diff options
author | Matthew Ahrens <[email protected]> | 2013-08-28 20:01:20 -0700 |
---|---|---|
committer | Brian Behlendorf <[email protected]> | 2013-12-06 09:32:43 -0800 |
commit | e8b96c6007bf97cdf34869c1ffbd0ce753873a3d (patch) | |
tree | 9ebee6183b2832766051ffa570ba66f45967ba77 /module/zfs/dsl_pool.c | |
parent | 384f8a09f8423d951bb81d9ca945e588de14f95f (diff) |
Illumos #4045 write throttle & i/o scheduler performance work
4045 zfs write throttle & i/o scheduler performance work
1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync
read, sync write, async read, async write, and scrub/resilver. The scheduler
issues a number of concurrent i/os from each class to the device. Once a class
has been selected, an i/o is selected from this class using either an elevator
algorithem (async, scrub classes) or FIFO (sync classes). The number of
concurrent async write i/os is tuned dynamically based on i/o load, to achieve
good sync i/o latency when there is not a high load of writes, and good write
throughput when there is. See the block comment in vdev_queue.c (reproduced
below) for more details.
2. The write throttle (dsl_pool_tempreserve_space() and
txg_constrain_throughput()) is rewritten to produce much more consistent delays
when under constant load. The new write throttle is based on the amount of
dirty data, rather than guesses about future performance of the system. When
there is a lot of dirty data, each transaction (e.g. write() syscall) will be
delayed by the same small amount. This eliminates the "brick wall of wait"
that the old write throttle could hit, causing all transactions to wait several
seconds until the next txg opens. One of the keys to the new write throttle is
decrementing the amount of dirty data as i/o completes, rather than at the end
of spa_sync(). Note that the write throttle is only applied once the i/o
scheduler is issuing the maximum number of outstanding async writes. See the
block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for
more details.
This diff has several other effects, including:
* the commonly-tuned global variable zfs_vdev_max_pending has been removed;
use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead.
* the size of each txg (meaning the amount of dirty data written, and thus the
time it takes to write out) is now controlled differently. There is no longer
an explicit time goal; the primary determinant is amount of dirty data.
Systems that are under light or medium load will now often see that a txg is
always syncing, but the impact to performance (e.g. read latency) is minimal.
Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this.
* zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression,
checksum, etc. This improves latency by not allowing these CPU-intensive tasks
to consume all CPU (on machines with at least 4 CPU's; the percentage is
rounded up).
--matt
APPENDIX: problems with the current i/o scheduler
The current ZFS i/o scheduler (vdev_queue.c) is deadline based. The problem
with this is that if there are always i/os pending, then certain classes of
i/os can see very long delays.
For example, if there are always synchronous reads outstanding, then no async
writes will be serviced until they become "past due". One symptom of this
situation is that each pass of the txg sync takes at least several seconds
(typically 3 seconds).
If many i/os become "past due" (their deadline is in the past), then we must
service all of these overdue i/os before any new i/os. This happens when we
enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in
the future. If we can't complete all the i/os in 2.5 seconds (e.g. because
there were always reads pending), then these i/os will become past due. Now we
must service all the "async" writes (which could be hundreds of megabytes)
before we service any reads, introducing considerable latency to synchronous
i/os (reads or ZIL writes).
Notes on porting to ZFS on Linux:
- zio_t gained new members io_physdone and io_phys_children. Because
object caches in the Linux port call the constructor only once at
allocation time, objects may contain residual data when retrieved
from the cache. Therefore zio_create() was updated to zero out the two
new fields.
- vdev_mirror_pending() relied on the depth of the per-vdev pending queue
(vq->vq_pending_tree) to select the least-busy leaf vdev to read from.
This tree has been replaced by vq->vq_active_tree which is now used
for the same purpose.
- vdev_queue_init() used the value of zfs_vdev_max_pending to determine
the number of vdev I/O buffers to pre-allocate. That global no longer
exists, so we instead use the sum of the *_max_active values for each of
the five I/O classes described above.
- The Illumos implementation of dmu_tx_delay() delays a transaction by
sleeping in condition variable embedded in the thread
(curthread->t_delay_cv). We do not have an equivalent CV to use in
Linux, so this change replaced the delay logic with a wrapper called
zfs_sleep_until(). This wrapper could be adopted upstream and in other
downstream ports to abstract away operating system-specific delay logic.
- These tunables are added as module parameters, and descriptions added
to the zfs-module-parameters.5 man page.
spa_asize_inflation
zfs_deadman_synctime_ms
zfs_vdev_max_active
zfs_vdev_async_write_active_min_dirty_percent
zfs_vdev_async_write_active_max_dirty_percent
zfs_vdev_async_read_max_active
zfs_vdev_async_read_min_active
zfs_vdev_async_write_max_active
zfs_vdev_async_write_min_active
zfs_vdev_scrub_max_active
zfs_vdev_scrub_min_active
zfs_vdev_sync_read_max_active
zfs_vdev_sync_read_min_active
zfs_vdev_sync_write_max_active
zfs_vdev_sync_write_min_active
zfs_dirty_data_max_percent
zfs_delay_min_dirty_percent
zfs_dirty_data_max_max_percent
zfs_dirty_data_max
zfs_dirty_data_max_max
zfs_dirty_data_sync
zfs_delay_scale
The latter four have type unsigned long, whereas they are uint64_t in
Illumos. This accommodates Linux's module_param() supported types, but
means they may overflow on 32-bit architectures.
The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most
likely to overflow on 32-bit systems, since they express physical RAM
sizes in bytes. In fact, Illumos initializes zfs_dirty_data_max_max to
2^32 which does overflow. To resolve that, this port instead initializes
it in arc_init() to 25% of physical RAM, and adds the tunable
zfs_dirty_data_max_max_percent to override that percentage. While this
solution doesn't completely avoid the overflow issue, it should be a
reasonable default for most systems, and the minority of affected
systems can work around the issue by overriding the defaults.
- Fixed reversed logic in comment above zfs_delay_scale declaration.
- Clarified comments in vdev_queue.c regarding when per-queue minimums take
effect.
- Replaced dmu_tx_write_limit in the dmu_tx kstat file
with dmu_tx_dirty_delay and dmu_tx_dirty_over_max. The first counts
how many times a transaction has been delayed because the pool dirty
data has exceeded zfs_delay_min_dirty_percent. The latter counts how
many times the pool dirty data has exceeded zfs_dirty_data_max (which
we expect to never happen).
- The original patch would have regressed the bug fixed in
zfsonlinux/zfs@c418410, which prevented users from setting the
zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE.
A similar fix is added to vdev_queue_aggregate().
- In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the
heap instead of the stack. In Linux we can't afford such large
structures on the stack.
Reviewed by: George Wilson <[email protected]>
Reviewed by: Adam Leventhal <[email protected]>
Reviewed by: Christopher Siden <[email protected]>
Reviewed by: Ned Bass <[email protected]>
Reviewed by: Brendan Gregg <[email protected]>
Approved by: Robert Mustacchi <[email protected]>
References:
http://www.illumos.org/issues/4045
illumos/illumos-gate@69962b5647e4a8b9b14998733b765925381b727e
Ported-by: Ned Bass <[email protected]>
Signed-off-by: Brian Behlendorf <[email protected]>
Closes #1913
Diffstat (limited to 'module/zfs/dsl_pool.c')
-rw-r--r-- | module/zfs/dsl_pool.c | 360 |
1 files changed, 183 insertions, 177 deletions
diff --git a/module/zfs/dsl_pool.c b/module/zfs/dsl_pool.c index e7127c535..eed4bd497 100644 --- a/module/zfs/dsl_pool.c +++ b/module/zfs/dsl_pool.c @@ -46,18 +46,85 @@ #include <sys/zil_impl.h> #include <sys/dsl_userhold.h> -int zfs_no_write_throttle = 0; -int zfs_write_limit_shift = 3; /* 1/8th of physical memory */ -int zfs_txg_synctime_ms = 1000; /* target millisecs to sync a txg */ +/* + * ZFS Write Throttle + * ------------------ + * + * ZFS must limit the rate of incoming writes to the rate at which it is able + * to sync data modifications to the backend storage. Throttling by too much + * creates an artificial limit; throttling by too little can only be sustained + * for short periods and would lead to highly lumpy performance. On a per-pool + * basis, ZFS tracks the amount of modified (dirty) data. As operations change + * data, the amount of dirty data increases; as ZFS syncs out data, the amount + * of dirty data decreases. When the amount of dirty data exceeds a + * predetermined threshold further modifications are blocked until the amount + * of dirty data decreases (as data is synced out). + * + * The limit on dirty data is tunable, and should be adjusted according to + * both the IO capacity and available memory of the system. The larger the + * window, the more ZFS is able to aggregate and amortize metadata (and data) + * changes. However, memory is a limited resource, and allowing for more dirty + * data comes at the cost of keeping other useful data in memory (for example + * ZFS data cached by the ARC). + * + * Implementation + * + * As buffers are modified dsl_pool_willuse_space() increments both the per- + * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of + * dirty space used; dsl_pool_dirty_space() decrements those values as data + * is synced out from dsl_pool_sync(). While only the poolwide value is + * relevant, the per-txg value is useful for debugging. The tunable + * zfs_dirty_data_max determines the dirty space limit. Once that value is + * exceeded, new writes are halted until space frees up. + * + * The zfs_dirty_data_sync tunable dictates the threshold at which we + * ensure that there is a txg syncing (see the comment in txg.c for a full + * description of transaction group stages). + * + * The IO scheduler uses both the dirty space limit and current amount of + * dirty data as inputs. Those values affect the number of concurrent IOs ZFS + * issues. See the comment in vdev_queue.c for details of the IO scheduler. + * + * The delay is also calculated based on the amount of dirty data. See the + * comment above dmu_tx_delay() for details. + */ + +/* + * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory, + * capped at zfs_dirty_data_max_max. It can also be overridden with a module + * parameter. + */ +unsigned long zfs_dirty_data_max = 0; +unsigned long zfs_dirty_data_max_max = 0; +int zfs_dirty_data_max_percent = 10; +int zfs_dirty_data_max_max_percent = 25; -unsigned long zfs_write_limit_min = 32 << 20; /* min write limit is 32MB */ -unsigned long zfs_write_limit_max = 0; /* max data payload per txg */ -unsigned long zfs_write_limit_inflated = 0; -unsigned long zfs_write_limit_override = 0; +/* + * If there is at least this much dirty data, push out a txg. + */ +unsigned long zfs_dirty_data_sync = 64 * 1024 * 1024; -kmutex_t zfs_write_limit_lock; +/* + * Once there is this amount of dirty data, the dmu_tx_delay() will kick in + * and delay each transaction. + * This value should be >= zfs_vdev_async_write_active_max_dirty_percent. + */ +int zfs_delay_min_dirty_percent = 60; -static pgcnt_t old_physmem = 0; +/* + * This controls how quickly the delay approaches infinity. + * Larger values cause it to delay more for a given amount of dirty data. + * Therefore larger values will cause there to be less dirty data for a + * given throughput. + * + * For the smoothest delay, this value should be about 1 billion divided + * by the maximum number of operations per second. This will smoothly + * handle between 10x and 1/10th this number. + * + * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the + * multiply in dmu_tx_delay(). + */ +unsigned long zfs_delay_scale = 1000 * 1000 * 1000 / 2000; hrtime_t zfs_throttle_delay = MSEC2NSEC(10); hrtime_t zfs_throttle_resolution = MSEC2NSEC(10); @@ -87,7 +154,6 @@ dsl_pool_open_impl(spa_t *spa, uint64_t txg) dp->dp_spa = spa; dp->dp_meta_rootbp = *bp; rrw_init(&dp->dp_config_rwlock, B_TRUE); - dp->dp_write_limit = zfs_write_limit_min; txg_init(dp, txg); txg_list_create(&dp->dp_dirty_datasets, @@ -100,6 +166,7 @@ dsl_pool_open_impl(spa_t *spa, uint64_t txg) offsetof(dsl_sync_task_t, dst_node)); mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL); + cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL); dp->dp_iput_taskq = taskq_create("zfs_iput_taskq", 1, minclsyspri, 1, 4, 0); @@ -214,9 +281,9 @@ out: void dsl_pool_close(dsl_pool_t *dp) { - /* drop our references from dsl_pool_open() */ - /* + * Drop our references from dsl_pool_open(). + * * Since we held the origin_snap from "syncing" context (which * includes pool-opening context), it actually only got a "ref" * and not a hold, so just drop that here. @@ -346,6 +413,34 @@ deadlist_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) return (0); } +static void +dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx) +{ + zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); + dmu_objset_sync(dp->dp_meta_objset, zio, tx); + VERIFY0(zio_wait(zio)); + dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", ""); + spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp); +} + +static void +dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta) +{ + ASSERT(MUTEX_HELD(&dp->dp_lock)); + + if (delta < 0) + ASSERT3U(-delta, <=, dp->dp_dirty_total); + + dp->dp_dirty_total += delta; + + /* + * Note: we signal even when increasing dp_dirty_total. + * This ensures forward progress -- each thread wakes the next waiter. + */ + if (dp->dp_dirty_total <= zfs_dirty_data_max) + cv_signal(&dp->dp_spaceavail_cv); +} + void dsl_pool_sync(dsl_pool_t *dp, uint64_t txg) { @@ -354,29 +449,18 @@ dsl_pool_sync(dsl_pool_t *dp, uint64_t txg) dsl_dir_t *dd; dsl_dataset_t *ds; objset_t *mos = dp->dp_meta_objset; - hrtime_t start, write_time; - uint64_t data_written; - int err; list_t synced_datasets; list_create(&synced_datasets, sizeof (dsl_dataset_t), offsetof(dsl_dataset_t, ds_synced_link)); - /* - * We need to copy dp_space_towrite() before doing - * dsl_sync_task_sync(), because - * dsl_dataset_snapshot_reserve_space() will increase - * dp_space_towrite but not actually write anything. - */ - data_written = dp->dp_space_towrite[txg & TXG_MASK]; - tx = dmu_tx_create_assigned(dp, txg); - dp->dp_read_overhead = 0; - start = gethrtime(); - + /* + * Write out all dirty blocks of dirty datasets. + */ zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); - while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg))) { + while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) { /* * We must not sync any non-MOS datasets twice, because * we may have taken a snapshot of them. However, we @@ -386,20 +470,25 @@ dsl_pool_sync(dsl_pool_t *dp, uint64_t txg) list_insert_tail(&synced_datasets, ds); dsl_dataset_sync(ds, zio, tx); } - DTRACE_PROBE(pool_sync__1setup); - err = zio_wait(zio); + VERIFY0(zio_wait(zio)); - write_time = gethrtime() - start; - ASSERT(err == 0); - DTRACE_PROBE(pool_sync__2rootzio); + /* + * We have written all of the accounted dirty data, so our + * dp_space_towrite should now be zero. However, some seldom-used + * code paths do not adhere to this (e.g. dbuf_undirty(), also + * rounding error in dbuf_write_physdone). + * Shore up the accounting of any dirtied space now. + */ + dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg); /* * After the data blocks have been written (ensured by the zio_wait() * above), update the user/group space accounting. */ - for (ds = list_head(&synced_datasets); ds; - ds = list_next(&synced_datasets, ds)) + for (ds = list_head(&synced_datasets); ds != NULL; + ds = list_next(&synced_datasets, ds)) { dmu_objset_do_userquota_updates(ds->ds_objset, tx); + } /* * Sync the datasets again to push out the changes due to @@ -409,12 +498,12 @@ dsl_pool_sync(dsl_pool_t *dp, uint64_t txg) * about which blocks are part of the snapshot). */ zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); - while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg))) { + while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) { ASSERT(list_link_active(&ds->ds_synced_link)); dmu_buf_rele(ds->ds_dbuf, ds); dsl_dataset_sync(ds, zio, tx); } - err = zio_wait(zio); + VERIFY0(zio_wait(zio)); /* * Now that the datasets have been completely synced, we can @@ -423,7 +512,7 @@ dsl_pool_sync(dsl_pool_t *dp, uint64_t txg) * - move dead blocks from the pending deadlist to the on-disk deadlist * - release hold from dsl_dataset_dirty() */ - while ((ds = list_remove_head(&synced_datasets))) { + while ((ds = list_remove_head(&synced_datasets)) != NULL) { ASSERTV(objset_t *os = ds->ds_objset); bplist_iterate(&ds->ds_pending_deadlist, deadlist_enqueue_cb, &ds->ds_deadlist, tx); @@ -431,10 +520,9 @@ dsl_pool_sync(dsl_pool_t *dp, uint64_t txg) dmu_buf_rele(ds->ds_dbuf, ds); } - start = gethrtime(); - while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg))) + while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) { dsl_dir_sync(dd, tx); - write_time += gethrtime() - start; + } /* * The MOS's space is accounted for in the pool/$MOS @@ -452,20 +540,10 @@ dsl_pool_sync(dsl_pool_t *dp, uint64_t txg) dp->dp_mos_uncompressed_delta = 0; } - start = gethrtime(); if (list_head(&mos->os_dirty_dnodes[txg & TXG_MASK]) != NULL || list_head(&mos->os_free_dnodes[txg & TXG_MASK]) != NULL) { - zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED); - dmu_objset_sync(mos, zio, tx); - err = zio_wait(zio); - ASSERT(err == 0); - dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", ""); - spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp); + dsl_pool_sync_mos(dp, tx); } - write_time += gethrtime() - start; - DTRACE_PROBE2(pool_sync__4io, hrtime_t, write_time, - hrtime_t, dp->dp_read_overhead); - write_time -= dp->dp_read_overhead; /* * If we modify a dataset in the same txg that we want to destroy it, @@ -476,72 +554,29 @@ dsl_pool_sync(dsl_pool_t *dp, uint64_t txg) * The MOS data dirtied by the sync_tasks will be synced on the next * pass. */ - DTRACE_PROBE(pool_sync__3task); if (!txg_list_empty(&dp->dp_sync_tasks, txg)) { dsl_sync_task_t *dst; /* * No more sync tasks should have been added while we * were syncing. */ - ASSERT(spa_sync_pass(dp->dp_spa) == 1); - while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg))) + ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1); + while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL) dsl_sync_task_sync(dst, tx); } dmu_tx_commit(tx); - dp->dp_space_towrite[txg & TXG_MASK] = 0; - ASSERT(dp->dp_tempreserved[txg & TXG_MASK] == 0); - - /* - * If the write limit max has not been explicitly set, set it - * to a fraction of available physical memory (default 1/8th). - * Note that we must inflate the limit because the spa - * inflates write sizes to account for data replication. - * Check this each sync phase to catch changing memory size. - */ - if (physmem != old_physmem && zfs_write_limit_shift) { - mutex_enter(&zfs_write_limit_lock); - old_physmem = physmem; - zfs_write_limit_max = ptob(physmem) >> zfs_write_limit_shift; - zfs_write_limit_inflated = MAX(zfs_write_limit_min, - spa_get_asize(dp->dp_spa, zfs_write_limit_max)); - mutex_exit(&zfs_write_limit_lock); - } - - /* - * Attempt to keep the sync time consistent by adjusting the - * amount of write traffic allowed into each transaction group. - * Weight the throughput calculation towards the current value: - * thru = 3/4 old_thru + 1/4 new_thru - * - * Note: write_time is in nanosecs while dp_throughput is expressed in - * bytes per millisecond. - */ - ASSERT(zfs_write_limit_min > 0); - if (data_written > zfs_write_limit_min / 8 && - write_time > MSEC2NSEC(1)) { - uint64_t throughput = data_written / NSEC2MSEC(write_time); - - if (dp->dp_throughput) - dp->dp_throughput = throughput / 4 + - 3 * dp->dp_throughput / 4; - else - dp->dp_throughput = throughput; - dp->dp_write_limit = MIN(zfs_write_limit_inflated, - MAX(zfs_write_limit_min, - dp->dp_throughput * zfs_txg_synctime_ms)); - } + DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg); } void dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg) { zilog_t *zilog; - dsl_dataset_t *ds; while ((zilog = txg_list_remove(&dp->dp_dirty_zilogs, txg))) { - ds = dmu_objset_ds(zilog->zl_os); + dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); zil_clean(zilog, txg); ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg)); dmu_buf_rele(ds->ds_dbuf, zilog); @@ -583,84 +618,49 @@ dsl_pool_adjustedsize(dsl_pool_t *dp, boolean_t netfree) return (space - resv); } -int -dsl_pool_tempreserve_space(dsl_pool_t *dp, uint64_t space, dmu_tx_t *tx) +boolean_t +dsl_pool_need_dirty_delay(dsl_pool_t *dp) { - uint64_t reserved = 0; - uint64_t write_limit = (zfs_write_limit_override ? - zfs_write_limit_override : dp->dp_write_limit); - - if (zfs_no_write_throttle) { - atomic_add_64(&dp->dp_tempreserved[tx->tx_txg & TXG_MASK], - space); - return (0); - } - - /* - * Check to see if we have exceeded the maximum allowed IO for - * this transaction group. We can do this without locks since - * a little slop here is ok. Note that we do the reserved check - * with only half the requested reserve: this is because the - * reserve requests are worst-case, and we really don't want to - * throttle based off of worst-case estimates. - */ - if (write_limit > 0) { - reserved = dp->dp_space_towrite[tx->tx_txg & TXG_MASK] - + dp->dp_tempreserved[tx->tx_txg & TXG_MASK] / 2; + uint64_t delay_min_bytes = + zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100; + boolean_t rv; - if (reserved && reserved > write_limit) { - DMU_TX_STAT_BUMP(dmu_tx_write_limit); - return (SET_ERROR(ERESTART)); - } - } - - atomic_add_64(&dp->dp_tempreserved[tx->tx_txg & TXG_MASK], space); - - /* - * If this transaction group is over 7/8ths capacity, delay - * the caller 1 clock tick. This will slow down the "fill" - * rate until the sync process can catch up with us. - */ - if (reserved && reserved > (write_limit - (write_limit >> 3))) { - txg_delay(dp, tx->tx_txg, zfs_throttle_delay, - zfs_throttle_resolution); - } - - return (0); + mutex_enter(&dp->dp_lock); + if (dp->dp_dirty_total > zfs_dirty_data_sync) + txg_kick(dp); + rv = (dp->dp_dirty_total > delay_min_bytes); + mutex_exit(&dp->dp_lock); + return (rv); } void -dsl_pool_tempreserve_clear(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx) +dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx) { - ASSERT(dp->dp_tempreserved[tx->tx_txg & TXG_MASK] >= space); - atomic_add_64(&dp->dp_tempreserved[tx->tx_txg & TXG_MASK], -space); + if (space > 0) { + mutex_enter(&dp->dp_lock); + dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space; + dsl_pool_dirty_delta(dp, space); + mutex_exit(&dp->dp_lock); + } } void -dsl_pool_memory_pressure(dsl_pool_t *dp) +dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg) { - uint64_t space_inuse = 0; - int i; - - if (dp->dp_write_limit == zfs_write_limit_min) + ASSERT3S(space, >=, 0); + if (space == 0) return; - for (i = 0; i < TXG_SIZE; i++) { - space_inuse += dp->dp_space_towrite[i]; - space_inuse += dp->dp_tempreserved[i]; - } - dp->dp_write_limit = MAX(zfs_write_limit_min, - MIN(dp->dp_write_limit, space_inuse / 4)); -} - -void -dsl_pool_willuse_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx) -{ - if (space > 0) { - mutex_enter(&dp->dp_lock); - dp->dp_space_towrite[tx->tx_txg & TXG_MASK] += space; - mutex_exit(&dp->dp_lock); + mutex_enter(&dp->dp_lock); + if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) { + /* XXX writing something we didn't dirty? */ + space = dp->dp_dirty_pertxg[txg & TXG_MASK]; } + ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space); + dp->dp_dirty_pertxg[txg & TXG_MASK] -= space; + ASSERT3U(dp->dp_dirty_total, >=, space); + dsl_pool_dirty_delta(dp, -space); + mutex_exit(&dp->dp_lock); } /* ARGSUSED */ @@ -1049,24 +1049,30 @@ dsl_pool_config_held(dsl_pool_t *dp) EXPORT_SYMBOL(dsl_pool_config_enter); EXPORT_SYMBOL(dsl_pool_config_exit); -module_param(zfs_no_write_throttle, int, 0644); -MODULE_PARM_DESC(zfs_no_write_throttle, "Disable write throttling"); +/* zfs_dirty_data_max_percent only applied at module load time in arc_init(). */ +module_param(zfs_dirty_data_max_percent, int, 0444); +MODULE_PARM_DESC(zfs_dirty_data_max_percent, "percent of ram can be dirty"); -module_param(zfs_write_limit_shift, int, 0444); -MODULE_PARM_DESC(zfs_write_limit_shift, "log2(fraction of memory) per txg"); +/* zfs_dirty_data_max_max_percent only applied at module load time in + * arc_init(). */ +module_param(zfs_dirty_data_max_max_percent, int, 0444); +MODULE_PARM_DESC(zfs_dirty_data_max_max_percent, + "zfs_dirty_data_max upper bound as % of RAM"); -module_param(zfs_txg_synctime_ms, int, 0644); -MODULE_PARM_DESC(zfs_txg_synctime_ms, "Target milliseconds between txg sync"); +module_param(zfs_delay_min_dirty_percent, int, 0644); +MODULE_PARM_DESC(zfs_delay_min_dirty_percent, "transaction delay threshold"); -module_param(zfs_write_limit_min, ulong, 0444); -MODULE_PARM_DESC(zfs_write_limit_min, "Min txg write limit"); +module_param(zfs_dirty_data_max, ulong, 0644); +MODULE_PARM_DESC(zfs_dirty_data_max, "determines the dirty space limit"); -module_param(zfs_write_limit_max, ulong, 0444); -MODULE_PARM_DESC(zfs_write_limit_max, "Max txg write limit"); +/* zfs_dirty_data_max_max only applied at module load time in arc_init(). */ +module_param(zfs_dirty_data_max_max, ulong, 0444); +MODULE_PARM_DESC(zfs_dirty_data_max_max, + "zfs_dirty_data_max upper bound in bytes"); -module_param(zfs_write_limit_inflated, ulong, 0444); -MODULE_PARM_DESC(zfs_write_limit_inflated, "Inflated txg write limit"); +module_param(zfs_dirty_data_sync, ulong, 0644); +MODULE_PARM_DESC(zfs_dirty_data_sync, "sync txg when this much dirty data"); -module_param(zfs_write_limit_override, ulong, 0444); -MODULE_PARM_DESC(zfs_write_limit_override, "Override txg write limit"); +module_param(zfs_delay_scale, ulong, 0644); +MODULE_PARM_DESC(zfs_delay_scale, "how quickly delay approaches infinity"); #endif |