->vdev_spa->spa_scrub_reopen) {
+ mutex_enter(&vd->vdev_dtl_lock);
+ if (vd->vdev_dtl_map.sm_space != 0 && vdev_writeable(vd))
+ spa_async_request(vd->vdev_spa, SPA_ASYNC_RESILVER);
+ mutex_exit(&vd->vdev_dtl_lock);
+ }
+
+ return (0);
+}
+
+/*
+ * Called once the vdevs are all opened, this routine validates the label
+ * contents. This needs to be done before vdev_load() so that we don't
+ * inadvertently do repair I/Os to the wrong device.
+ *
+ * This function will only return failure if one of the vdevs indicates that it
+ * has since been destroyed or exported. This is only possible if
+ * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
+ * will be updated but the function will return 0.
+ */
+int
+vdev_validate(vdev_t *vd)
+{
+ spa_t *spa = vd->vdev_spa;
+ int c;
+ nvlist_t *label;
+ uint64_t guid, top_guid;
+ uint64_t state;
+
+ for (c = 0; c < vd->vdev_children; c++)
+ if (vdev_validate(vd->vdev_child[c]) != 0)
+ return (EBADF);
+
+ /*
+ * If the device has already failed, or was marked offline, don't do
+ * any further validation. Otherwise, label I/O will fail and we will
+ * overwrite the previous state.
+ */
+ if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
+
+ if ((label = vdev_label_read_config(vd)) == NULL) {
+ vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
+ VDEV_AUX_BAD_LABEL);
+ return (0);
+ }
+
+ if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
+ &guid) != 0 || guid != spa_guid(spa)) {
+ vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
+ VDEV_AUX_CORRUPT_DATA);
+ nvlist_free(label);
+ return (0);
+ }
+
+ /*
+ * If this vdev just became a top-level vdev because its
+ * sibling was detached, it will have adopted the parent's
+ * vdev guid -- but the label may or may not be on disk yet.
+ * Fortunately, either version of the label will have the
+ * same top guid, so if we're a top-level vdev, we can
+ * safely compare to that instead.
+ */
+ if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
+ &guid) != 0 ||
+ nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
+ &top_guid) != 0 ||
+ (vd->vdev_guid != guid &&
+ (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
+ vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
+ VDEV_AUX_CORRUPT_DATA);
+ nvlist_free(label);
+ return (0);
+ }
+
+ if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
+ &state) != 0) {
+ vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
+ VDEV_AUX_CORRUPT_DATA);
+ nvlist_free(label);
+ return (0);
+ }
+
+ nvlist_free(label);
+
+ if (spa->spa_load_state == SPA_LOAD_OPEN &&
+ state != POOL_STATE_ACTIVE)
+ return (EBADF);
+
+ /*
+ * If we were able to open and validate a vdev that was
+ * previously marked permanently unavailable, clear that state
+ * now.
+ */
+ if (vd->vdev_not_present)
+ vd->vdev_not_present = 0;
+ }
+
+ return (0);
+}
+
+/*
+ * Close a virtual device.
+ */
+void
+vdev_close(vdev_t *vd)
+{
+ vd->vdev_ops->vdev_op_close(vd);
+
+ vdev_cache_purge(vd);
+
+ /*
+ * We record the previous state before we close it, so that if we are
+ * doing a reopen(), we don't generate FMA ereports if we notice that
+ * it's still faulted.
+ */
+ vd->vdev_prevstate = vd->vdev_state;
+
+ if (vd->vdev_offline)
+ vd->vdev_state = VDEV_STATE_OFFLINE;
+ else
+ vd->vdev_state = VDEV_STATE_CLOSED;
+ vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
+}
+
+void
+vdev_reopen(vdev_t *vd)
+{
+ spa_t *spa = vd->vdev_spa;
+
+ ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
+
+ vdev_close(vd);
+ (void) vdev_open(vd);
+
+ /*
+ * Call vdev_validate() here to make sure we have the same device.
+ * Otherwise, a device with an invalid label could be successfully
+ * opened in response to vdev_reopen().
+ */
+ if (vd->vdev_aux) {
+ (void) vdev_validate_aux(vd);
+ if (vdev_readable(vd) && vdev_writeable(vd) &&
+ !l2arc_vdev_present(vd)) {
+ uint64_t size = vdev_get_rsize(vd);
+ l2arc_add_vdev(spa, vd,
+ VDEV_LABEL_START_SIZE,
+ size - VDEV_LABEL_START_SIZE);
+ }
+ } else {
+ (void) vdev_validate(vd);
+ }
+
+ /*
+ * Reassess parent vdev's health.
+ */
+ vdev_propagate_state(vd);
+}
+
+int
+vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
+{
+ int error;
+
+ /*
+ * Normally, partial opens (e.g. of a mirror) are allowed.
+ * For a create, however, we want to fail the request if
+ * there are any components we can't open.
+ */
+ error = vdev_open(vd);
+
+ if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
+ vdev_close(vd);
+ return (error ? error : ENXIO);
+ }
+
+ /*
+ * Recursively initialize all labels.
+ */
+ if ((error = vdev_label_init(vd, txg, isreplacing ?
+ VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
+ vdev_close(vd);
+ return (error);
+ }
+
+ return (0);
+}
+
+/*
+ * The is the latter half of vdev_create(). It is distinct because it
+ * involves initiating transactions in order to do metaslab creation.
+ * For creation, we want to try to create all vdevs at once and then undo it
+ * if anything fails; this is much harder if we have pending transactions.
+ */
+void
+vdev_init(vdev_t *vd, uint64_t txg)
+{
+ /*
+ * Aim for roughly 200 metaslabs per vdev.
+ */
+ vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
+ vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
+
+ /*
+ * Initialize the vdev's metaslabs. This can't fail because
+ * there's nothing to read when creating all new metaslabs.
+ */
+ VERIFY(vdev_metaslab_init(vd, txg) == 0);
+}
+
+void
+vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
+{
+ ASSERT(vd == vd->vdev_top);
+ ASSERT(ISP2(flags));
+
+ if (flags & VDD_METASLAB)
+ (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
+
+ if (flags & VDD_DTL)
+ (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
+
+ (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
+}
+
+void
+vdev_dtl_dirty(space_map_t *sm, uint64_t txg, uint64_t size)
+{
+ mutex_enter(sm->sm_lock);
+ if (!space_map_contains(sm, txg, size))
+ space_map_add(sm, txg, size);
+ mutex_exit(sm->sm_lock);
+}
+
+int
+vdev_dtl_contains(space_map_t *sm, uint64_t txg, uint64_t size)
+{
+ int dirty;
+
+ /*
+ * Quick test without the lock -- covers the common case that
+ * there are no dirty time segments.
+ */
+ if (sm->sm_space == 0)
+ return (0);
+
+ mutex_enter(sm->sm_lock);
+ dirty = space_map_contains(sm, txg, size);
+ mutex_exit(sm->sm_lock);
+
+ return (dirty);
+}
+
+/*
+ * Reassess DTLs after a config change or scrub completion.
+ */
+void
+vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
+{
+ spa_t *spa = vd->vdev_spa;
+ int c;
+
+ ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
+
+ if (vd->vdev_children == 0) {
+ mutex_enter(&vd->vdev_dtl_lock);
+ if (scrub_txg != 0 &&
+ (spa->spa_scrub_started || spa->spa_scrub_errors == 0)) {
+ /* XXX should check scrub_done? */
+ /*
+ * We completed a scrub up to scrub_txg. If we
+ * did it without rebooting, then the scrub dtl
+ * will be valid, so excise the old region and
+ * fold in the scrub dtl. Otherwise, leave the
+ * dtl as-is if there was an error.
+ */
+ space_map_excise(&vd->vdev_dtl_map, 0, scrub_txg);
+ space_map_union(&vd->vdev_dtl_map, &vd->vdev_dtl_scrub);
+ }
+ if (scrub_done)
+ space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL);
+ mutex_exit(&vd->vdev_dtl_lock);
+
+ if (txg != 0)
+ vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
+ return;
+ }
+
+ /*
+ * Make sure the DTLs are always correct under the scrub lock.
+ */
+ if (vd == spa->spa_root_vdev)
+ mutex_enter(&spa->spa_scrub_lock);
+
+ mutex_enter(&vd->vdev_dtl_lock);
+ space_map_vacate(&vd->vdev_dtl_map, NULL, NULL);
+ space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL);
+ mutex_exit(&vd->vdev_dtl_lock);
+
+ for (c = 0; c < vd->vdev_children; c++) {
+ vdev_t *cvd = vd->vdev_child[c];
+ vdev_dtl_reassess(cvd, txg, scrub_txg, scrub_done);
+ mutex_enter(&vd->vdev_dtl_lock);
+ space_map_union(&vd->vdev_dtl_map, &cvd->vdev_dtl_map);
+ space_map_union(&vd->vdev_dtl_scrub, &cvd->vdev_dtl_scrub);
+ mutex_exit(&vd->vdev_dtl_lock);
+ }
+
+ if (vd == spa->spa_root_vdev)
+ mutex_exit(&spa->spa_scrub_lock);
+}
+
+static int
+vdev_dtl_load(vdev_t *vd)
+{
+ spa_t *spa = vd->vdev_spa;
+ space_map_obj_t *smo = &vd->vdev_dtl;
+ objset_t *mos = spa->spa_meta_objset;
+ dmu_buf_t *db;
+ int error;
+
+ ASSERT(vd->vdev_children == 0);
+
+ if (smo->smo_object == 0)
+ return (0);
+
+ if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
+ return (error);
+
+ ASSERT3U(db->db_size, >=, sizeof (*smo));
+ bcopy(db->db_data, smo, sizeof (*smo));
+ dmu_buf_rele(db, FTAG);
+
+ mutex_enter(&vd->vdev_dtl_lock);
+ error = space_map_load(&vd->vdev_dtl_map, NULL, SM_ALLOC, smo, mos);
+ mutex_exit(&vd->vdev_dtl_lock);
+
+ return (error);
+}
+
+void
+vdev_dtl_sync(vdev_t *vd, uint64_t txg)
+{
+ spa_t *spa = vd->vdev_spa;
+ space_map_obj_t *smo = &vd->vdev_dtl;
+ space_map_t *sm = &vd->vdev_dtl_map;
+ objset_t *mos = spa->spa_meta_objset;
+ space_map_t smsync;
+ kmutex_t smlock;
+ dmu_buf_t *db;
+ dmu_tx_t *tx;
+
+ tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
+
+ if (vd->vdev_detached) {
+ if (smo->smo_object != 0) {
+ int err = dmu_object_free(mos, smo->smo_object, tx);
+ ASSERT3U(err, ==, 0);
+ smo->smo_object = 0;
+ }
+ dmu_tx_commit(tx);
+ return;
+ }
+
+ if (smo->smo_object == 0) {
+ ASSERT(smo->smo_objsize == 0);
+ ASSERT(smo->smo_alloc == 0);
+ smo->smo_object = dmu_object_alloc(mos,
+ DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
+ DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
+ ASSERT(smo->smo_object != 0);
+ vdev_config_dirty(vd->vdev_top);
+ }
+
+ mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
+
+ space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
+ &smlock);
+
+ mutex_enter(&smlock);
+
+ mutex_enter(&vd->vdev_dtl_lock);
+ space_map_walk(sm, space_map_add, &smsync);
+ mutex_exit(&vd->vdev_dtl_lock);
+
+ space_map_truncate(smo, mos, tx);
+ space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
+
+ space_map_destroy(&smsync);
+
+ mutex_exit(&smlock);
+ mutex_destroy(&smlock);
+
+ VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
+ dmu_buf_will_dirty(db, tx);
+ ASSERT3U(db->db_size, >=, sizeof (*smo));
+ bcopy(smo, db->db_data, sizeof (*smo));
+ dmu_buf_rele(db, FTAG);
+
+ dmu_tx_commit(tx);
+}
+
+/*
+ * Determine if resilver is needed, and if so the txg range.
+ */
+boolean_t
+vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
+{
+ boolean_t needed = B_FALSE;
+ uint64_t thismin = UINT64_MAX;
+ uint64_t thismax = 0;
+
+ if (vd->vdev_children == 0) {
+ mutex_enter(&vd->vdev_dtl_lock);
+ if (vd->vdev_dtl_map.sm_space != 0 && vdev_writeable(vd)) {
+ space_seg_t *ss;
+
+ ss = avl_first(&vd->vdev_dtl_map.sm_root);
+ thismin = ss->ss_start - 1;
+ ss = avl_last(&vd->vdev_dtl_map.sm_root);
+ thismax = ss->ss_end;
+ needed = B_TRUE;
+ }
+ mutex_exit(&vd->vdev_dtl_lock);
+ } else {
+ int c;
+ for (c = 0; c < vd->vdev_children; c++) {
+ vdev_t *cvd = vd->vdev_child[c];
+ uint64_t cmin, cmax;
+
+ if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
+ thismin = MIN(thismin, cmin);
+ thismax = MAX(thismax, cmax);
+ needed = B_TRUE;
+ }
+ }
+ }
+
+ if (needed && minp) {
+ *minp = thismin;
+ *maxp = thismax;
+ }
+ return (needed);
+}
+
+void
+vdev_load(vdev_t *vd)
+{
+ int c;
+
+ /*
+ * Recursively load all children.
+ */
+ for (c = 0; c < vd->vdev_children; c++)
+ vdev_load(vd->vdev_child[c]);
+
+ /*
+ * If this is a top-level vdev, initialize its metaslabs.
+ */
+ if (vd == vd->vdev_top &&
+ (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
+ vdev_metaslab_init(vd, 0) != 0))
+ vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
+ VDEV_AUX_CORRUPT_DATA);
+
+ /*
+ * If this is a leaf vdev, load its DTL.
+ */
+ if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
+ vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
+ VDEV_AUX_CORRUPT_DATA);
+}
+
+/*
+ * The special vdev case is used for hot spares and l2cache devices. Its
+ * sole purpose it to set the vdev state for the associated vdev. To do this,
+ * we make sure that we can open the underlying device, then try to read the
+ * label, and make sure that the label is sane and that it hasn't been
+ * repurposed to another pool.
+ */
+int
+vdev_validate_aux(vdev_t *vd)
+{
+ nvlist_t *label;
+ uint64_t guid, version;
+ uint64_t state;
+
+ if (!vdev_readable(vd))
+ return (0);
+
+ if ((label = vdev_label_read_config(vd)) == NULL) {
+ vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
+ VDEV_AUX_CORRUPT_DATA);
+ return (-1);
+ }
+
+ if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
+ version > SPA_VERSION ||
+ nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
+ guid != vd->vdev_guid ||
+ nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
+ vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
+ VDEV_AUX_CORRUPT_DATA);
+ nvlist_free(label);
+ return (-1);
+ }
+
+ /*
+ * We don't actually check the pool state here. If it's in fact in
+ * use by another pool, we update this fact on the fly when requested.
+ */
+ nvlist_free(label);
+ return (0);
+}
+
+void
+vdev_sync_done(vdev_t *vd, uint64_t txg)
+{
+ metaslab_t *msp;
+
+ while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
+ metaslab_sync_done(msp, txg);
+}
+
+void
+vdev_sync(vdev_t *vd, uint64_t txg)
+{
+ spa_t *spa = vd->vdev_spa;
+ vdev_t *lvd;
+ metaslab_t *msp;
+ dmu_tx_t *tx;
+
+ if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
+ ASSERT(vd == vd->vdev_top);
+ tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
+ vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
+ DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
+ ASSERT(vd->vdev_ms_array != 0);
+ vdev_config_dirty(vd);
+ dmu_tx_commit(tx);
+ }
+
+ while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
+ metaslab_sync(msp, txg);
+ (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
+ }
+
+ while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
+ vdev_dtl_sync(lvd, txg);
+
+ (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
+}
+
+uint64_t
+vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
+{
+ return (vd->vdev_ops->vdev_op_asize(vd, psize));
+}
+
+/*
+ * Mark the given vdev faulted. A faulted vdev behaves as if the device could
+ * not be opened, and no I/O is attempted.
+ */
+int
+vdev_fault(spa_t *spa, uint64_t guid)
+{
+ vdev_t *vd;
+
+ spa_vdev_state_enter(spa);
+
+ if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
+ return (spa_vdev_state_exit(spa, NULL, ENODEV));
+
+ if (!vd->vdev_ops->vdev_op_leaf)
+ return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
+
+ /*
+ * Faulted state takes precedence over degraded.
+ */
+ vd->vdev_faulted = 1ULL;
+ vd->vdev_degraded = 0ULL;
+ vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, VDEV_AUX_ERR_EXCEEDED);
+
+ /*
+ * If marking the vdev as faulted cause the top-level vdev to become
+ * unavailable, then back off and simply mark the vdev as degraded
+ * instead.
+ */
+ if (vdev_is_dead(vd->vdev_top) && vd->vdev_aux == NULL) {
+ vd->vdev_degraded = 1ULL;
+ vd->vdev_faulted = 0ULL;
+
+ /*
+ * If we reopen the device and it's not dead, only then do we
+ * mark it degraded.
+ */
+ vdev_reopen(vd);
+
+ if (vdev_readable(vd)) {
+ vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
+ VDEV_AUX_ERR_EXCEEDED);
+ }
+ }
+
+ return (spa_vdev_state_exit(spa, vd, 0));
+}
+
+/*
+ * Mark the given vdev degraded. A degraded vdev is purely an indication to the
+ * user that something is wrong. The vdev continues to operate as normal as far
+ * as I/O is concerned.
+ */
+int
+vdev_degrade(spa_t *spa, uint64_t guid)
+{
+ vdev_t *vd;
+
+ spa_vdev_state_enter(spa);
+
+ if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
+ return (spa_vdev_state_exit(spa, NULL, ENODEV));
+
+ if (!vd->vdev_ops->vdev_op_leaf)
+ return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
+
+ /*
+ * If the vdev is already faulted, then don't do anything.
+ */
+ if (vd->vdev_faulted || vd->vdev_degraded)
+ return (spa_vdev_state_exit(spa, NULL, 0));
+
+ vd->vdev_degraded = 1ULL;
+ if (!vdev_is_dead(vd))
+ vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
+ VDEV_AUX_ERR_EXCEEDED);
+
+ return (spa_vdev_state_exit(spa, vd, 0));
+}
+
+/*
+ * Online the given vdev. If 'unspare' is set, it implies two things. First,
+ * any attached spare device should be detached when the device finishes
+ * resilvering. Second, the online should be treated like a 'test' online case,
+ * so no FMA events are generated if the device fails to open.
+ */
+int
+vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
+{
+ vdev_t *vd;
+
+ spa_vdev_state_enter(spa);
+
+ if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
+ return (spa_vdev_state_exit(spa, NULL, ENODEV));
+
+ if (!vd->vdev_ops->vdev_op_leaf)
+ return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
+
+ vd->vdev_offline = B_FALSE;
+ vd->vdev_tmpoffline = B_FALSE;
+ vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
+ vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
+ vdev_reopen(vd->vdev_top);
+ vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
+
+ if (newstate)
+ *newstate = vd->vdev_state;
+ if ((flags & ZFS_ONLINE_UNSPARE) &&
+ !vdev_is_dead(vd) && vd->vdev_parent &&
+ vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
+ vd->vdev_parent->vdev_child[0] == vd)
+ vd->vdev_unspare = B_TRUE;
+
+ (void) spa_vdev_state_exit(spa, vd, 0);
+
+ VERIFY3U(spa_scrub(spa, POOL_SCRUB_RESILVER), ==, 0);
+
+ return (0);
+}
+
+int
+vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
+{
+ vdev_t *vd;
+
+ spa_vdev_state_enter(spa);
+
+ if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
+ return (spa_vdev_state_exit(spa, NULL, ENODEV));
+
+ if (!vd->vdev_ops->vdev_op_leaf)
+ return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
+
+ /*
+ * If the device isn't already offline, try to offline it.
+ */
+ if (!vd->vdev_offline) {
+ /*
+ * If this device's top-level vdev has a non-empty DTL,
+ * don't allow the device to be offlined.
+ *
+ * XXX -- make this more precise by allowing the offline
+ * as long as the remaining devices don't have any DTL holes.
+ */
+ if (vd->vdev_top->vdev_dtl_map.sm_space != 0)
+ return (spa_vdev_state_exit(spa, NULL, EBUSY));
+
+ /*
+ * Offline this device and reopen its top-level vdev.
+ * If this action results in the top-level vdev becoming
+ * unusable, undo it and fail the request.
+ */
+ vd->vdev_offline = B_TRUE;
+ vdev_reopen(vd->vdev_top);
+ if (vdev_is_dead(vd->vdev_top) && vd->vdev_aux == NULL) {
+ vd->vdev_offline = B_FALSE;
+ vdev_reopen(vd->vdev_top);
+ return (spa_vdev_state_exit(spa, NULL, EBUSY));
+ }
+ }
+
+ vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
+
+ return (spa_vdev_state_exit(spa, vd, 0));
+}
+
+/*
+ * Clear the error counts associated with this vdev. Unlike vdev_online() and
+ * vdev_offline(), we assume the spa config is locked. We also clear all
+ * children. If 'vd' is NULL, then the user wants to clear all vdevs.
+ */
+void
+vdev_clear(spa_t *spa, vdev_t *vd)
+{
+ vdev_t *rvd = spa->spa_root_vdev;
+
+ ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
+
+ if (vd == NULL)
+ vd = rvd;
+
+ vd->vdev_stat.vs_read_errors = 0;
+ vd->vdev_stat.vs_write_errors = 0;
+ vd->vdev_stat.vs_checksum_errors = 0;
+
+ for (int c = 0; c < vd->vdev_children; c++)
+ vdev_clear(spa, vd->vdev_child[c]);
+
+ /*
+ * If we're in the FAULTED state or have experienced failed I/O, then
+ * clear the persistent state and attempt to reopen the device. We
+ * also mark the vdev config dirty, so that the new faulted state is
+ * written out to disk.
+ */
+ if (vd->vdev_faulted || vd->vdev_degraded ||
+ !vdev_readable(vd) || !vdev_writeable(vd)) {
+
+ vd->vdev_faulted = vd->vdev_degraded = 0;
+ vd->vdev_cant_read = B_FALSE;
+ vd->vdev_cant_write = B_FALSE;
+
+ vdev_reopen(vd);
+
+ if (vd != rvd)
+ vdev_state_dirty(vd->vdev_top);
+
+ if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
+ spa_async_request(spa, SPA_ASYNC_RESILVER);
+
+ spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
+ }
+}
+
+boolean_t
+vdev_is_dead(vdev_t *vd)
+{
+ return (vd->vdev_state < VDEV_STATE_DEGRADED);
+}
+
+boolean_t
+vdev_readable(vdev_t *vd)
+{
+ return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
+}
+
+boolean_t
+vdev_writeable(vdev_t *vd)
+{
+ return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
+}
+
+boolean_t
+vdev_allocatable(vdev_t *vd)
+{
+ /*
+ * We currently allow allocations from vdevs which maybe in the
+ * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
+ * fails to reopen then we'll catch it later when we're holding
+ * the proper locks.
+ */
+ return (!(vdev_is_dead(vd) && vd->vdev_state != VDEV_STATE_CLOSED) &&
+ !vd->vdev_cant_write);
+}
+
+boolean_t
+vdev_accessible(vdev_t *vd, zio_t *zio)
+{
+ ASSERT(zio->io_vd == vd);
+
+ if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
+ return (B_FALSE);
+
+ if (zio->io_type == ZIO_TYPE_READ)
+ return (!vd->vdev_cant_read);
+
+ if (zio->io_type == ZIO_TYPE_WRITE)
+ return (!vd->vdev_cant_write);
+
+ return (B_TRUE);
+}
+
+/*
+ * Get statistics for the given vdev.
+ */
+void
+vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
+{
+ vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
+
+ mutex_enter(&vd->vdev_stat_lock);
+ bcopy(&vd->vdev_stat, vs, sizeof (*vs));
+ vs->vs_scrub_errors = vd->vdev_spa->spa_scrub_errors;
+ vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
+ vs->vs_state = vd->vdev_state;
+ vs->vs_rsize = vdev_get_rsize(vd);
+ mutex_exit(&vd->vdev_stat_lock);
+
+ /*
+ * If we're getting stats on the root vdev, aggregate the I/O counts
+ * over all top-level vdevs (i.e. the direct children of the root).
+ */
+ if (vd == rvd) {
+ for (int c = 0; c < rvd->vdev_children; c++) {
+ vdev_t *cvd = rvd->vdev_child[c];
+ vdev_stat_t *cvs = &cvd->vdev_stat;
+
+ mutex_enter(&vd->vdev_stat_lock);
+ for (int t = 0; t < ZIO_TYPES; t++) {
+ vs->vs_ops[t] += cvs->vs_ops[t];
+ vs->vs_bytes[t] += cvs->vs_bytes[t];
+ }
+ vs->vs_scrub_examined += cvs->vs_scrub_examined;
+ mutex_exit(&vd->vdev_stat_lock);
+ }
+ }
+}
+
+void
+vdev_clear_stats(vdev_t *vd)
+{
+ mutex_enter(&vd->vdev_stat_lock);
+ vd->vdev_stat.vs_space = 0;
+ vd->vdev_stat.vs_dspace = 0;
+ vd->vdev_stat.vs_alloc = 0;
+ mutex_exit(&vd->vdev_stat_lock);
+}
+
+void
+vdev_stat_update(zio_t *zio, uint64_t psize)
+{
+ vdev_t *rvd = zio->io_spa->spa_root_vdev;
+ vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
+ vdev_t *pvd;
+ uint64_t txg = zio->io_txg;
+ vdev_stat_t *vs = &vd->vdev_stat;
+ zio_type_t type = zio->io_type;
+ int flags = zio->io_flags;
+
+ /*
+ * If this i/o is a gang leader, it didn't do any actual work.
+ */
+ if (zio->io_gang_tree)
+ return;
+
+ if (zio->io_error == 0) {
+ /*
+ * If this is a root i/o, don't count it -- we've already
+ * counted the top-level vdevs, and vdev_get_stats() will
+ * aggregate them when asked. This reduces contention on
+ * the root vdev_stat_lock and implicitly handles blocks
+ * that compress away to holes, for which there is no i/o.
+ * (Holes never create vdev children, so all the counters
+ * remain zero, which is what we want.)
+ *
+ * Note: this only applies to successful i/o (io_error == 0)
+ * because unlike i/o counts, errors are not additive.
+ * When reading a ditto block, for example, failure of
+ * one top-level vdev does not imply a root-level error.
+ */
+ if (vd == rvd)
+ return;
+
+ ASSERT(vd == zio->io_vd);
+ if (!(flags & ZIO_FLAG_IO_BYPASS)) {
+ mutex_enter(&vd->vdev_stat_lock);
+ vs->vs_ops[type]++;
+ vs->vs_bytes[type] += psize;
+ mutex_exit(&vd->vdev_stat_lock);
+ }
+ if (flags & ZIO_FLAG_IO_REPAIR) {
+ ASSERT(zio->io_delegate_list == NULL);
+ mutex_enter(&vd->vdev_stat_lock);
+ if (flags & ZIO_FLAG_SCRUB_THREAD)
+ vs->vs_scrub_repaired += psize;
+ else
+ vs->vs_self_healed += psize;
+ mutex_exit(&vd->vdev_stat_lock);
+ }
+ return;
+ }
+
+ if (flags & ZIO_FLAG_SPECULATIVE)
+ return;
+
+ mutex_enter(&vd->vdev_stat_lock);
+ if (type == ZIO_TYPE_READ) {
+ if (zio->io_error == ECKSUM)
+ vs->vs_checksum_errors++;
+ else
+ vs->vs_read_errors++;
+ }
+ if (type == ZIO_TYPE_WRITE)
+ vs->vs_write_errors++;
+ mutex_exit(&vd->vdev_stat_lock);
+
+ if (type == ZIO_TYPE_WRITE && txg != 0 && vd->vdev_children == 0) {
+ if (flags & ZIO_FLAG_SCRUB_THREAD) {
+ ASSERT(flags & ZIO_FLAG_IO_REPAIR);
+ for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
+ vdev_dtl_dirty(&pvd->vdev_dtl_scrub, txg, 1);
+ }
+ if (!(flags & ZIO_FLAG_IO_REPAIR)) {
+ if (vdev_dtl_contains(&vd->vdev_dtl_map, txg, 1))
+ return;
+ vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
+ for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
+ vdev_dtl_dirty(&pvd->vdev_dtl_map, txg, 1);
+ }
+ }
+}
+
+void
+vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete)
+{
+ int c;
+ vdev_stat_t *vs = &vd->vdev_stat;
+
+ for (c = 0; c < vd->vdev_children; c++)
+ vdev_scrub_stat_update(vd->vdev_child[c], type, complete);
+
+ mutex_enter(&vd->vdev_stat_lock);
+
+ if (type == POOL_SCRUB_NONE) {
+ /*
+ * Update completion and end time. Leave everything else alone
+ * so we can report what happened during the previous scrub.
+ */
+ vs->vs_scrub_complete = complete;
+ vs->vs_scrub_end = gethrestime_sec();
+ } else {
+ vs->vs_scrub_type = type;
+ vs->vs_scrub_complete = 0;
+ vs->vs_scrub_examined = 0;
+ vs->vs_scrub_repaired = 0;
+ vs->vs_scrub_start = gethrestime_sec();
+ vs->vs_scrub_end = 0;
+ }
+
+ mutex_exit(&vd->vdev_stat_lock);
+}
+
+/*
+ * Update the in-core space usage stats for this vdev and the root vdev.
+ */
+void
+vdev_space_update(vdev_t *vd, int64_t space_delta, int64_t alloc_delta,
+ boolean_t update_root)
+{
+ int64_t dspace_delta = space_delta;
+ spa_t *spa = vd->vdev_spa;
+ vdev_t *rvd = spa->spa_root_vdev;
+
+ ASSERT(vd == vd->vdev_top);
+
+ /*
+ * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
+ * factor. We must calculate this here and not at the root vdev
+ * because the root vdev's psize-to-asize is simply the max of its
+ * childrens', thus not accurate enough for us.
+ */
+ ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
+ dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
+ vd->vdev_deflate_ratio;
+
+ mutex_enter(&vd->vdev_stat_lock);
+ vd->vdev_stat.vs_space += space_delta;
+ vd->vdev_stat.vs_alloc += alloc_delta;
+ vd->vdev_stat.vs_dspace += dspace_delta;
+ mutex_exit(&vd->vdev_stat_lock);
+
+ if (update_root) {
+ ASSERT(rvd == vd->vdev_parent);
+ ASSERT(vd->vdev_ms_count != 0);
+
+ /*
+ * Don't count non-normal (e.g. intent log) space as part of
+ * the pool's capacity.
+ */
+ if (vd->vdev_mg->mg_class != spa->spa_normal_class)
+ return;
+
+ mutex_enter(&rvd->vdev_stat_lock);
+ rvd->vdev_stat.vs_space += space_delta;
+ rvd->vdev_stat.vs_alloc += alloc_delta;
+ rvd->vdev_stat.vs_dspace += dspace_delta;
+ mutex_exit(&rvd->vdev_stat_lock);
+ }
+}
+
+/*
+ * Mark a top-level vdev's config as dirty, placing it on the dirty list
+ * so that it will be written out next time the vdev configuration is synced.
+ * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
+ */
+void
+vdev_config_dirty(vdev_t *vd)
+{
+ spa_t *spa = vd->vdev_spa;
+ vdev_t *rvd = spa->spa_root_vdev;
+ int c;
+
+ /*
+ * If this is an aux vdev (as with l2cache devices), then we update the
+ * vdev config manually and set the sync flag.
+ */
+ if (vd->vdev_aux != NULL) {
+ spa_aux_vdev_t *sav = vd->vdev_aux;
+ nvlist_t **aux;
+ uint_t naux;
+
+ for (c = 0; c < sav->sav_count; c++) {
+ if (sav->sav_vdevs[c] == vd)
+ break;
+ }
+
+ if (c == sav->sav_count) {
+ /*
+ * We're being removed. There's nothing more to do.
+ */
+ ASSERT(sav->sav_sync == B_TRUE);
+ return;
+ }
+
+ sav->sav_sync = B_TRUE;
+
+ VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
+ ZPOOL_CONFIG_L2CACHE, &aux, &naux) == 0);
+
+ ASSERT(c < naux);
+
+ /*
+ * Setting the nvlist in the middle if the array is a little
+ * sketchy, but it will work.
+ */
+ nvlist_free(aux[c]);
+ aux[c] = vdev_config_generate(spa, vd, B_TRUE, B_FALSE, B_TRUE);
+
+ return;
+ }
+
+ /*
+ * The dirty list is protected by the SCL_CONFIG lock. The caller
+ * must either hold SCL_CONFIG as writer, or must be the sync thread
+ * (which holds SCL_CONFIG as reader). There's only one sync thread,
+ * so this is sufficient to ensure mutual exclusion.
+ */
+ ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
+ (dsl_pool_sync_context(spa_get_dsl(spa)) &&
+ spa_config_held(spa, SCL_CONFIG, RW_READER)));
+
+ if (vd == rvd) {
+ for (c = 0; c < rvd->vdev_children; c++)
+ vdev_config_dirty(rvd->vdev_child[c]);
+ } else {
+ ASSERT(vd == vd->vdev_top);
+
+ if (!list_link_active(&vd->vdev_config_dirty_node))
+ list_insert_head(&spa->spa_config_dirty_list, vd);
+ }
+}
+
+void
+vdev_config_clean(vdev_t *vd)
+{
+ spa_t *spa = vd->vdev_spa;
+
+ ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
+ (dsl_pool_sync_context(spa_get_dsl(spa)) &&
+ spa_config_held(spa, SCL_CONFIG, RW_READER)));
+
+ ASSERT(list_link_active(&vd->vdev_config_dirty_node));
+ list_remove(&spa->spa_config_dirty_list, vd);
+}
+
+/*
+ * Mark a top-level vdev's state as dirty, so that the next pass of
+ * spa_sync() can convert this into vdev_config_dirty(). We distinguish
+ * the state changes from larger config changes because they require
+ * much less locking, and are often needed for administrative actions.
+ */
+void
+vdev_state_dirty(vdev_t *vd)
+{
+ spa_t *spa = vd->vdev_spa;
+
+ ASSERT(vd == vd->vdev_top);
+
+ /*
+ * The state list is protected by the SCL_STATE lock. The caller
+ * must either hold SCL_STATE as writer, or must be the sync thread
+ * (which holds SCL_STATE as reader). There's only one sync thread,
+ * so this is sufficient to ensure mutual exclusion.
+ */
+ ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
+ (dsl_pool_sync_context(spa_get_dsl(spa)) &&
+ spa_config_held(spa, SCL_STATE, RW_READER)));
+
+ if (!list_link_active(&vd->vdev_state_dirty_node))
+ list_insert_head(&spa->spa_state_dirty_list, vd);
+}
+
+void
+vdev_state_clean(vdev_t *vd)
+{
+ spa_t *spa = vd->vdev_spa;
+
+ ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
+ (dsl_pool_sync_context(spa_get_dsl(spa)) &&
+ spa_config_held(spa, SCL_STATE, RW_READER)));
+
+ ASSERT(list_link_active(&vd->vdev_state_dirty_node));
+ list_remove(&spa->spa_state_dirty_list, vd);
+}
+
+/*
+ * Propagate vdev state up from children to parent.
+ */
+void
+vdev_propagate_state(vdev_t *vd)
+{
+ vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
+ int degraded = 0, faulted = 0;
+ int corrupted = 0;
+ int c;
+ vdev_t *child;
+
+ if (vd->vdev_children > 0) {
+ for (c = 0; c < vd->vdev_children; c++) {
+ child = vd->vdev_child[c];
+
+ if (!vdev_readable(child) ||
+ (!vdev_writeable(child) && (spa_mode & FWRITE))) {
+ /*
+ * Root special: if there is a top-level log
+ * device, treat the root vdev as if it were
+ * degraded.
+ */
+ if (child->vdev_islog && vd == rvd)
+ degraded++;
+ else
+ faulted++;
+ } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
+ degraded++;
+ }
+
+ if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
+ corrupted++;
+ }
+
+ vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
+
+ /*
+ * Root special: if there is a top-level vdev that cannot be
+ * opened due to corrupted metadata, then propagate the root
+ * vdev's aux state as 'corrupt' rather than 'insufficient
+ * replicas'.
+ */
+ if (corrupted && vd == rvd &&
+ rvd->vdev_state == VDEV_STATE_CANT_OPEN)
+ vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
+ VDEV_AUX_CORRUPT_DATA);
+ }
+
+ if (vd->vdev_parent)
+ vdev_propagate_state(vd->vdev_parent);
+}
+
+/*
+ * Set a vdev's state. If this is during an open, we don't update the parent
+ * state, because we're in the process of opening children depth-first.
+ * Otherwise, we propagate the change to the parent.
+ *
+ * If this routine places a device in a faulted state, an appropriate ereport is
+ * generated.
+ */
+void
+vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
+{
+ uint64_t save_state;
+ spa_t *spa = vd->vdev_spa;
+
+ if (state == vd->vdev_state) {
+ vd->vdev_stat.vs_aux = aux;
+ return;
+ }
+
+ save_state = vd->vdev_state;
+
+ vd->vdev_state = state;
+ vd->vdev_stat.vs_aux = aux;
+
+ /*
+ * If we are setting the vdev state to anything but an open state, then
+ * always close the underlying device. Otherwise, we keep accessible
+ * but invalid devices open forever. We don't call vdev_close() itself,
+ * because that implies some extra checks (offline, etc) that we don't
+ * want here. This is limited to leaf devices, because otherwise
+ * closing the device will affect other children.
+ */
+ if (vdev_is_dead(vd) && vd->vdev_ops->vdev_op_leaf)
+ vd->vdev_ops->vdev_op_close(vd);
+
+ if (vd->vdev_removed &&
+ state == VDEV_STATE_CANT_OPEN &&
+ (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
+ /*
+ * If the previous state is set to VDEV_STATE_REMOVED, then this
+ * device was previously marked removed and someone attempted to
+ * reopen it. If this failed due to a nonexistent device, then
+ * keep the device in the REMOVED state. We also let this be if
+ * it is one of our special test online cases, which is only
+ * attempting to online the device and shouldn't generate an FMA
+ * fault.
+ */
+ vd->vdev_state = VDEV_STATE_REMOVED;
+ vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
+ } else if (state == VDEV_STATE_REMOVED) {
+ /*
+ * Indicate to the ZFS DE that this device has been removed, and
+ * any recent errors should be ignored.
+ */
+ zfs_post_remove(spa, vd);
+ vd->vdev_removed = B_TRUE;
+ } else if (state == VDEV_STATE_CANT_OPEN) {
+ /*
+ * If we fail to open a vdev during an import, we mark it as
+ * "not available", which signifies that it was never there to
+ * begin with. Failure to open such a device is not considered
+ * an error.
+ */
+ if (spa->spa_load_state == SPA_LOAD_IMPORT &&
+ !spa->spa_import_faulted &&
+ vd->vdev_ops->vdev_op_leaf)
+ vd->vdev_not_present = 1;
+
+ /*
+ * Post the appropriate ereport. If the 'prevstate' field is
+ * set to something other than VDEV_STATE_UNKNOWN, it indicates
+ * that this is part of a vdev_reopen(). In this case, we don't
+ * want to post the ereport if the device was already in the
+ * CANT_OPEN state beforehand.
+ *
+ * If the 'checkremove' flag is set, then this is an attempt to
+ * online the device in response to an insertion event. If we
+ * hit this case, then we have detected an insertion event for a
+ * faulted or offline device that wasn't in the removed state.
+ * In this scenario, we don't post an ereport because we are
+ * about to replace the device, or attempt an online with
+ * vdev_forcefault, which will generate the fault for us.
+ */
+ if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
+ !vd->vdev_not_present && !vd->vdev_checkremove &&
+ vd != spa->spa_root_vdev) {
+ const char *class;
+
+ switch (aux) {
+ case VDEV_AUX_OPEN_FAILED:
+ class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
+ break;
+ case VDEV_AUX_CORRUPT_DATA:
+ class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
+ break;
+ case VDEV_AUX_NO_REPLICAS:
+ class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
+ break;
+ case VDEV_AUX_BAD_GUID_SUM:
+ class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
+ break;
+ case VDEV_AUX_TOO_SMALL:
+ class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
+ break;
+ case VDEV_AUX_BAD_LABEL:
+ class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
+ break;
+ case VDEV_AUX_IO_FAILURE:
+ class = FM_EREPORT_ZFS_IO_FAILURE;
+ break;
+ default:
+ class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
+ }
+
+ zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
+ }
+
+ /* Erase any notion of persistent removed state */
+ vd->vdev_removed = B_FALSE;
+ } else {
+ vd->vdev_removed = B_FALSE;
+ }
+
+ if (!isopen)
+ vdev_propagate_state(vd);
+}
+
+/*
+ * Check the vdev configuration to ensure that it's capable of supporting
+ * a root pool. Currently, we do not support RAID-Z or partial configuration.
+ * In addition, only a single top-level vdev is allowed and none of the leaves
+ * can be wholedisks.
+ */
+boolean_t
+vdev_is_bootable(vdev_t *vd)
+{
+ int c;
+
+ if (!vd->vdev_ops->vdev_op_leaf) {
+ char *vdev_type = vd->vdev_ops->vdev_op_type;
+
+ if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
+ vd->vdev_children > 1) {
+ return (B_FALSE);
+ } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
+ strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
+ return (B_FALSE);
+ }
+ } else if (vd->vdev_wholedisk == 1) {
+ return (B_FALSE);
+ }
+
+ for (c = 0; c < vd->vdev_children; c++) {
+ if (!vdev_is_bootable(vd->vdev_child[c]))
+ return (B_FALSE);
+ }
+ return (B_TRUE);
+}