diff options
author | George Wilson <[email protected]> | 2013-10-01 13:25:53 -0800 |
---|---|---|
committer | Brian Behlendorf <[email protected]> | 2014-07-22 09:39:16 -0700 |
commit | 93cf20764a1be64a603020f54b45200e37b3877e (patch) | |
tree | b0db8d60368de34cdbd4eccc9ee98d1110beb15e /module/zfs/metaslab.c | |
parent | 1be627f5c28a355bcd49e4e097114c13fae7731b (diff) |
Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <[email protected]>
Reviewed by: Adam Leventhal <[email protected]>
Reviewed by: Sebastien Roy <[email protected]>
Approved by: Garrett D'Amore <[email protected]>
Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.
This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.
The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram
In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:
* 4K sector devices will not see any compression benefit
* large space_maps require more metadata on-disk
* large space_maps require more time to load (typically random reads)
Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.
A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.
References:
https://www.illumos.org/issues/4101
https://www.illumos.org/issues/4102
https://www.illumos.org/issues/4103
https://www.illumos.org/issues/4105
https://www.illumos.org/issues/4106
https://github.com/illumos/illumos-gate/commit/0713e23
Porting notes:
A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.
Ported-by: Tim Chase <[email protected]>
Signed-off-by: Prakash Surya <[email protected]>
Signed-off-by: Brian Behlendorf <[email protected]>
Closes #2488
Diffstat (limited to 'module/zfs/metaslab.c')
-rw-r--r-- | module/zfs/metaslab.c | 1264 |
1 files changed, 733 insertions, 531 deletions
diff --git a/module/zfs/metaslab.c b/module/zfs/metaslab.c index fe2428ac0..b4e390c98 100644 --- a/module/zfs/metaslab.c +++ b/module/zfs/metaslab.c @@ -31,6 +31,7 @@ #include <sys/metaslab_impl.h> #include <sys/vdev_impl.h> #include <sys/zio.h> +#include <sys/spa_impl.h> #define WITH_DF_BLOCK_ALLOCATOR @@ -46,6 +47,11 @@ (!((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER | \ METASLAB_GANG_AVOID))) +#define METASLAB_WEIGHT_PRIMARY (1ULL << 63) +#define METASLAB_WEIGHT_SECONDARY (1ULL << 62) +#define METASLAB_ACTIVE_MASK \ + (METASLAB_WEIGHT_PRIMARY | METASLAB_WEIGHT_SECONDARY) + uint64_t metaslab_aliquot = 512ULL << 10; uint64_t metaslab_gang_bang = SPA_MAXBLOCKSIZE + 1; /* force gang blocks */ @@ -113,14 +119,16 @@ int metaslab_df_free_pct = 4; uint64_t metaslab_min_alloc_size = DMU_MAX_ACCESS; /* - * Max number of space_maps to prefetch. + * Percentage of all cpus that can be used by the metaslab taskq. */ -int metaslab_prefetch_limit = SPA_DVAS_PER_BP; +int metaslab_load_pct = 50; /* - * Percentage bonus multiplier for metaslabs that are in the bonus area. + * Determines how many txgs a metaslab may remain loaded without having any + * allocations from it. As long as a metaslab continues to be used we will + * keep it loaded. */ -int metaslab_smo_bonus_pct = 150; +int metaslab_unload_delay = TXG_SIZE * 2; /* * Should we be willing to write data to degraded vdevs? @@ -128,12 +136,28 @@ int metaslab_smo_bonus_pct = 150; boolean_t zfs_write_to_degraded = B_FALSE; /* + * Max number of metaslabs per group to preload. + */ +int metaslab_preload_limit = SPA_DVAS_PER_BP; + +/* + * Enable/disable preloading of metaslab. + */ +boolean_t metaslab_preload_enabled = B_TRUE; + +/* + * Enable/disable additional weight factor for each metaslab. + */ +boolean_t metaslab_weight_factor_enable = B_FALSE; + + +/* * ========================================================================== * Metaslab classes * ========================================================================== */ metaslab_class_t * -metaslab_class_create(spa_t *spa, space_map_ops_t *ops) +metaslab_class_create(spa_t *spa, metaslab_ops_t *ops) { metaslab_class_t *mc; @@ -239,9 +263,9 @@ metaslab_compare(const void *x1, const void *x2) /* * If the weights are identical, use the offset to force uniqueness. */ - if (m1->ms_map->sm_start < m2->ms_map->sm_start) + if (m1->ms_start < m2->ms_start) return (-1); - if (m1->ms_map->sm_start > m2->ms_map->sm_start) + if (m1->ms_start > m2->ms_start) return (1); ASSERT3P(m1, ==, m2); @@ -309,6 +333,9 @@ metaslab_group_create(metaslab_class_t *mc, vdev_t *vd) mg->mg_class = mc; mg->mg_activation_count = 0; + mg->mg_taskq = taskq_create("metaslab_group_tasksq", metaslab_load_pct, + minclsyspri, 10, INT_MAX, TASKQ_THREADS_CPU_PCT); + return (mg); } @@ -377,6 +404,8 @@ metaslab_group_passivate(metaslab_group_t *mg) return; } + taskq_wait(mg->mg_taskq); + mgprev = mg->mg_prev; mgnext = mg->mg_next; @@ -456,135 +485,205 @@ metaslab_group_allocatable(metaslab_group_t *mg) /* * ========================================================================== - * Common allocator routines + * Range tree callbacks * ========================================================================== */ + +/* + * Comparison function for the private size-ordered tree. Tree is sorted + * by size, larger sizes at the end of the tree. + */ static int -metaslab_segsize_compare(const void *x1, const void *x2) +metaslab_rangesize_compare(const void *x1, const void *x2) { - const space_seg_t *s1 = x1; - const space_seg_t *s2 = x2; - uint64_t ss_size1 = s1->ss_end - s1->ss_start; - uint64_t ss_size2 = s2->ss_end - s2->ss_start; + const range_seg_t *r1 = x1; + const range_seg_t *r2 = x2; + uint64_t rs_size1 = r1->rs_end - r1->rs_start; + uint64_t rs_size2 = r2->rs_end - r2->rs_start; - if (ss_size1 < ss_size2) + if (rs_size1 < rs_size2) return (-1); - if (ss_size1 > ss_size2) + if (rs_size1 > rs_size2) return (1); - if (s1->ss_start < s2->ss_start) + if (r1->rs_start < r2->rs_start) return (-1); - if (s1->ss_start > s2->ss_start) + + if (r1->rs_start > r2->rs_start) return (1); return (0); } -#if defined(WITH_FF_BLOCK_ALLOCATOR) || \ - defined(WITH_DF_BLOCK_ALLOCATOR) || \ - defined(WITH_CDF_BLOCK_ALLOCATOR) /* - * This is a helper function that can be used by the allocator to find - * a suitable block to allocate. This will search the specified AVL - * tree looking for a block that matches the specified criteria. + * Create any block allocator specific components. The current allocators + * rely on using both a size-ordered range_tree_t and an array of uint64_t's. */ -static uint64_t -metaslab_block_picker(avl_tree_t *t, uint64_t *cursor, uint64_t size, - uint64_t align) +static void +metaslab_rt_create(range_tree_t *rt, void *arg) { - space_seg_t *ss, ssearch; - avl_index_t where; - - ssearch.ss_start = *cursor; - ssearch.ss_end = *cursor + size; + metaslab_t *msp = arg; - ss = avl_find(t, &ssearch, &where); - if (ss == NULL) - ss = avl_nearest(t, where, AVL_AFTER); + ASSERT3P(rt->rt_arg, ==, msp); + ASSERT(msp->ms_tree == NULL); - while (ss != NULL) { - uint64_t offset = P2ROUNDUP(ss->ss_start, align); - - if (offset + size <= ss->ss_end) { - *cursor = offset + size; - return (offset); - } - ss = AVL_NEXT(t, ss); - } - - /* - * If we know we've searched the whole map (*cursor == 0), give up. - * Otherwise, reset the cursor to the beginning and try again. - */ - if (*cursor == 0) - return (-1ULL); - - *cursor = 0; - return (metaslab_block_picker(t, cursor, size, align)); + avl_create(&msp->ms_size_tree, metaslab_rangesize_compare, + sizeof (range_seg_t), offsetof(range_seg_t, rs_pp_node)); } -#endif /* WITH_FF/DF/CDF_BLOCK_ALLOCATOR */ +/* + * Destroy the block allocator specific components. + */ static void -metaslab_pp_load(space_map_t *sm) +metaslab_rt_destroy(range_tree_t *rt, void *arg) { - space_seg_t *ss; - - ASSERT(sm->sm_ppd == NULL); - sm->sm_ppd = kmem_zalloc(64 * sizeof (uint64_t), KM_PUSHPAGE); + metaslab_t *msp = arg; - sm->sm_pp_root = kmem_alloc(sizeof (avl_tree_t), KM_PUSHPAGE); - avl_create(sm->sm_pp_root, metaslab_segsize_compare, - sizeof (space_seg_t), offsetof(struct space_seg, ss_pp_node)); + ASSERT3P(rt->rt_arg, ==, msp); + ASSERT3P(msp->ms_tree, ==, rt); + ASSERT0(avl_numnodes(&msp->ms_size_tree)); - for (ss = avl_first(&sm->sm_root); ss; ss = AVL_NEXT(&sm->sm_root, ss)) - avl_add(sm->sm_pp_root, ss); + avl_destroy(&msp->ms_size_tree); } static void -metaslab_pp_unload(space_map_t *sm) +metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg) { - void *cookie = NULL; - - kmem_free(sm->sm_ppd, 64 * sizeof (uint64_t)); - sm->sm_ppd = NULL; - - while (avl_destroy_nodes(sm->sm_pp_root, &cookie) != NULL) { - /* tear down the tree */ - } + metaslab_t *msp = arg; - avl_destroy(sm->sm_pp_root); - kmem_free(sm->sm_pp_root, sizeof (avl_tree_t)); - sm->sm_pp_root = NULL; + ASSERT3P(rt->rt_arg, ==, msp); + ASSERT3P(msp->ms_tree, ==, rt); + VERIFY(!msp->ms_condensing); + avl_add(&msp->ms_size_tree, rs); } -/* ARGSUSED */ static void -metaslab_pp_claim(space_map_t *sm, uint64_t start, uint64_t size) +metaslab_rt_remove(range_tree_t *rt, range_seg_t *rs, void *arg) { - /* No need to update cursor */ + metaslab_t *msp = arg; + + ASSERT3P(rt->rt_arg, ==, msp); + ASSERT3P(msp->ms_tree, ==, rt); + VERIFY(!msp->ms_condensing); + avl_remove(&msp->ms_size_tree, rs); } -/* ARGSUSED */ static void -metaslab_pp_free(space_map_t *sm, uint64_t start, uint64_t size) +metaslab_rt_vacate(range_tree_t *rt, void *arg) { - /* No need to update cursor */ + metaslab_t *msp = arg; + + ASSERT3P(rt->rt_arg, ==, msp); + ASSERT3P(msp->ms_tree, ==, rt); + + /* + * Normally one would walk the tree freeing nodes along the way. + * Since the nodes are shared with the range trees we can avoid + * walking all nodes and just reinitialize the avl tree. The nodes + * will be freed by the range tree, so we don't want to free them here. + */ + avl_create(&msp->ms_size_tree, metaslab_rangesize_compare, + sizeof (range_seg_t), offsetof(range_seg_t, rs_pp_node)); } +static range_tree_ops_t metaslab_rt_ops = { + metaslab_rt_create, + metaslab_rt_destroy, + metaslab_rt_add, + metaslab_rt_remove, + metaslab_rt_vacate +}; + +/* + * ========================================================================== + * Metaslab block operations + * ========================================================================== + */ + /* * Return the maximum contiguous segment within the metaslab. */ uint64_t -metaslab_pp_maxsize(space_map_t *sm) +metaslab_block_maxsize(metaslab_t *msp) { - avl_tree_t *t = sm->sm_pp_root; - space_seg_t *ss; + avl_tree_t *t = &msp->ms_size_tree; + range_seg_t *rs; - if (t == NULL || (ss = avl_last(t)) == NULL) + if (t == NULL || (rs = avl_last(t)) == NULL) return (0ULL); - return (ss->ss_end - ss->ss_start); + return (rs->rs_end - rs->rs_start); +} + +uint64_t +metaslab_block_alloc(metaslab_t *msp, uint64_t size) +{ + uint64_t start; + range_tree_t *rt = msp->ms_tree; + + VERIFY(!msp->ms_condensing); + + start = msp->ms_ops->msop_alloc(msp, size); + if (start != -1ULL) { + vdev_t *vd = msp->ms_group->mg_vd; + + VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift)); + VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift)); + VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size); + range_tree_remove(rt, start, size); + } + return (start); +} + +/* + * ========================================================================== + * Common allocator routines + * ========================================================================== + */ + +#if defined(WITH_FF_BLOCK_ALLOCATOR) || \ + defined(WITH_DF_BLOCK_ALLOCATOR) || \ + defined(WITH_CF_BLOCK_ALLOCATOR) +/* + * This is a helper function that can be used by the allocator to find + * a suitable block to allocate. This will search the specified AVL + * tree looking for a block that matches the specified criteria. + */ +static uint64_t +metaslab_block_picker(avl_tree_t *t, uint64_t *cursor, uint64_t size, + uint64_t align) +{ + range_seg_t *rs, rsearch; + avl_index_t where; + + rsearch.rs_start = *cursor; + rsearch.rs_end = *cursor + size; + + rs = avl_find(t, &rsearch, &where); + if (rs == NULL) + rs = avl_nearest(t, where, AVL_AFTER); + + while (rs != NULL) { + uint64_t offset = P2ROUNDUP(rs->rs_start, align); + + if (offset + size <= rs->rs_end) { + *cursor = offset + size; + return (offset); + } + rs = AVL_NEXT(t, rs); + } + + /* + * If we know we've searched the whole map (*cursor == 0), give up. + * Otherwise, reset the cursor to the beginning and try again. + */ + if (*cursor == 0) + return (-1ULL); + + *cursor = 0; + return (metaslab_block_picker(t, cursor, size, align)); } +#endif /* WITH_FF/DF/CF_BLOCK_ALLOCATOR */ #if defined(WITH_FF_BLOCK_ALLOCATOR) /* @@ -593,33 +692,35 @@ metaslab_pp_maxsize(space_map_t *sm) * ========================================================================== */ static uint64_t -metaslab_ff_alloc(space_map_t *sm, uint64_t size) +metaslab_ff_alloc(metaslab_t *msp, uint64_t size) { - avl_tree_t *t = &sm->sm_root; + /* + * Find the largest power of 2 block size that evenly divides the + * requested size. This is used to try to allocate blocks with similar + * alignment from the same area of the metaslab (i.e. same cursor + * bucket) but it does not guarantee that other allocations sizes + * may exist in the same region. + */ uint64_t align = size & -size; - uint64_t *cursor = (uint64_t *)sm->sm_ppd + highbit(align) - 1; + uint64_t *cursor = &msp->ms_lbas[highbit(align) - 1]; + avl_tree_t *t = &msp->ms_tree->rt_root; return (metaslab_block_picker(t, cursor, size, align)); } /* ARGSUSED */ -boolean_t -metaslab_ff_fragmented(space_map_t *sm) +static boolean_t +metaslab_ff_fragmented(metaslab_t *msp) { return (B_TRUE); } -static space_map_ops_t metaslab_ff_ops = { - metaslab_pp_load, - metaslab_pp_unload, +static metaslab_ops_t metaslab_ff_ops = { metaslab_ff_alloc, - metaslab_pp_claim, - metaslab_pp_free, - metaslab_pp_maxsize, metaslab_ff_fragmented }; -space_map_ops_t *zfs_metaslab_ops = &metaslab_ff_ops; +metaslab_ops_t *zfs_metaslab_ops = &metaslab_ff_ops; #endif /* WITH_FF_BLOCK_ALLOCATOR */ #if defined(WITH_DF_BLOCK_ALLOCATOR) @@ -632,16 +733,24 @@ space_map_ops_t *zfs_metaslab_ops = &metaslab_ff_ops; * ========================================================================== */ static uint64_t -metaslab_df_alloc(space_map_t *sm, uint64_t size) +metaslab_df_alloc(metaslab_t *msp, uint64_t size) { - avl_tree_t *t = &sm->sm_root; + /* + * Find the largest power of 2 block size that evenly divides the + * requested size. This is used to try to allocate blocks with similar + * alignment from the same area of the metaslab (i.e. same cursor + * bucket) but it does not guarantee that other allocations sizes + * may exist in the same region. + */ uint64_t align = size & -size; - uint64_t *cursor = (uint64_t *)sm->sm_ppd + highbit(align) - 1; - uint64_t max_size = metaslab_pp_maxsize(sm); - int free_pct = sm->sm_space * 100 / sm->sm_size; + uint64_t *cursor = &msp->ms_lbas[highbit(align) - 1]; + range_tree_t *rt = msp->ms_tree; + avl_tree_t *t = &rt->rt_root; + uint64_t max_size = metaslab_block_maxsize(msp); + int free_pct = range_tree_space(rt) * 100 / msp->ms_size; - ASSERT(MUTEX_HELD(sm->sm_lock)); - ASSERT3U(avl_numnodes(&sm->sm_root), ==, avl_numnodes(sm->sm_pp_root)); + ASSERT(MUTEX_HELD(&msp->ms_lock)); + ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&msp->ms_size_tree)); if (max_size < size) return (-1ULL); @@ -652,7 +761,7 @@ metaslab_df_alloc(space_map_t *sm, uint64_t size) */ if (max_size < metaslab_df_alloc_threshold || free_pct < metaslab_df_free_pct) { - t = sm->sm_pp_root; + t = &msp->ms_size_tree; *cursor = 0; } @@ -660,203 +769,253 @@ metaslab_df_alloc(space_map_t *sm, uint64_t size) } static boolean_t -metaslab_df_fragmented(space_map_t *sm) +metaslab_df_fragmented(metaslab_t *msp) { - uint64_t max_size = metaslab_pp_maxsize(sm); - int free_pct = sm->sm_space * 100 / sm->sm_size; + range_tree_t *rt = msp->ms_tree; + uint64_t max_size = metaslab_block_maxsize(msp); + int free_pct = range_tree_space(rt) * 100 / msp->ms_size; if (max_size >= metaslab_df_alloc_threshold && free_pct >= metaslab_df_free_pct) return (B_FALSE); + return (B_TRUE); } -static space_map_ops_t metaslab_df_ops = { - metaslab_pp_load, - metaslab_pp_unload, +static metaslab_ops_t metaslab_df_ops = { metaslab_df_alloc, - metaslab_pp_claim, - metaslab_pp_free, - metaslab_pp_maxsize, metaslab_df_fragmented }; -space_map_ops_t *zfs_metaslab_ops = &metaslab_df_ops; +metaslab_ops_t *zfs_metaslab_ops = &metaslab_df_ops; #endif /* WITH_DF_BLOCK_ALLOCATOR */ +#if defined(WITH_CF_BLOCK_ALLOCATOR) /* * ========================================================================== - * Other experimental allocators + * Cursor fit block allocator - + * Select the largest region in the metaslab, set the cursor to the beginning + * of the range and the cursor_end to the end of the range. As allocations + * are made advance the cursor. Continue allocating from the cursor until + * the range is exhausted and then find a new range. * ========================================================================== */ -#if defined(WITH_CDF_BLOCK_ALLOCATOR) static uint64_t -metaslab_cdf_alloc(space_map_t *sm, uint64_t size) +metaslab_cf_alloc(metaslab_t *msp, uint64_t size) { - avl_tree_t *t = &sm->sm_root; - uint64_t *cursor = (uint64_t *)sm->sm_ppd; - uint64_t *extent_end = (uint64_t *)sm->sm_ppd + 1; - uint64_t max_size = metaslab_pp_maxsize(sm); - uint64_t rsize = size; + range_tree_t *rt = msp->ms_tree; + avl_tree_t *t = &msp->ms_size_tree; + uint64_t *cursor = &msp->ms_lbas[0]; + uint64_t *cursor_end = &msp->ms_lbas[1]; uint64_t offset = 0; - ASSERT(MUTEX_HELD(sm->sm_lock)); - ASSERT3U(avl_numnodes(&sm->sm_root), ==, avl_numnodes(sm->sm_pp_root)); + ASSERT(MUTEX_HELD(&msp->ms_lock)); + ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&rt->rt_root)); - if (max_size < size) - return (-1ULL); + ASSERT3U(*cursor_end, >=, *cursor); - ASSERT3U(*extent_end, >=, *cursor); + if ((*cursor + size) > *cursor_end) { + range_seg_t *rs; - /* - * If we're running low on space switch to using the size - * sorted AVL tree (best-fit). - */ - if ((*cursor + size) > *extent_end) { - - t = sm->sm_pp_root; - *cursor = *extent_end = 0; + rs = avl_last(&msp->ms_size_tree); + if (rs == NULL || (rs->rs_end - rs->rs_start) < size) + return (-1ULL); - if (max_size > 2 * SPA_MAXBLOCKSIZE) - rsize = MIN(metaslab_min_alloc_size, max_size); - offset = metaslab_block_picker(t, extent_end, rsize, 1ULL); - if (offset != -1) - *cursor = offset + size; - } else { - offset = metaslab_block_picker(t, cursor, rsize, 1ULL); + *cursor = rs->rs_start; + *cursor_end = rs->rs_end; } - ASSERT3U(*cursor, <=, *extent_end); + + offset = *cursor; + *cursor += size; + return (offset); } static boolean_t -metaslab_cdf_fragmented(space_map_t *sm) +metaslab_cf_fragmented(metaslab_t *msp) { - uint64_t max_size = metaslab_pp_maxsize(sm); - - if (max_size > (metaslab_min_alloc_size * 10)) - return (B_FALSE); - return (B_TRUE); + return (metaslab_block_maxsize(msp) < metaslab_min_alloc_size); } -static space_map_ops_t metaslab_cdf_ops = { - metaslab_pp_load, - metaslab_pp_unload, - metaslab_cdf_alloc, - metaslab_pp_claim, - metaslab_pp_free, - metaslab_pp_maxsize, - metaslab_cdf_fragmented +static metaslab_ops_t metaslab_cf_ops = { + metaslab_cf_alloc, + metaslab_cf_fragmented }; -space_map_ops_t *zfs_metaslab_ops = &metaslab_cdf_ops; -#endif /* WITH_CDF_BLOCK_ALLOCATOR */ +metaslab_ops_t *zfs_metaslab_ops = &metaslab_cf_ops; +#endif /* WITH_CF_BLOCK_ALLOCATOR */ #if defined(WITH_NDF_BLOCK_ALLOCATOR) +/* + * ========================================================================== + * New dynamic fit allocator - + * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift + * contiguous blocks. If no region is found then just use the largest segment + * that remains. + * ========================================================================== + */ + +/* + * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift) + * to request from the allocator. + */ uint64_t metaslab_ndf_clump_shift = 4; static uint64_t -metaslab_ndf_alloc(space_map_t *sm, uint64_t size) +metaslab_ndf_alloc(metaslab_t *msp, uint64_t size) { - avl_tree_t *t = &sm->sm_root; + avl_tree_t *t = &msp->ms_tree->rt_root; avl_index_t where; - space_seg_t *ss, ssearch; + range_seg_t *rs, rsearch; uint64_t hbit = highbit(size); - uint64_t *cursor = (uint64_t *)sm->sm_ppd + hbit - 1; - uint64_t max_size = metaslab_pp_maxsize(sm); + uint64_t *cursor = &msp->ms_lbas[hbit - 1]; + uint64_t max_size = metaslab_block_maxsize(msp); - ASSERT(MUTEX_HELD(sm->sm_lock)); - ASSERT3U(avl_numnodes(&sm->sm_root), ==, avl_numnodes(sm->sm_pp_root)); + ASSERT(MUTEX_HELD(&msp->ms_lock)); + ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&msp->ms_size_tree)); if (max_size < size) return (-1ULL); - ssearch.ss_start = *cursor; - ssearch.ss_end = *cursor + size; + rsearch.rs_start = *cursor; + rsearch.rs_end = *cursor + size; - ss = avl_find(t, &ssearch, &where); - if (ss == NULL || (ss->ss_start + size > ss->ss_end)) { - t = sm->sm_pp_root; + rs = avl_find(t, &rsearch, &where); + if (rs == NULL || (rs->rs_end - rs->rs_start) < size) { + t = &msp->ms_size_tree; - ssearch.ss_start = 0; - ssearch.ss_end = MIN(max_size, + rsearch.rs_start = 0; + rsearch.rs_end = MIN(max_size, 1ULL << (hbit + metaslab_ndf_clump_shift)); - ss = avl_find(t, &ssearch, &where); - if (ss == NULL) - ss = avl_nearest(t, where, AVL_AFTER); - ASSERT(ss != NULL); + rs = avl_find(t, &rsearch, &where); + if (rs == NULL) + rs = avl_nearest(t, where, AVL_AFTER); + ASSERT(rs != NULL); } - if (ss != NULL) { - if (ss->ss_start + size <= ss->ss_end) { - *cursor = ss->ss_start + size; - return (ss->ss_start); - } + if ((rs->rs_end - rs->rs_start) >= size) { + *cursor = rs->rs_start + size; + return (rs->rs_start); } return (-1ULL); } static boolean_t -metaslab_ndf_fragmented(space_map_t *sm) +metaslab_ndf_fragmented(metaslab_t *msp) { - uint64_t max_size = metaslab_pp_maxsize(sm); - - if (max_size > (metaslab_min_alloc_size << metaslab_ndf_clump_shift)) - return (B_FALSE); - return (B_TRUE); + return (metaslab_block_maxsize(msp) <= + (metaslab_min_alloc_size << metaslab_ndf_clump_shift)); } - -static space_map_ops_t metaslab_ndf_ops = { - metaslab_pp_load, - metaslab_pp_unload, +static metaslab_ops_t metaslab_ndf_ops = { metaslab_ndf_alloc, - metaslab_pp_claim, - metaslab_pp_free, - metaslab_pp_maxsize, metaslab_ndf_fragmented }; -space_map_ops_t *zfs_metaslab_ops = &metaslab_ndf_ops; +metaslab_ops_t *zfs_metaslab_ops = &metaslab_ndf_ops; #endif /* WITH_NDF_BLOCK_ALLOCATOR */ + /* * ========================================================================== * Metaslabs * ========================================================================== */ + +/* + * Wait for any in-progress metaslab loads to complete. + */ +void +metaslab_load_wait(metaslab_t *msp) +{ + ASSERT(MUTEX_HELD(&msp->ms_lock)); + + while (msp->ms_loading) { + ASSERT(!msp->ms_loaded); + cv_wait(&msp->ms_load_cv, &msp->ms_lock); + } +} + +int +metaslab_load(metaslab_t *msp) +{ + int error = 0; + int t; + + ASSERT(MUTEX_HELD(&msp->ms_lock)); + ASSERT(!msp->ms_loaded); + ASSERT(!msp->ms_loading); + + msp->ms_loading = B_TRUE; + + /* + * If the space map has not been allocated yet, then treat + * all the space in the metaslab as free and add it to the + * ms_tree. + */ + if (msp->ms_sm != NULL) + error = space_map_load(msp->ms_sm, msp->ms_tree, SM_FREE); + else + range_tree_add(msp->ms_tree, msp->ms_start, msp->ms_size); + + msp->ms_loaded = (error == 0); + msp->ms_loading = B_FALSE; + + if (msp->ms_loaded) { + for (t = 0; t < TXG_DEFER_SIZE; t++) { + range_tree_walk(msp->ms_defertree[t], + range_tree_remove, msp->ms_tree); + } + } + cv_broadcast(&msp->ms_load_cv); + return (error); +} + +void +metaslab_unload(metaslab_t *msp) +{ + ASSERT(MUTEX_HELD(&msp->ms_lock)); + range_tree_vacate(msp->ms_tree, NULL, NULL); + msp->ms_loaded = B_FALSE; + msp->ms_weight &= ~METASLAB_ACTIVE_MASK; +} + metaslab_t * -metaslab_init(metaslab_group_t *mg, space_map_obj_t *smo, - uint64_t start, uint64_t size, uint64_t txg) +metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object, uint64_t txg) { vdev_t *vd = mg->mg_vd; + objset_t *mos = vd->vdev_spa->spa_meta_objset; metaslab_t *msp; msp = kmem_zalloc(sizeof (metaslab_t), KM_PUSHPAGE); mutex_init(&msp->ms_lock, NULL, MUTEX_DEFAULT, NULL); + cv_init(&msp->ms_load_cv, NULL, CV_DEFAULT, NULL); + msp->ms_id = id; + msp->ms_start = id << vd->vdev_ms_shift; + msp->ms_size = 1ULL << vd->vdev_ms_shift; - msp->ms_smo_syncing = *smo; + /* + * We only open space map objects that already exist. All others + * will be opened when we finally allocate an object for it. + */ + if (object != 0) { + VERIFY0(space_map_open(&msp->ms_sm, mos, object, msp->ms_start, + msp->ms_size, vd->vdev_ashift, &msp->ms_lock)); + ASSERT(msp->ms_sm != NULL); + } /* - * We create the main space map here, but we don't create the - * allocmaps and freemaps until metaslab_sync_done(). This serves + * We create the main range tree here, but we don't create the + * alloctree and freetree until metaslab_sync_done(). This serves * two purposes: it allows metaslab_sync_done() to detect the * addition of new space; and for debugging, it ensures that we'd * data fault on any attempt to use this metaslab before it's ready. */ - msp->ms_map = kmem_zalloc(sizeof (space_map_t), KM_PUSHPAGE); - space_map_create(msp->ms_map, start, size, - vd->vdev_ashift, &msp->ms_lock); - + msp->ms_tree = range_tree_create(&metaslab_rt_ops, msp, &msp->ms_lock); metaslab_group_add(mg, msp); - if (metaslab_debug_load && smo->smo_object != 0) { - mutex_enter(&msp->ms_lock); - VERIFY(space_map_load(msp->ms_map, mg->mg_class->mc_ops, - SM_FREE, smo, spa_meta_objset(vd->vdev_spa)) == 0); - mutex_exit(&msp->ms_lock); - } + msp->ms_ops = mg->mg_class->mc_ops; /* * If we're opening an existing pool (txg == 0) or creating @@ -867,6 +1026,17 @@ metaslab_init(metaslab_group_t *mg, space_map_obj_t *smo, if (txg <= TXG_INITIAL) metaslab_sync_done(msp, 0); + /* + * If metaslab_debug_load is set and we're initializing a metaslab + * that has an allocated space_map object then load the its space + * map so that can verify frees. + */ + if (metaslab_debug_load && msp->ms_sm != NULL) { + mutex_enter(&msp->ms_lock); + VERIFY0(metaslab_load(msp)); + mutex_exit(&msp->ms_lock); + } + if (txg != 0) { vdev_dirty(vd, 0, NULL, txg); vdev_dirty(vd, VDD_METASLAB, msp, txg); @@ -878,51 +1048,107 @@ metaslab_init(metaslab_group_t *mg, space_map_obj_t *smo, void metaslab_fini(metaslab_t *msp) { - metaslab_group_t *mg = msp->ms_group; int t; - vdev_space_update(mg->mg_vd, - -msp->ms_smo.smo_alloc, 0, -msp->ms_map->sm_size); + metaslab_group_t *mg = msp->ms_group; metaslab_group_remove(mg, msp); mutex_enter(&msp->ms_lock); - space_map_unload(msp->ms_map); - space_map_destroy(msp->ms_map); - kmem_free(msp->ms_map, sizeof (*msp->ms_map)); + VERIFY(msp->ms_group == NULL); + vdev_space_update(mg->mg_vd, -space_map_allocated(msp->ms_sm), + 0, -msp->ms_size); + space_map_close(msp->ms_sm); + + metaslab_unload(msp); + range_tree_destroy(msp->ms_tree); for (t = 0; t < TXG_SIZE; t++) { - space_map_destroy(msp->ms_allocmap[t]); - space_map_destroy(msp->ms_freemap[t]); - kmem_free(msp->ms_allocmap[t], sizeof (*msp->ms_allocmap[t])); - kmem_free(msp->ms_freemap[t], sizeof (*msp->ms_freemap[t])); + range_tree_destroy(msp->ms_alloctree[t]); + range_tree_destroy(msp->ms_freetree[t]); } for (t = 0; t < TXG_DEFER_SIZE; t++) { - space_map_destroy(msp->ms_defermap[t]); - kmem_free(msp->ms_defermap[t], sizeof (*msp->ms_defermap[t])); + range_tree_destroy(msp->ms_defertree[t]); } ASSERT0(msp->ms_deferspace); mutex_exit(&msp->ms_lock); + cv_destroy(&msp->ms_load_cv); mutex_destroy(&msp->ms_lock); kmem_free(msp, sizeof (metaslab_t)); } -#define METASLAB_WEIGHT_PRIMARY (1ULL << 63) -#define METASLAB_WEIGHT_SECONDARY (1ULL << 62) -#define METASLAB_ACTIVE_MASK \ - (METASLAB_WEIGHT_PRIMARY | METASLAB_WEIGHT_SECONDARY) +/* + * Apply a weighting factor based on the histogram information for this + * metaslab. The current weighting factor is somewhat arbitrary and requires + * additional investigation. The implementation provides a measure of + * "weighted" free space and gives a higher weighting for larger contiguous + * regions. The weighting factor is determined by counting the number of + * sm_shift sectors that exist in each region represented by the histogram. + * That value is then multiplied by the power of 2 exponent and the sm_shift + * value. + * + * For example, assume the 2^21 histogram bucket has 4 2MB regions and the + * metaslab has an sm_shift value of 9 (512B): + * + * 1) calculate the number of sm_shift sectors in the region: + * 2^21 / 2^9 = 2^12 = 4096 * 4 (number of regions) = 16384 + * 2) multiply by the power of 2 exponent and the sm_shift value: + * 16384 * 21 * 9 = 3096576 + * This value will be added to the weighting of the metaslab. + */ +static uint64_t +metaslab_weight_factor(metaslab_t *msp) +{ + uint64_t factor = 0; + uint64_t sectors; + int i; + + /* + * A null space map means that the entire metaslab is free, + * calculate a weight factor that spans the entire size of the + * metaslab. + */ + if (msp->ms_sm == NULL) { + vdev_t *vd = msp->ms_group->mg_vd; + + i = highbit(msp->ms_size) - 1; + sectors = msp->ms_size >> vd->vdev_ashift; + return (sectors * i * vd->vdev_ashift); + } + + if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) + return (0); + + for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE(msp->ms_sm); i++) { + if (msp->ms_sm->sm_phys->smp_histogram[i] == 0) + continue; + + /* + * Determine the number of sm_shift sectors in the region + * indicated by the histogram. For example, given an + * sm_shift value of 9 (512 bytes) and i = 4 then we know + * that we're looking at an 8K region in the histogram + * (i.e. 9 + 4 = 13, 2^13 = 8192). To figure out the + * number of sm_shift sectors (512 bytes in this example), + * we would take 8192 / 512 = 16. Since the histogram + * is offset by sm_shift we can simply use the value of + * of i to calculate this (i.e. 2^i = 16 where i = 4). + */ + sectors = msp->ms_sm->sm_phys->smp_histogram[i] << i; + factor += (i + msp->ms_sm->sm_shift) * sectors; + } + return (factor * msp->ms_sm->sm_shift); +} static uint64_t metaslab_weight(metaslab_t *msp) { metaslab_group_t *mg = msp->ms_group; - space_map_t *sm = msp->ms_map; - space_map_obj_t *smo = &msp->ms_smo; vdev_t *vd = mg->mg_vd; uint64_t weight, space; @@ -933,7 +1159,7 @@ metaslab_weight(metaslab_t *msp) * for us to do here. */ if (vd->vdev_removing) { - ASSERT0(smo->smo_alloc); + ASSERT0(space_map_allocated(msp->ms_sm)); ASSERT0(vd->vdev_ms_shift); return (0); } @@ -941,7 +1167,7 @@ metaslab_weight(metaslab_t *msp) /* * The baseline weight is the metaslab's free space. */ - space = sm->sm_size - smo->smo_alloc; + space = msp->ms_size - space_map_allocated(msp->ms_sm); weight = space; /* @@ -953,20 +1179,14 @@ metaslab_weight(metaslab_t *msp) * In effect, this means that we'll select the metaslab with the most * free bandwidth rather than simply the one with the most free space. */ - weight = 2 * weight - - ((sm->sm_start >> vd->vdev_ms_shift) * weight) / vd->vdev_ms_count; + weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count; ASSERT(weight >= space && weight <= 2 * space); - /* - * For locality, assign higher weight to metaslabs which have - * a lower offset than what we've already activated. - */ - if (sm->sm_start <= mg->mg_bonus_area) - weight *= (metaslab_smo_bonus_pct / 100); - ASSERT(weight >= space && - weight <= 2 * (metaslab_smo_bonus_pct / 100) * space); + msp->ms_factor = metaslab_weight_factor(msp); + if (metaslab_weight_factor_enable) + weight += msp->ms_factor; - if (sm->sm_loaded && !sm->sm_ops->smop_fragmented(sm)) { + if (msp->ms_loaded && !msp->ms_ops->msop_fragmented(msp)) { /* * If this metaslab is one we're actively using, adjust its * weight to make it preferable to any inactive metaslab so @@ -974,80 +1194,29 @@ metaslab_weight(metaslab_t *msp) */ weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK); } - return (weight); -} - -static void -metaslab_prefetch(metaslab_group_t *mg) -{ - spa_t *spa = mg->mg_vd->vdev_spa; - metaslab_t *msp; - avl_tree_t *t = &mg->mg_metaslab_tree; - int m; - - mutex_enter(&mg->mg_lock); - /* - * Prefetch the next potential metaslabs - */ - for (msp = avl_first(t), m = 0; msp; msp = AVL_NEXT(t, msp), m++) { - space_map_t *sm = msp->ms_map; - space_map_obj_t *smo = &msp->ms_smo; - - /* If we have reached our prefetch limit then we're done */ - if (m >= metaslab_prefetch_limit) - break; - - if (!sm->sm_loaded && smo->smo_object != 0) { - mutex_exit(&mg->mg_lock); - dmu_prefetch(spa_meta_objset(spa), smo->smo_object, - 0ULL, smo->smo_objsize); - mutex_enter(&mg->mg_lock); - } - } - mutex_exit(&mg->mg_lock); + return (weight); } static int metaslab_activate(metaslab_t *msp, uint64_t activation_weight) { - metaslab_group_t *mg = msp->ms_group; - space_map_t *sm = msp->ms_map; - space_map_ops_t *sm_ops = msp->ms_group->mg_class->mc_ops; - int t; - ASSERT(MUTEX_HELD(&msp->ms_lock)); if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) { - space_map_load_wait(sm); - if (!sm->sm_loaded) { - space_map_obj_t *smo = &msp->ms_smo; - - int error = space_map_load(sm, sm_ops, SM_FREE, smo, - spa_meta_objset(msp->ms_group->mg_vd->vdev_spa)); - if (error) { + metaslab_load_wait(msp); + if (!msp->ms_loaded) { + int error = metaslab_load(msp); + if (error) { metaslab_group_sort(msp->ms_group, msp, 0); return (error); } - for (t = 0; t < TXG_DEFER_SIZE; t++) - space_map_walk(msp->ms_defermap[t], - space_map_claim, sm); - - } - - /* - * Track the bonus area as we activate new metaslabs. - */ - if (sm->sm_start > mg->mg_bonus_area) { - mutex_enter(&mg->mg_lock); - mg->mg_bonus_area = sm->sm_start; - mutex_exit(&mg->mg_lock); } metaslab_group_sort(msp->ms_group, msp, msp->ms_weight | activation_weight); } - ASSERT(sm->sm_loaded); + ASSERT(msp->ms_loaded); ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); return (0); @@ -1061,26 +1230,74 @@ metaslab_passivate(metaslab_t *msp, uint64_t size) * this metaslab again. In that case, it had better be empty, * or we would be leaving space on the table. */ - ASSERT(size >= SPA_MINBLOCKSIZE || msp->ms_map->sm_space == 0); + ASSERT(size >= SPA_MINBLOCKSIZE || range_tree_space(msp->ms_tree) == 0); metaslab_group_sort(msp->ms_group, msp, MIN(msp->ms_weight, size)); ASSERT((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0); } +static void +metaslab_preload(void *arg) +{ + metaslab_t *msp = arg; + spa_t *spa = msp->ms_group->mg_vd->vdev_spa; + + mutex_enter(&msp->ms_lock); + metaslab_load_wait(msp); + if (!msp->ms_loaded) + (void) metaslab_load(msp); + + /* + * Set the ms_access_txg value so that we don't unload it right away. + */ + msp->ms_access_txg = spa_syncing_txg(spa) + metaslab_unload_delay + 1; + mutex_exit(&msp->ms_lock); +} + +static void +metaslab_group_preload(metaslab_group_t *mg) +{ + spa_t *spa = mg->mg_vd->vdev_spa; + metaslab_t *msp; + avl_tree_t *t = &mg->mg_metaslab_tree; + int m = 0; + + if (spa_shutting_down(spa) || !metaslab_preload_enabled) { + taskq_wait(mg->mg_taskq); + return; + } + mutex_enter(&mg->mg_lock); + + /* + * Prefetch the next potential metaslabs + */ + for (msp = avl_first(t); msp != NULL; msp = AVL_NEXT(t, msp)) { + + /* If we have reached our preload limit then we're done */ + if (++m > metaslab_preload_limit) + break; + + VERIFY(taskq_dispatch(mg->mg_taskq, metaslab_preload, + msp, TQ_PUSHPAGE) != 0); + } + mutex_exit(&mg->mg_lock); +} + /* - * Determine if the in-core space map representation can be condensed on-disk. - * We would like to use the following criteria to make our decision: + * Determine if the space map's on-disk footprint is past our tolerance + * for inefficiency. We would like to use the following criteria to make + * our decision: * * 1. The size of the space map object should not dramatically increase as a - * result of writing out our in-core free map. + * result of writing out the free space range tree. * * 2. The minimal on-disk space map representation is zfs_condense_pct/100 - * times the size than the in-core representation (i.e. zfs_condense_pct = 110 - * and in-core = 1MB, minimal = 1.1.MB). + * times the size than the free space range tree representation + * (i.e. zfs_condense_pct = 110 and in-core = 1MB, minimal = 1.1.MB). * * Checking the first condition is tricky since we don't want to walk * the entire AVL tree calculating the estimated on-disk size. Instead we - * use the size-ordered AVL tree in the space map and calculate the - * size required for the largest segment in our in-core free map. If the + * use the size-ordered range tree in the metaslab and calculate the + * size required to write out the largest segment in our free tree. If the * size required to represent that segment on disk is larger than the space * map object then we avoid condensing this map. * @@ -1091,21 +1308,20 @@ metaslab_passivate(metaslab_t *msp, uint64_t size) static boolean_t metaslab_should_condense(metaslab_t *msp) { - space_map_t *sm = msp->ms_map; - space_map_obj_t *smo = &msp->ms_smo_syncing; - space_seg_t *ss; + space_map_t *sm = msp->ms_sm; + range_seg_t *rs; uint64_t size, entries, segsz; ASSERT(MUTEX_HELD(&msp->ms_lock)); - ASSERT(sm->sm_loaded); + ASSERT(msp->ms_loaded); /* - * Use the sm_pp_root AVL tree, which is ordered by size, to obtain - * the largest segment in the in-core free map. If the tree is - * empty then we should condense the map. + * Use the ms_size_tree range tree, which is ordered by size, to + * obtain the largest segment in the free tree. If the tree is empty + * then we should condense the map. */ - ss = avl_last(sm->sm_pp_root); - if (ss == NULL) + rs = avl_last(&msp->ms_size_tree); + if (rs == NULL) return (B_TRUE); /* @@ -1114,103 +1330,95 @@ metaslab_should_condense(metaslab_t *msp) * larger on-disk than the entire current on-disk structure, then * clearly condensing will increase the on-disk structure size. */ - size = (ss->ss_end - ss->ss_start) >> sm->sm_shift; + size = (rs->rs_end - rs->rs_start) >> sm->sm_shift; entries = size / (MIN(size, SM_RUN_MAX)); segsz = entries * sizeof (uint64_t); - return (segsz <= smo->smo_objsize && - smo->smo_objsize >= (zfs_condense_pct * - sizeof (uint64_t) * avl_numnodes(&sm->sm_root)) / 100); + return (segsz <= space_map_length(msp->ms_sm) && + space_map_length(msp->ms_sm) >= (zfs_condense_pct * + sizeof (uint64_t) * avl_numnodes(&msp->ms_tree->rt_root)) / 100); } /* * Condense the on-disk space map representation to its minimized form. * The minimized form consists of a small number of allocations followed by - * the in-core free map. + * the entries of the free range tree. */ static void metaslab_condense(metaslab_t *msp, uint64_t txg, dmu_tx_t *tx) { spa_t *spa = msp->ms_group->mg_vd->vdev_spa; - space_map_t *freemap = msp->ms_freemap[txg & TXG_MASK]; - space_map_t condense_map; - space_map_t *sm = msp->ms_map; - objset_t *mos = spa_meta_objset(spa); - space_map_obj_t *smo = &msp->ms_smo_syncing; + range_tree_t *freetree = msp->ms_freetree[txg & TXG_MASK]; + range_tree_t *condense_tree; + space_map_t *sm = msp->ms_sm; int t; ASSERT(MUTEX_HELD(&msp->ms_lock)); ASSERT3U(spa_sync_pass(spa), ==, 1); - ASSERT(sm->sm_loaded); + ASSERT(msp->ms_loaded); spa_dbgmsg(spa, "condensing: txg %llu, msp[%llu] %p, " - "smo size %llu, segments %lu", txg, - (msp->ms_map->sm_start / msp->ms_map->sm_size), msp, - smo->smo_objsize, avl_numnodes(&sm->sm_root)); + "smp size %llu, segments %lu", txg, msp->ms_id, msp, + space_map_length(msp->ms_sm), avl_numnodes(&msp->ms_tree->rt_root)); /* - * Create an map that is a 100% allocated map. We remove segments + * Create an range tree that is 100% allocated. We remove segments * that have been freed in this txg, any deferred frees that exist, * and any allocation in the future. Removing segments should be - * a relatively inexpensive operation since we expect these maps to - * a small number of nodes. + * a relatively inexpensive operation since we expect these trees to + * have a small number of nodes. */ - space_map_create(&condense_map, sm->sm_start, sm->sm_size, - sm->sm_shift, sm->sm_lock); - space_map_add(&condense_map, condense_map.sm_start, - condense_map.sm_size); + condense_tree = range_tree_create(NULL, NULL, &msp->ms_lock); + range_tree_add(condense_tree, msp->ms_start, msp->ms_size); /* - * Remove what's been freed in this txg from the condense_map. + * Remove what's been freed in this txg from the condense_tree. * Since we're in sync_pass 1, we know that all the frees from - * this txg are in the freemap. + * this txg are in the freetree. */ - space_map_walk(freemap, space_map_remove, &condense_map); + range_tree_walk(freetree, range_tree_remove, condense_tree); - for (t = 0; t < TXG_DEFER_SIZE; t++) - space_map_walk(msp->ms_defermap[t], - space_map_remove, &condense_map); + for (t = 0; t < TXG_DEFER_SIZE; t++) { + range_tree_walk(msp->ms_defertree[t], + range_tree_remove, condense_tree); + } - for (t = 1; t < TXG_CONCURRENT_STATES; t++) - space_map_walk(msp->ms_allocmap[(txg + t) & TXG_MASK], - space_map_remove, &condense_map); + for (t = 1; t < TXG_CONCURRENT_STATES; t++) { + range_tree_walk(msp->ms_alloctree[(txg + t) & TXG_MASK], + range_tree_remove, condense_tree); + } /* * We're about to drop the metaslab's lock thus allowing * other consumers to change it's content. Set the - * space_map's sm_condensing flag to ensure that + * metaslab's ms_condensing flag to ensure that * allocations on this metaslab do not occur while we're * in the middle of committing it to disk. This is only critical - * for the ms_map as all other space_maps use per txg + * for the ms_tree as all other range trees use per txg * views of their content. */ - sm->sm_condensing = B_TRUE; + msp->ms_condensing = B_TRUE; mutex_exit(&msp->ms_lock); - space_map_truncate(smo, mos, tx); + space_map_truncate(sm, tx); mutex_enter(&msp->ms_lock); /* * While we would ideally like to create a space_map representation * that consists only of allocation records, doing so can be - * prohibitively expensive because the in-core free map can be + * prohibitively expensive because the in-core free tree can be * large, and therefore computationally expensive to subtract - * from the condense_map. Instead we sync out two maps, a cheap - * allocation only map followed by the in-core free map. While not + * from the condense_tree. Instead we sync out two trees, a cheap + * allocation only tree followed by the in-core free tree. While not * optimal, this is typically close to optimal, and much cheaper to * compute. */ - space_map_sync(&condense_map, SM_ALLOC, smo, mos, tx); - space_map_vacate(&condense_map, NULL, NULL); - space_map_destroy(&condense_map); - - space_map_sync(sm, SM_FREE, smo, mos, tx); - sm->sm_condensing = B_FALSE; + space_map_write(sm, condense_tree, SM_ALLOC, tx); + range_tree_vacate(condense_tree, NULL, NULL); + range_tree_destroy(condense_tree); - spa_dbgmsg(spa, "condensed: txg %llu, msp[%llu] %p, " - "smo size %llu", txg, - (msp->ms_map->sm_start / msp->ms_map->sm_size), msp, - smo->smo_objsize); + space_map_write(sm, msp->ms_tree, SM_FREE, tx); + msp->ms_condensing = B_FALSE; } /* @@ -1219,94 +1427,113 @@ metaslab_condense(metaslab_t *msp, uint64_t txg, dmu_tx_t *tx) void metaslab_sync(metaslab_t *msp, uint64_t txg) { - vdev_t *vd = msp->ms_group->mg_vd; + metaslab_group_t *mg = msp->ms_group; + vdev_t *vd = mg->mg_vd; spa_t *spa = vd->vdev_spa; objset_t *mos = spa_meta_objset(spa); - space_map_t *allocmap = msp->ms_allocmap[txg & TXG_MASK]; - space_map_t **freemap = &msp->ms_freemap[txg & TXG_MASK]; - space_map_t **freed_map = &msp->ms_freemap[TXG_CLEAN(txg) & TXG_MASK]; - space_map_t *sm = msp->ms_map; - space_map_obj_t *smo = &msp->ms_smo_syncing; - dmu_buf_t *db; + range_tree_t *alloctree = msp->ms_alloctree[txg & TXG_MASK]; + range_tree_t **freetree = &msp->ms_freetree[txg & TXG_MASK]; + range_tree_t **freed_tree = + &msp->ms_freetree[TXG_CLEAN(txg) & TXG_MASK]; dmu_tx_t *tx; + uint64_t object = space_map_object(msp->ms_sm); ASSERT(!vd->vdev_ishole); /* * This metaslab has just been added so there's no work to do now. */ - if (*freemap == NULL) { - ASSERT3P(allocmap, ==, NULL); + if (*freetree == NULL) { + ASSERT3P(alloctree, ==, NULL); return; } - ASSERT3P(allocmap, !=, NULL); - ASSERT3P(*freemap, !=, NULL); - ASSERT3P(*freed_map, !=, NULL); + ASSERT3P(alloctree, !=, NULL); + ASSERT3P(*freetree, !=, NULL); + ASSERT3P(*freed_tree, !=, NULL); - if (allocmap->sm_space == 0 && (*freemap)->sm_space == 0) + if (range_tree_space(alloctree) == 0 && + range_tree_space(*freetree) == 0) return; /* * The only state that can actually be changing concurrently with - * metaslab_sync() is the metaslab's ms_map. No other thread can - * be modifying this txg's allocmap, freemap, freed_map, or smo. - * Therefore, we only hold ms_lock to satify space_map ASSERTs. - * We drop it whenever we call into the DMU, because the DMU - * can call down to us (e.g. via zio_free()) at any time. + * metaslab_sync() is the metaslab's ms_tree. No other thread can + * be modifying this txg's alloctree, freetree, freed_tree, or + * space_map_phys_t. Therefore, we only hold ms_lock to satify + * space_map ASSERTs. We drop it whenever we call into the DMU, + * because the DMU can call down to us (e.g. via zio_free()) at + * any time. */ tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); - if (smo->smo_object == 0) { - ASSERT(smo->smo_objsize == 0); - ASSERT(smo->smo_alloc == 0); - smo->smo_object = dmu_object_alloc(mos, - DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT, - DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx); - ASSERT(smo->smo_object != 0); - dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) * - (sm->sm_start >> vd->vdev_ms_shift), - sizeof (uint64_t), &smo->smo_object, tx); + if (msp->ms_sm == NULL) { + uint64_t new_object; + + new_object = space_map_alloc(mos, tx); + VERIFY3U(new_object, !=, 0); + + VERIFY0(space_map_open(&msp->ms_sm, mos, new_object, + msp->ms_start, msp->ms_size, vd->vdev_ashift, + &msp->ms_lock)); + ASSERT(msp->ms_sm != NULL); } mutex_enter(&msp->ms_lock); - if (sm->sm_loaded && spa_sync_pass(spa) == 1 && + if (msp->ms_loaded && spa_sync_pass(spa) == 1 && metaslab_should_condense(msp)) { metaslab_condense(msp, txg, tx); } else { - space_map_sync(allocmap, SM_ALLOC, smo, mos, tx); - space_map_sync(*freemap, SM_FREE, smo, mos, tx); + space_map_write(msp->ms_sm, alloctree, SM_ALLOC, tx); + space_map_write(msp->ms_sm, *freetree, SM_FREE, tx); } - space_map_vacate(allocmap, NULL, NULL); + range_tree_vacate(alloctree, NULL, NULL); + + if (msp->ms_loaded) { + /* + * When the space map is loaded, we have an accruate + * histogram in the range tree. This gives us an opportunity + * to bring the space map's histogram up-to-date so we clear + * it first before updating it. + */ + space_map_histogram_clear(msp->ms_sm); + space_map_histogram_add(msp->ms_sm, msp->ms_tree, tx); + } else { + /* + * Since the space map is not loaded we simply update the + * exisiting histogram with what was freed in this txg. This + * means that the on-disk histogram may not have an accurate + * view of the free space but it's close enough to allow + * us to make allocation decisions. + */ + space_map_histogram_add(msp->ms_sm, *freetree, tx); + } /* - * For sync pass 1, we avoid walking the entire space map and - * instead will just swap the pointers for freemap and - * freed_map. We can safely do this since the freed_map is + * For sync pass 1, we avoid traversing this txg's free range tree + * and instead will just swap the pointers for freetree and + * freed_tree. We can safely do this since the freed_tree is * guaranteed to be empty on the initial pass. */ if (spa_sync_pass(spa) == 1) { - ASSERT0((*freed_map)->sm_space); - ASSERT0(avl_numnodes(&(*freed_map)->sm_root)); - space_map_swap(freemap, freed_map); + range_tree_swap(freetree, freed_tree); } else { - space_map_vacate(*freemap, space_map_add, *freed_map); + range_tree_vacate(*freetree, range_tree_add, *freed_tree); } - ASSERT0(msp->ms_allocmap[txg & TXG_MASK]->sm_space); - ASSERT0(msp->ms_freemap[txg & TXG_MASK]->sm_space); + ASSERT0(range_tree_space(msp->ms_alloctree[txg & TXG_MASK])); + ASSERT0(range_tree_space(msp->ms_freetree[txg & TXG_MASK])); mutex_exit(&msp->ms_lock); - VERIFY0(dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)); - dmu_buf_will_dirty(db, tx); - ASSERT3U(db->db_size, >=, sizeof (*smo)); - bcopy(smo, db->db_data, sizeof (*smo)); - dmu_buf_rele(db, FTAG); - + if (object != space_map_object(msp->ms_sm)) { + object = space_map_object(msp->ms_sm); + dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) * + msp->ms_id, sizeof (uint64_t), &object, tx); + } dmu_tx_commit(tx); } @@ -1317,13 +1544,10 @@ metaslab_sync(metaslab_t *msp, uint64_t txg) void metaslab_sync_done(metaslab_t *msp, uint64_t txg) { - space_map_obj_t *smo = &msp->ms_smo; - space_map_obj_t *smosync = &msp->ms_smo_syncing; - space_map_t *sm = msp->ms_map; - space_map_t **freed_map = &msp->ms_freemap[TXG_CLEAN(txg) & TXG_MASK]; - space_map_t **defer_map = &msp->ms_defermap[txg % TXG_DEFER_SIZE]; metaslab_group_t *mg = msp->ms_group; vdev_t *vd = mg->mg_vd; + range_tree_t **freed_tree; + range_tree_t **defer_tree; int64_t alloc_delta, defer_delta; int t; @@ -1333,63 +1557,63 @@ metaslab_sync_done(metaslab_t *msp, uint64_t txg) /* * If this metaslab is just becoming available, initialize its - * allocmaps, freemaps, and defermap and add its capacity to the vdev. + * alloctrees, freetrees, and defertree and add its capacity to + * the vdev. */ - if (*freed_map == NULL) { - ASSERT(*defer_map == NULL); + if (msp->ms_freetree[TXG_CLEAN(txg) & TXG_MASK] == NULL) { for (t = 0; t < TXG_SIZE; t++) { - msp->ms_allocmap[t] = kmem_zalloc(sizeof (space_map_t), - KM_PUSHPAGE); - space_map_create(msp->ms_allocmap[t], sm->sm_start, - sm->sm_size, sm->sm_shift, sm->sm_lock); - msp->ms_freemap[t] = kmem_zalloc(sizeof (space_map_t), - KM_PUSHPAGE); - space_map_create(msp->ms_freemap[t], sm->sm_start, - sm->sm_size, sm->sm_shift, sm->sm_lock); + ASSERT(msp->ms_alloctree[t] == NULL); + ASSERT(msp->ms_freetree[t] == NULL); + + msp->ms_alloctree[t] = range_tree_create(NULL, msp, + &msp->ms_lock); + msp->ms_freetree[t] = range_tree_create(NULL, msp, + &msp->ms_lock); } for (t = 0; t < TXG_DEFER_SIZE; t++) { - msp->ms_defermap[t] = kmem_zalloc(sizeof (space_map_t), - KM_PUSHPAGE); - space_map_create(msp->ms_defermap[t], sm->sm_start, - sm->sm_size, sm->sm_shift, sm->sm_lock); - } + ASSERT(msp->ms_defertree[t] == NULL); - freed_map = &msp->ms_freemap[TXG_CLEAN(txg) & TXG_MASK]; - defer_map = &msp->ms_defermap[txg % TXG_DEFER_SIZE]; + msp->ms_defertree[t] = range_tree_create(NULL, msp, + &msp->ms_lock); + } - vdev_space_update(vd, 0, 0, sm->sm_size); + vdev_space_update(vd, 0, 0, msp->ms_size); } - alloc_delta = smosync->smo_alloc - smo->smo_alloc; - defer_delta = (*freed_map)->sm_space - (*defer_map)->sm_space; + freed_tree = &msp->ms_freetree[TXG_CLEAN(txg) & TXG_MASK]; + defer_tree = &msp->ms_defertree[txg % TXG_DEFER_SIZE]; + + alloc_delta = space_map_alloc_delta(msp->ms_sm); + defer_delta = range_tree_space(*freed_tree) - + range_tree_space(*defer_tree); vdev_space_update(vd, alloc_delta + defer_delta, defer_delta, 0); - ASSERT(msp->ms_allocmap[txg & TXG_MASK]->sm_space == 0); - ASSERT(msp->ms_freemap[txg & TXG_MASK]->sm_space == 0); + ASSERT0(range_tree_space(msp->ms_alloctree[txg & TXG_MASK])); + ASSERT0(range_tree_space(msp->ms_freetree[txg & TXG_MASK])); /* - * If there's a space_map_load() in progress, wait for it to complete + * If there's a metaslab_load() in progress, wait for it to complete * so that we have a consistent view of the in-core space map. */ - space_map_load_wait(sm); + metaslab_load_wait(msp); /* - * Move the frees from the defer_map to this map (if it's loaded). - * Swap the freed_map and the defer_map -- this is safe to do - * because we've just emptied out the defer_map. + * Move the frees from the defer_tree back to the free + * range tree (if it's loaded). Swap the freed_tree and the + * defer_tree -- this is safe to do because we've just emptied out + * the defer_tree. */ - space_map_vacate(*defer_map, sm->sm_loaded ? space_map_free : NULL, sm); - ASSERT0((*defer_map)->sm_space); - ASSERT0(avl_numnodes(&(*defer_map)->sm_root)); - space_map_swap(freed_map, defer_map); + range_tree_vacate(*defer_tree, + msp->ms_loaded ? range_tree_add : NULL, msp->ms_tree); + range_tree_swap(freed_tree, defer_tree); - *smo = *smosync; + space_map_update(msp->ms_sm); msp->ms_deferspace += defer_delta; ASSERT3S(msp->ms_deferspace, >=, 0); - ASSERT3S(msp->ms_deferspace, <=, sm->sm_size); + ASSERT3S(msp->ms_deferspace, <=, msp->ms_size); if (msp->ms_deferspace != 0) { /* * Keep syncing this metaslab until all deferred frees @@ -1398,57 +1622,33 @@ metaslab_sync_done(metaslab_t *msp, uint64_t txg) vdev_dirty(vd, VDD_METASLAB, msp, txg + 1); } - /* - * If the map is loaded but no longer active, evict it as soon as all - * future allocations have synced. (If we unloaded it now and then - * loaded a moment later, the map wouldn't reflect those allocations.) - */ - if (sm->sm_loaded && (msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) { - int evictable = 1; - - for (t = 1; t < TXG_CONCURRENT_STATES; t++) - if (msp->ms_allocmap[(txg + t) & TXG_MASK]->sm_space) - evictable = 0; + if (msp->ms_loaded && msp->ms_access_txg < txg) { + for (t = 1; t < TXG_CONCURRENT_STATES; t++) { + VERIFY0(range_tree_space( + msp->ms_alloctree[(txg + t) & TXG_MASK])); + } - if (evictable && !metaslab_debug_unload) - space_map_unload(sm); + if (!metaslab_debug_unload) + metaslab_unload(msp); } metaslab_group_sort(mg, msp, metaslab_weight(msp)); - mutex_exit(&msp->ms_lock); + } void metaslab_sync_reassess(metaslab_group_t *mg) { - vdev_t *vd = mg->mg_vd; int64_t failures = mg->mg_alloc_failures; - int m; metaslab_group_alloc_update(mg); - - /* - * Re-evaluate all metaslabs which have lower offsets than the - * bonus area. - */ - for (m = 0; m < vd->vdev_ms_count; m++) { - metaslab_t *msp = vd->vdev_ms[m]; - - if (msp->ms_map->sm_start > mg->mg_bonus_area) - break; - - mutex_enter(&msp->ms_lock); - metaslab_group_sort(mg, msp, metaslab_weight(msp)); - mutex_exit(&msp->ms_lock); - } - atomic_add_64(&mg->mg_alloc_failures, -failures); /* - * Prefetch the next potential metaslabs + * Preload the next potential metaslabs */ - metaslab_prefetch(mg); + metaslab_group_preload(mg); } static uint64_t @@ -1456,7 +1656,7 @@ metaslab_distance(metaslab_t *msp, dva_t *dva) { uint64_t ms_shift = msp->ms_group->mg_vd->vdev_ms_shift; uint64_t offset = DVA_GET_OFFSET(dva) >> ms_shift; - uint64_t start = msp->ms_map->sm_start >> ms_shift; + uint64_t start = msp->ms_id; if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva)) return (1ULL << 63); @@ -1508,7 +1708,7 @@ metaslab_group_alloc(metaslab_group_t *mg, uint64_t psize, uint64_t asize, /* * If the selected metaslab is condensing, skip it. */ - if (msp->ms_map->sm_condensing) + if (msp->ms_condensing) continue; was_active = msp->ms_weight & METASLAB_ACTIVE_MASK; @@ -1516,7 +1716,8 @@ metaslab_group_alloc(metaslab_group_t *mg, uint64_t psize, uint64_t asize, break; target_distance = min_distance + - (msp->ms_smo.smo_alloc ? 0 : min_distance >> 1); + (space_map_allocated(msp->ms_sm) != 0 ? 0 : + min_distance >> 1); for (i = 0; i < d; i++) if (metaslab_distance(msp, &dva[i]) < @@ -1543,9 +1744,10 @@ metaslab_group_alloc(metaslab_group_t *mg, uint64_t psize, uint64_t asize, CAN_FASTGANG(flags) && psize > SPA_GANGBLOCKSIZE && activation_weight == METASLAB_WEIGHT_PRIMARY) { spa_dbgmsg(spa, "%s: skipping metaslab group: " - "vdev %llu, txg %llu, mg %p, psize %llu, " - "asize %llu, failures %llu", spa_name(spa), - mg->mg_vd->vdev_id, txg, mg, psize, asize, + "vdev %llu, txg %llu, mg %p, msp[%llu] %p, " + "psize %llu, asize %llu, failures %llu", + spa_name(spa), mg->mg_vd->vdev_id, txg, mg, + msp->ms_id, msp, psize, asize, mg->mg_alloc_failures); mutex_exit(&msp->ms_lock); return (-1ULL); @@ -1582,25 +1784,25 @@ metaslab_group_alloc(metaslab_group_t *mg, uint64_t psize, uint64_t asize, * we can't manipulate this metaslab until it's committed * to disk. */ - if (msp->ms_map->sm_condensing) { + if (msp->ms_condensing) { mutex_exit(&msp->ms_lock); continue; } - if ((offset = space_map_alloc(msp->ms_map, asize)) != -1ULL) + if ((offset = metaslab_block_alloc(msp, asize)) != -1ULL) break; atomic_inc_64(&mg->mg_alloc_failures); - metaslab_passivate(msp, space_map_maxsize(msp->ms_map)); - + metaslab_passivate(msp, metaslab_block_maxsize(msp)); mutex_exit(&msp->ms_lock); } - if (msp->ms_allocmap[txg & TXG_MASK]->sm_space == 0) + if (range_tree_space(msp->ms_alloctree[txg & TXG_MASK]) == 0) vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg); - space_map_add(msp->ms_allocmap[txg & TXG_MASK], offset, asize); + range_tree_add(msp->ms_alloctree[txg & TXG_MASK], offset, asize); + msp->ms_access_txg = txg + metaslab_unload_delay; mutex_exit(&msp->ms_lock); @@ -1869,13 +2071,22 @@ metaslab_free_dva(spa_t *spa, const dva_t *dva, uint64_t txg, boolean_t now) mutex_enter(&msp->ms_lock); if (now) { - space_map_remove(msp->ms_allocmap[txg & TXG_MASK], + range_tree_remove(msp->ms_alloctree[txg & TXG_MASK], offset, size); - space_map_free(msp->ms_map, offset, size); + + VERIFY(!msp->ms_condensing); + VERIFY3U(offset, >=, msp->ms_start); + VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size); + VERIFY3U(range_tree_space(msp->ms_tree) + size, <=, + msp->ms_size); + VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); + VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift)); + range_tree_add(msp->ms_tree, offset, size); } else { - if (msp->ms_freemap[txg & TXG_MASK]->sm_space == 0) + if (range_tree_space(msp->ms_freetree[txg & TXG_MASK]) == 0) vdev_dirty(vd, VDD_METASLAB, msp, txg); - space_map_add(msp->ms_freemap[txg & TXG_MASK], offset, size); + range_tree_add(msp->ms_freetree[txg & TXG_MASK], + offset, size); } mutex_exit(&msp->ms_lock); @@ -1910,10 +2121,10 @@ metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg) mutex_enter(&msp->ms_lock); - if ((txg != 0 && spa_writeable(spa)) || !msp->ms_map->sm_loaded) + if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded) error = metaslab_activate(msp, METASLAB_WEIGHT_SECONDARY); - if (error == 0 && !space_map_contains(msp->ms_map, offset, size)) + if (error == 0 && !range_tree_contains(msp->ms_tree, offset, size)) error = SET_ERROR(ENOENT); if (error || txg == 0) { /* txg == 0 indicates dry run */ @@ -1921,12 +2132,16 @@ metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg) return (error); } - space_map_claim(msp->ms_map, offset, size); + VERIFY(!msp->ms_condensing); + VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); + VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift)); + VERIFY3U(range_tree_space(msp->ms_tree) - size, <=, msp->ms_size); + range_tree_remove(msp->ms_tree, offset, size); if (spa_writeable(spa)) { /* don't dirty if we're zdb(1M) */ - if (msp->ms_allocmap[txg & TXG_MASK]->sm_space == 0) + if (range_tree_space(msp->ms_alloctree[txg & TXG_MASK]) == 0) vdev_dirty(vd, VDD_METASLAB, msp, txg); - space_map_add(msp->ms_allocmap[txg & TXG_MASK], offset, size); + range_tree_add(msp->ms_alloctree[txg & TXG_MASK], offset, size); } mutex_exit(&msp->ms_lock); @@ -1959,7 +2174,7 @@ metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp, for (d = 0; d < ndvas; d++) { error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva, txg, flags); - if (error) { + if (error != 0) { for (d--; d >= 0; d--) { metaslab_free_dva(spa, &dva[d], txg, B_TRUE); bzero(&dva[d], sizeof (dva_t)); @@ -2073,19 +2288,6 @@ metaslab_fastwrite_unmark(spa_t *spa, const blkptr_t *bp) spa_config_exit(spa, SCL_VDEV, FTAG); } -static void -checkmap(space_map_t *sm, uint64_t off, uint64_t size) -{ - space_seg_t *ss; - avl_index_t where; - - mutex_enter(sm->sm_lock); - ss = space_map_find(sm, off, size, &where); - if (ss != NULL) - panic("freeing free block; ss=%p", (void *)ss); - mutex_exit(sm->sm_lock); -} - void metaslab_check_free(spa_t *spa, const blkptr_t *bp) { @@ -2096,28 +2298,28 @@ metaslab_check_free(spa_t *spa, const blkptr_t *bp) spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); for (i = 0; i < BP_GET_NDVAS(bp); i++) { - uint64_t vdid = DVA_GET_VDEV(&bp->blk_dva[i]); - vdev_t *vd = vdev_lookup_top(spa, vdid); - uint64_t off = DVA_GET_OFFSET(&bp->blk_dva[i]); + uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]); + vdev_t *vd = vdev_lookup_top(spa, vdev); + uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]); uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]); - metaslab_t *ms = vd->vdev_ms[off >> vd->vdev_ms_shift]; + metaslab_t *msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; - if (ms->ms_map->sm_loaded) - checkmap(ms->ms_map, off, size); + if (msp->ms_loaded) + range_tree_verify(msp->ms_tree, offset, size); for (j = 0; j < TXG_SIZE; j++) - checkmap(ms->ms_freemap[j], off, size); + range_tree_verify(msp->ms_freetree[j], offset, size); for (j = 0; j < TXG_DEFER_SIZE; j++) - checkmap(ms->ms_defermap[j], off, size); + range_tree_verify(msp->ms_defertree[j], offset, size); } spa_config_exit(spa, SCL_VDEV, FTAG); } #if defined(_KERNEL) && defined(HAVE_SPL) module_param(metaslab_debug_load, int, 0644); -MODULE_PARM_DESC(metaslab_debug_load, "load all metaslabs during pool import"); - module_param(metaslab_debug_unload, int, 0644); +MODULE_PARM_DESC(metaslab_debug_load, + "load all metaslabs when pool is first opened"); MODULE_PARM_DESC(metaslab_debug_unload, "prevent metaslabs from being unloaded"); |