aboutsummaryrefslogtreecommitdiffstats
path: root/module/zfs/space_map.c
diff options
context:
space:
mode:
authorSerapheim Dimitropoulos <[email protected]>2017-08-04 09:30:49 -0700
committerBrian Behlendorf <[email protected]>2018-07-05 12:02:34 -0700
commit4d044c4c1d68ed518fe37eea61a4cc77048940fb (patch)
treee9e7f15b37f046a508ae038246e3808e17eed625 /module/zfs/space_map.c
parent4e82b4be78b0febb2a6add5dc070f34b27a4b786 (diff)
OpenZFS 9238 - ZFS Spacemap Encoding V2
Motivation ========== The current space map encoding has the following disadvantages: [1] Assuming 512 sector size each entry can represent at most 16MB for a segment. This makes the encoding very inefficient for large regions of space. [2] As vdev-wide space maps have started to be used by new features (i.e. device removal, zpool checkpoint) we've started imposing limits in the vdevs that can be used with them based on the maximum addressable offset (currently 64PB for a top-level vdev). New encoding ============ The layout can be found at space_map.h and it remains backwards compatible with the old one. The introduced two-word entry format, besides extending the limits imposed by the single-entry layout, also includes a vdev field and some extra padding after its prefix. The extra padding after the prefix should is reserved for future usage (e.g. new prefixes for future encodings or new fields for flags). The new vdev field not only makes the space maps more self-descriptive, but also opens the doors for pool-wide space maps (expected to be used in the log spacemap project). One final important note is that the number of bits used for vdevs is reduced to 24 bits for blkptrs. That was decided as we don't know of any setups that use more than 16M vdevs for the time being and we wanted to fit the vdev field in the space map. In addition that gives us some extra bits in dva_t. Other references: ================= The new encoding is also discussed towards the end of the Log Space Map presentation from 2017's OpenZFS summit. Link: https://www.youtube.com/watch?v=jj2IxRkl5bQ Authored by: Serapheim Dimitropoulos <[email protected]> Reviewed by: Matt Ahrens <[email protected]> Reviewed by: George Wilson <[email protected]> Reviewed by: Brian Behlendorf <[email protected]> Approved by: Gordon Ross <[email protected]> Ported-by: Tim Chase <[email protected]> Signed-off-by: Tim Chase <[email protected]> OpenZFS-commit: https://github.com/openzfs/openzfs/commit/90a56e6d OpenZFS-issue: https://www.illumos.org/issues/9238 Closes #7665
Diffstat (limited to 'module/zfs/space_map.c')
-rw-r--r--module/zfs/space_map.c800
1 files changed, 596 insertions, 204 deletions
diff --git a/module/zfs/space_map.c b/module/zfs/space_map.c
index 0e5a4b976..5f67a7987 100644
--- a/module/zfs/space_map.c
+++ b/module/zfs/space_map.c
@@ -41,68 +41,194 @@
* Note on space map block size:
*
* The data for a given space map can be kept on blocks of any size.
- * Larger blocks entail fewer i/o operations, but they also cause the
- * DMU to keep more data in-core, and also to waste more i/o bandwidth
+ * Larger blocks entail fewer I/O operations, but they also cause the
+ * DMU to keep more data in-core, and also to waste more I/O bandwidth
* when only a few blocks have changed since the last transaction group.
*/
/*
+ * Enabled whenever we want to stress test the use of double-word
+ * space map entries.
+ */
+boolean_t zfs_force_some_double_word_sm_entries = B_FALSE;
+
+boolean_t
+sm_entry_is_debug(uint64_t e)
+{
+ return (SM_PREFIX_DECODE(e) == SM_DEBUG_PREFIX);
+}
+
+boolean_t
+sm_entry_is_single_word(uint64_t e)
+{
+ uint8_t prefix = SM_PREFIX_DECODE(e);
+ return (prefix != SM_DEBUG_PREFIX && prefix != SM2_PREFIX);
+}
+
+boolean_t
+sm_entry_is_double_word(uint64_t e)
+{
+ return (SM_PREFIX_DECODE(e) == SM2_PREFIX);
+}
+
+/*
* Iterate through the space map, invoking the callback on each (non-debug)
* space map entry.
*/
int
space_map_iterate(space_map_t *sm, sm_cb_t callback, void *arg)
{
- uint64_t *entry, *entry_map, *entry_map_end;
- uint64_t bufsize, size, offset, end;
+ uint64_t sm_len = space_map_length(sm);
+ ASSERT3U(sm->sm_blksz, !=, 0);
+
+ dmu_prefetch(sm->sm_os, space_map_object(sm), 0, 0, sm_len,
+ ZIO_PRIORITY_SYNC_READ);
+
+ uint64_t blksz = sm->sm_blksz;
int error = 0;
+ for (uint64_t block_base = 0; block_base < sm_len && error == 0;
+ block_base += blksz) {
+ dmu_buf_t *db;
+ error = dmu_buf_hold(sm->sm_os, space_map_object(sm),
+ block_base, FTAG, &db, DMU_READ_PREFETCH);
+ if (error != 0)
+ return (error);
- end = space_map_length(sm);
+ uint64_t *block_start = db->db_data;
+ uint64_t block_length = MIN(sm_len - block_base, blksz);
+ uint64_t *block_end = block_start +
+ (block_length / sizeof (uint64_t));
- bufsize = MAX(sm->sm_blksz, SPA_MINBLOCKSIZE);
- entry_map = vmem_alloc(bufsize, KM_SLEEP);
+ VERIFY0(P2PHASE(block_length, sizeof (uint64_t)));
+ VERIFY3U(block_length, !=, 0);
+ ASSERT3U(blksz, ==, db->db_size);
- if (end > bufsize) {
- dmu_prefetch(sm->sm_os, space_map_object(sm), 0, bufsize,
- end - bufsize, ZIO_PRIORITY_SYNC_READ);
- }
+ for (uint64_t *block_cursor = block_start;
+ block_cursor < block_end && error == 0; block_cursor++) {
+ uint64_t e = *block_cursor;
- for (offset = 0; offset < end && error == 0; offset += bufsize) {
- size = MIN(end - offset, bufsize);
- VERIFY(P2PHASE(size, sizeof (uint64_t)) == 0);
- VERIFY(size != 0);
- ASSERT3U(sm->sm_blksz, !=, 0);
+ if (sm_entry_is_debug(e)) /* Skip debug entries */
+ continue;
- dprintf("object=%llu offset=%llx size=%llx\n",
- space_map_object(sm), offset, size);
+ uint64_t raw_offset, raw_run, vdev_id;
+ maptype_t type;
+ if (sm_entry_is_single_word(e)) {
+ type = SM_TYPE_DECODE(e);
+ vdev_id = SM_NO_VDEVID;
+ raw_offset = SM_OFFSET_DECODE(e);
+ raw_run = SM_RUN_DECODE(e);
+ } else {
+ /* it is a two-word entry */
+ ASSERT(sm_entry_is_double_word(e));
+ raw_run = SM2_RUN_DECODE(e);
+ vdev_id = SM2_VDEV_DECODE(e);
+
+ /* move on to the second word */
+ block_cursor++;
+ e = *block_cursor;
+ VERIFY3P(block_cursor, <=, block_end);
+
+ type = SM2_TYPE_DECODE(e);
+ raw_offset = SM2_OFFSET_DECODE(e);
+ }
- error = dmu_read(sm->sm_os, space_map_object(sm), offset, size,
- entry_map, DMU_READ_PREFETCH);
- if (error != 0)
- break;
+ uint64_t entry_offset = (raw_offset << sm->sm_shift) +
+ sm->sm_start;
+ uint64_t entry_run = raw_run << sm->sm_shift;
- entry_map_end = entry_map + (size / sizeof (uint64_t));
- for (entry = entry_map; entry < entry_map_end && error == 0;
- entry++) {
- uint64_t e = *entry;
- uint64_t offset, size;
+ VERIFY0(P2PHASE(entry_offset, 1ULL << sm->sm_shift));
+ VERIFY0(P2PHASE(entry_run, 1ULL << sm->sm_shift));
+ ASSERT3U(entry_offset, >=, sm->sm_start);
+ ASSERT3U(entry_offset, <, sm->sm_start + sm->sm_size);
+ ASSERT3U(entry_run, <=, sm->sm_size);
+ ASSERT3U(entry_offset + entry_run, <=,
+ sm->sm_start + sm->sm_size);
- if (SM_DEBUG_DECODE(e)) /* Skip debug entries */
- continue;
+ space_map_entry_t sme = {
+ .sme_type = type,
+ .sme_vdev = vdev_id,
+ .sme_offset = entry_offset,
+ .sme_run = entry_run
+ };
+ error = callback(&sme, arg);
+ }
+ dmu_buf_rele(db, FTAG);
+ }
+ return (error);
+}
- offset = (SM_OFFSET_DECODE(e) << sm->sm_shift) +
- sm->sm_start;
- size = SM_RUN_DECODE(e) << sm->sm_shift;
+/*
+ * Reads the entries from the last block of the space map into
+ * buf in reverse order. Populates nwords with number of words
+ * in the last block.
+ *
+ * Refer to block comment within space_map_incremental_destroy()
+ * to understand why this function is needed.
+ */
+static int
+space_map_reversed_last_block_entries(space_map_t *sm, uint64_t *buf,
+ uint64_t bufsz, uint64_t *nwords)
+{
+ int error = 0;
+ dmu_buf_t *db;
+
+ /*
+ * Find the offset of the last word in the space map and use
+ * that to read the last block of the space map with
+ * dmu_buf_hold().
+ */
+ uint64_t last_word_offset =
+ sm->sm_phys->smp_objsize - sizeof (uint64_t);
+ error = dmu_buf_hold(sm->sm_os, space_map_object(sm), last_word_offset,
+ FTAG, &db, DMU_READ_NO_PREFETCH);
+ if (error != 0)
+ return (error);
- VERIFY0(P2PHASE(offset, 1ULL << sm->sm_shift));
- VERIFY0(P2PHASE(size, 1ULL << sm->sm_shift));
- VERIFY3U(offset, >=, sm->sm_start);
- VERIFY3U(offset + size, <=, sm->sm_start + sm->sm_size);
- error = callback(SM_TYPE_DECODE(e), offset, size, arg);
+ ASSERT3U(sm->sm_object, ==, db->db_object);
+ ASSERT3U(sm->sm_blksz, ==, db->db_size);
+ ASSERT3U(bufsz, >=, db->db_size);
+ ASSERT(nwords != NULL);
+
+ uint64_t *words = db->db_data;
+ *nwords =
+ (sm->sm_phys->smp_objsize - db->db_offset) / sizeof (uint64_t);
+
+ ASSERT3U(*nwords, <=, bufsz / sizeof (uint64_t));
+
+ uint64_t n = *nwords;
+ uint64_t j = n - 1;
+ for (uint64_t i = 0; i < n; i++) {
+ uint64_t entry = words[i];
+ if (sm_entry_is_double_word(entry)) {
+ /*
+ * Since we are populating the buffer backwards
+ * we have to be extra careful and add the two
+ * words of the double-word entry in the right
+ * order.
+ */
+ ASSERT3U(j, >, 0);
+ buf[j - 1] = entry;
+
+ i++;
+ ASSERT3U(i, <, n);
+ entry = words[i];
+ buf[j] = entry;
+ j -= 2;
+ } else {
+ ASSERT(sm_entry_is_debug(entry) ||
+ sm_entry_is_single_word(entry));
+ buf[j] = entry;
+ j--;
}
}
- vmem_free(entry_map, bufsize);
+ /*
+ * Assert that we wrote backwards all the
+ * way to the beginning of the buffer.
+ */
+ ASSERT3S(j, ==, -1);
+
+ dmu_buf_rele(db, FTAG);
return (error);
}
@@ -116,124 +242,122 @@ int
space_map_incremental_destroy(space_map_t *sm, sm_cb_t callback, void *arg,
dmu_tx_t *tx)
{
- uint64_t bufsize, len;
- uint64_t *entry_map;
- int error = 0;
-
- len = space_map_length(sm);
- bufsize = MAX(sm->sm_blksz, SPA_MINBLOCKSIZE);
- entry_map = zio_buf_alloc(bufsize);
+ uint64_t bufsz = MAX(sm->sm_blksz, SPA_MINBLOCKSIZE);
+ uint64_t *buf = zio_buf_alloc(bufsz);
dmu_buf_will_dirty(sm->sm_dbuf, tx);
/*
- * Since we can't move the starting offset of the space map
- * (e.g there are reference on-disk pointing to it), we destroy
- * its entries incrementally starting from the end.
+ * Ideally we would want to iterate from the beginning of the
+ * space map to the end in incremental steps. The issue with this
+ * approach is that we don't have any field on-disk that points
+ * us where to start between each step. We could try zeroing out
+ * entries that we've destroyed, but this doesn't work either as
+ * an entry that is 0 is a valid one (ALLOC for range [0x0:0x200]).
*
- * The logic that follows is basically the same as the one used
- * in space_map_iterate() but it traverses the space map
- * backwards:
+ * As a result, we destroy its entries incrementally starting from
+ * the end after applying the callback to each of them.
*
- * 1] We figure out the size of the buffer that we want to use
- * to read the on-disk space map entries.
- * 2] We figure out the offset at the end of the space map where
- * we will start reading entries into our buffer.
- * 3] We read the on-disk entries into the buffer.
- * 4] We iterate over the entries from end to beginning calling
- * the callback function on each one. As we move from entry
- * to entry we decrease the size of the space map, deleting
- * effectively each entry.
- * 5] If there are no more entries in the space map or the
- * callback returns a value other than 0, we stop iterating
- * over the space map. If there are entries remaining and
- * the callback returned zero we go back to step [1].
+ * The problem with this approach is that we cannot literally
+ * iterate through the words in the space map backwards as we
+ * can't distinguish two-word space map entries from their second
+ * word. Thus we do the following:
+ *
+ * 1] We get all the entries from the last block of the space map
+ * and put them into a buffer in reverse order. This way the
+ * last entry comes first in the buffer, the second to last is
+ * second, etc.
+ * 2] We iterate through the entries in the buffer and we apply
+ * the callback to each one. As we move from entry to entry we
+ * we decrease the size of the space map, deleting effectively
+ * each entry.
+ * 3] If there are no more entries in the space map or the callback
+ * returns a value other than 0, we stop iterating over the
+ * space map. If there are entries remaining and the callback
+ * returned 0, we go back to step [1].
*/
- uint64_t offset = 0, size = 0;
- while (len > 0 && error == 0) {
- size = MIN(bufsize, len);
-
- VERIFY(P2PHASE(size, sizeof (uint64_t)) == 0);
- VERIFY3U(size, >, 0);
- ASSERT3U(sm->sm_blksz, !=, 0);
-
- offset = len - size;
-
- IMPLY(bufsize > len, offset == 0);
- IMPLY(bufsize == len, offset == 0);
- IMPLY(bufsize < len, offset > 0);
-
-
- EQUIV(size == len, offset == 0);
- IMPLY(size < len, bufsize < len);
-
- dprintf("object=%llu offset=%llx size=%llx\n",
- space_map_object(sm), offset, size);
-
- error = dmu_read(sm->sm_os, space_map_object(sm),
- offset, size, entry_map, DMU_READ_PREFETCH);
+ int error = 0;
+ while (space_map_length(sm) > 0 && error == 0) {
+ uint64_t nwords = 0;
+ error = space_map_reversed_last_block_entries(sm, buf, bufsz,
+ &nwords);
if (error != 0)
break;
- uint64_t num_entries = size / sizeof (uint64_t);
-
- ASSERT3U(num_entries, >, 0);
-
- while (num_entries > 0) {
- uint64_t e, entry_offset, entry_size;
- maptype_t type;
-
- e = entry_map[num_entries - 1];
+ ASSERT3U(nwords, <=, bufsz / sizeof (uint64_t));
- ASSERT3U(num_entries, >, 0);
- ASSERT0(error);
+ for (uint64_t i = 0; i < nwords; i++) {
+ uint64_t e = buf[i];
- if (SM_DEBUG_DECODE(e)) {
+ if (sm_entry_is_debug(e)) {
sm->sm_phys->smp_objsize -= sizeof (uint64_t);
space_map_update(sm);
- len -= sizeof (uint64_t);
- num_entries--;
continue;
}
- type = SM_TYPE_DECODE(e);
- entry_offset = (SM_OFFSET_DECODE(e) << sm->sm_shift) +
- sm->sm_start;
- entry_size = SM_RUN_DECODE(e) << sm->sm_shift;
+ int words = 1;
+ uint64_t raw_offset, raw_run, vdev_id;
+ maptype_t type;
+ if (sm_entry_is_single_word(e)) {
+ type = SM_TYPE_DECODE(e);
+ vdev_id = SM_NO_VDEVID;
+ raw_offset = SM_OFFSET_DECODE(e);
+ raw_run = SM_RUN_DECODE(e);
+ } else {
+ ASSERT(sm_entry_is_double_word(e));
+ words = 2;
+
+ raw_run = SM2_RUN_DECODE(e);
+ vdev_id = SM2_VDEV_DECODE(e);
+
+ /* move to the second word */
+ i++;
+ e = buf[i];
+
+ ASSERT3P(i, <=, nwords);
+
+ type = SM2_TYPE_DECODE(e);
+ raw_offset = SM2_OFFSET_DECODE(e);
+ }
+
+ uint64_t entry_offset =
+ (raw_offset << sm->sm_shift) + sm->sm_start;
+ uint64_t entry_run = raw_run << sm->sm_shift;
VERIFY0(P2PHASE(entry_offset, 1ULL << sm->sm_shift));
- VERIFY0(P2PHASE(entry_size, 1ULL << sm->sm_shift));
+ VERIFY0(P2PHASE(entry_run, 1ULL << sm->sm_shift));
VERIFY3U(entry_offset, >=, sm->sm_start);
- VERIFY3U(entry_offset + entry_size, <=,
+ VERIFY3U(entry_offset, <, sm->sm_start + sm->sm_size);
+ VERIFY3U(entry_run, <=, sm->sm_size);
+ VERIFY3U(entry_offset + entry_run, <=,
sm->sm_start + sm->sm_size);
- error = callback(type, entry_offset, entry_size, arg);
+ space_map_entry_t sme = {
+ .sme_type = type,
+ .sme_vdev = vdev_id,
+ .sme_offset = entry_offset,
+ .sme_run = entry_run
+ };
+ error = callback(&sme, arg);
if (error != 0)
break;
if (type == SM_ALLOC)
- sm->sm_phys->smp_alloc -= entry_size;
+ sm->sm_phys->smp_alloc -= entry_run;
else
- sm->sm_phys->smp_alloc += entry_size;
-
- sm->sm_phys->smp_objsize -= sizeof (uint64_t);
+ sm->sm_phys->smp_alloc += entry_run;
+ sm->sm_phys->smp_objsize -= words * sizeof (uint64_t);
space_map_update(sm);
- len -= sizeof (uint64_t);
- num_entries--;
}
- IMPLY(error == 0, num_entries == 0);
- EQUIV(offset == 0 && error == 0, len == 0 && num_entries == 0);
}
- if (len == 0) {
+ if (space_map_length(sm) == 0) {
ASSERT0(error);
- ASSERT0(offset);
- ASSERT0(sm->sm_length);
ASSERT0(sm->sm_phys->smp_objsize);
ASSERT0(sm->sm_alloc);
}
- zio_buf_free(entry_map, bufsize);
+ zio_buf_free(buf, bufsz);
return (error);
}
@@ -244,16 +368,15 @@ typedef struct space_map_load_arg {
} space_map_load_arg_t;
static int
-space_map_load_callback(maptype_t type, uint64_t offset, uint64_t size,
- void *arg)
+space_map_load_callback(space_map_entry_t *sme, void *arg)
{
space_map_load_arg_t *smla = arg;
- if (type == smla->smla_type) {
- VERIFY3U(range_tree_space(smla->smla_rt) + size, <=,
+ if (sme->sme_type == smla->smla_type) {
+ VERIFY3U(range_tree_space(smla->smla_rt) + sme->sme_run, <=,
smla->smla_sm->sm_size);
- range_tree_add(smla->smla_rt, offset, size);
+ range_tree_add(smla->smla_rt, sme->sme_offset, sme->sme_run);
} else {
- range_tree_remove(smla->smla_rt, offset, size);
+ range_tree_remove(smla->smla_rt, sme->sme_offset, sme->sme_run);
}
return (0);
@@ -365,43 +488,237 @@ space_map_histogram_add(space_map_t *sm, range_tree_t *rt, dmu_tx_t *tx)
}
}
-uint64_t
-space_map_entries(space_map_t *sm, range_tree_t *rt)
+static void
+space_map_write_intro_debug(space_map_t *sm, maptype_t maptype, dmu_tx_t *tx)
{
- avl_tree_t *t = &rt->rt_root;
- range_seg_t *rs;
- uint64_t size, entries;
+ dmu_buf_will_dirty(sm->sm_dbuf, tx);
+
+ uint64_t dentry = SM_PREFIX_ENCODE(SM_DEBUG_PREFIX) |
+ SM_DEBUG_ACTION_ENCODE(maptype) |
+ SM_DEBUG_SYNCPASS_ENCODE(spa_sync_pass(tx->tx_pool->dp_spa)) |
+ SM_DEBUG_TXG_ENCODE(dmu_tx_get_txg(tx));
+
+ dmu_write(sm->sm_os, space_map_object(sm), sm->sm_phys->smp_objsize,
+ sizeof (dentry), &dentry, tx);
+
+ sm->sm_phys->smp_objsize += sizeof (dentry);
+}
+
+/*
+ * Writes one or more entries given a segment.
+ *
+ * Note: The function may release the dbuf from the pointer initially
+ * passed to it, and return a different dbuf. Also, the space map's
+ * dbuf must be dirty for the changes in sm_phys to take effect.
+ */
+static void
+space_map_write_seg(space_map_t *sm, range_seg_t *rs, maptype_t maptype,
+ uint64_t vdev_id, uint8_t words, dmu_buf_t **dbp, void *tag, dmu_tx_t *tx)
+{
+ ASSERT3U(words, !=, 0);
+ ASSERT3U(words, <=, 2);
+
+ /* ensure the vdev_id can be represented by the space map */
+ ASSERT3U(vdev_id, <=, SM_NO_VDEVID);
/*
- * All space_maps always have a debug entry so account for it here.
+ * if this is a single word entry, ensure that no vdev was
+ * specified.
*/
- entries = 1;
+ IMPLY(words == 1, vdev_id == SM_NO_VDEVID);
+
+ dmu_buf_t *db = *dbp;
+ ASSERT3U(db->db_size, ==, sm->sm_blksz);
+
+ uint64_t *block_base = db->db_data;
+ uint64_t *block_end = block_base + (sm->sm_blksz / sizeof (uint64_t));
+ uint64_t *block_cursor = block_base +
+ (sm->sm_phys->smp_objsize - db->db_offset) / sizeof (uint64_t);
+
+ ASSERT3P(block_cursor, <=, block_end);
+
+ uint64_t size = (rs->rs_end - rs->rs_start) >> sm->sm_shift;
+ uint64_t start = (rs->rs_start - sm->sm_start) >> sm->sm_shift;
+ uint64_t run_max = (words == 2) ? SM2_RUN_MAX : SM_RUN_MAX;
+
+ ASSERT3U(rs->rs_start, >=, sm->sm_start);
+ ASSERT3U(rs->rs_start, <, sm->sm_start + sm->sm_size);
+ ASSERT3U(rs->rs_end - rs->rs_start, <=, sm->sm_size);
+ ASSERT3U(rs->rs_end, <=, sm->sm_start + sm->sm_size);
+
+ while (size != 0) {
+ ASSERT3P(block_cursor, <=, block_end);
+
+ /*
+ * If we are at the end of this block, flush it and start
+ * writing again from the beginning.
+ */
+ if (block_cursor == block_end) {
+ dmu_buf_rele(db, tag);
+
+ uint64_t next_word_offset = sm->sm_phys->smp_objsize;
+ VERIFY0(dmu_buf_hold(sm->sm_os,
+ space_map_object(sm), next_word_offset,
+ tag, &db, DMU_READ_PREFETCH));
+ dmu_buf_will_dirty(db, tx);
+
+ /* update caller's dbuf */
+ *dbp = db;
+
+ ASSERT3U(db->db_size, ==, sm->sm_blksz);
+
+ block_base = db->db_data;
+ block_cursor = block_base;
+ block_end = block_base +
+ (db->db_size / sizeof (uint64_t));
+ }
+
+ /*
+ * If we are writing a two-word entry and we only have one
+ * word left on this block, just pad it with an empty debug
+ * entry and write the two-word entry in the next block.
+ */
+ uint64_t *next_entry = block_cursor + 1;
+ if (next_entry == block_end && words > 1) {
+ ASSERT3U(words, ==, 2);
+ *block_cursor = SM_PREFIX_ENCODE(SM_DEBUG_PREFIX) |
+ SM_DEBUG_ACTION_ENCODE(0) |
+ SM_DEBUG_SYNCPASS_ENCODE(0) |
+ SM_DEBUG_TXG_ENCODE(0);
+ block_cursor++;
+ sm->sm_phys->smp_objsize += sizeof (uint64_t);
+ ASSERT3P(block_cursor, ==, block_end);
+ continue;
+ }
+
+ uint64_t run_len = MIN(size, run_max);
+ switch (words) {
+ case 1:
+ *block_cursor = SM_OFFSET_ENCODE(start) |
+ SM_TYPE_ENCODE(maptype) |
+ SM_RUN_ENCODE(run_len);
+ block_cursor++;
+ break;
+ case 2:
+ /* write the first word of the entry */
+ *block_cursor = SM_PREFIX_ENCODE(SM2_PREFIX) |
+ SM2_RUN_ENCODE(run_len) |
+ SM2_VDEV_ENCODE(vdev_id);
+ block_cursor++;
+
+ /* move on to the second word of the entry */
+ ASSERT3P(block_cursor, <, block_end);
+ *block_cursor = SM2_TYPE_ENCODE(maptype) |
+ SM2_OFFSET_ENCODE(start);
+ block_cursor++;
+ break;
+ default:
+ panic("%d-word space map entries are not supported",
+ words);
+ break;
+ }
+ sm->sm_phys->smp_objsize += words * sizeof (uint64_t);
+
+ start += run_len;
+ size -= run_len;
+ }
+ ASSERT0(size);
+
+}
+
+/*
+ * Note: The space map's dbuf must be dirty for the changes in sm_phys to
+ * take effect.
+ */
+static void
+space_map_write_impl(space_map_t *sm, range_tree_t *rt, maptype_t maptype,
+ uint64_t vdev_id, dmu_tx_t *tx)
+{
+ spa_t *spa = tx->tx_pool->dp_spa;
+ dmu_buf_t *db;
+
+ space_map_write_intro_debug(sm, maptype, tx);
+
+#ifdef DEBUG
+ /*
+ * We do this right after we write the intro debug entry
+ * because the estimate does not take it into account.
+ */
+ uint64_t initial_objsize = sm->sm_phys->smp_objsize;
+ uint64_t estimated_growth =
+ space_map_estimate_optimal_size(sm, rt, SM_NO_VDEVID);
+ uint64_t estimated_final_objsize = initial_objsize + estimated_growth;
+#endif
/*
- * Traverse the range tree and calculate the number of space map
- * entries that would be required to write out the range tree.
+ * Find the offset right after the last word in the space map
+ * and use that to get a hold of the last block, so we can
+ * start appending to it.
*/
- for (rs = avl_first(t); rs != NULL; rs = AVL_NEXT(t, rs)) {
- size = (rs->rs_end - rs->rs_start) >> sm->sm_shift;
- entries += howmany(size, SM_RUN_MAX);
+ uint64_t next_word_offset = sm->sm_phys->smp_objsize;
+ VERIFY0(dmu_buf_hold(sm->sm_os, space_map_object(sm),
+ next_word_offset, FTAG, &db, DMU_READ_PREFETCH));
+ ASSERT3U(db->db_size, ==, sm->sm_blksz);
+
+ dmu_buf_will_dirty(db, tx);
+
+ avl_tree_t *t = &rt->rt_root;
+ for (range_seg_t *rs = avl_first(t); rs != NULL; rs = AVL_NEXT(t, rs)) {
+ uint64_t offset = (rs->rs_start - sm->sm_start) >> sm->sm_shift;
+ uint64_t length = (rs->rs_end - rs->rs_start) >> sm->sm_shift;
+ uint8_t words = 1;
+
+ /*
+ * We only write two-word entries when both of the following
+ * are true:
+ *
+ * [1] The feature is enabled.
+ * [2] The offset or run is too big for a single-word entry,
+ * or the vdev_id is set (meaning not equal to
+ * SM_NO_VDEVID).
+ *
+ * Note that for purposes of testing we've added the case that
+ * we write two-word entries occasionally when the feature is
+ * enabled and zfs_force_some_double_word_sm_entries has been
+ * set.
+ */
+ if (spa_feature_is_active(spa, SPA_FEATURE_SPACEMAP_V2) &&
+ (offset >= (1ULL << SM_OFFSET_BITS) ||
+ length > SM_RUN_MAX ||
+ vdev_id != SM_NO_VDEVID ||
+ (zfs_force_some_double_word_sm_entries &&
+ spa_get_random(100) == 0)))
+ words = 2;
+
+ space_map_write_seg(sm, rs, maptype, vdev_id, words,
+ &db, FTAG, tx);
}
- return (entries);
+
+ dmu_buf_rele(db, FTAG);
+
+#ifdef DEBUG
+ /*
+ * We expect our estimation to be based on the worst case
+ * scenario [see comment in space_map_estimate_optimal_size()].
+ * Therefore we expect the actual objsize to be equal or less
+ * than whatever we estimated it to be.
+ */
+ ASSERT3U(estimated_final_objsize, >=, sm->sm_phys->smp_objsize);
+#endif
}
+/*
+ * Note: This function manipulates the state of the given space map but
+ * does not hold any locks implicitly. Thus the caller is responsible
+ * for synchronizing writes to the space map.
+ */
void
space_map_write(space_map_t *sm, range_tree_t *rt, maptype_t maptype,
- dmu_tx_t *tx)
+ uint64_t vdev_id, dmu_tx_t *tx)
{
- objset_t *os = sm->sm_os;
- spa_t *spa = dmu_objset_spa(os);
- avl_tree_t *t = &rt->rt_root;
- range_seg_t *rs;
- uint64_t size, total, rt_space, nodes;
- uint64_t *entry, *entry_map, *entry_map_end;
- uint64_t expected_entries, actual_entries = 1;
-
- ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
+ ASSERT(dsl_pool_sync_context(dmu_objset_pool(sm->sm_os)));
VERIFY3U(space_map_object(sm), !=, 0);
+
dmu_buf_will_dirty(sm->sm_dbuf, tx);
/*
@@ -421,58 +738,10 @@ space_map_write(space_map_t *sm, range_tree_t *rt, maptype_t maptype,
else
sm->sm_phys->smp_alloc -= range_tree_space(rt);
- expected_entries = space_map_entries(sm, rt);
-
- entry_map = vmem_alloc(sm->sm_blksz, KM_SLEEP);
- entry_map_end = entry_map + (sm->sm_blksz / sizeof (uint64_t));
- entry = entry_map;
-
- *entry++ = SM_DEBUG_ENCODE(1) |
- SM_DEBUG_ACTION_ENCODE(maptype) |
- SM_DEBUG_SYNCPASS_ENCODE(spa_sync_pass(spa)) |
- SM_DEBUG_TXG_ENCODE(dmu_tx_get_txg(tx));
-
- total = 0;
- nodes = avl_numnodes(&rt->rt_root);
- rt_space = range_tree_space(rt);
- for (rs = avl_first(t); rs != NULL; rs = AVL_NEXT(t, rs)) {
- uint64_t start;
+ uint64_t nodes = avl_numnodes(&rt->rt_root);
+ uint64_t rt_space = range_tree_space(rt);
- size = (rs->rs_end - rs->rs_start) >> sm->sm_shift;
- start = (rs->rs_start - sm->sm_start) >> sm->sm_shift;
-
- total += size << sm->sm_shift;
-
- while (size != 0) {
- uint64_t run_len;
-
- run_len = MIN(size, SM_RUN_MAX);
-
- if (entry == entry_map_end) {
- dmu_write(os, space_map_object(sm),
- sm->sm_phys->smp_objsize, sm->sm_blksz,
- entry_map, tx);
- sm->sm_phys->smp_objsize += sm->sm_blksz;
- entry = entry_map;
- }
-
- *entry++ = SM_OFFSET_ENCODE(start) |
- SM_TYPE_ENCODE(maptype) |
- SM_RUN_ENCODE(run_len);
-
- start += run_len;
- size -= run_len;
- actual_entries++;
- }
- }
-
- if (entry != entry_map) {
- size = (entry - entry_map) * sizeof (uint64_t);
- dmu_write(os, space_map_object(sm), sm->sm_phys->smp_objsize,
- size, entry_map, tx);
- sm->sm_phys->smp_objsize += size;
- }
- ASSERT3U(expected_entries, ==, actual_entries);
+ space_map_write_impl(sm, rt, maptype, vdev_id, tx);
/*
* Ensure that the space_map's accounting wasn't changed
@@ -480,9 +749,6 @@ space_map_write(space_map_t *sm, range_tree_t *rt, maptype_t maptype,
*/
VERIFY3U(nodes, ==, avl_numnodes(&rt->rt_root));
VERIFY3U(range_tree_space(rt), ==, rt_space);
- VERIFY3U(range_tree_space(rt), ==, total);
-
- vmem_free(entry_map, sm->sm_blksz);
}
static int
@@ -529,7 +795,6 @@ space_map_open(space_map_t **smp, objset_t *os, uint64_t object,
space_map_close(sm);
return (error);
}
-
*smp = sm;
return (0);
@@ -661,6 +926,133 @@ space_map_free(space_map_t *sm, dmu_tx_t *tx)
sm->sm_object = 0;
}
+/*
+ * Given a range tree, it makes a worst-case estimate of how much
+ * space would the tree's segments take if they were written to
+ * the given space map.
+ */
+uint64_t
+space_map_estimate_optimal_size(space_map_t *sm, range_tree_t *rt,
+ uint64_t vdev_id)
+{
+ spa_t *spa = dmu_objset_spa(sm->sm_os);
+ uint64_t shift = sm->sm_shift;
+ uint64_t *histogram = rt->rt_histogram;
+ uint64_t entries_for_seg = 0;
+
+ /*
+ * In order to get a quick estimate of the optimal size that this
+ * range tree would have on-disk as a space map, we iterate through
+ * its histogram buckets instead of iterating through its nodes.
+ *
+ * Note that this is a highest-bound/worst-case estimate for the
+ * following reasons:
+ *
+ * 1] We assume that we always add a debug padding for each block
+ * we write and we also assume that we start at the last word
+ * of a block attempting to write a two-word entry.
+ * 2] Rounding up errors due to the way segments are distributed
+ * in the buckets of the range tree's histogram.
+ * 3] The activation of zfs_force_some_double_word_sm_entries
+ * (tunable) when testing.
+ *
+ * = Math and Rounding Errors =
+ *
+ * rt_histogram[i] bucket of a range tree represents the number
+ * of entries in [2^i, (2^(i+1))-1] of that range_tree. Given
+ * that, we want to divide the buckets into groups: Buckets that
+ * can be represented using a single-word entry, ones that can
+ * be represented with a double-word entry, and ones that can
+ * only be represented with multiple two-word entries.
+ *
+ * [Note that if the new encoding feature is not enabled there
+ * are only two groups: single-word entry buckets and multiple
+ * single-word entry buckets. The information below assumes
+ * two-word entries enabled, but it can easily applied when
+ * the feature is not enabled]
+ *
+ * To find the highest bucket that can be represented with a
+ * single-word entry we look at the maximum run that such entry
+ * can have, which is 2^(SM_RUN_BITS + sm_shift) [remember that
+ * the run of a space map entry is shifted by sm_shift, thus we
+ * add it to the exponent]. This way, excluding the value of the
+ * maximum run that can be represented by a single-word entry,
+ * all runs that are smaller exist in buckets 0 to
+ * SM_RUN_BITS + shift - 1.
+ *
+ * To find the highest bucket that can be represented with a
+ * double-word entry, we follow the same approach. Finally, any
+ * bucket higher than that are represented with multiple two-word
+ * entries. To be more specific, if the highest bucket whose
+ * segments can be represented with a single two-word entry is X,
+ * then bucket X+1 will need 2 two-word entries for each of its
+ * segments, X+2 will need 4, X+3 will need 8, ...etc.
+ *
+ * With all of the above we make our estimation based on bucket
+ * groups. There is a rounding error though. As we mentioned in
+ * the example with the one-word entry, the maximum run that can
+ * be represented in a one-word entry 2^(SM_RUN_BITS + shift) is
+ * not part of bucket SM_RUN_BITS + shift - 1. Thus, segments of
+ * that length fall into the next bucket (and bucket group) where
+ * we start counting two-word entries and this is one more reason
+ * why the estimated size may end up being bigger than the actual
+ * size written.
+ */
+ uint64_t size = 0;
+ uint64_t idx = 0;
+
+ if (!spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_V2) ||
+ (vdev_id == SM_NO_VDEVID && sm->sm_size < SM_OFFSET_MAX)) {
+
+ /*
+ * If we are trying to force some double word entries just
+ * assume the worst-case of every single word entry being
+ * written as a double word entry.
+ */
+ uint64_t entry_size =
+ (spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_V2) &&
+ zfs_force_some_double_word_sm_entries) ?
+ (2 * sizeof (uint64_t)) : sizeof (uint64_t);
+
+ uint64_t single_entry_max_bucket = SM_RUN_BITS + shift - 1;
+ for (; idx <= single_entry_max_bucket; idx++)
+ size += histogram[idx] * entry_size;
+
+ if (!spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_V2)) {
+ for (; idx < RANGE_TREE_HISTOGRAM_SIZE; idx++) {
+ ASSERT3U(idx, >=, single_entry_max_bucket);
+ entries_for_seg =
+ 1ULL << (idx - single_entry_max_bucket);
+ size += histogram[idx] *
+ entries_for_seg * entry_size;
+ }
+ return (size);
+ }
+ }
+
+ ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_V2));
+
+ uint64_t double_entry_max_bucket = SM2_RUN_BITS + shift - 1;
+ for (; idx <= double_entry_max_bucket; idx++)
+ size += histogram[idx] * 2 * sizeof (uint64_t);
+
+ for (; idx < RANGE_TREE_HISTOGRAM_SIZE; idx++) {
+ ASSERT3U(idx, >=, double_entry_max_bucket);
+ entries_for_seg = 1ULL << (idx - double_entry_max_bucket);
+ size += histogram[idx] *
+ entries_for_seg * 2 * sizeof (uint64_t);
+ }
+
+ /*
+ * Assume the worst case where we start with the padding at the end
+ * of the current block and we add an extra padding entry at the end
+ * of all subsequent blocks.
+ */
+ size += ((size / sm->sm_blksz) + 1) * sizeof (uint64_t);
+
+ return (size);
+}
+
uint64_t
space_map_object(space_map_t *sm)
{