aboutsummaryrefslogtreecommitdiffstats
path: root/module/zfs/dmu_zfetch.c
diff options
context:
space:
mode:
authorAlexander Motin <[email protected]>2016-08-29 23:36:39 +0200
committerBrian Behlendorf <[email protected]>2016-08-30 14:26:55 -0700
commit755065f3dce1123eac03e2b25c81647026b8e49b (patch)
tree50d351e0479761af7a5f2473a6ddd92e4de947ad /module/zfs/dmu_zfetch.c
parent98ace739bd89b541af30d9d627ee42622fbbd861 (diff)
OpenZFS 6322 - ZFS indirect block predictive prefetch
For quite some time I was thinking about possibility to prefetch ZFS indirection tables while doing sequential reads or writes. Recent changes in predictive prefetcher made that much easier to do. My tests on zvol with 16KB block size on 5x striped and 2x mirrored pool of 10 disks show almost double throughput on sequential read, and almost tripple on sequential rewrite. While for read alike effect can be received from increasing maximal prefetch distance (though at higher memory cost), for rewrite there is no other solution so far. Authored by: Alexander Motin <[email protected]> Reviewed by: Matthew Ahrens <[email protected]> Reviewed by: Paul Dagnelie <[email protected]> Approved by: Robert Mustacchi <[email protected]> Ported-by: kernelOfTruth [email protected] Signed-off-by: Brian Behlendorf <[email protected]> OpenZFS-issue: https://www.illumos.org/issues/6322 OpenZFS-commit: https://github.com/illumos/illumos-gate/commit/cb92f413 Closes #5040 Porting notes: - Change from upstream in module/zfs/dbuf.c in 'int dbuf_read' due to commit 5f6d0b6 'Handle block pointers with a corrupt logical size' - Difference from upstream in module/zfs/dmu_zfetch.c, uint32_t zfetch_max_idistance -> unsigned int zfetch_max_idistance - Variables have been initialized at the beginning of the function (void dmu_zfetch) to resemble the order of occurrence and account for C99, C11 mode errors.
Diffstat (limited to 'module/zfs/dmu_zfetch.c')
-rw-r--r--module/zfs/dmu_zfetch.c86
1 files changed, 67 insertions, 19 deletions
diff --git a/module/zfs/dmu_zfetch.c b/module/zfs/dmu_zfetch.c
index 9064b2614..baed0492f 100644
--- a/module/zfs/dmu_zfetch.c
+++ b/module/zfs/dmu_zfetch.c
@@ -50,6 +50,8 @@ unsigned int zfetch_max_streams = 8;
unsigned int zfetch_min_sec_reap = 2;
/* max bytes to prefetch per stream (default 8MB) */
unsigned int zfetch_max_distance = 8 * 1024 * 1024;
+/* max bytes to prefetch indirects for per stream (default 64MB) */
+unsigned int zfetch_max_idistance = 64 * 1024 * 1024;
/* max number of bytes in an array_read in which we allow prefetching (1MB) */
unsigned long zfetch_array_rd_sz = 1024 * 1024;
@@ -189,6 +191,7 @@ dmu_zfetch_stream_create(zfetch_t *zf, uint64_t blkid)
zs = kmem_zalloc(sizeof (*zs), KM_SLEEP);
zs->zs_blkid = blkid;
zs->zs_pf_blkid = blkid;
+ zs->zs_ipf_blkid = blkid;
zs->zs_atime = gethrtime();
mutex_init(&zs->zs_lock, NULL, MUTEX_DEFAULT, NULL);
@@ -196,16 +199,22 @@ dmu_zfetch_stream_create(zfetch_t *zf, uint64_t blkid)
}
/*
- * This is the prefetch entry point. It calls all of the other dmu_zfetch
- * routines to create, delete, find, or operate upon prefetch streams.
+ * This is the predictive prefetch entry point. It associates dnode access
+ * specified with blkid and nblks arguments with prefetch stream, predicts
+ * further accesses based on that stats and initiates speculative prefetch.
+ * fetch_data argument specifies whether actual data blocks should be fetched:
+ * FALSE -- prefetch only indirect blocks for predicted data blocks;
+ * TRUE -- prefetch predicted data blocks plus following indirect blocks.
*/
void
-dmu_zfetch(zfetch_t *zf, uint64_t blkid, uint64_t nblks)
+dmu_zfetch(zfetch_t *zf, uint64_t blkid, uint64_t nblks, boolean_t fetch_data)
{
zstream_t *zs;
- int64_t pf_start;
- int pf_nblks;
- int i;
+ int64_t pf_start, ipf_start, ipf_istart, ipf_iend;
+ int64_t pf_ahead_blks, max_blks, iblk;
+ int epbs, max_dist_blks, pf_nblks, ipf_nblks, i;
+ uint64_t end_of_access_blkid;
+ end_of_access_blkid = blkid + nblks;
if (zfs_prefetch_disable)
return;
@@ -242,7 +251,7 @@ dmu_zfetch(zfetch_t *zf, uint64_t blkid, uint64_t nblks)
*/
ZFETCHSTAT_BUMP(zfetchstat_misses);
if (rw_tryupgrade(&zf->zf_rwlock))
- dmu_zfetch_stream_create(zf, blkid + nblks);
+ dmu_zfetch_stream_create(zf, end_of_access_blkid);
rw_exit(&zf->zf_rwlock);
return;
}
@@ -254,36 +263,75 @@ dmu_zfetch(zfetch_t *zf, uint64_t blkid, uint64_t nblks)
* Normally, we start prefetching where we stopped
* prefetching last (zs_pf_blkid). But when we get our first
* hit on this stream, zs_pf_blkid == zs_blkid, we don't
- * want to prefetch to block we just accessed. In this case,
+ * want to prefetch the block we just accessed. In this case,
* start just after the block we just accessed.
*/
- pf_start = MAX(zs->zs_pf_blkid, blkid + nblks);
+ pf_start = MAX(zs->zs_pf_blkid, end_of_access_blkid);
/*
* Double our amount of prefetched data, but don't let the
* prefetch get further ahead than zfetch_max_distance.
*/
- pf_nblks =
- MIN((int64_t)zs->zs_pf_blkid - zs->zs_blkid + nblks,
- zs->zs_blkid + nblks +
- (zfetch_max_distance >> zf->zf_dnode->dn_datablkshift) - pf_start);
+ if (fetch_data) {
+ max_dist_blks =
+ zfetch_max_distance >> zf->zf_dnode->dn_datablkshift;
+ /*
+ * Previously, we were (zs_pf_blkid - blkid) ahead. We
+ * want to now be double that, so read that amount again,
+ * plus the amount we are catching up by (i.e. the amount
+ * read just now).
+ */
+ pf_ahead_blks = zs->zs_pf_blkid - blkid + nblks;
+ max_blks = max_dist_blks - (pf_start - end_of_access_blkid);
+ pf_nblks = MIN(pf_ahead_blks, max_blks);
+ } else {
+ pf_nblks = 0;
+ }
zs->zs_pf_blkid = pf_start + pf_nblks;
- zs->zs_atime = gethrtime();
- zs->zs_blkid = blkid + nblks;
/*
- * dbuf_prefetch() issues the prefetch i/o
- * asynchronously, but it may need to wait for an
- * indirect block to be read from disk. Therefore
- * we do not want to hold any locks while we call it.
+ * Do the same for indirects, starting from where we stopped last,
+ * or where we will stop reading data blocks (and the indirects
+ * that point to them).
*/
+ ipf_start = MAX(zs->zs_ipf_blkid, zs->zs_pf_blkid);
+ max_dist_blks = zfetch_max_idistance >> zf->zf_dnode->dn_datablkshift;
+ /*
+ * We want to double our distance ahead of the data prefetch
+ * (or reader, if we are not prefetching data). Previously, we
+ * were (zs_ipf_blkid - blkid) ahead. To double that, we read
+ * that amount again, plus the amount we are catching up by
+ * (i.e. the amount read now + the amount of data prefetched now).
+ */
+ pf_ahead_blks = zs->zs_ipf_blkid - blkid + nblks + pf_nblks;
+ max_blks = max_dist_blks - (ipf_start - end_of_access_blkid);
+ ipf_nblks = MIN(pf_ahead_blks, max_blks);
+ zs->zs_ipf_blkid = ipf_start + ipf_nblks;
+
+ epbs = zf->zf_dnode->dn_indblkshift - SPA_BLKPTRSHIFT;
+ ipf_istart = P2ROUNDUP(ipf_start, 1 << epbs) >> epbs;
+ ipf_iend = P2ROUNDUP(zs->zs_ipf_blkid, 1 << epbs) >> epbs;
+
+ zs->zs_atime = gethrtime();
+ zs->zs_blkid = end_of_access_blkid;
mutex_exit(&zs->zs_lock);
rw_exit(&zf->zf_rwlock);
+
+ /*
+ * dbuf_prefetch() is asynchronous (even when it needs to read
+ * indirect blocks), but we still prefer to drop our locks before
+ * calling it to reduce the time we hold them.
+ */
+
for (i = 0; i < pf_nblks; i++) {
dbuf_prefetch(zf->zf_dnode, 0, pf_start + i,
ZIO_PRIORITY_ASYNC_READ, ARC_FLAG_PREDICTIVE_PREFETCH);
}
+ for (iblk = ipf_istart; iblk < ipf_iend; iblk++) {
+ dbuf_prefetch(zf->zf_dnode, 1, iblk,
+ ZIO_PRIORITY_ASYNC_READ, ARC_FLAG_PREDICTIVE_PREFETCH);
+ }
ZFETCHSTAT_BUMP(zfetchstat_hits);
}