diff options
author | Paul Dagnelie <[email protected]> | 2018-10-09 14:05:13 -0700 |
---|---|---|
committer | Brian Behlendorf <[email protected]> | 2018-10-09 14:05:13 -0700 |
commit | 0391690583a8c5129477cbdac476130abe4af776 (patch) | |
tree | 7e38f5c23407d26f7f19b86f04e0cea7049d5b26 /module/zfs/dmu_recv.c | |
parent | 5e8ff25644dfed600b4bdfb201ea6db003b4ad2c (diff) |
Refactor dmu_recv into its own file
This change moves the bottom half of dmu_send.c (where the receive
logic is kept) into a new file, dmu_recv.c, and does similarly
for receive-related changes in header files.
Reviewed by: Matthew Ahrens <[email protected]>
Reviewed by: Brian Behlendorf <[email protected]>
Signed-off-by: Paul Dagnelie <[email protected]>
Closes #7982
Diffstat (limited to 'module/zfs/dmu_recv.c')
-rw-r--r-- | module/zfs/dmu_recv.c | 2893 |
1 files changed, 2893 insertions, 0 deletions
diff --git a/module/zfs/dmu_recv.c b/module/zfs/dmu_recv.c new file mode 100644 index 000000000..990f79025 --- /dev/null +++ b/module/zfs/dmu_recv.c @@ -0,0 +1,2893 @@ +/* + * CDDL HEADER START + * + * The contents of this file are subject to the terms of the + * Common Development and Distribution License (the "License"). + * You may not use this file except in compliance with the License. + * + * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE + * or http://www.opensolaris.org/os/licensing. + * See the License for the specific language governing permissions + * and limitations under the License. + * + * When distributing Covered Code, include this CDDL HEADER in each + * file and include the License file at usr/src/OPENSOLARIS.LICENSE. + * If applicable, add the following below this CDDL HEADER, with the + * fields enclosed by brackets "[]" replaced with your own identifying + * information: Portions Copyright [yyyy] [name of copyright owner] + * + * CDDL HEADER END + */ +/* + * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. + * Copyright 2011 Nexenta Systems, Inc. All rights reserved. + * Copyright (c) 2011, 2015 by Delphix. All rights reserved. + * Copyright (c) 2014, Joyent, Inc. All rights reserved. + * Copyright 2014 HybridCluster. All rights reserved. + * Copyright 2016 RackTop Systems. + * Copyright (c) 2016 Actifio, Inc. All rights reserved. + */ + +#include <sys/dmu.h> +#include <sys/dmu_impl.h> +#include <sys/dmu_tx.h> +#include <sys/dbuf.h> +#include <sys/dnode.h> +#include <sys/zfs_context.h> +#include <sys/dmu_objset.h> +#include <sys/dmu_traverse.h> +#include <sys/dsl_dataset.h> +#include <sys/dsl_dir.h> +#include <sys/dsl_prop.h> +#include <sys/dsl_pool.h> +#include <sys/dsl_synctask.h> +#include <sys/spa_impl.h> +#include <sys/zfs_ioctl.h> +#include <sys/zap.h> +#include <sys/zio_checksum.h> +#include <sys/zfs_znode.h> +#include <zfs_fletcher.h> +#include <sys/avl.h> +#include <sys/ddt.h> +#include <sys/zfs_onexit.h> +#include <sys/dmu_recv.h> +#include <sys/dsl_destroy.h> +#include <sys/blkptr.h> +#include <sys/dsl_bookmark.h> +#include <sys/zfeature.h> +#include <sys/bqueue.h> +#include <sys/zvol.h> +#include <sys/policy.h> + +int zfs_recv_queue_length = SPA_MAXBLOCKSIZE; + +static char *dmu_recv_tag = "dmu_recv_tag"; +const char *recv_clone_name = "%recv"; + +static void byteswap_record(dmu_replay_record_t *drr); + +typedef struct dmu_recv_begin_arg { + const char *drba_origin; + dmu_recv_cookie_t *drba_cookie; + cred_t *drba_cred; + dsl_crypto_params_t *drba_dcp; + uint64_t drba_snapobj; +} dmu_recv_begin_arg_t; + +static int +recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds, + uint64_t fromguid, uint64_t featureflags) +{ + uint64_t val; + int error; + dsl_pool_t *dp = ds->ds_dir->dd_pool; + boolean_t encrypted = ds->ds_dir->dd_crypto_obj != 0; + boolean_t raw = (featureflags & DMU_BACKUP_FEATURE_RAW) != 0; + boolean_t embed = (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) != 0; + + /* temporary clone name must not exist */ + error = zap_lookup(dp->dp_meta_objset, + dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name, + 8, 1, &val); + if (error != ENOENT) + return (error == 0 ? EBUSY : error); + + /* new snapshot name must not exist */ + error = zap_lookup(dp->dp_meta_objset, + dsl_dataset_phys(ds)->ds_snapnames_zapobj, + drba->drba_cookie->drc_tosnap, 8, 1, &val); + if (error != ENOENT) + return (error == 0 ? EEXIST : error); + + /* + * Check snapshot limit before receiving. We'll recheck again at the + * end, but might as well abort before receiving if we're already over + * the limit. + * + * Note that we do not check the file system limit with + * dsl_dir_fscount_check because the temporary %clones don't count + * against that limit. + */ + error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT, + NULL, drba->drba_cred); + if (error != 0) + return (error); + + if (fromguid != 0) { + dsl_dataset_t *snap; + uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj; + + /* Can't perform a raw receive on top of a non-raw receive */ + if (!encrypted && raw) + return (SET_ERROR(EINVAL)); + + /* Encryption is incompatible with embedded data */ + if (encrypted && embed) + return (SET_ERROR(EINVAL)); + + /* Find snapshot in this dir that matches fromguid. */ + while (obj != 0) { + error = dsl_dataset_hold_obj(dp, obj, FTAG, + &snap); + if (error != 0) + return (SET_ERROR(ENODEV)); + if (snap->ds_dir != ds->ds_dir) { + dsl_dataset_rele(snap, FTAG); + return (SET_ERROR(ENODEV)); + } + if (dsl_dataset_phys(snap)->ds_guid == fromguid) + break; + obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; + dsl_dataset_rele(snap, FTAG); + } + if (obj == 0) + return (SET_ERROR(ENODEV)); + + if (drba->drba_cookie->drc_force) { + drba->drba_snapobj = obj; + } else { + /* + * If we are not forcing, there must be no + * changes since fromsnap. + */ + if (dsl_dataset_modified_since_snap(ds, snap)) { + dsl_dataset_rele(snap, FTAG); + return (SET_ERROR(ETXTBSY)); + } + drba->drba_snapobj = ds->ds_prev->ds_object; + } + + dsl_dataset_rele(snap, FTAG); + } else { + /* if full, then must be forced */ + if (!drba->drba_cookie->drc_force) + return (SET_ERROR(EEXIST)); + + /* + * We don't support using zfs recv -F to blow away + * encrypted filesystems. This would require the + * dsl dir to point to the old encryption key and + * the new one at the same time during the receive. + */ + if ((!encrypted && raw) || encrypted) + return (SET_ERROR(EINVAL)); + + /* + * Perform the same encryption checks we would if + * we were creating a new dataset from scratch. + */ + if (!raw) { + boolean_t will_encrypt; + + error = dmu_objset_create_crypt_check( + ds->ds_dir->dd_parent, drba->drba_dcp, + &will_encrypt); + if (error != 0) + return (error); + + if (will_encrypt && embed) + return (SET_ERROR(EINVAL)); + } + + drba->drba_snapobj = 0; + } + + return (0); + +} + +static int +dmu_recv_begin_check(void *arg, dmu_tx_t *tx) +{ + dmu_recv_begin_arg_t *drba = arg; + dsl_pool_t *dp = dmu_tx_pool(tx); + struct drr_begin *drrb = drba->drba_cookie->drc_drrb; + uint64_t fromguid = drrb->drr_fromguid; + int flags = drrb->drr_flags; + ds_hold_flags_t dsflags = 0; + int error; + uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); + dsl_dataset_t *ds; + const char *tofs = drba->drba_cookie->drc_tofs; + + /* already checked */ + ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC); + ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING)); + + if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == + DMU_COMPOUNDSTREAM || + drrb->drr_type >= DMU_OST_NUMTYPES || + ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL)) + return (SET_ERROR(EINVAL)); + + /* Verify pool version supports SA if SA_SPILL feature set */ + if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) && + spa_version(dp->dp_spa) < SPA_VERSION_SA) + return (SET_ERROR(ENOTSUP)); + + if (drba->drba_cookie->drc_resumable && + !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET)) + return (SET_ERROR(ENOTSUP)); + + /* + * The receiving code doesn't know how to translate a WRITE_EMBEDDED + * record to a plain WRITE record, so the pool must have the + * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED + * records. Same with WRITE_EMBEDDED records that use LZ4 compression. + */ + if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) && + !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) + return (SET_ERROR(ENOTSUP)); + if ((featureflags & DMU_BACKUP_FEATURE_LZ4) && + !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) + return (SET_ERROR(ENOTSUP)); + + /* + * The receiving code doesn't know how to translate large blocks + * to smaller ones, so the pool must have the LARGE_BLOCKS + * feature enabled if the stream has LARGE_BLOCKS. Same with + * large dnodes. + */ + if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) && + !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_BLOCKS)) + return (SET_ERROR(ENOTSUP)); + if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) && + !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_DNODE)) + return (SET_ERROR(ENOTSUP)); + + if (featureflags & DMU_BACKUP_FEATURE_RAW) { + /* raw receives require the encryption feature */ + if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_ENCRYPTION)) + return (SET_ERROR(ENOTSUP)); + + /* embedded data is incompatible with encryption and raw recv */ + if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) + return (SET_ERROR(EINVAL)); + } else { + dsflags |= DS_HOLD_FLAG_DECRYPT; + } + + error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds); + if (error == 0) { + /* target fs already exists; recv into temp clone */ + + /* Can't recv a clone into an existing fs */ + if (flags & DRR_FLAG_CLONE || drba->drba_origin) { + dsl_dataset_rele_flags(ds, dsflags, FTAG); + return (SET_ERROR(EINVAL)); + } + + error = recv_begin_check_existing_impl(drba, ds, fromguid, + featureflags); + dsl_dataset_rele_flags(ds, dsflags, FTAG); + } else if (error == ENOENT) { + /* target fs does not exist; must be a full backup or clone */ + char buf[ZFS_MAX_DATASET_NAME_LEN]; + + /* + * If it's a non-clone incremental, we are missing the + * target fs, so fail the recv. + */ + if (fromguid != 0 && !(flags & DRR_FLAG_CLONE || + drba->drba_origin)) + return (SET_ERROR(ENOENT)); + + /* + * If we're receiving a full send as a clone, and it doesn't + * contain all the necessary free records and freeobject + * records, reject it. + */ + if (fromguid == 0 && drba->drba_origin && + !(flags & DRR_FLAG_FREERECORDS)) + return (SET_ERROR(EINVAL)); + + /* Open the parent of tofs */ + ASSERT3U(strlen(tofs), <, sizeof (buf)); + (void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1); + error = dsl_dataset_hold_flags(dp, buf, dsflags, FTAG, &ds); + if (error != 0) + return (error); + + if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0 && + drba->drba_origin == NULL) { + boolean_t will_encrypt; + + /* + * Check that we aren't breaking any encryption rules + * and that we have all the parameters we need to + * create an encrypted dataset if necessary. If we are + * making an encrypted dataset the stream can't have + * embedded data. + */ + error = dmu_objset_create_crypt_check(ds->ds_dir, + drba->drba_dcp, &will_encrypt); + if (error != 0) { + dsl_dataset_rele_flags(ds, dsflags, FTAG); + return (error); + } + + if (will_encrypt && + (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) { + dsl_dataset_rele_flags(ds, dsflags, FTAG); + return (SET_ERROR(EINVAL)); + } + } + + /* + * Check filesystem and snapshot limits before receiving. We'll + * recheck snapshot limits again at the end (we create the + * filesystems and increment those counts during begin_sync). + */ + error = dsl_fs_ss_limit_check(ds->ds_dir, 1, + ZFS_PROP_FILESYSTEM_LIMIT, NULL, drba->drba_cred); + if (error != 0) { + dsl_dataset_rele_flags(ds, dsflags, FTAG); + return (error); + } + + error = dsl_fs_ss_limit_check(ds->ds_dir, 1, + ZFS_PROP_SNAPSHOT_LIMIT, NULL, drba->drba_cred); + if (error != 0) { + dsl_dataset_rele_flags(ds, dsflags, FTAG); + return (error); + } + + if (drba->drba_origin != NULL) { + dsl_dataset_t *origin; + + error = dsl_dataset_hold_flags(dp, drba->drba_origin, + dsflags, FTAG, &origin); + if (error != 0) { + dsl_dataset_rele_flags(ds, dsflags, FTAG); + return (error); + } + if (!origin->ds_is_snapshot) { + dsl_dataset_rele_flags(origin, dsflags, FTAG); + dsl_dataset_rele_flags(ds, dsflags, FTAG); + return (SET_ERROR(EINVAL)); + } + if (dsl_dataset_phys(origin)->ds_guid != fromguid && + fromguid != 0) { + dsl_dataset_rele_flags(origin, dsflags, FTAG); + dsl_dataset_rele_flags(ds, dsflags, FTAG); + return (SET_ERROR(ENODEV)); + } + if (origin->ds_dir->dd_crypto_obj != 0 && + (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) { + dsl_dataset_rele_flags(origin, dsflags, FTAG); + dsl_dataset_rele_flags(ds, dsflags, FTAG); + return (SET_ERROR(EINVAL)); + } + dsl_dataset_rele_flags(origin, + dsflags, FTAG); + } + dsl_dataset_rele_flags(ds, dsflags, FTAG); + error = 0; + } + return (error); +} + +static void +dmu_recv_begin_sync(void *arg, dmu_tx_t *tx) +{ + dmu_recv_begin_arg_t *drba = arg; + dsl_pool_t *dp = dmu_tx_pool(tx); + objset_t *mos = dp->dp_meta_objset; + struct drr_begin *drrb = drba->drba_cookie->drc_drrb; + const char *tofs = drba->drba_cookie->drc_tofs; + uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); + dsl_dataset_t *ds, *newds; + objset_t *os; + uint64_t dsobj; + ds_hold_flags_t dsflags = 0; + int error; + uint64_t crflags = 0; + dsl_crypto_params_t dummy_dcp = { 0 }; + dsl_crypto_params_t *dcp = drba->drba_dcp; + + if (drrb->drr_flags & DRR_FLAG_CI_DATA) + crflags |= DS_FLAG_CI_DATASET; + + if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0) + dsflags |= DS_HOLD_FLAG_DECRYPT; + + /* + * Raw, non-incremental recvs always use a dummy dcp with + * the raw cmd set. Raw incremental recvs do not use a dcp + * since the encryption parameters are already set in stone. + */ + if (dcp == NULL && drba->drba_snapobj == 0 && + drba->drba_origin == NULL) { + ASSERT3P(dcp, ==, NULL); + dcp = &dummy_dcp; + + if (featureflags & DMU_BACKUP_FEATURE_RAW) + dcp->cp_cmd = DCP_CMD_RAW_RECV; + } + + error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds); + if (error == 0) { + /* create temporary clone */ + dsl_dataset_t *snap = NULL; + + if (drba->drba_snapobj != 0) { + VERIFY0(dsl_dataset_hold_obj(dp, + drba->drba_snapobj, FTAG, &snap)); + ASSERT3P(dcp, ==, NULL); + } + + dsobj = dsl_dataset_create_sync(ds->ds_dir, recv_clone_name, + snap, crflags, drba->drba_cred, dcp, tx); + if (drba->drba_snapobj != 0) + dsl_dataset_rele(snap, FTAG); + dsl_dataset_rele_flags(ds, dsflags, FTAG); + } else { + dsl_dir_t *dd; + const char *tail; + dsl_dataset_t *origin = NULL; + + VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail)); + + if (drba->drba_origin != NULL) { + VERIFY0(dsl_dataset_hold(dp, drba->drba_origin, + FTAG, &origin)); + ASSERT3P(dcp, ==, NULL); + } + + /* Create new dataset. */ + dsobj = dsl_dataset_create_sync(dd, strrchr(tofs, '/') + 1, + origin, crflags, drba->drba_cred, dcp, tx); + if (origin != NULL) + dsl_dataset_rele(origin, FTAG); + dsl_dir_rele(dd, FTAG); + drba->drba_cookie->drc_newfs = B_TRUE; + } + + VERIFY0(dsl_dataset_own_obj(dp, dsobj, dsflags, dmu_recv_tag, &newds)); + VERIFY0(dmu_objset_from_ds(newds, &os)); + + if (drba->drba_cookie->drc_resumable) { + dsl_dataset_zapify(newds, tx); + if (drrb->drr_fromguid != 0) { + VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID, + 8, 1, &drrb->drr_fromguid, tx)); + } + VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID, + 8, 1, &drrb->drr_toguid, tx)); + VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME, + 1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx)); + uint64_t one = 1; + uint64_t zero = 0; + VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT, + 8, 1, &one, tx)); + VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET, + 8, 1, &zero, tx)); + VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES, + 8, 1, &zero, tx)); + if (featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) { + VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_LARGEBLOCK, + 8, 1, &one, tx)); + } + if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) { + VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK, + 8, 1, &one, tx)); + } + if (featureflags & DMU_BACKUP_FEATURE_COMPRESSED) { + VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_COMPRESSOK, + 8, 1, &one, tx)); + } + if (featureflags & DMU_BACKUP_FEATURE_RAW) { + VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_RAWOK, + 8, 1, &one, tx)); + } + } + + /* + * Usually the os->os_encrypted value is tied to the presence of a + * DSL Crypto Key object in the dd. However, that will not be received + * until dmu_recv_stream(), so we set the value manually for now. + */ + if (featureflags & DMU_BACKUP_FEATURE_RAW) { + os->os_encrypted = B_TRUE; + drba->drba_cookie->drc_raw = B_TRUE; + } + + dmu_buf_will_dirty(newds->ds_dbuf, tx); + dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT; + + /* + * If we actually created a non-clone, we need to create the objset + * in our new dataset. If this is a raw send we postpone this until + * dmu_recv_stream() so that we can allocate the metadnode with the + * properties from the DRR_BEGIN payload. + */ + rrw_enter(&newds->ds_bp_rwlock, RW_READER, FTAG); + if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds)) && + (featureflags & DMU_BACKUP_FEATURE_RAW) == 0) { + (void) dmu_objset_create_impl(dp->dp_spa, + newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx); + } + rrw_exit(&newds->ds_bp_rwlock, FTAG); + + drba->drba_cookie->drc_ds = newds; + + spa_history_log_internal_ds(newds, "receive", tx, ""); +} + +static int +dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx) +{ + dmu_recv_begin_arg_t *drba = arg; + dsl_pool_t *dp = dmu_tx_pool(tx); + struct drr_begin *drrb = drba->drba_cookie->drc_drrb; + int error; + ds_hold_flags_t dsflags = 0; + uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); + dsl_dataset_t *ds; + const char *tofs = drba->drba_cookie->drc_tofs; + + /* already checked */ + ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC); + ASSERT(featureflags & DMU_BACKUP_FEATURE_RESUMING); + + if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == + DMU_COMPOUNDSTREAM || + drrb->drr_type >= DMU_OST_NUMTYPES) + return (SET_ERROR(EINVAL)); + + /* Verify pool version supports SA if SA_SPILL feature set */ + if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) && + spa_version(dp->dp_spa) < SPA_VERSION_SA) + return (SET_ERROR(ENOTSUP)); + + /* + * The receiving code doesn't know how to translate a WRITE_EMBEDDED + * record to a plain WRITE record, so the pool must have the + * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED + * records. Same with WRITE_EMBEDDED records that use LZ4 compression. + */ + if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) && + !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) + return (SET_ERROR(ENOTSUP)); + if ((featureflags & DMU_BACKUP_FEATURE_LZ4) && + !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) + return (SET_ERROR(ENOTSUP)); + + /* + * The receiving code doesn't know how to translate large blocks + * to smaller ones, so the pool must have the LARGE_BLOCKS + * feature enabled if the stream has LARGE_BLOCKS. Same with + * large dnodes. + */ + if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) && + !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_BLOCKS)) + return (SET_ERROR(ENOTSUP)); + if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) && + !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_DNODE)) + return (SET_ERROR(ENOTSUP)); + + /* 6 extra bytes for /%recv */ + char recvname[ZFS_MAX_DATASET_NAME_LEN + 6]; + (void) snprintf(recvname, sizeof (recvname), "%s/%s", + tofs, recv_clone_name); + + if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0) + dsflags |= DS_HOLD_FLAG_DECRYPT; + + if (dsl_dataset_hold_flags(dp, recvname, dsflags, FTAG, &ds) != 0) { + /* %recv does not exist; continue in tofs */ + error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds); + if (error != 0) + return (error); + } + + /* check that ds is marked inconsistent */ + if (!DS_IS_INCONSISTENT(ds)) { + dsl_dataset_rele_flags(ds, dsflags, FTAG); + return (SET_ERROR(EINVAL)); + } + + /* check that there is resuming data, and that the toguid matches */ + if (!dsl_dataset_is_zapified(ds)) { + dsl_dataset_rele_flags(ds, dsflags, FTAG); + return (SET_ERROR(EINVAL)); + } + uint64_t val; + error = zap_lookup(dp->dp_meta_objset, ds->ds_object, + DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val); + if (error != 0 || drrb->drr_toguid != val) { + dsl_dataset_rele_flags(ds, dsflags, FTAG); + return (SET_ERROR(EINVAL)); + } + + /* + * Check if the receive is still running. If so, it will be owned. + * Note that nothing else can own the dataset (e.g. after the receive + * fails) because it will be marked inconsistent. + */ + if (dsl_dataset_has_owner(ds)) { + dsl_dataset_rele_flags(ds, dsflags, FTAG); + return (SET_ERROR(EBUSY)); + } + + /* There should not be any snapshots of this fs yet. */ + if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) { + dsl_dataset_rele_flags(ds, dsflags, FTAG); + return (SET_ERROR(EINVAL)); + } + + /* + * Note: resume point will be checked when we process the first WRITE + * record. + */ + + /* check that the origin matches */ + val = 0; + (void) zap_lookup(dp->dp_meta_objset, ds->ds_object, + DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val); + if (drrb->drr_fromguid != val) { + dsl_dataset_rele_flags(ds, dsflags, FTAG); + return (SET_ERROR(EINVAL)); + } + + dsl_dataset_rele_flags(ds, dsflags, FTAG); + return (0); +} + +static void +dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx) +{ + dmu_recv_begin_arg_t *drba = arg; + dsl_pool_t *dp = dmu_tx_pool(tx); + const char *tofs = drba->drba_cookie->drc_tofs; + struct drr_begin *drrb = drba->drba_cookie->drc_drrb; + uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); + dsl_dataset_t *ds; + objset_t *os; + ds_hold_flags_t dsflags = 0; + uint64_t dsobj; + /* 6 extra bytes for /%recv */ + char recvname[ZFS_MAX_DATASET_NAME_LEN + 6]; + + (void) snprintf(recvname, sizeof (recvname), "%s/%s", + tofs, recv_clone_name); + + if (featureflags & DMU_BACKUP_FEATURE_RAW) { + drba->drba_cookie->drc_raw = B_TRUE; + } else { + dsflags |= DS_HOLD_FLAG_DECRYPT; + } + + if (dsl_dataset_hold_flags(dp, recvname, dsflags, FTAG, &ds) != 0) { + /* %recv does not exist; continue in tofs */ + VERIFY0(dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds)); + drba->drba_cookie->drc_newfs = B_TRUE; + } + + /* clear the inconsistent flag so that we can own it */ + ASSERT(DS_IS_INCONSISTENT(ds)); + dmu_buf_will_dirty(ds->ds_dbuf, tx); + dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT; + dsobj = ds->ds_object; + dsl_dataset_rele_flags(ds, dsflags, FTAG); + + VERIFY0(dsl_dataset_own_obj(dp, dsobj, dsflags, dmu_recv_tag, &ds)); + VERIFY0(dmu_objset_from_ds(ds, &os)); + + dmu_buf_will_dirty(ds->ds_dbuf, tx); + dsl_dataset_phys(ds)->ds_flags |= DS_FLAG_INCONSISTENT; + + rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); + ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)) || + drba->drba_cookie->drc_raw); + rrw_exit(&ds->ds_bp_rwlock, FTAG); + + drba->drba_cookie->drc_ds = ds; + + spa_history_log_internal_ds(ds, "resume receive", tx, ""); +} + +/* + * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin() + * succeeds; otherwise we will leak the holds on the datasets. + */ +int +dmu_recv_begin(char *tofs, char *tosnap, dmu_replay_record_t *drr_begin, + boolean_t force, boolean_t resumable, nvlist_t *localprops, + nvlist_t *hidden_args, char *origin, dmu_recv_cookie_t *drc) +{ + dmu_recv_begin_arg_t drba = { 0 }; + + bzero(drc, sizeof (dmu_recv_cookie_t)); + drc->drc_drr_begin = drr_begin; + drc->drc_drrb = &drr_begin->drr_u.drr_begin; + drc->drc_tosnap = tosnap; + drc->drc_tofs = tofs; + drc->drc_force = force; + drc->drc_resumable = resumable; + drc->drc_cred = CRED(); + drc->drc_clone = (origin != NULL); + + if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) { + drc->drc_byteswap = B_TRUE; + (void) fletcher_4_incremental_byteswap(drr_begin, + sizeof (dmu_replay_record_t), &drc->drc_cksum); + byteswap_record(drr_begin); + } else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) { + (void) fletcher_4_incremental_native(drr_begin, + sizeof (dmu_replay_record_t), &drc->drc_cksum); + } else { + return (SET_ERROR(EINVAL)); + } + + drba.drba_origin = origin; + drba.drba_cookie = drc; + drba.drba_cred = CRED(); + + if (DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) & + DMU_BACKUP_FEATURE_RESUMING) { + return (dsl_sync_task(tofs, + dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync, + &drba, 5, ZFS_SPACE_CHECK_NORMAL)); + } else { + int err; + + /* + * For non-raw, non-incremental, non-resuming receives the + * user can specify encryption parameters on the command line + * with "zfs recv -o". For these receives we create a dcp and + * pass it to the sync task. Creating the dcp will implicitly + * remove the encryption params from the localprops nvlist, + * which avoids errors when trying to set these normally + * read-only properties. Any other kind of receive that + * attempts to set these properties will fail as a result. + */ + if ((DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) & + DMU_BACKUP_FEATURE_RAW) == 0 && + origin == NULL && drc->drc_drrb->drr_fromguid == 0) { + err = dsl_crypto_params_create_nvlist(DCP_CMD_NONE, + localprops, hidden_args, &drba.drba_dcp); + if (err != 0) + return (err); + } + + err = dsl_sync_task(tofs, + dmu_recv_begin_check, dmu_recv_begin_sync, + &drba, 5, ZFS_SPACE_CHECK_NORMAL); + dsl_crypto_params_free(drba.drba_dcp, !!err); + + return (err); + } +} + +struct receive_record_arg { + dmu_replay_record_t header; + void *payload; /* Pointer to a buffer containing the payload */ + /* + * If the record is a write, pointer to the arc_buf_t containing the + * payload. + */ + arc_buf_t *arc_buf; + int payload_size; + uint64_t bytes_read; /* bytes read from stream when record created */ + boolean_t eos_marker; /* Marks the end of the stream */ + bqueue_node_t node; +}; + +struct receive_writer_arg { + objset_t *os; + boolean_t byteswap; + bqueue_t q; + + /* + * These three args are used to signal to the main thread that we're + * done. + */ + kmutex_t mutex; + kcondvar_t cv; + boolean_t done; + + int err; + /* A map from guid to dataset to help handle dedup'd streams. */ + avl_tree_t *guid_to_ds_map; + boolean_t resumable; + boolean_t raw; + uint64_t last_object; + uint64_t last_offset; + uint64_t max_object; /* highest object ID referenced in stream */ + uint64_t bytes_read; /* bytes read when current record created */ + + /* Encryption parameters for the last received DRR_OBJECT_RANGE */ + boolean_t or_crypt_params_present; + uint64_t or_firstobj; + uint64_t or_numslots; + uint8_t or_salt[ZIO_DATA_SALT_LEN]; + uint8_t or_iv[ZIO_DATA_IV_LEN]; + uint8_t or_mac[ZIO_DATA_MAC_LEN]; + boolean_t or_byteorder; +}; + +struct objlist { + list_t list; /* List of struct receive_objnode. */ + /* + * Last object looked up. Used to assert that objects are being looked + * up in ascending order. + */ + uint64_t last_lookup; +}; + +struct receive_objnode { + list_node_t node; + uint64_t object; +}; + +struct receive_arg { + objset_t *os; + vnode_t *vp; /* The vnode to read the stream from */ + uint64_t voff; /* The current offset in the stream */ + uint64_t bytes_read; + /* + * A record that has had its payload read in, but hasn't yet been handed + * off to the worker thread. + */ + struct receive_record_arg *rrd; + /* A record that has had its header read in, but not its payload. */ + struct receive_record_arg *next_rrd; + zio_cksum_t cksum; + zio_cksum_t prev_cksum; + int err; + boolean_t byteswap; + boolean_t raw; + uint64_t featureflags; + /* Sorted list of objects not to issue prefetches for. */ + struct objlist ignore_objlist; +}; + +typedef struct guid_map_entry { + uint64_t guid; + boolean_t raw; + dsl_dataset_t *gme_ds; + avl_node_t avlnode; +} guid_map_entry_t; + +static int +guid_compare(const void *arg1, const void *arg2) +{ + const guid_map_entry_t *gmep1 = (const guid_map_entry_t *)arg1; + const guid_map_entry_t *gmep2 = (const guid_map_entry_t *)arg2; + + return (AVL_CMP(gmep1->guid, gmep2->guid)); +} + +static void +free_guid_map_onexit(void *arg) +{ + avl_tree_t *ca = arg; + void *cookie = NULL; + guid_map_entry_t *gmep; + + while ((gmep = avl_destroy_nodes(ca, &cookie)) != NULL) { + ds_hold_flags_t dsflags = DS_HOLD_FLAG_DECRYPT; + + if (gmep->raw) { + gmep->gme_ds->ds_objset->os_raw_receive = B_FALSE; + dsflags &= ~DS_HOLD_FLAG_DECRYPT; + } + + dsl_dataset_disown(gmep->gme_ds, dsflags, gmep); + kmem_free(gmep, sizeof (guid_map_entry_t)); + } + avl_destroy(ca); + kmem_free(ca, sizeof (avl_tree_t)); +} + +static int +receive_read(struct receive_arg *ra, int len, void *buf) +{ + int done = 0; + + /* + * The code doesn't rely on this (lengths being multiples of 8). See + * comment in dump_bytes. + */ + ASSERT(len % 8 == 0 || + (ra->featureflags & DMU_BACKUP_FEATURE_RAW) != 0); + + while (done < len) { + ssize_t resid; + + ra->err = vn_rdwr(UIO_READ, ra->vp, + (char *)buf + done, len - done, + ra->voff, UIO_SYSSPACE, FAPPEND, + RLIM64_INFINITY, CRED(), &resid); + + if (resid == len - done) { + /* + * Note: ECKSUM indicates that the receive + * was interrupted and can potentially be resumed. + */ + ra->err = SET_ERROR(ECKSUM); + } + ra->voff += len - done - resid; + done = len - resid; + if (ra->err != 0) + return (ra->err); + } + + ra->bytes_read += len; + + ASSERT3U(done, ==, len); + return (0); +} + +noinline static void +byteswap_record(dmu_replay_record_t *drr) +{ +#define DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X)) +#define DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X)) + drr->drr_type = BSWAP_32(drr->drr_type); + drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen); + + switch (drr->drr_type) { + case DRR_BEGIN: + DO64(drr_begin.drr_magic); + DO64(drr_begin.drr_versioninfo); + DO64(drr_begin.drr_creation_time); + DO32(drr_begin.drr_type); + DO32(drr_begin.drr_flags); + DO64(drr_begin.drr_toguid); + DO64(drr_begin.drr_fromguid); + break; + case DRR_OBJECT: + DO64(drr_object.drr_object); + DO32(drr_object.drr_type); + DO32(drr_object.drr_bonustype); + DO32(drr_object.drr_blksz); + DO32(drr_object.drr_bonuslen); + DO32(drr_object.drr_raw_bonuslen); + DO64(drr_object.drr_toguid); + DO64(drr_object.drr_maxblkid); + break; + case DRR_FREEOBJECTS: + DO64(drr_freeobjects.drr_firstobj); + DO64(drr_freeobjects.drr_numobjs); + DO64(drr_freeobjects.drr_toguid); + break; + case DRR_WRITE: + DO64(drr_write.drr_object); + DO32(drr_write.drr_type); + DO64(drr_write.drr_offset); + DO64(drr_write.drr_logical_size); + DO64(drr_write.drr_toguid); + ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum); + DO64(drr_write.drr_key.ddk_prop); + DO64(drr_write.drr_compressed_size); + break; + case DRR_WRITE_BYREF: + DO64(drr_write_byref.drr_object); + DO64(drr_write_byref.drr_offset); + DO64(drr_write_byref.drr_length); + DO64(drr_write_byref.drr_toguid); + DO64(drr_write_byref.drr_refguid); + DO64(drr_write_byref.drr_refobject); + DO64(drr_write_byref.drr_refoffset); + ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write_byref. + drr_key.ddk_cksum); + DO64(drr_write_byref.drr_key.ddk_prop); + break; + case DRR_WRITE_EMBEDDED: + DO64(drr_write_embedded.drr_object); + DO64(drr_write_embedded.drr_offset); + DO64(drr_write_embedded.drr_length); + DO64(drr_write_embedded.drr_toguid); + DO32(drr_write_embedded.drr_lsize); + DO32(drr_write_embedded.drr_psize); + break; + case DRR_FREE: + DO64(drr_free.drr_object); + DO64(drr_free.drr_offset); + DO64(drr_free.drr_length); + DO64(drr_free.drr_toguid); + break; + case DRR_SPILL: + DO64(drr_spill.drr_object); + DO64(drr_spill.drr_length); + DO64(drr_spill.drr_toguid); + DO64(drr_spill.drr_compressed_size); + DO32(drr_spill.drr_type); + break; + case DRR_OBJECT_RANGE: + DO64(drr_object_range.drr_firstobj); + DO64(drr_object_range.drr_numslots); + DO64(drr_object_range.drr_toguid); + break; + case DRR_END: + DO64(drr_end.drr_toguid); + ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum); + break; + default: + break; + } + + if (drr->drr_type != DRR_BEGIN) { + ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum); + } + +#undef DO64 +#undef DO32 +} + +static inline uint8_t +deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size) +{ + if (bonus_type == DMU_OT_SA) { + return (1); + } else { + return (1 + + ((DN_OLD_MAX_BONUSLEN - + MIN(DN_OLD_MAX_BONUSLEN, bonus_size)) >> SPA_BLKPTRSHIFT)); + } +} + +static void +save_resume_state(struct receive_writer_arg *rwa, + uint64_t object, uint64_t offset, dmu_tx_t *tx) +{ + int txgoff = dmu_tx_get_txg(tx) & TXG_MASK; + + if (!rwa->resumable) + return; + + /* + * We use ds_resume_bytes[] != 0 to indicate that we need to + * update this on disk, so it must not be 0. + */ + ASSERT(rwa->bytes_read != 0); + + /* + * We only resume from write records, which have a valid + * (non-meta-dnode) object number. + */ + ASSERT(object != 0); + + /* + * For resuming to work correctly, we must receive records in order, + * sorted by object,offset. This is checked by the callers, but + * assert it here for good measure. + */ + ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]); + ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] || + offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]); + ASSERT3U(rwa->bytes_read, >=, + rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]); + + rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object; + rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset; + rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read; +} + +noinline static int +receive_object(struct receive_writer_arg *rwa, struct drr_object *drro, + void *data) +{ + dmu_object_info_t doi; + dmu_tx_t *tx; + uint64_t object; + int err; + uint8_t dn_slots = drro->drr_dn_slots != 0 ? + drro->drr_dn_slots : DNODE_MIN_SLOTS; + + if (drro->drr_type == DMU_OT_NONE || + !DMU_OT_IS_VALID(drro->drr_type) || + !DMU_OT_IS_VALID(drro->drr_bonustype) || + drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS || + drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS || + P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) || + drro->drr_blksz < SPA_MINBLOCKSIZE || + drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) || + drro->drr_bonuslen > + DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(rwa->os))) || + dn_slots > + (spa_maxdnodesize(dmu_objset_spa(rwa->os)) >> DNODE_SHIFT)) { + return (SET_ERROR(EINVAL)); + } + + if (rwa->raw) { + /* + * We should have received a DRR_OBJECT_RANGE record + * containing this block and stored it in rwa. + */ + if (drro->drr_object < rwa->or_firstobj || + drro->drr_object >= rwa->or_firstobj + rwa->or_numslots || + drro->drr_raw_bonuslen < drro->drr_bonuslen || + drro->drr_indblkshift > SPA_MAXBLOCKSHIFT || + drro->drr_nlevels > DN_MAX_LEVELS || + drro->drr_nblkptr > DN_MAX_NBLKPTR || + DN_SLOTS_TO_BONUSLEN(dn_slots) < + drro->drr_raw_bonuslen) + return (SET_ERROR(EINVAL)); + } else { + if (drro->drr_flags != 0 || drro->drr_raw_bonuslen != 0 || + drro->drr_indblkshift != 0 || drro->drr_nlevels != 0 || + drro->drr_nblkptr != 0) + return (SET_ERROR(EINVAL)); + } + + err = dmu_object_info(rwa->os, drro->drr_object, &doi); + if (err != 0 && err != ENOENT && err != EEXIST) + return (SET_ERROR(EINVAL)); + + if (drro->drr_object > rwa->max_object) + rwa->max_object = drro->drr_object; + + /* + * If we are losing blkptrs or changing the block size this must + * be a new file instance. We must clear out the previous file + * contents before we can change this type of metadata in the dnode. + * Raw receives will also check that the indirect structure of the + * dnode hasn't changed. + */ + if (err == 0) { + uint32_t indblksz = drro->drr_indblkshift ? + 1ULL << drro->drr_indblkshift : 0; + int nblkptr = deduce_nblkptr(drro->drr_bonustype, + drro->drr_bonuslen); + + object = drro->drr_object; + + /* nblkptr will be bounded by the bonus size and type */ + if (rwa->raw && nblkptr != drro->drr_nblkptr) + return (SET_ERROR(EINVAL)); + + if (drro->drr_blksz != doi.doi_data_block_size || + nblkptr < doi.doi_nblkptr || + dn_slots != doi.doi_dnodesize >> DNODE_SHIFT || + (rwa->raw && + (indblksz != doi.doi_metadata_block_size || + drro->drr_nlevels < doi.doi_indirection))) { + err = dmu_free_long_range(rwa->os, + drro->drr_object, 0, DMU_OBJECT_END); + if (err != 0) + return (SET_ERROR(EINVAL)); + } + + /* + * The dmu does not currently support decreasing nlevels + * on an object. For non-raw sends, this does not matter + * and the new object can just use the previous one's nlevels. + * For raw sends, however, the structure of the received dnode + * (including nlevels) must match that of the send side. + * Therefore, instead of using dmu_object_reclaim(), we must + * free the object completely and call dmu_object_claim_dnsize() + * instead. + */ + if ((rwa->raw && drro->drr_nlevels < doi.doi_indirection) || + dn_slots != doi.doi_dnodesize >> DNODE_SHIFT) { + err = dmu_free_long_object(rwa->os, drro->drr_object); + if (err != 0) + return (SET_ERROR(EINVAL)); + + txg_wait_synced(dmu_objset_pool(rwa->os), 0); + object = DMU_NEW_OBJECT; + } + } else if (err == EEXIST) { + /* + * The object requested is currently an interior slot of a + * multi-slot dnode. This will be resolved when the next txg + * is synced out, since the send stream will have told us + * to free this slot when we freed the associated dnode + * earlier in the stream. + */ + txg_wait_synced(dmu_objset_pool(rwa->os), 0); + object = drro->drr_object; + } else { + /* object is free and we are about to allocate a new one */ + object = DMU_NEW_OBJECT; + } + + /* + * If this is a multi-slot dnode there is a chance that this + * object will expand into a slot that is already used by + * another object from the previous snapshot. We must free + * these objects before we attempt to allocate the new dnode. + */ + if (dn_slots > 1) { + boolean_t need_sync = B_FALSE; + + for (uint64_t slot = drro->drr_object + 1; + slot < drro->drr_object + dn_slots; + slot++) { + dmu_object_info_t slot_doi; + + err = dmu_object_info(rwa->os, slot, &slot_doi); + if (err == ENOENT || err == EEXIST) + continue; + else if (err != 0) + return (err); + + err = dmu_free_long_object(rwa->os, slot); + + if (err != 0) + return (err); + + need_sync = B_TRUE; + } + + if (need_sync) + txg_wait_synced(dmu_objset_pool(rwa->os), 0); + } + + tx = dmu_tx_create(rwa->os); + dmu_tx_hold_bonus(tx, object); + dmu_tx_hold_write(tx, object, 0, 0); + err = dmu_tx_assign(tx, TXG_WAIT); + if (err != 0) { + dmu_tx_abort(tx); + return (err); + } + + if (object == DMU_NEW_OBJECT) { + /* currently free, want to be allocated */ + err = dmu_object_claim_dnsize(rwa->os, drro->drr_object, + drro->drr_type, drro->drr_blksz, + drro->drr_bonustype, drro->drr_bonuslen, + dn_slots << DNODE_SHIFT, tx); + } else if (drro->drr_type != doi.doi_type || + drro->drr_blksz != doi.doi_data_block_size || + drro->drr_bonustype != doi.doi_bonus_type || + drro->drr_bonuslen != doi.doi_bonus_size) { + /* currently allocated, but with different properties */ + err = dmu_object_reclaim_dnsize(rwa->os, drro->drr_object, + drro->drr_type, drro->drr_blksz, + drro->drr_bonustype, drro->drr_bonuslen, + dn_slots << DNODE_SHIFT, tx); + } + if (err != 0) { + dmu_tx_commit(tx); + return (SET_ERROR(EINVAL)); + } + + if (rwa->or_crypt_params_present) { + /* + * Set the crypt params for the buffer associated with this + * range of dnodes. This causes the blkptr_t to have the + * same crypt params (byteorder, salt, iv, mac) as on the + * sending side. + * + * Since we are committing this tx now, it is possible for + * the dnode block to end up on-disk with the incorrect MAC, + * if subsequent objects in this block are received in a + * different txg. However, since the dataset is marked as + * inconsistent, no code paths will do a non-raw read (or + * decrypt the block / verify the MAC). The receive code and + * scrub code can safely do raw reads and verify the + * checksum. They don't need to verify the MAC. + */ + dmu_buf_t *db = NULL; + uint64_t offset = rwa->or_firstobj * DNODE_MIN_SIZE; + + err = dmu_buf_hold_by_dnode(DMU_META_DNODE(rwa->os), + offset, FTAG, &db, DMU_READ_PREFETCH | DMU_READ_NO_DECRYPT); + if (err != 0) { + dmu_tx_commit(tx); + return (SET_ERROR(EINVAL)); + } + + dmu_buf_set_crypt_params(db, rwa->or_byteorder, + rwa->or_salt, rwa->or_iv, rwa->or_mac, tx); + + dmu_buf_rele(db, FTAG); + + rwa->or_crypt_params_present = B_FALSE; + } + + dmu_object_set_checksum(rwa->os, drro->drr_object, + drro->drr_checksumtype, tx); + dmu_object_set_compress(rwa->os, drro->drr_object, + drro->drr_compress, tx); + + /* handle more restrictive dnode structuring for raw recvs */ + if (rwa->raw) { + /* + * Set the indirect block shift and nlevels. This will not fail + * because we ensured all of the blocks were free earlier if + * this is a new object. + */ + VERIFY0(dmu_object_set_blocksize(rwa->os, drro->drr_object, + drro->drr_blksz, drro->drr_indblkshift, tx)); + VERIFY0(dmu_object_set_nlevels(rwa->os, drro->drr_object, + drro->drr_nlevels, tx)); + VERIFY0(dmu_object_set_maxblkid(rwa->os, drro->drr_object, + drro->drr_maxblkid, tx)); + } + + if (data != NULL) { + dmu_buf_t *db; + uint32_t flags = DMU_READ_NO_PREFETCH; + + if (rwa->raw) + flags |= DMU_READ_NO_DECRYPT; + + VERIFY0(dmu_bonus_hold_impl(rwa->os, drro->drr_object, + FTAG, flags, &db)); + dmu_buf_will_dirty(db, tx); + + ASSERT3U(db->db_size, >=, drro->drr_bonuslen); + bcopy(data, db->db_data, DRR_OBJECT_PAYLOAD_SIZE(drro)); + + /* + * Raw bonus buffers have their byteorder determined by the + * DRR_OBJECT_RANGE record. + */ + if (rwa->byteswap && !rwa->raw) { + dmu_object_byteswap_t byteswap = + DMU_OT_BYTESWAP(drro->drr_bonustype); + dmu_ot_byteswap[byteswap].ob_func(db->db_data, + DRR_OBJECT_PAYLOAD_SIZE(drro)); + } + dmu_buf_rele(db, FTAG); + } + dmu_tx_commit(tx); + + return (0); +} + +/* ARGSUSED */ +noinline static int +receive_freeobjects(struct receive_writer_arg *rwa, + struct drr_freeobjects *drrfo) +{ + uint64_t obj; + int next_err = 0; + + if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj) + return (SET_ERROR(EINVAL)); + + for (obj = drrfo->drr_firstobj == 0 ? 1 : drrfo->drr_firstobj; + obj < drrfo->drr_firstobj + drrfo->drr_numobjs && next_err == 0; + next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) { + dmu_object_info_t doi; + int err; + + err = dmu_object_info(rwa->os, obj, &doi); + if (err == ENOENT) + continue; + else if (err != 0) + return (err); + + err = dmu_free_long_object(rwa->os, obj); + + if (err != 0) + return (err); + + if (obj > rwa->max_object) + rwa->max_object = obj; + } + if (next_err != ESRCH) + return (next_err); + return (0); +} + +noinline static int +receive_write(struct receive_writer_arg *rwa, struct drr_write *drrw, + arc_buf_t *abuf) +{ + int err; + dmu_tx_t *tx; + dnode_t *dn; + + if (drrw->drr_offset + drrw->drr_logical_size < drrw->drr_offset || + !DMU_OT_IS_VALID(drrw->drr_type)) + return (SET_ERROR(EINVAL)); + + /* + * For resuming to work, records must be in increasing order + * by (object, offset). + */ + if (drrw->drr_object < rwa->last_object || + (drrw->drr_object == rwa->last_object && + drrw->drr_offset < rwa->last_offset)) { + return (SET_ERROR(EINVAL)); + } + rwa->last_object = drrw->drr_object; + rwa->last_offset = drrw->drr_offset; + + if (rwa->last_object > rwa->max_object) + rwa->max_object = rwa->last_object; + + if (dmu_object_info(rwa->os, drrw->drr_object, NULL) != 0) + return (SET_ERROR(EINVAL)); + + tx = dmu_tx_create(rwa->os); + dmu_tx_hold_write(tx, drrw->drr_object, + drrw->drr_offset, drrw->drr_logical_size); + err = dmu_tx_assign(tx, TXG_WAIT); + if (err != 0) { + dmu_tx_abort(tx); + return (err); + } + + if (rwa->byteswap && !arc_is_encrypted(abuf) && + arc_get_compression(abuf) == ZIO_COMPRESS_OFF) { + dmu_object_byteswap_t byteswap = + DMU_OT_BYTESWAP(drrw->drr_type); + dmu_ot_byteswap[byteswap].ob_func(abuf->b_data, + DRR_WRITE_PAYLOAD_SIZE(drrw)); + } + + VERIFY0(dnode_hold(rwa->os, drrw->drr_object, FTAG, &dn)); + dmu_assign_arcbuf_by_dnode(dn, drrw->drr_offset, abuf, tx); + dnode_rele(dn, FTAG); + + /* + * Note: If the receive fails, we want the resume stream to start + * with the same record that we last successfully received (as opposed + * to the next record), so that we can verify that we are + * resuming from the correct location. + */ + save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx); + dmu_tx_commit(tx); + + return (0); +} + +/* + * Handle a DRR_WRITE_BYREF record. This record is used in dedup'ed + * streams to refer to a copy of the data that is already on the + * system because it came in earlier in the stream. This function + * finds the earlier copy of the data, and uses that copy instead of + * data from the stream to fulfill this write. + */ +static int +receive_write_byref(struct receive_writer_arg *rwa, + struct drr_write_byref *drrwbr) +{ + dmu_tx_t *tx; + int err; + guid_map_entry_t gmesrch; + guid_map_entry_t *gmep; + avl_index_t where; + objset_t *ref_os = NULL; + int flags = DMU_READ_PREFETCH; + dmu_buf_t *dbp; + + if (drrwbr->drr_offset + drrwbr->drr_length < drrwbr->drr_offset) + return (SET_ERROR(EINVAL)); + + /* + * If the GUID of the referenced dataset is different from the + * GUID of the target dataset, find the referenced dataset. + */ + if (drrwbr->drr_toguid != drrwbr->drr_refguid) { + gmesrch.guid = drrwbr->drr_refguid; + if ((gmep = avl_find(rwa->guid_to_ds_map, &gmesrch, + &where)) == NULL) { + return (SET_ERROR(EINVAL)); + } + if (dmu_objset_from_ds(gmep->gme_ds, &ref_os)) + return (SET_ERROR(EINVAL)); + } else { + ref_os = rwa->os; + } + + if (drrwbr->drr_object > rwa->max_object) + rwa->max_object = drrwbr->drr_object; + + if (rwa->raw) + flags |= DMU_READ_NO_DECRYPT; + + /* may return either a regular db or an encrypted one */ + err = dmu_buf_hold(ref_os, drrwbr->drr_refobject, + drrwbr->drr_refoffset, FTAG, &dbp, flags); + if (err != 0) + return (err); + + tx = dmu_tx_create(rwa->os); + + dmu_tx_hold_write(tx, drrwbr->drr_object, + drrwbr->drr_offset, drrwbr->drr_length); + err = dmu_tx_assign(tx, TXG_WAIT); + if (err != 0) { + dmu_tx_abort(tx); + return (err); + } + + if (rwa->raw) { + dmu_copy_from_buf(rwa->os, drrwbr->drr_object, + drrwbr->drr_offset, dbp, tx); + } else { + dmu_write(rwa->os, drrwbr->drr_object, + drrwbr->drr_offset, drrwbr->drr_length, dbp->db_data, tx); + } + dmu_buf_rele(dbp, FTAG); + + /* See comment in restore_write. */ + save_resume_state(rwa, drrwbr->drr_object, drrwbr->drr_offset, tx); + dmu_tx_commit(tx); + return (0); +} + +static int +receive_write_embedded(struct receive_writer_arg *rwa, + struct drr_write_embedded *drrwe, void *data) +{ + dmu_tx_t *tx; + int err; + + if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset) + return (SET_ERROR(EINVAL)); + + if (drrwe->drr_psize > BPE_PAYLOAD_SIZE) + return (SET_ERROR(EINVAL)); + + if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES) + return (SET_ERROR(EINVAL)); + if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS) + return (SET_ERROR(EINVAL)); + if (rwa->raw) + return (SET_ERROR(EINVAL)); + + if (drrwe->drr_object > rwa->max_object) + rwa->max_object = drrwe->drr_object; + + tx = dmu_tx_create(rwa->os); + + dmu_tx_hold_write(tx, drrwe->drr_object, + drrwe->drr_offset, drrwe->drr_length); + err = dmu_tx_assign(tx, TXG_WAIT); + if (err != 0) { + dmu_tx_abort(tx); + return (err); + } + + dmu_write_embedded(rwa->os, drrwe->drr_object, + drrwe->drr_offset, data, drrwe->drr_etype, + drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize, + rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx); + + /* See comment in restore_write. */ + save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx); + dmu_tx_commit(tx); + return (0); +} + +static int +receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs, + arc_buf_t *abuf) +{ + dmu_tx_t *tx; + dmu_buf_t *db, *db_spill; + int err; + uint32_t flags = 0; + + if (drrs->drr_length < SPA_MINBLOCKSIZE || + drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os))) + return (SET_ERROR(EINVAL)); + + if (rwa->raw) { + if (!DMU_OT_IS_VALID(drrs->drr_type) || + drrs->drr_compressiontype >= ZIO_COMPRESS_FUNCTIONS || + drrs->drr_compressed_size == 0) + return (SET_ERROR(EINVAL)); + + flags |= DMU_READ_NO_DECRYPT; + } + + if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0) + return (SET_ERROR(EINVAL)); + + if (drrs->drr_object > rwa->max_object) + rwa->max_object = drrs->drr_object; + + VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db)); + if ((err = dmu_spill_hold_by_bonus(db, DMU_READ_NO_DECRYPT, FTAG, + &db_spill)) != 0) { + dmu_buf_rele(db, FTAG); + return (err); + } + + tx = dmu_tx_create(rwa->os); + + dmu_tx_hold_spill(tx, db->db_object); + + err = dmu_tx_assign(tx, TXG_WAIT); + if (err != 0) { + dmu_buf_rele(db, FTAG); + dmu_buf_rele(db_spill, FTAG); + dmu_tx_abort(tx); + return (err); + } + + if (db_spill->db_size < drrs->drr_length) + VERIFY(0 == dbuf_spill_set_blksz(db_spill, + drrs->drr_length, tx)); + + if (rwa->byteswap && !arc_is_encrypted(abuf) && + arc_get_compression(abuf) == ZIO_COMPRESS_OFF) { + dmu_object_byteswap_t byteswap = + DMU_OT_BYTESWAP(drrs->drr_type); + dmu_ot_byteswap[byteswap].ob_func(abuf->b_data, + DRR_SPILL_PAYLOAD_SIZE(drrs)); + } + + dbuf_assign_arcbuf((dmu_buf_impl_t *)db_spill, abuf, tx); + + dmu_buf_rele(db, FTAG); + dmu_buf_rele(db_spill, FTAG); + + dmu_tx_commit(tx); + return (0); +} + +/* ARGSUSED */ +noinline static int +receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf) +{ + int err; + + if (drrf->drr_length != DMU_OBJECT_END && + drrf->drr_offset + drrf->drr_length < drrf->drr_offset) + return (SET_ERROR(EINVAL)); + + if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0) + return (SET_ERROR(EINVAL)); + + if (drrf->drr_object > rwa->max_object) + rwa->max_object = drrf->drr_object; + + err = dmu_free_long_range(rwa->os, drrf->drr_object, + drrf->drr_offset, drrf->drr_length); + + return (err); +} + +static int +receive_object_range(struct receive_writer_arg *rwa, + struct drr_object_range *drror) +{ + /* + * By default, we assume this block is in our native format + * (ZFS_HOST_BYTEORDER). We then take into account whether + * the send stream is byteswapped (rwa->byteswap). Finally, + * we need to byteswap again if this particular block was + * in non-native format on the send side. + */ + boolean_t byteorder = ZFS_HOST_BYTEORDER ^ rwa->byteswap ^ + !!DRR_IS_RAW_BYTESWAPPED(drror->drr_flags); + + /* + * Since dnode block sizes are constant, we should not need to worry + * about making sure that the dnode block size is the same on the + * sending and receiving sides for the time being. For non-raw sends, + * this does not matter (and in fact we do not send a DRR_OBJECT_RANGE + * record at all). Raw sends require this record type because the + * encryption parameters are used to protect an entire block of bonus + * buffers. If the size of dnode blocks ever becomes variable, + * handling will need to be added to ensure that dnode block sizes + * match on the sending and receiving side. + */ + if (drror->drr_numslots != DNODES_PER_BLOCK || + P2PHASE(drror->drr_firstobj, DNODES_PER_BLOCK) != 0 || + !rwa->raw) + return (SET_ERROR(EINVAL)); + + if (drror->drr_firstobj > rwa->max_object) + rwa->max_object = drror->drr_firstobj; + + /* + * The DRR_OBJECT_RANGE handling must be deferred to receive_object() + * so that the block of dnodes is not written out when it's empty, + * and converted to a HOLE BP. + */ + rwa->or_crypt_params_present = B_TRUE; + rwa->or_firstobj = drror->drr_firstobj; + rwa->or_numslots = drror->drr_numslots; + bcopy(drror->drr_salt, rwa->or_salt, ZIO_DATA_SALT_LEN); + bcopy(drror->drr_iv, rwa->or_iv, ZIO_DATA_IV_LEN); + bcopy(drror->drr_mac, rwa->or_mac, ZIO_DATA_MAC_LEN); + rwa->or_byteorder = byteorder; + + return (0); +} + +/* used to destroy the drc_ds on error */ +static void +dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc) +{ + dsl_dataset_t *ds = drc->drc_ds; + ds_hold_flags_t dsflags = (drc->drc_raw) ? 0 : DS_HOLD_FLAG_DECRYPT; + + /* + * Wait for the txg sync before cleaning up the receive. For + * resumable receives, this ensures that our resume state has + * been written out to disk. For raw receives, this ensures + * that the user accounting code will not attempt to do anything + * after we stopped receiving the dataset. + */ + txg_wait_synced(ds->ds_dir->dd_pool, 0); + ds->ds_objset->os_raw_receive = B_FALSE; + + rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); + if (drc->drc_resumable && !BP_IS_HOLE(dsl_dataset_get_blkptr(ds))) { + rrw_exit(&ds->ds_bp_rwlock, FTAG); + dsl_dataset_disown(ds, dsflags, dmu_recv_tag); + } else { + char name[ZFS_MAX_DATASET_NAME_LEN]; + rrw_exit(&ds->ds_bp_rwlock, FTAG); + dsl_dataset_name(ds, name); + dsl_dataset_disown(ds, dsflags, dmu_recv_tag); + (void) dsl_destroy_head(name); + } +} + +static void +receive_cksum(struct receive_arg *ra, int len, void *buf) +{ + if (ra->byteswap) { + (void) fletcher_4_incremental_byteswap(buf, len, &ra->cksum); + } else { + (void) fletcher_4_incremental_native(buf, len, &ra->cksum); + } +} + +/* + * Read the payload into a buffer of size len, and update the current record's + * payload field. + * Allocate ra->next_rrd and read the next record's header into + * ra->next_rrd->header. + * Verify checksum of payload and next record. + */ +static int +receive_read_payload_and_next_header(struct receive_arg *ra, int len, void *buf) +{ + int err; + zio_cksum_t cksum_orig; + zio_cksum_t *cksump; + + if (len != 0) { + ASSERT3U(len, <=, SPA_MAXBLOCKSIZE); + err = receive_read(ra, len, buf); + if (err != 0) + return (err); + receive_cksum(ra, len, buf); + + /* note: rrd is NULL when reading the begin record's payload */ + if (ra->rrd != NULL) { + ra->rrd->payload = buf; + ra->rrd->payload_size = len; + ra->rrd->bytes_read = ra->bytes_read; + } + } + + ra->prev_cksum = ra->cksum; + + ra->next_rrd = kmem_zalloc(sizeof (*ra->next_rrd), KM_SLEEP); + err = receive_read(ra, sizeof (ra->next_rrd->header), + &ra->next_rrd->header); + ra->next_rrd->bytes_read = ra->bytes_read; + + if (err != 0) { + kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); + ra->next_rrd = NULL; + return (err); + } + if (ra->next_rrd->header.drr_type == DRR_BEGIN) { + kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); + ra->next_rrd = NULL; + return (SET_ERROR(EINVAL)); + } + + /* + * Note: checksum is of everything up to but not including the + * checksum itself. + */ + ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), + ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t)); + receive_cksum(ra, + offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), + &ra->next_rrd->header); + + cksum_orig = ra->next_rrd->header.drr_u.drr_checksum.drr_checksum; + cksump = &ra->next_rrd->header.drr_u.drr_checksum.drr_checksum; + + if (ra->byteswap) + byteswap_record(&ra->next_rrd->header); + + if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) && + !ZIO_CHECKSUM_EQUAL(ra->cksum, *cksump)) { + kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); + ra->next_rrd = NULL; + return (SET_ERROR(ECKSUM)); + } + + receive_cksum(ra, sizeof (cksum_orig), &cksum_orig); + + return (0); +} + +static void +objlist_create(struct objlist *list) +{ + list_create(&list->list, sizeof (struct receive_objnode), + offsetof(struct receive_objnode, node)); + list->last_lookup = 0; +} + +static void +objlist_destroy(struct objlist *list) +{ + for (struct receive_objnode *n = list_remove_head(&list->list); + n != NULL; n = list_remove_head(&list->list)) { + kmem_free(n, sizeof (*n)); + } + list_destroy(&list->list); +} + +/* + * This function looks through the objlist to see if the specified object number + * is contained in the objlist. In the process, it will remove all object + * numbers in the list that are smaller than the specified object number. Thus, + * any lookup of an object number smaller than a previously looked up object + * number will always return false; therefore, all lookups should be done in + * ascending order. + */ +static boolean_t +objlist_exists(struct objlist *list, uint64_t object) +{ + struct receive_objnode *node = list_head(&list->list); + ASSERT3U(object, >=, list->last_lookup); + list->last_lookup = object; + while (node != NULL && node->object < object) { + VERIFY3P(node, ==, list_remove_head(&list->list)); + kmem_free(node, sizeof (*node)); + node = list_head(&list->list); + } + return (node != NULL && node->object == object); +} + +/* + * The objlist is a list of object numbers stored in ascending order. However, + * the insertion of new object numbers does not seek out the correct location to + * store a new object number; instead, it appends it to the list for simplicity. + * Thus, any users must take care to only insert new object numbers in ascending + * order. + */ +static void +objlist_insert(struct objlist *list, uint64_t object) +{ + struct receive_objnode *node = kmem_zalloc(sizeof (*node), KM_SLEEP); + node->object = object; +#ifdef ZFS_DEBUG + { + struct receive_objnode *last_object = list_tail(&list->list); + uint64_t last_objnum = (last_object != NULL ? last_object->object : 0); + ASSERT3U(node->object, >, last_objnum); + } +#endif + list_insert_tail(&list->list, node); +} + +/* + * Issue the prefetch reads for any necessary indirect blocks. + * + * We use the object ignore list to tell us whether or not to issue prefetches + * for a given object. We do this for both correctness (in case the blocksize + * of an object has changed) and performance (if the object doesn't exist, don't + * needlessly try to issue prefetches). We also trim the list as we go through + * the stream to prevent it from growing to an unbounded size. + * + * The object numbers within will always be in sorted order, and any write + * records we see will also be in sorted order, but they're not sorted with + * respect to each other (i.e. we can get several object records before + * receiving each object's write records). As a result, once we've reached a + * given object number, we can safely remove any reference to lower object + * numbers in the ignore list. In practice, we receive up to 32 object records + * before receiving write records, so the list can have up to 32 nodes in it. + */ +/* ARGSUSED */ +static void +receive_read_prefetch(struct receive_arg *ra, + uint64_t object, uint64_t offset, uint64_t length) +{ + if (!objlist_exists(&ra->ignore_objlist, object)) { + dmu_prefetch(ra->os, object, 1, offset, length, + ZIO_PRIORITY_SYNC_READ); + } +} + +/* + * Read records off the stream, issuing any necessary prefetches. + */ +static int +receive_read_record(struct receive_arg *ra) +{ + int err; + + switch (ra->rrd->header.drr_type) { + case DRR_OBJECT: + { + struct drr_object *drro = &ra->rrd->header.drr_u.drr_object; + uint32_t size = DRR_OBJECT_PAYLOAD_SIZE(drro); + void *buf = kmem_zalloc(size, KM_SLEEP); + dmu_object_info_t doi; + + err = receive_read_payload_and_next_header(ra, size, buf); + if (err != 0) { + kmem_free(buf, size); + return (err); + } + err = dmu_object_info(ra->os, drro->drr_object, &doi); + /* + * See receive_read_prefetch for an explanation why we're + * storing this object in the ignore_obj_list. + */ + if (err == ENOENT || err == EEXIST || + (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) { + objlist_insert(&ra->ignore_objlist, drro->drr_object); + err = 0; + } + return (err); + } + case DRR_FREEOBJECTS: + { + err = receive_read_payload_and_next_header(ra, 0, NULL); + return (err); + } + case DRR_WRITE: + { + struct drr_write *drrw = &ra->rrd->header.drr_u.drr_write; + arc_buf_t *abuf; + boolean_t is_meta = DMU_OT_IS_METADATA(drrw->drr_type); + + if (ra->raw) { + boolean_t byteorder = ZFS_HOST_BYTEORDER ^ + !!DRR_IS_RAW_BYTESWAPPED(drrw->drr_flags) ^ + ra->byteswap; + + abuf = arc_loan_raw_buf(dmu_objset_spa(ra->os), + drrw->drr_object, byteorder, drrw->drr_salt, + drrw->drr_iv, drrw->drr_mac, drrw->drr_type, + drrw->drr_compressed_size, drrw->drr_logical_size, + drrw->drr_compressiontype); + } else if (DRR_WRITE_COMPRESSED(drrw)) { + ASSERT3U(drrw->drr_compressed_size, >, 0); + ASSERT3U(drrw->drr_logical_size, >=, + drrw->drr_compressed_size); + ASSERT(!is_meta); + abuf = arc_loan_compressed_buf( + dmu_objset_spa(ra->os), + drrw->drr_compressed_size, drrw->drr_logical_size, + drrw->drr_compressiontype); + } else { + abuf = arc_loan_buf(dmu_objset_spa(ra->os), + is_meta, drrw->drr_logical_size); + } + + err = receive_read_payload_and_next_header(ra, + DRR_WRITE_PAYLOAD_SIZE(drrw), abuf->b_data); + if (err != 0) { + dmu_return_arcbuf(abuf); + return (err); + } + ra->rrd->arc_buf = abuf; + receive_read_prefetch(ra, drrw->drr_object, drrw->drr_offset, + drrw->drr_logical_size); + return (err); + } + case DRR_WRITE_BYREF: + { + struct drr_write_byref *drrwb = + &ra->rrd->header.drr_u.drr_write_byref; + err = receive_read_payload_and_next_header(ra, 0, NULL); + receive_read_prefetch(ra, drrwb->drr_object, drrwb->drr_offset, + drrwb->drr_length); + return (err); + } + case DRR_WRITE_EMBEDDED: + { + struct drr_write_embedded *drrwe = + &ra->rrd->header.drr_u.drr_write_embedded; + uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8); + void *buf = kmem_zalloc(size, KM_SLEEP); + + err = receive_read_payload_and_next_header(ra, size, buf); + if (err != 0) { + kmem_free(buf, size); + return (err); + } + + receive_read_prefetch(ra, drrwe->drr_object, drrwe->drr_offset, + drrwe->drr_length); + return (err); + } + case DRR_FREE: + { + /* + * It might be beneficial to prefetch indirect blocks here, but + * we don't really have the data to decide for sure. + */ + err = receive_read_payload_and_next_header(ra, 0, NULL); + return (err); + } + case DRR_END: + { + struct drr_end *drre = &ra->rrd->header.drr_u.drr_end; + if (!ZIO_CHECKSUM_EQUAL(ra->prev_cksum, drre->drr_checksum)) + return (SET_ERROR(ECKSUM)); + return (0); + } + case DRR_SPILL: + { + struct drr_spill *drrs = &ra->rrd->header.drr_u.drr_spill; + arc_buf_t *abuf; + int len = DRR_SPILL_PAYLOAD_SIZE(drrs); + + /* DRR_SPILL records are either raw or uncompressed */ + if (ra->raw) { + boolean_t byteorder = ZFS_HOST_BYTEORDER ^ + !!DRR_IS_RAW_BYTESWAPPED(drrs->drr_flags) ^ + ra->byteswap; + + abuf = arc_loan_raw_buf(dmu_objset_spa(ra->os), + dmu_objset_id(ra->os), byteorder, drrs->drr_salt, + drrs->drr_iv, drrs->drr_mac, drrs->drr_type, + drrs->drr_compressed_size, drrs->drr_length, + drrs->drr_compressiontype); + } else { + abuf = arc_loan_buf(dmu_objset_spa(ra->os), + DMU_OT_IS_METADATA(drrs->drr_type), + drrs->drr_length); + } + + err = receive_read_payload_and_next_header(ra, len, + abuf->b_data); + if (err != 0) { + dmu_return_arcbuf(abuf); + return (err); + } + ra->rrd->arc_buf = abuf; + return (err); + } + case DRR_OBJECT_RANGE: + { + err = receive_read_payload_and_next_header(ra, 0, NULL); + return (err); + } + default: + return (SET_ERROR(EINVAL)); + } +} + +static void +dprintf_drr(struct receive_record_arg *rrd, int err) +{ +#ifdef ZFS_DEBUG + switch (rrd->header.drr_type) { + case DRR_OBJECT: + { + struct drr_object *drro = &rrd->header.drr_u.drr_object; + dprintf("drr_type = OBJECT obj = %llu type = %u " + "bonustype = %u blksz = %u bonuslen = %u cksumtype = %u " + "compress = %u dn_slots = %u err = %d\n", + drro->drr_object, drro->drr_type, drro->drr_bonustype, + drro->drr_blksz, drro->drr_bonuslen, + drro->drr_checksumtype, drro->drr_compress, + drro->drr_dn_slots, err); + break; + } + case DRR_FREEOBJECTS: + { + struct drr_freeobjects *drrfo = + &rrd->header.drr_u.drr_freeobjects; + dprintf("drr_type = FREEOBJECTS firstobj = %llu " + "numobjs = %llu err = %d\n", + drrfo->drr_firstobj, drrfo->drr_numobjs, err); + break; + } + case DRR_WRITE: + { + struct drr_write *drrw = &rrd->header.drr_u.drr_write; + dprintf("drr_type = WRITE obj = %llu type = %u offset = %llu " + "lsize = %llu cksumtype = %u cksumflags = %u " + "compress = %u psize = %llu err = %d\n", + drrw->drr_object, drrw->drr_type, drrw->drr_offset, + drrw->drr_logical_size, drrw->drr_checksumtype, + drrw->drr_flags, drrw->drr_compressiontype, + drrw->drr_compressed_size, err); + break; + } + case DRR_WRITE_BYREF: + { + struct drr_write_byref *drrwbr = + &rrd->header.drr_u.drr_write_byref; + dprintf("drr_type = WRITE_BYREF obj = %llu offset = %llu " + "length = %llu toguid = %llx refguid = %llx " + "refobject = %llu refoffset = %llu cksumtype = %u " + "cksumflags = %u err = %d\n", + drrwbr->drr_object, drrwbr->drr_offset, + drrwbr->drr_length, drrwbr->drr_toguid, + drrwbr->drr_refguid, drrwbr->drr_refobject, + drrwbr->drr_refoffset, drrwbr->drr_checksumtype, + drrwbr->drr_flags, err); + break; + } + case DRR_WRITE_EMBEDDED: + { + struct drr_write_embedded *drrwe = + &rrd->header.drr_u.drr_write_embedded; + dprintf("drr_type = WRITE_EMBEDDED obj = %llu offset = %llu " + "length = %llu compress = %u etype = %u lsize = %u " + "psize = %u err = %d\n", + drrwe->drr_object, drrwe->drr_offset, drrwe->drr_length, + drrwe->drr_compression, drrwe->drr_etype, + drrwe->drr_lsize, drrwe->drr_psize, err); + break; + } + case DRR_FREE: + { + struct drr_free *drrf = &rrd->header.drr_u.drr_free; + dprintf("drr_type = FREE obj = %llu offset = %llu " + "length = %lld err = %d\n", + drrf->drr_object, drrf->drr_offset, drrf->drr_length, + err); + break; + } + case DRR_SPILL: + { + struct drr_spill *drrs = &rrd->header.drr_u.drr_spill; + dprintf("drr_type = SPILL obj = %llu length = %llu " + "err = %d\n", drrs->drr_object, drrs->drr_length, err); + break; + } + default: + return; + } +#endif +} + +/* + * Commit the records to the pool. + */ +static int +receive_process_record(struct receive_writer_arg *rwa, + struct receive_record_arg *rrd) +{ + int err; + + /* Processing in order, therefore bytes_read should be increasing. */ + ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read); + rwa->bytes_read = rrd->bytes_read; + + switch (rrd->header.drr_type) { + case DRR_OBJECT: + { + struct drr_object *drro = &rrd->header.drr_u.drr_object; + err = receive_object(rwa, drro, rrd->payload); + kmem_free(rrd->payload, rrd->payload_size); + rrd->payload = NULL; + break; + } + case DRR_FREEOBJECTS: + { + struct drr_freeobjects *drrfo = + &rrd->header.drr_u.drr_freeobjects; + err = receive_freeobjects(rwa, drrfo); + break; + } + case DRR_WRITE: + { + struct drr_write *drrw = &rrd->header.drr_u.drr_write; + err = receive_write(rwa, drrw, rrd->arc_buf); + /* if receive_write() is successful, it consumes the arc_buf */ + if (err != 0) + dmu_return_arcbuf(rrd->arc_buf); + rrd->arc_buf = NULL; + rrd->payload = NULL; + break; + } + case DRR_WRITE_BYREF: + { + struct drr_write_byref *drrwbr = + &rrd->header.drr_u.drr_write_byref; + err = receive_write_byref(rwa, drrwbr); + break; + } + case DRR_WRITE_EMBEDDED: + { + struct drr_write_embedded *drrwe = + &rrd->header.drr_u.drr_write_embedded; + err = receive_write_embedded(rwa, drrwe, rrd->payload); + kmem_free(rrd->payload, rrd->payload_size); + rrd->payload = NULL; + break; + } + case DRR_FREE: + { + struct drr_free *drrf = &rrd->header.drr_u.drr_free; + err = receive_free(rwa, drrf); + break; + } + case DRR_SPILL: + { + struct drr_spill *drrs = &rrd->header.drr_u.drr_spill; + err = receive_spill(rwa, drrs, rrd->arc_buf); + /* if receive_spill() is successful, it consumes the arc_buf */ + if (err != 0) + dmu_return_arcbuf(rrd->arc_buf); + rrd->arc_buf = NULL; + rrd->payload = NULL; + break; + } + case DRR_OBJECT_RANGE: + { + struct drr_object_range *drror = + &rrd->header.drr_u.drr_object_range; + return (receive_object_range(rwa, drror)); + } + default: + return (SET_ERROR(EINVAL)); + } + + if (err != 0) + dprintf_drr(rrd, err); + + return (err); +} + +/* + * dmu_recv_stream's worker thread; pull records off the queue, and then call + * receive_process_record When we're done, signal the main thread and exit. + */ +static void +receive_writer_thread(void *arg) +{ + struct receive_writer_arg *rwa = arg; + struct receive_record_arg *rrd; + fstrans_cookie_t cookie = spl_fstrans_mark(); + + for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker; + rrd = bqueue_dequeue(&rwa->q)) { + /* + * If there's an error, the main thread will stop putting things + * on the queue, but we need to clear everything in it before we + * can exit. + */ + if (rwa->err == 0) { + rwa->err = receive_process_record(rwa, rrd); + } else if (rrd->arc_buf != NULL) { + dmu_return_arcbuf(rrd->arc_buf); + rrd->arc_buf = NULL; + rrd->payload = NULL; + } else if (rrd->payload != NULL) { + kmem_free(rrd->payload, rrd->payload_size); + rrd->payload = NULL; + } + kmem_free(rrd, sizeof (*rrd)); + } + kmem_free(rrd, sizeof (*rrd)); + mutex_enter(&rwa->mutex); + rwa->done = B_TRUE; + cv_signal(&rwa->cv); + mutex_exit(&rwa->mutex); + spl_fstrans_unmark(cookie); + thread_exit(); +} + +static int +resume_check(struct receive_arg *ra, nvlist_t *begin_nvl) +{ + uint64_t val; + objset_t *mos = dmu_objset_pool(ra->os)->dp_meta_objset; + uint64_t dsobj = dmu_objset_id(ra->os); + uint64_t resume_obj, resume_off; + + if (nvlist_lookup_uint64(begin_nvl, + "resume_object", &resume_obj) != 0 || + nvlist_lookup_uint64(begin_nvl, + "resume_offset", &resume_off) != 0) { + return (SET_ERROR(EINVAL)); + } + VERIFY0(zap_lookup(mos, dsobj, + DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val)); + if (resume_obj != val) + return (SET_ERROR(EINVAL)); + VERIFY0(zap_lookup(mos, dsobj, + DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val)); + if (resume_off != val) + return (SET_ERROR(EINVAL)); + + return (0); +} + +/* + * Read in the stream's records, one by one, and apply them to the pool. There + * are two threads involved; the thread that calls this function will spin up a + * worker thread, read the records off the stream one by one, and issue + * prefetches for any necessary indirect blocks. It will then push the records + * onto an internal blocking queue. The worker thread will pull the records off + * the queue, and actually write the data into the DMU. This way, the worker + * thread doesn't have to wait for reads to complete, since everything it needs + * (the indirect blocks) will be prefetched. + * + * NB: callers *must* call dmu_recv_end() if this succeeds. + */ +int +dmu_recv_stream(dmu_recv_cookie_t *drc, vnode_t *vp, offset_t *voffp, + int cleanup_fd, uint64_t *action_handlep) +{ + int err = 0; + struct receive_arg *ra; + struct receive_writer_arg *rwa; + int featureflags; + uint32_t payloadlen; + void *payload; + nvlist_t *begin_nvl = NULL; + + ra = kmem_zalloc(sizeof (*ra), KM_SLEEP); + rwa = kmem_zalloc(sizeof (*rwa), KM_SLEEP); + + ra->byteswap = drc->drc_byteswap; + ra->raw = drc->drc_raw; + ra->cksum = drc->drc_cksum; + ra->vp = vp; + ra->voff = *voffp; + + if (dsl_dataset_is_zapified(drc->drc_ds)) { + (void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset, + drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES, + sizeof (ra->bytes_read), 1, &ra->bytes_read); + } + + objlist_create(&ra->ignore_objlist); + + /* these were verified in dmu_recv_begin */ + ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==, + DMU_SUBSTREAM); + ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES); + + /* + * Open the objset we are modifying. + */ + VERIFY0(dmu_objset_from_ds(drc->drc_ds, &ra->os)); + + ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT); + + featureflags = DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo); + ra->featureflags = featureflags; + + ASSERT0(ra->os->os_encrypted && + (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)); + + /* if this stream is dedup'ed, set up the avl tree for guid mapping */ + if (featureflags & DMU_BACKUP_FEATURE_DEDUP) { + minor_t minor; + + if (cleanup_fd == -1) { + err = SET_ERROR(EBADF); + goto out; + } + err = zfs_onexit_fd_hold(cleanup_fd, &minor); + if (err != 0) { + cleanup_fd = -1; + goto out; + } + + if (*action_handlep == 0) { + rwa->guid_to_ds_map = + kmem_alloc(sizeof (avl_tree_t), KM_SLEEP); + avl_create(rwa->guid_to_ds_map, guid_compare, + sizeof (guid_map_entry_t), + offsetof(guid_map_entry_t, avlnode)); + err = zfs_onexit_add_cb(minor, + free_guid_map_onexit, rwa->guid_to_ds_map, + action_handlep); + if (err != 0) + goto out; + } else { + err = zfs_onexit_cb_data(minor, *action_handlep, + (void **)&rwa->guid_to_ds_map); + if (err != 0) + goto out; + } + + drc->drc_guid_to_ds_map = rwa->guid_to_ds_map; + } + + payloadlen = drc->drc_drr_begin->drr_payloadlen; + payload = NULL; + if (payloadlen != 0) + payload = kmem_alloc(payloadlen, KM_SLEEP); + + err = receive_read_payload_and_next_header(ra, payloadlen, payload); + if (err != 0) { + if (payloadlen != 0) + kmem_free(payload, payloadlen); + goto out; + } + if (payloadlen != 0) { + err = nvlist_unpack(payload, payloadlen, &begin_nvl, KM_SLEEP); + kmem_free(payload, payloadlen); + if (err != 0) + goto out; + } + + /* handle DSL encryption key payload */ + if (featureflags & DMU_BACKUP_FEATURE_RAW) { + nvlist_t *keynvl = NULL; + + ASSERT(ra->os->os_encrypted); + ASSERT(drc->drc_raw); + + err = nvlist_lookup_nvlist(begin_nvl, "crypt_keydata", &keynvl); + if (err != 0) + goto out; + + /* + * If this is a new dataset we set the key immediately. + * Otherwise we don't want to change the key until we + * are sure the rest of the receive succeeded so we stash + * the keynvl away until then. + */ + err = dsl_crypto_recv_raw(spa_name(ra->os->os_spa), + drc->drc_ds->ds_object, drc->drc_drrb->drr_type, + keynvl, drc->drc_newfs); + if (err != 0) + goto out; + + if (!drc->drc_newfs) + drc->drc_keynvl = fnvlist_dup(keynvl); + } + + if (featureflags & DMU_BACKUP_FEATURE_RESUMING) { + err = resume_check(ra, begin_nvl); + if (err != 0) + goto out; + } + + (void) bqueue_init(&rwa->q, + MAX(zfs_recv_queue_length, 2 * zfs_max_recordsize), + offsetof(struct receive_record_arg, node)); + cv_init(&rwa->cv, NULL, CV_DEFAULT, NULL); + mutex_init(&rwa->mutex, NULL, MUTEX_DEFAULT, NULL); + rwa->os = ra->os; + rwa->byteswap = drc->drc_byteswap; + rwa->resumable = drc->drc_resumable; + rwa->raw = drc->drc_raw; + rwa->os->os_raw_receive = drc->drc_raw; + + (void) thread_create(NULL, 0, receive_writer_thread, rwa, 0, curproc, + TS_RUN, minclsyspri); + /* + * We're reading rwa->err without locks, which is safe since we are the + * only reader, and the worker thread is the only writer. It's ok if we + * miss a write for an iteration or two of the loop, since the writer + * thread will keep freeing records we send it until we send it an eos + * marker. + * + * We can leave this loop in 3 ways: First, if rwa->err is + * non-zero. In that case, the writer thread will free the rrd we just + * pushed. Second, if we're interrupted; in that case, either it's the + * first loop and ra->rrd was never allocated, or it's later and ra->rrd + * has been handed off to the writer thread who will free it. Finally, + * if receive_read_record fails or we're at the end of the stream, then + * we free ra->rrd and exit. + */ + while (rwa->err == 0) { + if (issig(JUSTLOOKING) && issig(FORREAL)) { + err = SET_ERROR(EINTR); + break; + } + + ASSERT3P(ra->rrd, ==, NULL); + ra->rrd = ra->next_rrd; + ra->next_rrd = NULL; + /* Allocates and loads header into ra->next_rrd */ + err = receive_read_record(ra); + + if (ra->rrd->header.drr_type == DRR_END || err != 0) { + kmem_free(ra->rrd, sizeof (*ra->rrd)); + ra->rrd = NULL; + break; + } + + bqueue_enqueue(&rwa->q, ra->rrd, + sizeof (struct receive_record_arg) + ra->rrd->payload_size); + ra->rrd = NULL; + } + if (ra->next_rrd == NULL) + ra->next_rrd = kmem_zalloc(sizeof (*ra->next_rrd), KM_SLEEP); + ra->next_rrd->eos_marker = B_TRUE; + bqueue_enqueue(&rwa->q, ra->next_rrd, 1); + + mutex_enter(&rwa->mutex); + while (!rwa->done) { + cv_wait(&rwa->cv, &rwa->mutex); + } + mutex_exit(&rwa->mutex); + + /* + * If we are receiving a full stream as a clone, all object IDs which + * are greater than the maximum ID referenced in the stream are + * by definition unused and must be freed. + */ + if (drc->drc_clone && drc->drc_drrb->drr_fromguid == 0) { + uint64_t obj = rwa->max_object + 1; + int free_err = 0; + int next_err = 0; + + while (next_err == 0) { + free_err = dmu_free_long_object(rwa->os, obj); + if (free_err != 0 && free_err != ENOENT) + break; + + next_err = dmu_object_next(rwa->os, &obj, FALSE, 0); + } + + if (err == 0) { + if (free_err != 0 && free_err != ENOENT) + err = free_err; + else if (next_err != ESRCH) + err = next_err; + } + } + + cv_destroy(&rwa->cv); + mutex_destroy(&rwa->mutex); + bqueue_destroy(&rwa->q); + if (err == 0) + err = rwa->err; + +out: + nvlist_free(begin_nvl); + if ((featureflags & DMU_BACKUP_FEATURE_DEDUP) && (cleanup_fd != -1)) + zfs_onexit_fd_rele(cleanup_fd); + + if (err != 0) { + /* + * Clean up references. If receive is not resumable, + * destroy what we created, so we don't leave it in + * the inconsistent state. + */ + dmu_recv_cleanup_ds(drc); + nvlist_free(drc->drc_keynvl); + } + + *voffp = ra->voff; + objlist_destroy(&ra->ignore_objlist); + kmem_free(ra, sizeof (*ra)); + kmem_free(rwa, sizeof (*rwa)); + return (err); +} + +static int +dmu_recv_end_check(void *arg, dmu_tx_t *tx) +{ + dmu_recv_cookie_t *drc = arg; + dsl_pool_t *dp = dmu_tx_pool(tx); + int error; + + ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag); + + if (!drc->drc_newfs) { + dsl_dataset_t *origin_head; + + error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head); + if (error != 0) + return (error); + if (drc->drc_force) { + /* + * We will destroy any snapshots in tofs (i.e. before + * origin_head) that are after the origin (which is + * the snap before drc_ds, because drc_ds can not + * have any snaps of its own). + */ + uint64_t obj; + + obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; + while (obj != + dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) { + dsl_dataset_t *snap; + error = dsl_dataset_hold_obj(dp, obj, FTAG, + &snap); + if (error != 0) + break; + if (snap->ds_dir != origin_head->ds_dir) + error = SET_ERROR(EINVAL); + if (error == 0) { + error = dsl_destroy_snapshot_check_impl( + snap, B_FALSE); + } + obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; + dsl_dataset_rele(snap, FTAG); + if (error != 0) + break; + } + if (error != 0) { + dsl_dataset_rele(origin_head, FTAG); + return (error); + } + } + if (drc->drc_keynvl != NULL) { + error = dsl_crypto_recv_raw_key_check(drc->drc_ds, + drc->drc_keynvl, tx); + if (error != 0) { + dsl_dataset_rele(origin_head, FTAG); + return (error); + } + } + + error = dsl_dataset_clone_swap_check_impl(drc->drc_ds, + origin_head, drc->drc_force, drc->drc_owner, tx); + if (error != 0) { + dsl_dataset_rele(origin_head, FTAG); + return (error); + } + error = dsl_dataset_snapshot_check_impl(origin_head, + drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred); + dsl_dataset_rele(origin_head, FTAG); + if (error != 0) + return (error); + + error = dsl_destroy_head_check_impl(drc->drc_ds, 1); + } else { + error = dsl_dataset_snapshot_check_impl(drc->drc_ds, + drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred); + } + return (error); +} + +static void +dmu_recv_end_sync(void *arg, dmu_tx_t *tx) +{ + dmu_recv_cookie_t *drc = arg; + dsl_pool_t *dp = dmu_tx_pool(tx); + boolean_t encrypted = drc->drc_ds->ds_dir->dd_crypto_obj != 0; + + spa_history_log_internal_ds(drc->drc_ds, "finish receiving", + tx, "snap=%s", drc->drc_tosnap); + drc->drc_ds->ds_objset->os_raw_receive = B_FALSE; + + if (!drc->drc_newfs) { + dsl_dataset_t *origin_head; + + VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG, + &origin_head)); + + if (drc->drc_force) { + /* + * Destroy any snapshots of drc_tofs (origin_head) + * after the origin (the snap before drc_ds). + */ + uint64_t obj; + + obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; + while (obj != + dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) { + dsl_dataset_t *snap; + VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, + &snap)); + ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir); + obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; + dsl_destroy_snapshot_sync_impl(snap, + B_FALSE, tx); + dsl_dataset_rele(snap, FTAG); + } + } + if (drc->drc_keynvl != NULL) { + dsl_crypto_recv_raw_key_sync(drc->drc_ds, + drc->drc_keynvl, tx); + nvlist_free(drc->drc_keynvl); + drc->drc_keynvl = NULL; + } + + VERIFY3P(drc->drc_ds->ds_prev, ==, origin_head->ds_prev); + + dsl_dataset_clone_swap_sync_impl(drc->drc_ds, + origin_head, tx); + dsl_dataset_snapshot_sync_impl(origin_head, + drc->drc_tosnap, tx); + + /* set snapshot's creation time and guid */ + dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx); + dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time = + drc->drc_drrb->drr_creation_time; + dsl_dataset_phys(origin_head->ds_prev)->ds_guid = + drc->drc_drrb->drr_toguid; + dsl_dataset_phys(origin_head->ds_prev)->ds_flags &= + ~DS_FLAG_INCONSISTENT; + + dmu_buf_will_dirty(origin_head->ds_dbuf, tx); + dsl_dataset_phys(origin_head)->ds_flags &= + ~DS_FLAG_INCONSISTENT; + + drc->drc_newsnapobj = + dsl_dataset_phys(origin_head)->ds_prev_snap_obj; + + dsl_dataset_rele(origin_head, FTAG); + dsl_destroy_head_sync_impl(drc->drc_ds, tx); + + if (drc->drc_owner != NULL) + VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner); + } else { + dsl_dataset_t *ds = drc->drc_ds; + + dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx); + + /* set snapshot's creation time and guid */ + dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx); + dsl_dataset_phys(ds->ds_prev)->ds_creation_time = + drc->drc_drrb->drr_creation_time; + dsl_dataset_phys(ds->ds_prev)->ds_guid = + drc->drc_drrb->drr_toguid; + dsl_dataset_phys(ds->ds_prev)->ds_flags &= + ~DS_FLAG_INCONSISTENT; + + dmu_buf_will_dirty(ds->ds_dbuf, tx); + dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT; + if (dsl_dataset_has_resume_receive_state(ds)) { + (void) zap_remove(dp->dp_meta_objset, ds->ds_object, + DS_FIELD_RESUME_FROMGUID, tx); + (void) zap_remove(dp->dp_meta_objset, ds->ds_object, + DS_FIELD_RESUME_OBJECT, tx); + (void) zap_remove(dp->dp_meta_objset, ds->ds_object, + DS_FIELD_RESUME_OFFSET, tx); + (void) zap_remove(dp->dp_meta_objset, ds->ds_object, + DS_FIELD_RESUME_BYTES, tx); + (void) zap_remove(dp->dp_meta_objset, ds->ds_object, + DS_FIELD_RESUME_TOGUID, tx); + (void) zap_remove(dp->dp_meta_objset, ds->ds_object, + DS_FIELD_RESUME_TONAME, tx); + } + drc->drc_newsnapobj = + dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj; + } + zvol_create_minors(dp->dp_spa, drc->drc_tofs, B_TRUE); + + /* + * Release the hold from dmu_recv_begin. This must be done before + * we return to open context, so that when we free the dataset's dnode + * we can evict its bonus buffer. Since the dataset may be destroyed + * at this point (and therefore won't have a valid pointer to the spa) + * we release the key mapping manually here while we do have a valid + * pointer, if it exists. + */ + if (!drc->drc_raw && encrypted) { + (void) spa_keystore_remove_mapping(dmu_tx_pool(tx)->dp_spa, + drc->drc_ds->ds_object, drc->drc_ds); + } + dsl_dataset_disown(drc->drc_ds, 0, dmu_recv_tag); + drc->drc_ds = NULL; +} + +static int +add_ds_to_guidmap(const char *name, avl_tree_t *guid_map, uint64_t snapobj, + boolean_t raw) +{ + dsl_pool_t *dp; + dsl_dataset_t *snapds; + guid_map_entry_t *gmep; + objset_t *os; + ds_hold_flags_t dsflags = (raw) ? 0 : DS_HOLD_FLAG_DECRYPT; + int err; + + ASSERT(guid_map != NULL); + + err = dsl_pool_hold(name, FTAG, &dp); + if (err != 0) + return (err); + gmep = kmem_alloc(sizeof (*gmep), KM_SLEEP); + err = dsl_dataset_own_obj(dp, snapobj, dsflags, gmep, &snapds); + if (err == 0) { + /* + * If this is a deduplicated raw send stream, we need + * to make sure that we can still read raw blocks from + * earlier datasets in the stream, so we set the + * os_raw_receive flag now. + */ + if (raw) { + err = dmu_objset_from_ds(snapds, &os); + if (err != 0) { + dsl_dataset_disown(snapds, dsflags, FTAG); + dsl_pool_rele(dp, FTAG); + kmem_free(gmep, sizeof (*gmep)); + return (err); + } + os->os_raw_receive = B_TRUE; + } + + gmep->raw = raw; + gmep->guid = dsl_dataset_phys(snapds)->ds_guid; + gmep->gme_ds = snapds; + avl_add(guid_map, gmep); + } else { + kmem_free(gmep, sizeof (*gmep)); + } + + dsl_pool_rele(dp, FTAG); + return (err); +} + +static int dmu_recv_end_modified_blocks = 3; + +static int +dmu_recv_existing_end(dmu_recv_cookie_t *drc) +{ +#ifdef _KERNEL + /* + * We will be destroying the ds; make sure its origin is unmounted if + * necessary. + */ + char name[ZFS_MAX_DATASET_NAME_LEN]; + dsl_dataset_name(drc->drc_ds, name); + zfs_destroy_unmount_origin(name); +#endif + + return (dsl_sync_task(drc->drc_tofs, + dmu_recv_end_check, dmu_recv_end_sync, drc, + dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL)); +} + +static int +dmu_recv_new_end(dmu_recv_cookie_t *drc) +{ + return (dsl_sync_task(drc->drc_tofs, + dmu_recv_end_check, dmu_recv_end_sync, drc, + dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL)); +} + +int +dmu_recv_end(dmu_recv_cookie_t *drc, void *owner) +{ + int error; + + drc->drc_owner = owner; + + if (drc->drc_newfs) + error = dmu_recv_new_end(drc); + else + error = dmu_recv_existing_end(drc); + + if (error != 0) { + dmu_recv_cleanup_ds(drc); + nvlist_free(drc->drc_keynvl); + } else if (drc->drc_guid_to_ds_map != NULL) { + (void) add_ds_to_guidmap(drc->drc_tofs, drc->drc_guid_to_ds_map, + drc->drc_newsnapobj, drc->drc_raw); + } + return (error); +} + +/* + * Return TRUE if this objset is currently being received into. + */ +boolean_t +dmu_objset_is_receiving(objset_t *os) +{ + return (os->os_dsl_dataset != NULL && + os->os_dsl_dataset->ds_owner == dmu_recv_tag); +} + +#if defined(_KERNEL) +module_param(zfs_recv_queue_length, int, 0644); +MODULE_PARM_DESC(zfs_recv_queue_length, "Maximum receive queue length"); +#endif |