summaryrefslogtreecommitdiffstats
path: root/module/zfs/dmu_recv.c
diff options
context:
space:
mode:
authorPaul Dagnelie <[email protected]>2018-10-09 14:05:13 -0700
committerBrian Behlendorf <[email protected]>2018-10-09 14:05:13 -0700
commit0391690583a8c5129477cbdac476130abe4af776 (patch)
tree7e38f5c23407d26f7f19b86f04e0cea7049d5b26 /module/zfs/dmu_recv.c
parent5e8ff25644dfed600b4bdfb201ea6db003b4ad2c (diff)
Refactor dmu_recv into its own file
This change moves the bottom half of dmu_send.c (where the receive logic is kept) into a new file, dmu_recv.c, and does similarly for receive-related changes in header files. Reviewed by: Matthew Ahrens <[email protected]> Reviewed by: Brian Behlendorf <[email protected]> Signed-off-by: Paul Dagnelie <[email protected]> Closes #7982
Diffstat (limited to 'module/zfs/dmu_recv.c')
-rw-r--r--module/zfs/dmu_recv.c2893
1 files changed, 2893 insertions, 0 deletions
diff --git a/module/zfs/dmu_recv.c b/module/zfs/dmu_recv.c
new file mode 100644
index 000000000..990f79025
--- /dev/null
+++ b/module/zfs/dmu_recv.c
@@ -0,0 +1,2893 @@
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+/*
+ * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
+ * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
+ * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
+ * Copyright (c) 2014, Joyent, Inc. All rights reserved.
+ * Copyright 2014 HybridCluster. All rights reserved.
+ * Copyright 2016 RackTop Systems.
+ * Copyright (c) 2016 Actifio, Inc. All rights reserved.
+ */
+
+#include <sys/dmu.h>
+#include <sys/dmu_impl.h>
+#include <sys/dmu_tx.h>
+#include <sys/dbuf.h>
+#include <sys/dnode.h>
+#include <sys/zfs_context.h>
+#include <sys/dmu_objset.h>
+#include <sys/dmu_traverse.h>
+#include <sys/dsl_dataset.h>
+#include <sys/dsl_dir.h>
+#include <sys/dsl_prop.h>
+#include <sys/dsl_pool.h>
+#include <sys/dsl_synctask.h>
+#include <sys/spa_impl.h>
+#include <sys/zfs_ioctl.h>
+#include <sys/zap.h>
+#include <sys/zio_checksum.h>
+#include <sys/zfs_znode.h>
+#include <zfs_fletcher.h>
+#include <sys/avl.h>
+#include <sys/ddt.h>
+#include <sys/zfs_onexit.h>
+#include <sys/dmu_recv.h>
+#include <sys/dsl_destroy.h>
+#include <sys/blkptr.h>
+#include <sys/dsl_bookmark.h>
+#include <sys/zfeature.h>
+#include <sys/bqueue.h>
+#include <sys/zvol.h>
+#include <sys/policy.h>
+
+int zfs_recv_queue_length = SPA_MAXBLOCKSIZE;
+
+static char *dmu_recv_tag = "dmu_recv_tag";
+const char *recv_clone_name = "%recv";
+
+static void byteswap_record(dmu_replay_record_t *drr);
+
+typedef struct dmu_recv_begin_arg {
+ const char *drba_origin;
+ dmu_recv_cookie_t *drba_cookie;
+ cred_t *drba_cred;
+ dsl_crypto_params_t *drba_dcp;
+ uint64_t drba_snapobj;
+} dmu_recv_begin_arg_t;
+
+static int
+recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds,
+ uint64_t fromguid, uint64_t featureflags)
+{
+ uint64_t val;
+ int error;
+ dsl_pool_t *dp = ds->ds_dir->dd_pool;
+ boolean_t encrypted = ds->ds_dir->dd_crypto_obj != 0;
+ boolean_t raw = (featureflags & DMU_BACKUP_FEATURE_RAW) != 0;
+ boolean_t embed = (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) != 0;
+
+ /* temporary clone name must not exist */
+ error = zap_lookup(dp->dp_meta_objset,
+ dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name,
+ 8, 1, &val);
+ if (error != ENOENT)
+ return (error == 0 ? EBUSY : error);
+
+ /* new snapshot name must not exist */
+ error = zap_lookup(dp->dp_meta_objset,
+ dsl_dataset_phys(ds)->ds_snapnames_zapobj,
+ drba->drba_cookie->drc_tosnap, 8, 1, &val);
+ if (error != ENOENT)
+ return (error == 0 ? EEXIST : error);
+
+ /*
+ * Check snapshot limit before receiving. We'll recheck again at the
+ * end, but might as well abort before receiving if we're already over
+ * the limit.
+ *
+ * Note that we do not check the file system limit with
+ * dsl_dir_fscount_check because the temporary %clones don't count
+ * against that limit.
+ */
+ error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT,
+ NULL, drba->drba_cred);
+ if (error != 0)
+ return (error);
+
+ if (fromguid != 0) {
+ dsl_dataset_t *snap;
+ uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
+
+ /* Can't perform a raw receive on top of a non-raw receive */
+ if (!encrypted && raw)
+ return (SET_ERROR(EINVAL));
+
+ /* Encryption is incompatible with embedded data */
+ if (encrypted && embed)
+ return (SET_ERROR(EINVAL));
+
+ /* Find snapshot in this dir that matches fromguid. */
+ while (obj != 0) {
+ error = dsl_dataset_hold_obj(dp, obj, FTAG,
+ &snap);
+ if (error != 0)
+ return (SET_ERROR(ENODEV));
+ if (snap->ds_dir != ds->ds_dir) {
+ dsl_dataset_rele(snap, FTAG);
+ return (SET_ERROR(ENODEV));
+ }
+ if (dsl_dataset_phys(snap)->ds_guid == fromguid)
+ break;
+ obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
+ dsl_dataset_rele(snap, FTAG);
+ }
+ if (obj == 0)
+ return (SET_ERROR(ENODEV));
+
+ if (drba->drba_cookie->drc_force) {
+ drba->drba_snapobj = obj;
+ } else {
+ /*
+ * If we are not forcing, there must be no
+ * changes since fromsnap.
+ */
+ if (dsl_dataset_modified_since_snap(ds, snap)) {
+ dsl_dataset_rele(snap, FTAG);
+ return (SET_ERROR(ETXTBSY));
+ }
+ drba->drba_snapobj = ds->ds_prev->ds_object;
+ }
+
+ dsl_dataset_rele(snap, FTAG);
+ } else {
+ /* if full, then must be forced */
+ if (!drba->drba_cookie->drc_force)
+ return (SET_ERROR(EEXIST));
+
+ /*
+ * We don't support using zfs recv -F to blow away
+ * encrypted filesystems. This would require the
+ * dsl dir to point to the old encryption key and
+ * the new one at the same time during the receive.
+ */
+ if ((!encrypted && raw) || encrypted)
+ return (SET_ERROR(EINVAL));
+
+ /*
+ * Perform the same encryption checks we would if
+ * we were creating a new dataset from scratch.
+ */
+ if (!raw) {
+ boolean_t will_encrypt;
+
+ error = dmu_objset_create_crypt_check(
+ ds->ds_dir->dd_parent, drba->drba_dcp,
+ &will_encrypt);
+ if (error != 0)
+ return (error);
+
+ if (will_encrypt && embed)
+ return (SET_ERROR(EINVAL));
+ }
+
+ drba->drba_snapobj = 0;
+ }
+
+ return (0);
+
+}
+
+static int
+dmu_recv_begin_check(void *arg, dmu_tx_t *tx)
+{
+ dmu_recv_begin_arg_t *drba = arg;
+ dsl_pool_t *dp = dmu_tx_pool(tx);
+ struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
+ uint64_t fromguid = drrb->drr_fromguid;
+ int flags = drrb->drr_flags;
+ ds_hold_flags_t dsflags = 0;
+ int error;
+ uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
+ dsl_dataset_t *ds;
+ const char *tofs = drba->drba_cookie->drc_tofs;
+
+ /* already checked */
+ ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
+ ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING));
+
+ if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
+ DMU_COMPOUNDSTREAM ||
+ drrb->drr_type >= DMU_OST_NUMTYPES ||
+ ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL))
+ return (SET_ERROR(EINVAL));
+
+ /* Verify pool version supports SA if SA_SPILL feature set */
+ if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
+ spa_version(dp->dp_spa) < SPA_VERSION_SA)
+ return (SET_ERROR(ENOTSUP));
+
+ if (drba->drba_cookie->drc_resumable &&
+ !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET))
+ return (SET_ERROR(ENOTSUP));
+
+ /*
+ * The receiving code doesn't know how to translate a WRITE_EMBEDDED
+ * record to a plain WRITE record, so the pool must have the
+ * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED
+ * records. Same with WRITE_EMBEDDED records that use LZ4 compression.
+ */
+ if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
+ !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA))
+ return (SET_ERROR(ENOTSUP));
+ if ((featureflags & DMU_BACKUP_FEATURE_LZ4) &&
+ !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS))
+ return (SET_ERROR(ENOTSUP));
+
+ /*
+ * The receiving code doesn't know how to translate large blocks
+ * to smaller ones, so the pool must have the LARGE_BLOCKS
+ * feature enabled if the stream has LARGE_BLOCKS. Same with
+ * large dnodes.
+ */
+ if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
+ !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_BLOCKS))
+ return (SET_ERROR(ENOTSUP));
+ if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) &&
+ !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_DNODE))
+ return (SET_ERROR(ENOTSUP));
+
+ if (featureflags & DMU_BACKUP_FEATURE_RAW) {
+ /* raw receives require the encryption feature */
+ if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_ENCRYPTION))
+ return (SET_ERROR(ENOTSUP));
+
+ /* embedded data is incompatible with encryption and raw recv */
+ if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)
+ return (SET_ERROR(EINVAL));
+ } else {
+ dsflags |= DS_HOLD_FLAG_DECRYPT;
+ }
+
+ error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
+ if (error == 0) {
+ /* target fs already exists; recv into temp clone */
+
+ /* Can't recv a clone into an existing fs */
+ if (flags & DRR_FLAG_CLONE || drba->drba_origin) {
+ dsl_dataset_rele_flags(ds, dsflags, FTAG);
+ return (SET_ERROR(EINVAL));
+ }
+
+ error = recv_begin_check_existing_impl(drba, ds, fromguid,
+ featureflags);
+ dsl_dataset_rele_flags(ds, dsflags, FTAG);
+ } else if (error == ENOENT) {
+ /* target fs does not exist; must be a full backup or clone */
+ char buf[ZFS_MAX_DATASET_NAME_LEN];
+
+ /*
+ * If it's a non-clone incremental, we are missing the
+ * target fs, so fail the recv.
+ */
+ if (fromguid != 0 && !(flags & DRR_FLAG_CLONE ||
+ drba->drba_origin))
+ return (SET_ERROR(ENOENT));
+
+ /*
+ * If we're receiving a full send as a clone, and it doesn't
+ * contain all the necessary free records and freeobject
+ * records, reject it.
+ */
+ if (fromguid == 0 && drba->drba_origin &&
+ !(flags & DRR_FLAG_FREERECORDS))
+ return (SET_ERROR(EINVAL));
+
+ /* Open the parent of tofs */
+ ASSERT3U(strlen(tofs), <, sizeof (buf));
+ (void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1);
+ error = dsl_dataset_hold_flags(dp, buf, dsflags, FTAG, &ds);
+ if (error != 0)
+ return (error);
+
+ if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0 &&
+ drba->drba_origin == NULL) {
+ boolean_t will_encrypt;
+
+ /*
+ * Check that we aren't breaking any encryption rules
+ * and that we have all the parameters we need to
+ * create an encrypted dataset if necessary. If we are
+ * making an encrypted dataset the stream can't have
+ * embedded data.
+ */
+ error = dmu_objset_create_crypt_check(ds->ds_dir,
+ drba->drba_dcp, &will_encrypt);
+ if (error != 0) {
+ dsl_dataset_rele_flags(ds, dsflags, FTAG);
+ return (error);
+ }
+
+ if (will_encrypt &&
+ (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) {
+ dsl_dataset_rele_flags(ds, dsflags, FTAG);
+ return (SET_ERROR(EINVAL));
+ }
+ }
+
+ /*
+ * Check filesystem and snapshot limits before receiving. We'll
+ * recheck snapshot limits again at the end (we create the
+ * filesystems and increment those counts during begin_sync).
+ */
+ error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
+ ZFS_PROP_FILESYSTEM_LIMIT, NULL, drba->drba_cred);
+ if (error != 0) {
+ dsl_dataset_rele_flags(ds, dsflags, FTAG);
+ return (error);
+ }
+
+ error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
+ ZFS_PROP_SNAPSHOT_LIMIT, NULL, drba->drba_cred);
+ if (error != 0) {
+ dsl_dataset_rele_flags(ds, dsflags, FTAG);
+ return (error);
+ }
+
+ if (drba->drba_origin != NULL) {
+ dsl_dataset_t *origin;
+
+ error = dsl_dataset_hold_flags(dp, drba->drba_origin,
+ dsflags, FTAG, &origin);
+ if (error != 0) {
+ dsl_dataset_rele_flags(ds, dsflags, FTAG);
+ return (error);
+ }
+ if (!origin->ds_is_snapshot) {
+ dsl_dataset_rele_flags(origin, dsflags, FTAG);
+ dsl_dataset_rele_flags(ds, dsflags, FTAG);
+ return (SET_ERROR(EINVAL));
+ }
+ if (dsl_dataset_phys(origin)->ds_guid != fromguid &&
+ fromguid != 0) {
+ dsl_dataset_rele_flags(origin, dsflags, FTAG);
+ dsl_dataset_rele_flags(ds, dsflags, FTAG);
+ return (SET_ERROR(ENODEV));
+ }
+ if (origin->ds_dir->dd_crypto_obj != 0 &&
+ (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) {
+ dsl_dataset_rele_flags(origin, dsflags, FTAG);
+ dsl_dataset_rele_flags(ds, dsflags, FTAG);
+ return (SET_ERROR(EINVAL));
+ }
+ dsl_dataset_rele_flags(origin,
+ dsflags, FTAG);
+ }
+ dsl_dataset_rele_flags(ds, dsflags, FTAG);
+ error = 0;
+ }
+ return (error);
+}
+
+static void
+dmu_recv_begin_sync(void *arg, dmu_tx_t *tx)
+{
+ dmu_recv_begin_arg_t *drba = arg;
+ dsl_pool_t *dp = dmu_tx_pool(tx);
+ objset_t *mos = dp->dp_meta_objset;
+ struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
+ const char *tofs = drba->drba_cookie->drc_tofs;
+ uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
+ dsl_dataset_t *ds, *newds;
+ objset_t *os;
+ uint64_t dsobj;
+ ds_hold_flags_t dsflags = 0;
+ int error;
+ uint64_t crflags = 0;
+ dsl_crypto_params_t dummy_dcp = { 0 };
+ dsl_crypto_params_t *dcp = drba->drba_dcp;
+
+ if (drrb->drr_flags & DRR_FLAG_CI_DATA)
+ crflags |= DS_FLAG_CI_DATASET;
+
+ if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0)
+ dsflags |= DS_HOLD_FLAG_DECRYPT;
+
+ /*
+ * Raw, non-incremental recvs always use a dummy dcp with
+ * the raw cmd set. Raw incremental recvs do not use a dcp
+ * since the encryption parameters are already set in stone.
+ */
+ if (dcp == NULL && drba->drba_snapobj == 0 &&
+ drba->drba_origin == NULL) {
+ ASSERT3P(dcp, ==, NULL);
+ dcp = &dummy_dcp;
+
+ if (featureflags & DMU_BACKUP_FEATURE_RAW)
+ dcp->cp_cmd = DCP_CMD_RAW_RECV;
+ }
+
+ error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
+ if (error == 0) {
+ /* create temporary clone */
+ dsl_dataset_t *snap = NULL;
+
+ if (drba->drba_snapobj != 0) {
+ VERIFY0(dsl_dataset_hold_obj(dp,
+ drba->drba_snapobj, FTAG, &snap));
+ ASSERT3P(dcp, ==, NULL);
+ }
+
+ dsobj = dsl_dataset_create_sync(ds->ds_dir, recv_clone_name,
+ snap, crflags, drba->drba_cred, dcp, tx);
+ if (drba->drba_snapobj != 0)
+ dsl_dataset_rele(snap, FTAG);
+ dsl_dataset_rele_flags(ds, dsflags, FTAG);
+ } else {
+ dsl_dir_t *dd;
+ const char *tail;
+ dsl_dataset_t *origin = NULL;
+
+ VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail));
+
+ if (drba->drba_origin != NULL) {
+ VERIFY0(dsl_dataset_hold(dp, drba->drba_origin,
+ FTAG, &origin));
+ ASSERT3P(dcp, ==, NULL);
+ }
+
+ /* Create new dataset. */
+ dsobj = dsl_dataset_create_sync(dd, strrchr(tofs, '/') + 1,
+ origin, crflags, drba->drba_cred, dcp, tx);
+ if (origin != NULL)
+ dsl_dataset_rele(origin, FTAG);
+ dsl_dir_rele(dd, FTAG);
+ drba->drba_cookie->drc_newfs = B_TRUE;
+ }
+
+ VERIFY0(dsl_dataset_own_obj(dp, dsobj, dsflags, dmu_recv_tag, &newds));
+ VERIFY0(dmu_objset_from_ds(newds, &os));
+
+ if (drba->drba_cookie->drc_resumable) {
+ dsl_dataset_zapify(newds, tx);
+ if (drrb->drr_fromguid != 0) {
+ VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID,
+ 8, 1, &drrb->drr_fromguid, tx));
+ }
+ VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID,
+ 8, 1, &drrb->drr_toguid, tx));
+ VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME,
+ 1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx));
+ uint64_t one = 1;
+ uint64_t zero = 0;
+ VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT,
+ 8, 1, &one, tx));
+ VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET,
+ 8, 1, &zero, tx));
+ VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES,
+ 8, 1, &zero, tx));
+ if (featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) {
+ VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_LARGEBLOCK,
+ 8, 1, &one, tx));
+ }
+ if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) {
+ VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK,
+ 8, 1, &one, tx));
+ }
+ if (featureflags & DMU_BACKUP_FEATURE_COMPRESSED) {
+ VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_COMPRESSOK,
+ 8, 1, &one, tx));
+ }
+ if (featureflags & DMU_BACKUP_FEATURE_RAW) {
+ VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_RAWOK,
+ 8, 1, &one, tx));
+ }
+ }
+
+ /*
+ * Usually the os->os_encrypted value is tied to the presence of a
+ * DSL Crypto Key object in the dd. However, that will not be received
+ * until dmu_recv_stream(), so we set the value manually for now.
+ */
+ if (featureflags & DMU_BACKUP_FEATURE_RAW) {
+ os->os_encrypted = B_TRUE;
+ drba->drba_cookie->drc_raw = B_TRUE;
+ }
+
+ dmu_buf_will_dirty(newds->ds_dbuf, tx);
+ dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT;
+
+ /*
+ * If we actually created a non-clone, we need to create the objset
+ * in our new dataset. If this is a raw send we postpone this until
+ * dmu_recv_stream() so that we can allocate the metadnode with the
+ * properties from the DRR_BEGIN payload.
+ */
+ rrw_enter(&newds->ds_bp_rwlock, RW_READER, FTAG);
+ if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds)) &&
+ (featureflags & DMU_BACKUP_FEATURE_RAW) == 0) {
+ (void) dmu_objset_create_impl(dp->dp_spa,
+ newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx);
+ }
+ rrw_exit(&newds->ds_bp_rwlock, FTAG);
+
+ drba->drba_cookie->drc_ds = newds;
+
+ spa_history_log_internal_ds(newds, "receive", tx, "");
+}
+
+static int
+dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx)
+{
+ dmu_recv_begin_arg_t *drba = arg;
+ dsl_pool_t *dp = dmu_tx_pool(tx);
+ struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
+ int error;
+ ds_hold_flags_t dsflags = 0;
+ uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
+ dsl_dataset_t *ds;
+ const char *tofs = drba->drba_cookie->drc_tofs;
+
+ /* already checked */
+ ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
+ ASSERT(featureflags & DMU_BACKUP_FEATURE_RESUMING);
+
+ if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
+ DMU_COMPOUNDSTREAM ||
+ drrb->drr_type >= DMU_OST_NUMTYPES)
+ return (SET_ERROR(EINVAL));
+
+ /* Verify pool version supports SA if SA_SPILL feature set */
+ if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
+ spa_version(dp->dp_spa) < SPA_VERSION_SA)
+ return (SET_ERROR(ENOTSUP));
+
+ /*
+ * The receiving code doesn't know how to translate a WRITE_EMBEDDED
+ * record to a plain WRITE record, so the pool must have the
+ * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED
+ * records. Same with WRITE_EMBEDDED records that use LZ4 compression.
+ */
+ if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
+ !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA))
+ return (SET_ERROR(ENOTSUP));
+ if ((featureflags & DMU_BACKUP_FEATURE_LZ4) &&
+ !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS))
+ return (SET_ERROR(ENOTSUP));
+
+ /*
+ * The receiving code doesn't know how to translate large blocks
+ * to smaller ones, so the pool must have the LARGE_BLOCKS
+ * feature enabled if the stream has LARGE_BLOCKS. Same with
+ * large dnodes.
+ */
+ if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
+ !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_BLOCKS))
+ return (SET_ERROR(ENOTSUP));
+ if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) &&
+ !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_DNODE))
+ return (SET_ERROR(ENOTSUP));
+
+ /* 6 extra bytes for /%recv */
+ char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
+ (void) snprintf(recvname, sizeof (recvname), "%s/%s",
+ tofs, recv_clone_name);
+
+ if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0)
+ dsflags |= DS_HOLD_FLAG_DECRYPT;
+
+ if (dsl_dataset_hold_flags(dp, recvname, dsflags, FTAG, &ds) != 0) {
+ /* %recv does not exist; continue in tofs */
+ error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
+ if (error != 0)
+ return (error);
+ }
+
+ /* check that ds is marked inconsistent */
+ if (!DS_IS_INCONSISTENT(ds)) {
+ dsl_dataset_rele_flags(ds, dsflags, FTAG);
+ return (SET_ERROR(EINVAL));
+ }
+
+ /* check that there is resuming data, and that the toguid matches */
+ if (!dsl_dataset_is_zapified(ds)) {
+ dsl_dataset_rele_flags(ds, dsflags, FTAG);
+ return (SET_ERROR(EINVAL));
+ }
+ uint64_t val;
+ error = zap_lookup(dp->dp_meta_objset, ds->ds_object,
+ DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val);
+ if (error != 0 || drrb->drr_toguid != val) {
+ dsl_dataset_rele_flags(ds, dsflags, FTAG);
+ return (SET_ERROR(EINVAL));
+ }
+
+ /*
+ * Check if the receive is still running. If so, it will be owned.
+ * Note that nothing else can own the dataset (e.g. after the receive
+ * fails) because it will be marked inconsistent.
+ */
+ if (dsl_dataset_has_owner(ds)) {
+ dsl_dataset_rele_flags(ds, dsflags, FTAG);
+ return (SET_ERROR(EBUSY));
+ }
+
+ /* There should not be any snapshots of this fs yet. */
+ if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) {
+ dsl_dataset_rele_flags(ds, dsflags, FTAG);
+ return (SET_ERROR(EINVAL));
+ }
+
+ /*
+ * Note: resume point will be checked when we process the first WRITE
+ * record.
+ */
+
+ /* check that the origin matches */
+ val = 0;
+ (void) zap_lookup(dp->dp_meta_objset, ds->ds_object,
+ DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val);
+ if (drrb->drr_fromguid != val) {
+ dsl_dataset_rele_flags(ds, dsflags, FTAG);
+ return (SET_ERROR(EINVAL));
+ }
+
+ dsl_dataset_rele_flags(ds, dsflags, FTAG);
+ return (0);
+}
+
+static void
+dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx)
+{
+ dmu_recv_begin_arg_t *drba = arg;
+ dsl_pool_t *dp = dmu_tx_pool(tx);
+ const char *tofs = drba->drba_cookie->drc_tofs;
+ struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
+ uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
+ dsl_dataset_t *ds;
+ objset_t *os;
+ ds_hold_flags_t dsflags = 0;
+ uint64_t dsobj;
+ /* 6 extra bytes for /%recv */
+ char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
+
+ (void) snprintf(recvname, sizeof (recvname), "%s/%s",
+ tofs, recv_clone_name);
+
+ if (featureflags & DMU_BACKUP_FEATURE_RAW) {
+ drba->drba_cookie->drc_raw = B_TRUE;
+ } else {
+ dsflags |= DS_HOLD_FLAG_DECRYPT;
+ }
+
+ if (dsl_dataset_hold_flags(dp, recvname, dsflags, FTAG, &ds) != 0) {
+ /* %recv does not exist; continue in tofs */
+ VERIFY0(dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds));
+ drba->drba_cookie->drc_newfs = B_TRUE;
+ }
+
+ /* clear the inconsistent flag so that we can own it */
+ ASSERT(DS_IS_INCONSISTENT(ds));
+ dmu_buf_will_dirty(ds->ds_dbuf, tx);
+ dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
+ dsobj = ds->ds_object;
+ dsl_dataset_rele_flags(ds, dsflags, FTAG);
+
+ VERIFY0(dsl_dataset_own_obj(dp, dsobj, dsflags, dmu_recv_tag, &ds));
+ VERIFY0(dmu_objset_from_ds(ds, &os));
+
+ dmu_buf_will_dirty(ds->ds_dbuf, tx);
+ dsl_dataset_phys(ds)->ds_flags |= DS_FLAG_INCONSISTENT;
+
+ rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
+ ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)) ||
+ drba->drba_cookie->drc_raw);
+ rrw_exit(&ds->ds_bp_rwlock, FTAG);
+
+ drba->drba_cookie->drc_ds = ds;
+
+ spa_history_log_internal_ds(ds, "resume receive", tx, "");
+}
+
+/*
+ * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin()
+ * succeeds; otherwise we will leak the holds on the datasets.
+ */
+int
+dmu_recv_begin(char *tofs, char *tosnap, dmu_replay_record_t *drr_begin,
+ boolean_t force, boolean_t resumable, nvlist_t *localprops,
+ nvlist_t *hidden_args, char *origin, dmu_recv_cookie_t *drc)
+{
+ dmu_recv_begin_arg_t drba = { 0 };
+
+ bzero(drc, sizeof (dmu_recv_cookie_t));
+ drc->drc_drr_begin = drr_begin;
+ drc->drc_drrb = &drr_begin->drr_u.drr_begin;
+ drc->drc_tosnap = tosnap;
+ drc->drc_tofs = tofs;
+ drc->drc_force = force;
+ drc->drc_resumable = resumable;
+ drc->drc_cred = CRED();
+ drc->drc_clone = (origin != NULL);
+
+ if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) {
+ drc->drc_byteswap = B_TRUE;
+ (void) fletcher_4_incremental_byteswap(drr_begin,
+ sizeof (dmu_replay_record_t), &drc->drc_cksum);
+ byteswap_record(drr_begin);
+ } else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) {
+ (void) fletcher_4_incremental_native(drr_begin,
+ sizeof (dmu_replay_record_t), &drc->drc_cksum);
+ } else {
+ return (SET_ERROR(EINVAL));
+ }
+
+ drba.drba_origin = origin;
+ drba.drba_cookie = drc;
+ drba.drba_cred = CRED();
+
+ if (DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) &
+ DMU_BACKUP_FEATURE_RESUMING) {
+ return (dsl_sync_task(tofs,
+ dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync,
+ &drba, 5, ZFS_SPACE_CHECK_NORMAL));
+ } else {
+ int err;
+
+ /*
+ * For non-raw, non-incremental, non-resuming receives the
+ * user can specify encryption parameters on the command line
+ * with "zfs recv -o". For these receives we create a dcp and
+ * pass it to the sync task. Creating the dcp will implicitly
+ * remove the encryption params from the localprops nvlist,
+ * which avoids errors when trying to set these normally
+ * read-only properties. Any other kind of receive that
+ * attempts to set these properties will fail as a result.
+ */
+ if ((DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) &
+ DMU_BACKUP_FEATURE_RAW) == 0 &&
+ origin == NULL && drc->drc_drrb->drr_fromguid == 0) {
+ err = dsl_crypto_params_create_nvlist(DCP_CMD_NONE,
+ localprops, hidden_args, &drba.drba_dcp);
+ if (err != 0)
+ return (err);
+ }
+
+ err = dsl_sync_task(tofs,
+ dmu_recv_begin_check, dmu_recv_begin_sync,
+ &drba, 5, ZFS_SPACE_CHECK_NORMAL);
+ dsl_crypto_params_free(drba.drba_dcp, !!err);
+
+ return (err);
+ }
+}
+
+struct receive_record_arg {
+ dmu_replay_record_t header;
+ void *payload; /* Pointer to a buffer containing the payload */
+ /*
+ * If the record is a write, pointer to the arc_buf_t containing the
+ * payload.
+ */
+ arc_buf_t *arc_buf;
+ int payload_size;
+ uint64_t bytes_read; /* bytes read from stream when record created */
+ boolean_t eos_marker; /* Marks the end of the stream */
+ bqueue_node_t node;
+};
+
+struct receive_writer_arg {
+ objset_t *os;
+ boolean_t byteswap;
+ bqueue_t q;
+
+ /*
+ * These three args are used to signal to the main thread that we're
+ * done.
+ */
+ kmutex_t mutex;
+ kcondvar_t cv;
+ boolean_t done;
+
+ int err;
+ /* A map from guid to dataset to help handle dedup'd streams. */
+ avl_tree_t *guid_to_ds_map;
+ boolean_t resumable;
+ boolean_t raw;
+ uint64_t last_object;
+ uint64_t last_offset;
+ uint64_t max_object; /* highest object ID referenced in stream */
+ uint64_t bytes_read; /* bytes read when current record created */
+
+ /* Encryption parameters for the last received DRR_OBJECT_RANGE */
+ boolean_t or_crypt_params_present;
+ uint64_t or_firstobj;
+ uint64_t or_numslots;
+ uint8_t or_salt[ZIO_DATA_SALT_LEN];
+ uint8_t or_iv[ZIO_DATA_IV_LEN];
+ uint8_t or_mac[ZIO_DATA_MAC_LEN];
+ boolean_t or_byteorder;
+};
+
+struct objlist {
+ list_t list; /* List of struct receive_objnode. */
+ /*
+ * Last object looked up. Used to assert that objects are being looked
+ * up in ascending order.
+ */
+ uint64_t last_lookup;
+};
+
+struct receive_objnode {
+ list_node_t node;
+ uint64_t object;
+};
+
+struct receive_arg {
+ objset_t *os;
+ vnode_t *vp; /* The vnode to read the stream from */
+ uint64_t voff; /* The current offset in the stream */
+ uint64_t bytes_read;
+ /*
+ * A record that has had its payload read in, but hasn't yet been handed
+ * off to the worker thread.
+ */
+ struct receive_record_arg *rrd;
+ /* A record that has had its header read in, but not its payload. */
+ struct receive_record_arg *next_rrd;
+ zio_cksum_t cksum;
+ zio_cksum_t prev_cksum;
+ int err;
+ boolean_t byteswap;
+ boolean_t raw;
+ uint64_t featureflags;
+ /* Sorted list of objects not to issue prefetches for. */
+ struct objlist ignore_objlist;
+};
+
+typedef struct guid_map_entry {
+ uint64_t guid;
+ boolean_t raw;
+ dsl_dataset_t *gme_ds;
+ avl_node_t avlnode;
+} guid_map_entry_t;
+
+static int
+guid_compare(const void *arg1, const void *arg2)
+{
+ const guid_map_entry_t *gmep1 = (const guid_map_entry_t *)arg1;
+ const guid_map_entry_t *gmep2 = (const guid_map_entry_t *)arg2;
+
+ return (AVL_CMP(gmep1->guid, gmep2->guid));
+}
+
+static void
+free_guid_map_onexit(void *arg)
+{
+ avl_tree_t *ca = arg;
+ void *cookie = NULL;
+ guid_map_entry_t *gmep;
+
+ while ((gmep = avl_destroy_nodes(ca, &cookie)) != NULL) {
+ ds_hold_flags_t dsflags = DS_HOLD_FLAG_DECRYPT;
+
+ if (gmep->raw) {
+ gmep->gme_ds->ds_objset->os_raw_receive = B_FALSE;
+ dsflags &= ~DS_HOLD_FLAG_DECRYPT;
+ }
+
+ dsl_dataset_disown(gmep->gme_ds, dsflags, gmep);
+ kmem_free(gmep, sizeof (guid_map_entry_t));
+ }
+ avl_destroy(ca);
+ kmem_free(ca, sizeof (avl_tree_t));
+}
+
+static int
+receive_read(struct receive_arg *ra, int len, void *buf)
+{
+ int done = 0;
+
+ /*
+ * The code doesn't rely on this (lengths being multiples of 8). See
+ * comment in dump_bytes.
+ */
+ ASSERT(len % 8 == 0 ||
+ (ra->featureflags & DMU_BACKUP_FEATURE_RAW) != 0);
+
+ while (done < len) {
+ ssize_t resid;
+
+ ra->err = vn_rdwr(UIO_READ, ra->vp,
+ (char *)buf + done, len - done,
+ ra->voff, UIO_SYSSPACE, FAPPEND,
+ RLIM64_INFINITY, CRED(), &resid);
+
+ if (resid == len - done) {
+ /*
+ * Note: ECKSUM indicates that the receive
+ * was interrupted and can potentially be resumed.
+ */
+ ra->err = SET_ERROR(ECKSUM);
+ }
+ ra->voff += len - done - resid;
+ done = len - resid;
+ if (ra->err != 0)
+ return (ra->err);
+ }
+
+ ra->bytes_read += len;
+
+ ASSERT3U(done, ==, len);
+ return (0);
+}
+
+noinline static void
+byteswap_record(dmu_replay_record_t *drr)
+{
+#define DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X))
+#define DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X))
+ drr->drr_type = BSWAP_32(drr->drr_type);
+ drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen);
+
+ switch (drr->drr_type) {
+ case DRR_BEGIN:
+ DO64(drr_begin.drr_magic);
+ DO64(drr_begin.drr_versioninfo);
+ DO64(drr_begin.drr_creation_time);
+ DO32(drr_begin.drr_type);
+ DO32(drr_begin.drr_flags);
+ DO64(drr_begin.drr_toguid);
+ DO64(drr_begin.drr_fromguid);
+ break;
+ case DRR_OBJECT:
+ DO64(drr_object.drr_object);
+ DO32(drr_object.drr_type);
+ DO32(drr_object.drr_bonustype);
+ DO32(drr_object.drr_blksz);
+ DO32(drr_object.drr_bonuslen);
+ DO32(drr_object.drr_raw_bonuslen);
+ DO64(drr_object.drr_toguid);
+ DO64(drr_object.drr_maxblkid);
+ break;
+ case DRR_FREEOBJECTS:
+ DO64(drr_freeobjects.drr_firstobj);
+ DO64(drr_freeobjects.drr_numobjs);
+ DO64(drr_freeobjects.drr_toguid);
+ break;
+ case DRR_WRITE:
+ DO64(drr_write.drr_object);
+ DO32(drr_write.drr_type);
+ DO64(drr_write.drr_offset);
+ DO64(drr_write.drr_logical_size);
+ DO64(drr_write.drr_toguid);
+ ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum);
+ DO64(drr_write.drr_key.ddk_prop);
+ DO64(drr_write.drr_compressed_size);
+ break;
+ case DRR_WRITE_BYREF:
+ DO64(drr_write_byref.drr_object);
+ DO64(drr_write_byref.drr_offset);
+ DO64(drr_write_byref.drr_length);
+ DO64(drr_write_byref.drr_toguid);
+ DO64(drr_write_byref.drr_refguid);
+ DO64(drr_write_byref.drr_refobject);
+ DO64(drr_write_byref.drr_refoffset);
+ ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write_byref.
+ drr_key.ddk_cksum);
+ DO64(drr_write_byref.drr_key.ddk_prop);
+ break;
+ case DRR_WRITE_EMBEDDED:
+ DO64(drr_write_embedded.drr_object);
+ DO64(drr_write_embedded.drr_offset);
+ DO64(drr_write_embedded.drr_length);
+ DO64(drr_write_embedded.drr_toguid);
+ DO32(drr_write_embedded.drr_lsize);
+ DO32(drr_write_embedded.drr_psize);
+ break;
+ case DRR_FREE:
+ DO64(drr_free.drr_object);
+ DO64(drr_free.drr_offset);
+ DO64(drr_free.drr_length);
+ DO64(drr_free.drr_toguid);
+ break;
+ case DRR_SPILL:
+ DO64(drr_spill.drr_object);
+ DO64(drr_spill.drr_length);
+ DO64(drr_spill.drr_toguid);
+ DO64(drr_spill.drr_compressed_size);
+ DO32(drr_spill.drr_type);
+ break;
+ case DRR_OBJECT_RANGE:
+ DO64(drr_object_range.drr_firstobj);
+ DO64(drr_object_range.drr_numslots);
+ DO64(drr_object_range.drr_toguid);
+ break;
+ case DRR_END:
+ DO64(drr_end.drr_toguid);
+ ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum);
+ break;
+ default:
+ break;
+ }
+
+ if (drr->drr_type != DRR_BEGIN) {
+ ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum);
+ }
+
+#undef DO64
+#undef DO32
+}
+
+static inline uint8_t
+deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size)
+{
+ if (bonus_type == DMU_OT_SA) {
+ return (1);
+ } else {
+ return (1 +
+ ((DN_OLD_MAX_BONUSLEN -
+ MIN(DN_OLD_MAX_BONUSLEN, bonus_size)) >> SPA_BLKPTRSHIFT));
+ }
+}
+
+static void
+save_resume_state(struct receive_writer_arg *rwa,
+ uint64_t object, uint64_t offset, dmu_tx_t *tx)
+{
+ int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
+
+ if (!rwa->resumable)
+ return;
+
+ /*
+ * We use ds_resume_bytes[] != 0 to indicate that we need to
+ * update this on disk, so it must not be 0.
+ */
+ ASSERT(rwa->bytes_read != 0);
+
+ /*
+ * We only resume from write records, which have a valid
+ * (non-meta-dnode) object number.
+ */
+ ASSERT(object != 0);
+
+ /*
+ * For resuming to work correctly, we must receive records in order,
+ * sorted by object,offset. This is checked by the callers, but
+ * assert it here for good measure.
+ */
+ ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]);
+ ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] ||
+ offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]);
+ ASSERT3U(rwa->bytes_read, >=,
+ rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]);
+
+ rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object;
+ rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset;
+ rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read;
+}
+
+noinline static int
+receive_object(struct receive_writer_arg *rwa, struct drr_object *drro,
+ void *data)
+{
+ dmu_object_info_t doi;
+ dmu_tx_t *tx;
+ uint64_t object;
+ int err;
+ uint8_t dn_slots = drro->drr_dn_slots != 0 ?
+ drro->drr_dn_slots : DNODE_MIN_SLOTS;
+
+ if (drro->drr_type == DMU_OT_NONE ||
+ !DMU_OT_IS_VALID(drro->drr_type) ||
+ !DMU_OT_IS_VALID(drro->drr_bonustype) ||
+ drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS ||
+ drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS ||
+ P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) ||
+ drro->drr_blksz < SPA_MINBLOCKSIZE ||
+ drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) ||
+ drro->drr_bonuslen >
+ DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(rwa->os))) ||
+ dn_slots >
+ (spa_maxdnodesize(dmu_objset_spa(rwa->os)) >> DNODE_SHIFT)) {
+ return (SET_ERROR(EINVAL));
+ }
+
+ if (rwa->raw) {
+ /*
+ * We should have received a DRR_OBJECT_RANGE record
+ * containing this block and stored it in rwa.
+ */
+ if (drro->drr_object < rwa->or_firstobj ||
+ drro->drr_object >= rwa->or_firstobj + rwa->or_numslots ||
+ drro->drr_raw_bonuslen < drro->drr_bonuslen ||
+ drro->drr_indblkshift > SPA_MAXBLOCKSHIFT ||
+ drro->drr_nlevels > DN_MAX_LEVELS ||
+ drro->drr_nblkptr > DN_MAX_NBLKPTR ||
+ DN_SLOTS_TO_BONUSLEN(dn_slots) <
+ drro->drr_raw_bonuslen)
+ return (SET_ERROR(EINVAL));
+ } else {
+ if (drro->drr_flags != 0 || drro->drr_raw_bonuslen != 0 ||
+ drro->drr_indblkshift != 0 || drro->drr_nlevels != 0 ||
+ drro->drr_nblkptr != 0)
+ return (SET_ERROR(EINVAL));
+ }
+
+ err = dmu_object_info(rwa->os, drro->drr_object, &doi);
+ if (err != 0 && err != ENOENT && err != EEXIST)
+ return (SET_ERROR(EINVAL));
+
+ if (drro->drr_object > rwa->max_object)
+ rwa->max_object = drro->drr_object;
+
+ /*
+ * If we are losing blkptrs or changing the block size this must
+ * be a new file instance. We must clear out the previous file
+ * contents before we can change this type of metadata in the dnode.
+ * Raw receives will also check that the indirect structure of the
+ * dnode hasn't changed.
+ */
+ if (err == 0) {
+ uint32_t indblksz = drro->drr_indblkshift ?
+ 1ULL << drro->drr_indblkshift : 0;
+ int nblkptr = deduce_nblkptr(drro->drr_bonustype,
+ drro->drr_bonuslen);
+
+ object = drro->drr_object;
+
+ /* nblkptr will be bounded by the bonus size and type */
+ if (rwa->raw && nblkptr != drro->drr_nblkptr)
+ return (SET_ERROR(EINVAL));
+
+ if (drro->drr_blksz != doi.doi_data_block_size ||
+ nblkptr < doi.doi_nblkptr ||
+ dn_slots != doi.doi_dnodesize >> DNODE_SHIFT ||
+ (rwa->raw &&
+ (indblksz != doi.doi_metadata_block_size ||
+ drro->drr_nlevels < doi.doi_indirection))) {
+ err = dmu_free_long_range(rwa->os,
+ drro->drr_object, 0, DMU_OBJECT_END);
+ if (err != 0)
+ return (SET_ERROR(EINVAL));
+ }
+
+ /*
+ * The dmu does not currently support decreasing nlevels
+ * on an object. For non-raw sends, this does not matter
+ * and the new object can just use the previous one's nlevels.
+ * For raw sends, however, the structure of the received dnode
+ * (including nlevels) must match that of the send side.
+ * Therefore, instead of using dmu_object_reclaim(), we must
+ * free the object completely and call dmu_object_claim_dnsize()
+ * instead.
+ */
+ if ((rwa->raw && drro->drr_nlevels < doi.doi_indirection) ||
+ dn_slots != doi.doi_dnodesize >> DNODE_SHIFT) {
+ err = dmu_free_long_object(rwa->os, drro->drr_object);
+ if (err != 0)
+ return (SET_ERROR(EINVAL));
+
+ txg_wait_synced(dmu_objset_pool(rwa->os), 0);
+ object = DMU_NEW_OBJECT;
+ }
+ } else if (err == EEXIST) {
+ /*
+ * The object requested is currently an interior slot of a
+ * multi-slot dnode. This will be resolved when the next txg
+ * is synced out, since the send stream will have told us
+ * to free this slot when we freed the associated dnode
+ * earlier in the stream.
+ */
+ txg_wait_synced(dmu_objset_pool(rwa->os), 0);
+ object = drro->drr_object;
+ } else {
+ /* object is free and we are about to allocate a new one */
+ object = DMU_NEW_OBJECT;
+ }
+
+ /*
+ * If this is a multi-slot dnode there is a chance that this
+ * object will expand into a slot that is already used by
+ * another object from the previous snapshot. We must free
+ * these objects before we attempt to allocate the new dnode.
+ */
+ if (dn_slots > 1) {
+ boolean_t need_sync = B_FALSE;
+
+ for (uint64_t slot = drro->drr_object + 1;
+ slot < drro->drr_object + dn_slots;
+ slot++) {
+ dmu_object_info_t slot_doi;
+
+ err = dmu_object_info(rwa->os, slot, &slot_doi);
+ if (err == ENOENT || err == EEXIST)
+ continue;
+ else if (err != 0)
+ return (err);
+
+ err = dmu_free_long_object(rwa->os, slot);
+
+ if (err != 0)
+ return (err);
+
+ need_sync = B_TRUE;
+ }
+
+ if (need_sync)
+ txg_wait_synced(dmu_objset_pool(rwa->os), 0);
+ }
+
+ tx = dmu_tx_create(rwa->os);
+ dmu_tx_hold_bonus(tx, object);
+ dmu_tx_hold_write(tx, object, 0, 0);
+ err = dmu_tx_assign(tx, TXG_WAIT);
+ if (err != 0) {
+ dmu_tx_abort(tx);
+ return (err);
+ }
+
+ if (object == DMU_NEW_OBJECT) {
+ /* currently free, want to be allocated */
+ err = dmu_object_claim_dnsize(rwa->os, drro->drr_object,
+ drro->drr_type, drro->drr_blksz,
+ drro->drr_bonustype, drro->drr_bonuslen,
+ dn_slots << DNODE_SHIFT, tx);
+ } else if (drro->drr_type != doi.doi_type ||
+ drro->drr_blksz != doi.doi_data_block_size ||
+ drro->drr_bonustype != doi.doi_bonus_type ||
+ drro->drr_bonuslen != doi.doi_bonus_size) {
+ /* currently allocated, but with different properties */
+ err = dmu_object_reclaim_dnsize(rwa->os, drro->drr_object,
+ drro->drr_type, drro->drr_blksz,
+ drro->drr_bonustype, drro->drr_bonuslen,
+ dn_slots << DNODE_SHIFT, tx);
+ }
+ if (err != 0) {
+ dmu_tx_commit(tx);
+ return (SET_ERROR(EINVAL));
+ }
+
+ if (rwa->or_crypt_params_present) {
+ /*
+ * Set the crypt params for the buffer associated with this
+ * range of dnodes. This causes the blkptr_t to have the
+ * same crypt params (byteorder, salt, iv, mac) as on the
+ * sending side.
+ *
+ * Since we are committing this tx now, it is possible for
+ * the dnode block to end up on-disk with the incorrect MAC,
+ * if subsequent objects in this block are received in a
+ * different txg. However, since the dataset is marked as
+ * inconsistent, no code paths will do a non-raw read (or
+ * decrypt the block / verify the MAC). The receive code and
+ * scrub code can safely do raw reads and verify the
+ * checksum. They don't need to verify the MAC.
+ */
+ dmu_buf_t *db = NULL;
+ uint64_t offset = rwa->or_firstobj * DNODE_MIN_SIZE;
+
+ err = dmu_buf_hold_by_dnode(DMU_META_DNODE(rwa->os),
+ offset, FTAG, &db, DMU_READ_PREFETCH | DMU_READ_NO_DECRYPT);
+ if (err != 0) {
+ dmu_tx_commit(tx);
+ return (SET_ERROR(EINVAL));
+ }
+
+ dmu_buf_set_crypt_params(db, rwa->or_byteorder,
+ rwa->or_salt, rwa->or_iv, rwa->or_mac, tx);
+
+ dmu_buf_rele(db, FTAG);
+
+ rwa->or_crypt_params_present = B_FALSE;
+ }
+
+ dmu_object_set_checksum(rwa->os, drro->drr_object,
+ drro->drr_checksumtype, tx);
+ dmu_object_set_compress(rwa->os, drro->drr_object,
+ drro->drr_compress, tx);
+
+ /* handle more restrictive dnode structuring for raw recvs */
+ if (rwa->raw) {
+ /*
+ * Set the indirect block shift and nlevels. This will not fail
+ * because we ensured all of the blocks were free earlier if
+ * this is a new object.
+ */
+ VERIFY0(dmu_object_set_blocksize(rwa->os, drro->drr_object,
+ drro->drr_blksz, drro->drr_indblkshift, tx));
+ VERIFY0(dmu_object_set_nlevels(rwa->os, drro->drr_object,
+ drro->drr_nlevels, tx));
+ VERIFY0(dmu_object_set_maxblkid(rwa->os, drro->drr_object,
+ drro->drr_maxblkid, tx));
+ }
+
+ if (data != NULL) {
+ dmu_buf_t *db;
+ uint32_t flags = DMU_READ_NO_PREFETCH;
+
+ if (rwa->raw)
+ flags |= DMU_READ_NO_DECRYPT;
+
+ VERIFY0(dmu_bonus_hold_impl(rwa->os, drro->drr_object,
+ FTAG, flags, &db));
+ dmu_buf_will_dirty(db, tx);
+
+ ASSERT3U(db->db_size, >=, drro->drr_bonuslen);
+ bcopy(data, db->db_data, DRR_OBJECT_PAYLOAD_SIZE(drro));
+
+ /*
+ * Raw bonus buffers have their byteorder determined by the
+ * DRR_OBJECT_RANGE record.
+ */
+ if (rwa->byteswap && !rwa->raw) {
+ dmu_object_byteswap_t byteswap =
+ DMU_OT_BYTESWAP(drro->drr_bonustype);
+ dmu_ot_byteswap[byteswap].ob_func(db->db_data,
+ DRR_OBJECT_PAYLOAD_SIZE(drro));
+ }
+ dmu_buf_rele(db, FTAG);
+ }
+ dmu_tx_commit(tx);
+
+ return (0);
+}
+
+/* ARGSUSED */
+noinline static int
+receive_freeobjects(struct receive_writer_arg *rwa,
+ struct drr_freeobjects *drrfo)
+{
+ uint64_t obj;
+ int next_err = 0;
+
+ if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj)
+ return (SET_ERROR(EINVAL));
+
+ for (obj = drrfo->drr_firstobj == 0 ? 1 : drrfo->drr_firstobj;
+ obj < drrfo->drr_firstobj + drrfo->drr_numobjs && next_err == 0;
+ next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) {
+ dmu_object_info_t doi;
+ int err;
+
+ err = dmu_object_info(rwa->os, obj, &doi);
+ if (err == ENOENT)
+ continue;
+ else if (err != 0)
+ return (err);
+
+ err = dmu_free_long_object(rwa->os, obj);
+
+ if (err != 0)
+ return (err);
+
+ if (obj > rwa->max_object)
+ rwa->max_object = obj;
+ }
+ if (next_err != ESRCH)
+ return (next_err);
+ return (0);
+}
+
+noinline static int
+receive_write(struct receive_writer_arg *rwa, struct drr_write *drrw,
+ arc_buf_t *abuf)
+{
+ int err;
+ dmu_tx_t *tx;
+ dnode_t *dn;
+
+ if (drrw->drr_offset + drrw->drr_logical_size < drrw->drr_offset ||
+ !DMU_OT_IS_VALID(drrw->drr_type))
+ return (SET_ERROR(EINVAL));
+
+ /*
+ * For resuming to work, records must be in increasing order
+ * by (object, offset).
+ */
+ if (drrw->drr_object < rwa->last_object ||
+ (drrw->drr_object == rwa->last_object &&
+ drrw->drr_offset < rwa->last_offset)) {
+ return (SET_ERROR(EINVAL));
+ }
+ rwa->last_object = drrw->drr_object;
+ rwa->last_offset = drrw->drr_offset;
+
+ if (rwa->last_object > rwa->max_object)
+ rwa->max_object = rwa->last_object;
+
+ if (dmu_object_info(rwa->os, drrw->drr_object, NULL) != 0)
+ return (SET_ERROR(EINVAL));
+
+ tx = dmu_tx_create(rwa->os);
+ dmu_tx_hold_write(tx, drrw->drr_object,
+ drrw->drr_offset, drrw->drr_logical_size);
+ err = dmu_tx_assign(tx, TXG_WAIT);
+ if (err != 0) {
+ dmu_tx_abort(tx);
+ return (err);
+ }
+
+ if (rwa->byteswap && !arc_is_encrypted(abuf) &&
+ arc_get_compression(abuf) == ZIO_COMPRESS_OFF) {
+ dmu_object_byteswap_t byteswap =
+ DMU_OT_BYTESWAP(drrw->drr_type);
+ dmu_ot_byteswap[byteswap].ob_func(abuf->b_data,
+ DRR_WRITE_PAYLOAD_SIZE(drrw));
+ }
+
+ VERIFY0(dnode_hold(rwa->os, drrw->drr_object, FTAG, &dn));
+ dmu_assign_arcbuf_by_dnode(dn, drrw->drr_offset, abuf, tx);
+ dnode_rele(dn, FTAG);
+
+ /*
+ * Note: If the receive fails, we want the resume stream to start
+ * with the same record that we last successfully received (as opposed
+ * to the next record), so that we can verify that we are
+ * resuming from the correct location.
+ */
+ save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx);
+ dmu_tx_commit(tx);
+
+ return (0);
+}
+
+/*
+ * Handle a DRR_WRITE_BYREF record. This record is used in dedup'ed
+ * streams to refer to a copy of the data that is already on the
+ * system because it came in earlier in the stream. This function
+ * finds the earlier copy of the data, and uses that copy instead of
+ * data from the stream to fulfill this write.
+ */
+static int
+receive_write_byref(struct receive_writer_arg *rwa,
+ struct drr_write_byref *drrwbr)
+{
+ dmu_tx_t *tx;
+ int err;
+ guid_map_entry_t gmesrch;
+ guid_map_entry_t *gmep;
+ avl_index_t where;
+ objset_t *ref_os = NULL;
+ int flags = DMU_READ_PREFETCH;
+ dmu_buf_t *dbp;
+
+ if (drrwbr->drr_offset + drrwbr->drr_length < drrwbr->drr_offset)
+ return (SET_ERROR(EINVAL));
+
+ /*
+ * If the GUID of the referenced dataset is different from the
+ * GUID of the target dataset, find the referenced dataset.
+ */
+ if (drrwbr->drr_toguid != drrwbr->drr_refguid) {
+ gmesrch.guid = drrwbr->drr_refguid;
+ if ((gmep = avl_find(rwa->guid_to_ds_map, &gmesrch,
+ &where)) == NULL) {
+ return (SET_ERROR(EINVAL));
+ }
+ if (dmu_objset_from_ds(gmep->gme_ds, &ref_os))
+ return (SET_ERROR(EINVAL));
+ } else {
+ ref_os = rwa->os;
+ }
+
+ if (drrwbr->drr_object > rwa->max_object)
+ rwa->max_object = drrwbr->drr_object;
+
+ if (rwa->raw)
+ flags |= DMU_READ_NO_DECRYPT;
+
+ /* may return either a regular db or an encrypted one */
+ err = dmu_buf_hold(ref_os, drrwbr->drr_refobject,
+ drrwbr->drr_refoffset, FTAG, &dbp, flags);
+ if (err != 0)
+ return (err);
+
+ tx = dmu_tx_create(rwa->os);
+
+ dmu_tx_hold_write(tx, drrwbr->drr_object,
+ drrwbr->drr_offset, drrwbr->drr_length);
+ err = dmu_tx_assign(tx, TXG_WAIT);
+ if (err != 0) {
+ dmu_tx_abort(tx);
+ return (err);
+ }
+
+ if (rwa->raw) {
+ dmu_copy_from_buf(rwa->os, drrwbr->drr_object,
+ drrwbr->drr_offset, dbp, tx);
+ } else {
+ dmu_write(rwa->os, drrwbr->drr_object,
+ drrwbr->drr_offset, drrwbr->drr_length, dbp->db_data, tx);
+ }
+ dmu_buf_rele(dbp, FTAG);
+
+ /* See comment in restore_write. */
+ save_resume_state(rwa, drrwbr->drr_object, drrwbr->drr_offset, tx);
+ dmu_tx_commit(tx);
+ return (0);
+}
+
+static int
+receive_write_embedded(struct receive_writer_arg *rwa,
+ struct drr_write_embedded *drrwe, void *data)
+{
+ dmu_tx_t *tx;
+ int err;
+
+ if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset)
+ return (SET_ERROR(EINVAL));
+
+ if (drrwe->drr_psize > BPE_PAYLOAD_SIZE)
+ return (SET_ERROR(EINVAL));
+
+ if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES)
+ return (SET_ERROR(EINVAL));
+ if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS)
+ return (SET_ERROR(EINVAL));
+ if (rwa->raw)
+ return (SET_ERROR(EINVAL));
+
+ if (drrwe->drr_object > rwa->max_object)
+ rwa->max_object = drrwe->drr_object;
+
+ tx = dmu_tx_create(rwa->os);
+
+ dmu_tx_hold_write(tx, drrwe->drr_object,
+ drrwe->drr_offset, drrwe->drr_length);
+ err = dmu_tx_assign(tx, TXG_WAIT);
+ if (err != 0) {
+ dmu_tx_abort(tx);
+ return (err);
+ }
+
+ dmu_write_embedded(rwa->os, drrwe->drr_object,
+ drrwe->drr_offset, data, drrwe->drr_etype,
+ drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize,
+ rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx);
+
+ /* See comment in restore_write. */
+ save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx);
+ dmu_tx_commit(tx);
+ return (0);
+}
+
+static int
+receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs,
+ arc_buf_t *abuf)
+{
+ dmu_tx_t *tx;
+ dmu_buf_t *db, *db_spill;
+ int err;
+ uint32_t flags = 0;
+
+ if (drrs->drr_length < SPA_MINBLOCKSIZE ||
+ drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os)))
+ return (SET_ERROR(EINVAL));
+
+ if (rwa->raw) {
+ if (!DMU_OT_IS_VALID(drrs->drr_type) ||
+ drrs->drr_compressiontype >= ZIO_COMPRESS_FUNCTIONS ||
+ drrs->drr_compressed_size == 0)
+ return (SET_ERROR(EINVAL));
+
+ flags |= DMU_READ_NO_DECRYPT;
+ }
+
+ if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0)
+ return (SET_ERROR(EINVAL));
+
+ if (drrs->drr_object > rwa->max_object)
+ rwa->max_object = drrs->drr_object;
+
+ VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db));
+ if ((err = dmu_spill_hold_by_bonus(db, DMU_READ_NO_DECRYPT, FTAG,
+ &db_spill)) != 0) {
+ dmu_buf_rele(db, FTAG);
+ return (err);
+ }
+
+ tx = dmu_tx_create(rwa->os);
+
+ dmu_tx_hold_spill(tx, db->db_object);
+
+ err = dmu_tx_assign(tx, TXG_WAIT);
+ if (err != 0) {
+ dmu_buf_rele(db, FTAG);
+ dmu_buf_rele(db_spill, FTAG);
+ dmu_tx_abort(tx);
+ return (err);
+ }
+
+ if (db_spill->db_size < drrs->drr_length)
+ VERIFY(0 == dbuf_spill_set_blksz(db_spill,
+ drrs->drr_length, tx));
+
+ if (rwa->byteswap && !arc_is_encrypted(abuf) &&
+ arc_get_compression(abuf) == ZIO_COMPRESS_OFF) {
+ dmu_object_byteswap_t byteswap =
+ DMU_OT_BYTESWAP(drrs->drr_type);
+ dmu_ot_byteswap[byteswap].ob_func(abuf->b_data,
+ DRR_SPILL_PAYLOAD_SIZE(drrs));
+ }
+
+ dbuf_assign_arcbuf((dmu_buf_impl_t *)db_spill, abuf, tx);
+
+ dmu_buf_rele(db, FTAG);
+ dmu_buf_rele(db_spill, FTAG);
+
+ dmu_tx_commit(tx);
+ return (0);
+}
+
+/* ARGSUSED */
+noinline static int
+receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf)
+{
+ int err;
+
+ if (drrf->drr_length != DMU_OBJECT_END &&
+ drrf->drr_offset + drrf->drr_length < drrf->drr_offset)
+ return (SET_ERROR(EINVAL));
+
+ if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0)
+ return (SET_ERROR(EINVAL));
+
+ if (drrf->drr_object > rwa->max_object)
+ rwa->max_object = drrf->drr_object;
+
+ err = dmu_free_long_range(rwa->os, drrf->drr_object,
+ drrf->drr_offset, drrf->drr_length);
+
+ return (err);
+}
+
+static int
+receive_object_range(struct receive_writer_arg *rwa,
+ struct drr_object_range *drror)
+{
+ /*
+ * By default, we assume this block is in our native format
+ * (ZFS_HOST_BYTEORDER). We then take into account whether
+ * the send stream is byteswapped (rwa->byteswap). Finally,
+ * we need to byteswap again if this particular block was
+ * in non-native format on the send side.
+ */
+ boolean_t byteorder = ZFS_HOST_BYTEORDER ^ rwa->byteswap ^
+ !!DRR_IS_RAW_BYTESWAPPED(drror->drr_flags);
+
+ /*
+ * Since dnode block sizes are constant, we should not need to worry
+ * about making sure that the dnode block size is the same on the
+ * sending and receiving sides for the time being. For non-raw sends,
+ * this does not matter (and in fact we do not send a DRR_OBJECT_RANGE
+ * record at all). Raw sends require this record type because the
+ * encryption parameters are used to protect an entire block of bonus
+ * buffers. If the size of dnode blocks ever becomes variable,
+ * handling will need to be added to ensure that dnode block sizes
+ * match on the sending and receiving side.
+ */
+ if (drror->drr_numslots != DNODES_PER_BLOCK ||
+ P2PHASE(drror->drr_firstobj, DNODES_PER_BLOCK) != 0 ||
+ !rwa->raw)
+ return (SET_ERROR(EINVAL));
+
+ if (drror->drr_firstobj > rwa->max_object)
+ rwa->max_object = drror->drr_firstobj;
+
+ /*
+ * The DRR_OBJECT_RANGE handling must be deferred to receive_object()
+ * so that the block of dnodes is not written out when it's empty,
+ * and converted to a HOLE BP.
+ */
+ rwa->or_crypt_params_present = B_TRUE;
+ rwa->or_firstobj = drror->drr_firstobj;
+ rwa->or_numslots = drror->drr_numslots;
+ bcopy(drror->drr_salt, rwa->or_salt, ZIO_DATA_SALT_LEN);
+ bcopy(drror->drr_iv, rwa->or_iv, ZIO_DATA_IV_LEN);
+ bcopy(drror->drr_mac, rwa->or_mac, ZIO_DATA_MAC_LEN);
+ rwa->or_byteorder = byteorder;
+
+ return (0);
+}
+
+/* used to destroy the drc_ds on error */
+static void
+dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc)
+{
+ dsl_dataset_t *ds = drc->drc_ds;
+ ds_hold_flags_t dsflags = (drc->drc_raw) ? 0 : DS_HOLD_FLAG_DECRYPT;
+
+ /*
+ * Wait for the txg sync before cleaning up the receive. For
+ * resumable receives, this ensures that our resume state has
+ * been written out to disk. For raw receives, this ensures
+ * that the user accounting code will not attempt to do anything
+ * after we stopped receiving the dataset.
+ */
+ txg_wait_synced(ds->ds_dir->dd_pool, 0);
+ ds->ds_objset->os_raw_receive = B_FALSE;
+
+ rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
+ if (drc->drc_resumable && !BP_IS_HOLE(dsl_dataset_get_blkptr(ds))) {
+ rrw_exit(&ds->ds_bp_rwlock, FTAG);
+ dsl_dataset_disown(ds, dsflags, dmu_recv_tag);
+ } else {
+ char name[ZFS_MAX_DATASET_NAME_LEN];
+ rrw_exit(&ds->ds_bp_rwlock, FTAG);
+ dsl_dataset_name(ds, name);
+ dsl_dataset_disown(ds, dsflags, dmu_recv_tag);
+ (void) dsl_destroy_head(name);
+ }
+}
+
+static void
+receive_cksum(struct receive_arg *ra, int len, void *buf)
+{
+ if (ra->byteswap) {
+ (void) fletcher_4_incremental_byteswap(buf, len, &ra->cksum);
+ } else {
+ (void) fletcher_4_incremental_native(buf, len, &ra->cksum);
+ }
+}
+
+/*
+ * Read the payload into a buffer of size len, and update the current record's
+ * payload field.
+ * Allocate ra->next_rrd and read the next record's header into
+ * ra->next_rrd->header.
+ * Verify checksum of payload and next record.
+ */
+static int
+receive_read_payload_and_next_header(struct receive_arg *ra, int len, void *buf)
+{
+ int err;
+ zio_cksum_t cksum_orig;
+ zio_cksum_t *cksump;
+
+ if (len != 0) {
+ ASSERT3U(len, <=, SPA_MAXBLOCKSIZE);
+ err = receive_read(ra, len, buf);
+ if (err != 0)
+ return (err);
+ receive_cksum(ra, len, buf);
+
+ /* note: rrd is NULL when reading the begin record's payload */
+ if (ra->rrd != NULL) {
+ ra->rrd->payload = buf;
+ ra->rrd->payload_size = len;
+ ra->rrd->bytes_read = ra->bytes_read;
+ }
+ }
+
+ ra->prev_cksum = ra->cksum;
+
+ ra->next_rrd = kmem_zalloc(sizeof (*ra->next_rrd), KM_SLEEP);
+ err = receive_read(ra, sizeof (ra->next_rrd->header),
+ &ra->next_rrd->header);
+ ra->next_rrd->bytes_read = ra->bytes_read;
+
+ if (err != 0) {
+ kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
+ ra->next_rrd = NULL;
+ return (err);
+ }
+ if (ra->next_rrd->header.drr_type == DRR_BEGIN) {
+ kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
+ ra->next_rrd = NULL;
+ return (SET_ERROR(EINVAL));
+ }
+
+ /*
+ * Note: checksum is of everything up to but not including the
+ * checksum itself.
+ */
+ ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
+ ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
+ receive_cksum(ra,
+ offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
+ &ra->next_rrd->header);
+
+ cksum_orig = ra->next_rrd->header.drr_u.drr_checksum.drr_checksum;
+ cksump = &ra->next_rrd->header.drr_u.drr_checksum.drr_checksum;
+
+ if (ra->byteswap)
+ byteswap_record(&ra->next_rrd->header);
+
+ if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) &&
+ !ZIO_CHECKSUM_EQUAL(ra->cksum, *cksump)) {
+ kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
+ ra->next_rrd = NULL;
+ return (SET_ERROR(ECKSUM));
+ }
+
+ receive_cksum(ra, sizeof (cksum_orig), &cksum_orig);
+
+ return (0);
+}
+
+static void
+objlist_create(struct objlist *list)
+{
+ list_create(&list->list, sizeof (struct receive_objnode),
+ offsetof(struct receive_objnode, node));
+ list->last_lookup = 0;
+}
+
+static void
+objlist_destroy(struct objlist *list)
+{
+ for (struct receive_objnode *n = list_remove_head(&list->list);
+ n != NULL; n = list_remove_head(&list->list)) {
+ kmem_free(n, sizeof (*n));
+ }
+ list_destroy(&list->list);
+}
+
+/*
+ * This function looks through the objlist to see if the specified object number
+ * is contained in the objlist. In the process, it will remove all object
+ * numbers in the list that are smaller than the specified object number. Thus,
+ * any lookup of an object number smaller than a previously looked up object
+ * number will always return false; therefore, all lookups should be done in
+ * ascending order.
+ */
+static boolean_t
+objlist_exists(struct objlist *list, uint64_t object)
+{
+ struct receive_objnode *node = list_head(&list->list);
+ ASSERT3U(object, >=, list->last_lookup);
+ list->last_lookup = object;
+ while (node != NULL && node->object < object) {
+ VERIFY3P(node, ==, list_remove_head(&list->list));
+ kmem_free(node, sizeof (*node));
+ node = list_head(&list->list);
+ }
+ return (node != NULL && node->object == object);
+}
+
+/*
+ * The objlist is a list of object numbers stored in ascending order. However,
+ * the insertion of new object numbers does not seek out the correct location to
+ * store a new object number; instead, it appends it to the list for simplicity.
+ * Thus, any users must take care to only insert new object numbers in ascending
+ * order.
+ */
+static void
+objlist_insert(struct objlist *list, uint64_t object)
+{
+ struct receive_objnode *node = kmem_zalloc(sizeof (*node), KM_SLEEP);
+ node->object = object;
+#ifdef ZFS_DEBUG
+ {
+ struct receive_objnode *last_object = list_tail(&list->list);
+ uint64_t last_objnum = (last_object != NULL ? last_object->object : 0);
+ ASSERT3U(node->object, >, last_objnum);
+ }
+#endif
+ list_insert_tail(&list->list, node);
+}
+
+/*
+ * Issue the prefetch reads for any necessary indirect blocks.
+ *
+ * We use the object ignore list to tell us whether or not to issue prefetches
+ * for a given object. We do this for both correctness (in case the blocksize
+ * of an object has changed) and performance (if the object doesn't exist, don't
+ * needlessly try to issue prefetches). We also trim the list as we go through
+ * the stream to prevent it from growing to an unbounded size.
+ *
+ * The object numbers within will always be in sorted order, and any write
+ * records we see will also be in sorted order, but they're not sorted with
+ * respect to each other (i.e. we can get several object records before
+ * receiving each object's write records). As a result, once we've reached a
+ * given object number, we can safely remove any reference to lower object
+ * numbers in the ignore list. In practice, we receive up to 32 object records
+ * before receiving write records, so the list can have up to 32 nodes in it.
+ */
+/* ARGSUSED */
+static void
+receive_read_prefetch(struct receive_arg *ra,
+ uint64_t object, uint64_t offset, uint64_t length)
+{
+ if (!objlist_exists(&ra->ignore_objlist, object)) {
+ dmu_prefetch(ra->os, object, 1, offset, length,
+ ZIO_PRIORITY_SYNC_READ);
+ }
+}
+
+/*
+ * Read records off the stream, issuing any necessary prefetches.
+ */
+static int
+receive_read_record(struct receive_arg *ra)
+{
+ int err;
+
+ switch (ra->rrd->header.drr_type) {
+ case DRR_OBJECT:
+ {
+ struct drr_object *drro = &ra->rrd->header.drr_u.drr_object;
+ uint32_t size = DRR_OBJECT_PAYLOAD_SIZE(drro);
+ void *buf = kmem_zalloc(size, KM_SLEEP);
+ dmu_object_info_t doi;
+
+ err = receive_read_payload_and_next_header(ra, size, buf);
+ if (err != 0) {
+ kmem_free(buf, size);
+ return (err);
+ }
+ err = dmu_object_info(ra->os, drro->drr_object, &doi);
+ /*
+ * See receive_read_prefetch for an explanation why we're
+ * storing this object in the ignore_obj_list.
+ */
+ if (err == ENOENT || err == EEXIST ||
+ (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) {
+ objlist_insert(&ra->ignore_objlist, drro->drr_object);
+ err = 0;
+ }
+ return (err);
+ }
+ case DRR_FREEOBJECTS:
+ {
+ err = receive_read_payload_and_next_header(ra, 0, NULL);
+ return (err);
+ }
+ case DRR_WRITE:
+ {
+ struct drr_write *drrw = &ra->rrd->header.drr_u.drr_write;
+ arc_buf_t *abuf;
+ boolean_t is_meta = DMU_OT_IS_METADATA(drrw->drr_type);
+
+ if (ra->raw) {
+ boolean_t byteorder = ZFS_HOST_BYTEORDER ^
+ !!DRR_IS_RAW_BYTESWAPPED(drrw->drr_flags) ^
+ ra->byteswap;
+
+ abuf = arc_loan_raw_buf(dmu_objset_spa(ra->os),
+ drrw->drr_object, byteorder, drrw->drr_salt,
+ drrw->drr_iv, drrw->drr_mac, drrw->drr_type,
+ drrw->drr_compressed_size, drrw->drr_logical_size,
+ drrw->drr_compressiontype);
+ } else if (DRR_WRITE_COMPRESSED(drrw)) {
+ ASSERT3U(drrw->drr_compressed_size, >, 0);
+ ASSERT3U(drrw->drr_logical_size, >=,
+ drrw->drr_compressed_size);
+ ASSERT(!is_meta);
+ abuf = arc_loan_compressed_buf(
+ dmu_objset_spa(ra->os),
+ drrw->drr_compressed_size, drrw->drr_logical_size,
+ drrw->drr_compressiontype);
+ } else {
+ abuf = arc_loan_buf(dmu_objset_spa(ra->os),
+ is_meta, drrw->drr_logical_size);
+ }
+
+ err = receive_read_payload_and_next_header(ra,
+ DRR_WRITE_PAYLOAD_SIZE(drrw), abuf->b_data);
+ if (err != 0) {
+ dmu_return_arcbuf(abuf);
+ return (err);
+ }
+ ra->rrd->arc_buf = abuf;
+ receive_read_prefetch(ra, drrw->drr_object, drrw->drr_offset,
+ drrw->drr_logical_size);
+ return (err);
+ }
+ case DRR_WRITE_BYREF:
+ {
+ struct drr_write_byref *drrwb =
+ &ra->rrd->header.drr_u.drr_write_byref;
+ err = receive_read_payload_and_next_header(ra, 0, NULL);
+ receive_read_prefetch(ra, drrwb->drr_object, drrwb->drr_offset,
+ drrwb->drr_length);
+ return (err);
+ }
+ case DRR_WRITE_EMBEDDED:
+ {
+ struct drr_write_embedded *drrwe =
+ &ra->rrd->header.drr_u.drr_write_embedded;
+ uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8);
+ void *buf = kmem_zalloc(size, KM_SLEEP);
+
+ err = receive_read_payload_and_next_header(ra, size, buf);
+ if (err != 0) {
+ kmem_free(buf, size);
+ return (err);
+ }
+
+ receive_read_prefetch(ra, drrwe->drr_object, drrwe->drr_offset,
+ drrwe->drr_length);
+ return (err);
+ }
+ case DRR_FREE:
+ {
+ /*
+ * It might be beneficial to prefetch indirect blocks here, but
+ * we don't really have the data to decide for sure.
+ */
+ err = receive_read_payload_and_next_header(ra, 0, NULL);
+ return (err);
+ }
+ case DRR_END:
+ {
+ struct drr_end *drre = &ra->rrd->header.drr_u.drr_end;
+ if (!ZIO_CHECKSUM_EQUAL(ra->prev_cksum, drre->drr_checksum))
+ return (SET_ERROR(ECKSUM));
+ return (0);
+ }
+ case DRR_SPILL:
+ {
+ struct drr_spill *drrs = &ra->rrd->header.drr_u.drr_spill;
+ arc_buf_t *abuf;
+ int len = DRR_SPILL_PAYLOAD_SIZE(drrs);
+
+ /* DRR_SPILL records are either raw or uncompressed */
+ if (ra->raw) {
+ boolean_t byteorder = ZFS_HOST_BYTEORDER ^
+ !!DRR_IS_RAW_BYTESWAPPED(drrs->drr_flags) ^
+ ra->byteswap;
+
+ abuf = arc_loan_raw_buf(dmu_objset_spa(ra->os),
+ dmu_objset_id(ra->os), byteorder, drrs->drr_salt,
+ drrs->drr_iv, drrs->drr_mac, drrs->drr_type,
+ drrs->drr_compressed_size, drrs->drr_length,
+ drrs->drr_compressiontype);
+ } else {
+ abuf = arc_loan_buf(dmu_objset_spa(ra->os),
+ DMU_OT_IS_METADATA(drrs->drr_type),
+ drrs->drr_length);
+ }
+
+ err = receive_read_payload_and_next_header(ra, len,
+ abuf->b_data);
+ if (err != 0) {
+ dmu_return_arcbuf(abuf);
+ return (err);
+ }
+ ra->rrd->arc_buf = abuf;
+ return (err);
+ }
+ case DRR_OBJECT_RANGE:
+ {
+ err = receive_read_payload_and_next_header(ra, 0, NULL);
+ return (err);
+ }
+ default:
+ return (SET_ERROR(EINVAL));
+ }
+}
+
+static void
+dprintf_drr(struct receive_record_arg *rrd, int err)
+{
+#ifdef ZFS_DEBUG
+ switch (rrd->header.drr_type) {
+ case DRR_OBJECT:
+ {
+ struct drr_object *drro = &rrd->header.drr_u.drr_object;
+ dprintf("drr_type = OBJECT obj = %llu type = %u "
+ "bonustype = %u blksz = %u bonuslen = %u cksumtype = %u "
+ "compress = %u dn_slots = %u err = %d\n",
+ drro->drr_object, drro->drr_type, drro->drr_bonustype,
+ drro->drr_blksz, drro->drr_bonuslen,
+ drro->drr_checksumtype, drro->drr_compress,
+ drro->drr_dn_slots, err);
+ break;
+ }
+ case DRR_FREEOBJECTS:
+ {
+ struct drr_freeobjects *drrfo =
+ &rrd->header.drr_u.drr_freeobjects;
+ dprintf("drr_type = FREEOBJECTS firstobj = %llu "
+ "numobjs = %llu err = %d\n",
+ drrfo->drr_firstobj, drrfo->drr_numobjs, err);
+ break;
+ }
+ case DRR_WRITE:
+ {
+ struct drr_write *drrw = &rrd->header.drr_u.drr_write;
+ dprintf("drr_type = WRITE obj = %llu type = %u offset = %llu "
+ "lsize = %llu cksumtype = %u cksumflags = %u "
+ "compress = %u psize = %llu err = %d\n",
+ drrw->drr_object, drrw->drr_type, drrw->drr_offset,
+ drrw->drr_logical_size, drrw->drr_checksumtype,
+ drrw->drr_flags, drrw->drr_compressiontype,
+ drrw->drr_compressed_size, err);
+ break;
+ }
+ case DRR_WRITE_BYREF:
+ {
+ struct drr_write_byref *drrwbr =
+ &rrd->header.drr_u.drr_write_byref;
+ dprintf("drr_type = WRITE_BYREF obj = %llu offset = %llu "
+ "length = %llu toguid = %llx refguid = %llx "
+ "refobject = %llu refoffset = %llu cksumtype = %u "
+ "cksumflags = %u err = %d\n",
+ drrwbr->drr_object, drrwbr->drr_offset,
+ drrwbr->drr_length, drrwbr->drr_toguid,
+ drrwbr->drr_refguid, drrwbr->drr_refobject,
+ drrwbr->drr_refoffset, drrwbr->drr_checksumtype,
+ drrwbr->drr_flags, err);
+ break;
+ }
+ case DRR_WRITE_EMBEDDED:
+ {
+ struct drr_write_embedded *drrwe =
+ &rrd->header.drr_u.drr_write_embedded;
+ dprintf("drr_type = WRITE_EMBEDDED obj = %llu offset = %llu "
+ "length = %llu compress = %u etype = %u lsize = %u "
+ "psize = %u err = %d\n",
+ drrwe->drr_object, drrwe->drr_offset, drrwe->drr_length,
+ drrwe->drr_compression, drrwe->drr_etype,
+ drrwe->drr_lsize, drrwe->drr_psize, err);
+ break;
+ }
+ case DRR_FREE:
+ {
+ struct drr_free *drrf = &rrd->header.drr_u.drr_free;
+ dprintf("drr_type = FREE obj = %llu offset = %llu "
+ "length = %lld err = %d\n",
+ drrf->drr_object, drrf->drr_offset, drrf->drr_length,
+ err);
+ break;
+ }
+ case DRR_SPILL:
+ {
+ struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
+ dprintf("drr_type = SPILL obj = %llu length = %llu "
+ "err = %d\n", drrs->drr_object, drrs->drr_length, err);
+ break;
+ }
+ default:
+ return;
+ }
+#endif
+}
+
+/*
+ * Commit the records to the pool.
+ */
+static int
+receive_process_record(struct receive_writer_arg *rwa,
+ struct receive_record_arg *rrd)
+{
+ int err;
+
+ /* Processing in order, therefore bytes_read should be increasing. */
+ ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read);
+ rwa->bytes_read = rrd->bytes_read;
+
+ switch (rrd->header.drr_type) {
+ case DRR_OBJECT:
+ {
+ struct drr_object *drro = &rrd->header.drr_u.drr_object;
+ err = receive_object(rwa, drro, rrd->payload);
+ kmem_free(rrd->payload, rrd->payload_size);
+ rrd->payload = NULL;
+ break;
+ }
+ case DRR_FREEOBJECTS:
+ {
+ struct drr_freeobjects *drrfo =
+ &rrd->header.drr_u.drr_freeobjects;
+ err = receive_freeobjects(rwa, drrfo);
+ break;
+ }
+ case DRR_WRITE:
+ {
+ struct drr_write *drrw = &rrd->header.drr_u.drr_write;
+ err = receive_write(rwa, drrw, rrd->arc_buf);
+ /* if receive_write() is successful, it consumes the arc_buf */
+ if (err != 0)
+ dmu_return_arcbuf(rrd->arc_buf);
+ rrd->arc_buf = NULL;
+ rrd->payload = NULL;
+ break;
+ }
+ case DRR_WRITE_BYREF:
+ {
+ struct drr_write_byref *drrwbr =
+ &rrd->header.drr_u.drr_write_byref;
+ err = receive_write_byref(rwa, drrwbr);
+ break;
+ }
+ case DRR_WRITE_EMBEDDED:
+ {
+ struct drr_write_embedded *drrwe =
+ &rrd->header.drr_u.drr_write_embedded;
+ err = receive_write_embedded(rwa, drrwe, rrd->payload);
+ kmem_free(rrd->payload, rrd->payload_size);
+ rrd->payload = NULL;
+ break;
+ }
+ case DRR_FREE:
+ {
+ struct drr_free *drrf = &rrd->header.drr_u.drr_free;
+ err = receive_free(rwa, drrf);
+ break;
+ }
+ case DRR_SPILL:
+ {
+ struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
+ err = receive_spill(rwa, drrs, rrd->arc_buf);
+ /* if receive_spill() is successful, it consumes the arc_buf */
+ if (err != 0)
+ dmu_return_arcbuf(rrd->arc_buf);
+ rrd->arc_buf = NULL;
+ rrd->payload = NULL;
+ break;
+ }
+ case DRR_OBJECT_RANGE:
+ {
+ struct drr_object_range *drror =
+ &rrd->header.drr_u.drr_object_range;
+ return (receive_object_range(rwa, drror));
+ }
+ default:
+ return (SET_ERROR(EINVAL));
+ }
+
+ if (err != 0)
+ dprintf_drr(rrd, err);
+
+ return (err);
+}
+
+/*
+ * dmu_recv_stream's worker thread; pull records off the queue, and then call
+ * receive_process_record When we're done, signal the main thread and exit.
+ */
+static void
+receive_writer_thread(void *arg)
+{
+ struct receive_writer_arg *rwa = arg;
+ struct receive_record_arg *rrd;
+ fstrans_cookie_t cookie = spl_fstrans_mark();
+
+ for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker;
+ rrd = bqueue_dequeue(&rwa->q)) {
+ /*
+ * If there's an error, the main thread will stop putting things
+ * on the queue, but we need to clear everything in it before we
+ * can exit.
+ */
+ if (rwa->err == 0) {
+ rwa->err = receive_process_record(rwa, rrd);
+ } else if (rrd->arc_buf != NULL) {
+ dmu_return_arcbuf(rrd->arc_buf);
+ rrd->arc_buf = NULL;
+ rrd->payload = NULL;
+ } else if (rrd->payload != NULL) {
+ kmem_free(rrd->payload, rrd->payload_size);
+ rrd->payload = NULL;
+ }
+ kmem_free(rrd, sizeof (*rrd));
+ }
+ kmem_free(rrd, sizeof (*rrd));
+ mutex_enter(&rwa->mutex);
+ rwa->done = B_TRUE;
+ cv_signal(&rwa->cv);
+ mutex_exit(&rwa->mutex);
+ spl_fstrans_unmark(cookie);
+ thread_exit();
+}
+
+static int
+resume_check(struct receive_arg *ra, nvlist_t *begin_nvl)
+{
+ uint64_t val;
+ objset_t *mos = dmu_objset_pool(ra->os)->dp_meta_objset;
+ uint64_t dsobj = dmu_objset_id(ra->os);
+ uint64_t resume_obj, resume_off;
+
+ if (nvlist_lookup_uint64(begin_nvl,
+ "resume_object", &resume_obj) != 0 ||
+ nvlist_lookup_uint64(begin_nvl,
+ "resume_offset", &resume_off) != 0) {
+ return (SET_ERROR(EINVAL));
+ }
+ VERIFY0(zap_lookup(mos, dsobj,
+ DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val));
+ if (resume_obj != val)
+ return (SET_ERROR(EINVAL));
+ VERIFY0(zap_lookup(mos, dsobj,
+ DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val));
+ if (resume_off != val)
+ return (SET_ERROR(EINVAL));
+
+ return (0);
+}
+
+/*
+ * Read in the stream's records, one by one, and apply them to the pool. There
+ * are two threads involved; the thread that calls this function will spin up a
+ * worker thread, read the records off the stream one by one, and issue
+ * prefetches for any necessary indirect blocks. It will then push the records
+ * onto an internal blocking queue. The worker thread will pull the records off
+ * the queue, and actually write the data into the DMU. This way, the worker
+ * thread doesn't have to wait for reads to complete, since everything it needs
+ * (the indirect blocks) will be prefetched.
+ *
+ * NB: callers *must* call dmu_recv_end() if this succeeds.
+ */
+int
+dmu_recv_stream(dmu_recv_cookie_t *drc, vnode_t *vp, offset_t *voffp,
+ int cleanup_fd, uint64_t *action_handlep)
+{
+ int err = 0;
+ struct receive_arg *ra;
+ struct receive_writer_arg *rwa;
+ int featureflags;
+ uint32_t payloadlen;
+ void *payload;
+ nvlist_t *begin_nvl = NULL;
+
+ ra = kmem_zalloc(sizeof (*ra), KM_SLEEP);
+ rwa = kmem_zalloc(sizeof (*rwa), KM_SLEEP);
+
+ ra->byteswap = drc->drc_byteswap;
+ ra->raw = drc->drc_raw;
+ ra->cksum = drc->drc_cksum;
+ ra->vp = vp;
+ ra->voff = *voffp;
+
+ if (dsl_dataset_is_zapified(drc->drc_ds)) {
+ (void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset,
+ drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES,
+ sizeof (ra->bytes_read), 1, &ra->bytes_read);
+ }
+
+ objlist_create(&ra->ignore_objlist);
+
+ /* these were verified in dmu_recv_begin */
+ ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==,
+ DMU_SUBSTREAM);
+ ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES);
+
+ /*
+ * Open the objset we are modifying.
+ */
+ VERIFY0(dmu_objset_from_ds(drc->drc_ds, &ra->os));
+
+ ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT);
+
+ featureflags = DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo);
+ ra->featureflags = featureflags;
+
+ ASSERT0(ra->os->os_encrypted &&
+ (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA));
+
+ /* if this stream is dedup'ed, set up the avl tree for guid mapping */
+ if (featureflags & DMU_BACKUP_FEATURE_DEDUP) {
+ minor_t minor;
+
+ if (cleanup_fd == -1) {
+ err = SET_ERROR(EBADF);
+ goto out;
+ }
+ err = zfs_onexit_fd_hold(cleanup_fd, &minor);
+ if (err != 0) {
+ cleanup_fd = -1;
+ goto out;
+ }
+
+ if (*action_handlep == 0) {
+ rwa->guid_to_ds_map =
+ kmem_alloc(sizeof (avl_tree_t), KM_SLEEP);
+ avl_create(rwa->guid_to_ds_map, guid_compare,
+ sizeof (guid_map_entry_t),
+ offsetof(guid_map_entry_t, avlnode));
+ err = zfs_onexit_add_cb(minor,
+ free_guid_map_onexit, rwa->guid_to_ds_map,
+ action_handlep);
+ if (err != 0)
+ goto out;
+ } else {
+ err = zfs_onexit_cb_data(minor, *action_handlep,
+ (void **)&rwa->guid_to_ds_map);
+ if (err != 0)
+ goto out;
+ }
+
+ drc->drc_guid_to_ds_map = rwa->guid_to_ds_map;
+ }
+
+ payloadlen = drc->drc_drr_begin->drr_payloadlen;
+ payload = NULL;
+ if (payloadlen != 0)
+ payload = kmem_alloc(payloadlen, KM_SLEEP);
+
+ err = receive_read_payload_and_next_header(ra, payloadlen, payload);
+ if (err != 0) {
+ if (payloadlen != 0)
+ kmem_free(payload, payloadlen);
+ goto out;
+ }
+ if (payloadlen != 0) {
+ err = nvlist_unpack(payload, payloadlen, &begin_nvl, KM_SLEEP);
+ kmem_free(payload, payloadlen);
+ if (err != 0)
+ goto out;
+ }
+
+ /* handle DSL encryption key payload */
+ if (featureflags & DMU_BACKUP_FEATURE_RAW) {
+ nvlist_t *keynvl = NULL;
+
+ ASSERT(ra->os->os_encrypted);
+ ASSERT(drc->drc_raw);
+
+ err = nvlist_lookup_nvlist(begin_nvl, "crypt_keydata", &keynvl);
+ if (err != 0)
+ goto out;
+
+ /*
+ * If this is a new dataset we set the key immediately.
+ * Otherwise we don't want to change the key until we
+ * are sure the rest of the receive succeeded so we stash
+ * the keynvl away until then.
+ */
+ err = dsl_crypto_recv_raw(spa_name(ra->os->os_spa),
+ drc->drc_ds->ds_object, drc->drc_drrb->drr_type,
+ keynvl, drc->drc_newfs);
+ if (err != 0)
+ goto out;
+
+ if (!drc->drc_newfs)
+ drc->drc_keynvl = fnvlist_dup(keynvl);
+ }
+
+ if (featureflags & DMU_BACKUP_FEATURE_RESUMING) {
+ err = resume_check(ra, begin_nvl);
+ if (err != 0)
+ goto out;
+ }
+
+ (void) bqueue_init(&rwa->q,
+ MAX(zfs_recv_queue_length, 2 * zfs_max_recordsize),
+ offsetof(struct receive_record_arg, node));
+ cv_init(&rwa->cv, NULL, CV_DEFAULT, NULL);
+ mutex_init(&rwa->mutex, NULL, MUTEX_DEFAULT, NULL);
+ rwa->os = ra->os;
+ rwa->byteswap = drc->drc_byteswap;
+ rwa->resumable = drc->drc_resumable;
+ rwa->raw = drc->drc_raw;
+ rwa->os->os_raw_receive = drc->drc_raw;
+
+ (void) thread_create(NULL, 0, receive_writer_thread, rwa, 0, curproc,
+ TS_RUN, minclsyspri);
+ /*
+ * We're reading rwa->err without locks, which is safe since we are the
+ * only reader, and the worker thread is the only writer. It's ok if we
+ * miss a write for an iteration or two of the loop, since the writer
+ * thread will keep freeing records we send it until we send it an eos
+ * marker.
+ *
+ * We can leave this loop in 3 ways: First, if rwa->err is
+ * non-zero. In that case, the writer thread will free the rrd we just
+ * pushed. Second, if we're interrupted; in that case, either it's the
+ * first loop and ra->rrd was never allocated, or it's later and ra->rrd
+ * has been handed off to the writer thread who will free it. Finally,
+ * if receive_read_record fails or we're at the end of the stream, then
+ * we free ra->rrd and exit.
+ */
+ while (rwa->err == 0) {
+ if (issig(JUSTLOOKING) && issig(FORREAL)) {
+ err = SET_ERROR(EINTR);
+ break;
+ }
+
+ ASSERT3P(ra->rrd, ==, NULL);
+ ra->rrd = ra->next_rrd;
+ ra->next_rrd = NULL;
+ /* Allocates and loads header into ra->next_rrd */
+ err = receive_read_record(ra);
+
+ if (ra->rrd->header.drr_type == DRR_END || err != 0) {
+ kmem_free(ra->rrd, sizeof (*ra->rrd));
+ ra->rrd = NULL;
+ break;
+ }
+
+ bqueue_enqueue(&rwa->q, ra->rrd,
+ sizeof (struct receive_record_arg) + ra->rrd->payload_size);
+ ra->rrd = NULL;
+ }
+ if (ra->next_rrd == NULL)
+ ra->next_rrd = kmem_zalloc(sizeof (*ra->next_rrd), KM_SLEEP);
+ ra->next_rrd->eos_marker = B_TRUE;
+ bqueue_enqueue(&rwa->q, ra->next_rrd, 1);
+
+ mutex_enter(&rwa->mutex);
+ while (!rwa->done) {
+ cv_wait(&rwa->cv, &rwa->mutex);
+ }
+ mutex_exit(&rwa->mutex);
+
+ /*
+ * If we are receiving a full stream as a clone, all object IDs which
+ * are greater than the maximum ID referenced in the stream are
+ * by definition unused and must be freed.
+ */
+ if (drc->drc_clone && drc->drc_drrb->drr_fromguid == 0) {
+ uint64_t obj = rwa->max_object + 1;
+ int free_err = 0;
+ int next_err = 0;
+
+ while (next_err == 0) {
+ free_err = dmu_free_long_object(rwa->os, obj);
+ if (free_err != 0 && free_err != ENOENT)
+ break;
+
+ next_err = dmu_object_next(rwa->os, &obj, FALSE, 0);
+ }
+
+ if (err == 0) {
+ if (free_err != 0 && free_err != ENOENT)
+ err = free_err;
+ else if (next_err != ESRCH)
+ err = next_err;
+ }
+ }
+
+ cv_destroy(&rwa->cv);
+ mutex_destroy(&rwa->mutex);
+ bqueue_destroy(&rwa->q);
+ if (err == 0)
+ err = rwa->err;
+
+out:
+ nvlist_free(begin_nvl);
+ if ((featureflags & DMU_BACKUP_FEATURE_DEDUP) && (cleanup_fd != -1))
+ zfs_onexit_fd_rele(cleanup_fd);
+
+ if (err != 0) {
+ /*
+ * Clean up references. If receive is not resumable,
+ * destroy what we created, so we don't leave it in
+ * the inconsistent state.
+ */
+ dmu_recv_cleanup_ds(drc);
+ nvlist_free(drc->drc_keynvl);
+ }
+
+ *voffp = ra->voff;
+ objlist_destroy(&ra->ignore_objlist);
+ kmem_free(ra, sizeof (*ra));
+ kmem_free(rwa, sizeof (*rwa));
+ return (err);
+}
+
+static int
+dmu_recv_end_check(void *arg, dmu_tx_t *tx)
+{
+ dmu_recv_cookie_t *drc = arg;
+ dsl_pool_t *dp = dmu_tx_pool(tx);
+ int error;
+
+ ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag);
+
+ if (!drc->drc_newfs) {
+ dsl_dataset_t *origin_head;
+
+ error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head);
+ if (error != 0)
+ return (error);
+ if (drc->drc_force) {
+ /*
+ * We will destroy any snapshots in tofs (i.e. before
+ * origin_head) that are after the origin (which is
+ * the snap before drc_ds, because drc_ds can not
+ * have any snaps of its own).
+ */
+ uint64_t obj;
+
+ obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
+ while (obj !=
+ dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
+ dsl_dataset_t *snap;
+ error = dsl_dataset_hold_obj(dp, obj, FTAG,
+ &snap);
+ if (error != 0)
+ break;
+ if (snap->ds_dir != origin_head->ds_dir)
+ error = SET_ERROR(EINVAL);
+ if (error == 0) {
+ error = dsl_destroy_snapshot_check_impl(
+ snap, B_FALSE);
+ }
+ obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
+ dsl_dataset_rele(snap, FTAG);
+ if (error != 0)
+ break;
+ }
+ if (error != 0) {
+ dsl_dataset_rele(origin_head, FTAG);
+ return (error);
+ }
+ }
+ if (drc->drc_keynvl != NULL) {
+ error = dsl_crypto_recv_raw_key_check(drc->drc_ds,
+ drc->drc_keynvl, tx);
+ if (error != 0) {
+ dsl_dataset_rele(origin_head, FTAG);
+ return (error);
+ }
+ }
+
+ error = dsl_dataset_clone_swap_check_impl(drc->drc_ds,
+ origin_head, drc->drc_force, drc->drc_owner, tx);
+ if (error != 0) {
+ dsl_dataset_rele(origin_head, FTAG);
+ return (error);
+ }
+ error = dsl_dataset_snapshot_check_impl(origin_head,
+ drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred);
+ dsl_dataset_rele(origin_head, FTAG);
+ if (error != 0)
+ return (error);
+
+ error = dsl_destroy_head_check_impl(drc->drc_ds, 1);
+ } else {
+ error = dsl_dataset_snapshot_check_impl(drc->drc_ds,
+ drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred);
+ }
+ return (error);
+}
+
+static void
+dmu_recv_end_sync(void *arg, dmu_tx_t *tx)
+{
+ dmu_recv_cookie_t *drc = arg;
+ dsl_pool_t *dp = dmu_tx_pool(tx);
+ boolean_t encrypted = drc->drc_ds->ds_dir->dd_crypto_obj != 0;
+
+ spa_history_log_internal_ds(drc->drc_ds, "finish receiving",
+ tx, "snap=%s", drc->drc_tosnap);
+ drc->drc_ds->ds_objset->os_raw_receive = B_FALSE;
+
+ if (!drc->drc_newfs) {
+ dsl_dataset_t *origin_head;
+
+ VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG,
+ &origin_head));
+
+ if (drc->drc_force) {
+ /*
+ * Destroy any snapshots of drc_tofs (origin_head)
+ * after the origin (the snap before drc_ds).
+ */
+ uint64_t obj;
+
+ obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
+ while (obj !=
+ dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
+ dsl_dataset_t *snap;
+ VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG,
+ &snap));
+ ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir);
+ obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
+ dsl_destroy_snapshot_sync_impl(snap,
+ B_FALSE, tx);
+ dsl_dataset_rele(snap, FTAG);
+ }
+ }
+ if (drc->drc_keynvl != NULL) {
+ dsl_crypto_recv_raw_key_sync(drc->drc_ds,
+ drc->drc_keynvl, tx);
+ nvlist_free(drc->drc_keynvl);
+ drc->drc_keynvl = NULL;
+ }
+
+ VERIFY3P(drc->drc_ds->ds_prev, ==, origin_head->ds_prev);
+
+ dsl_dataset_clone_swap_sync_impl(drc->drc_ds,
+ origin_head, tx);
+ dsl_dataset_snapshot_sync_impl(origin_head,
+ drc->drc_tosnap, tx);
+
+ /* set snapshot's creation time and guid */
+ dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx);
+ dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time =
+ drc->drc_drrb->drr_creation_time;
+ dsl_dataset_phys(origin_head->ds_prev)->ds_guid =
+ drc->drc_drrb->drr_toguid;
+ dsl_dataset_phys(origin_head->ds_prev)->ds_flags &=
+ ~DS_FLAG_INCONSISTENT;
+
+ dmu_buf_will_dirty(origin_head->ds_dbuf, tx);
+ dsl_dataset_phys(origin_head)->ds_flags &=
+ ~DS_FLAG_INCONSISTENT;
+
+ drc->drc_newsnapobj =
+ dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
+
+ dsl_dataset_rele(origin_head, FTAG);
+ dsl_destroy_head_sync_impl(drc->drc_ds, tx);
+
+ if (drc->drc_owner != NULL)
+ VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner);
+ } else {
+ dsl_dataset_t *ds = drc->drc_ds;
+
+ dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx);
+
+ /* set snapshot's creation time and guid */
+ dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx);
+ dsl_dataset_phys(ds->ds_prev)->ds_creation_time =
+ drc->drc_drrb->drr_creation_time;
+ dsl_dataset_phys(ds->ds_prev)->ds_guid =
+ drc->drc_drrb->drr_toguid;
+ dsl_dataset_phys(ds->ds_prev)->ds_flags &=
+ ~DS_FLAG_INCONSISTENT;
+
+ dmu_buf_will_dirty(ds->ds_dbuf, tx);
+ dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
+ if (dsl_dataset_has_resume_receive_state(ds)) {
+ (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
+ DS_FIELD_RESUME_FROMGUID, tx);
+ (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
+ DS_FIELD_RESUME_OBJECT, tx);
+ (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
+ DS_FIELD_RESUME_OFFSET, tx);
+ (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
+ DS_FIELD_RESUME_BYTES, tx);
+ (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
+ DS_FIELD_RESUME_TOGUID, tx);
+ (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
+ DS_FIELD_RESUME_TONAME, tx);
+ }
+ drc->drc_newsnapobj =
+ dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj;
+ }
+ zvol_create_minors(dp->dp_spa, drc->drc_tofs, B_TRUE);
+
+ /*
+ * Release the hold from dmu_recv_begin. This must be done before
+ * we return to open context, so that when we free the dataset's dnode
+ * we can evict its bonus buffer. Since the dataset may be destroyed
+ * at this point (and therefore won't have a valid pointer to the spa)
+ * we release the key mapping manually here while we do have a valid
+ * pointer, if it exists.
+ */
+ if (!drc->drc_raw && encrypted) {
+ (void) spa_keystore_remove_mapping(dmu_tx_pool(tx)->dp_spa,
+ drc->drc_ds->ds_object, drc->drc_ds);
+ }
+ dsl_dataset_disown(drc->drc_ds, 0, dmu_recv_tag);
+ drc->drc_ds = NULL;
+}
+
+static int
+add_ds_to_guidmap(const char *name, avl_tree_t *guid_map, uint64_t snapobj,
+ boolean_t raw)
+{
+ dsl_pool_t *dp;
+ dsl_dataset_t *snapds;
+ guid_map_entry_t *gmep;
+ objset_t *os;
+ ds_hold_flags_t dsflags = (raw) ? 0 : DS_HOLD_FLAG_DECRYPT;
+ int err;
+
+ ASSERT(guid_map != NULL);
+
+ err = dsl_pool_hold(name, FTAG, &dp);
+ if (err != 0)
+ return (err);
+ gmep = kmem_alloc(sizeof (*gmep), KM_SLEEP);
+ err = dsl_dataset_own_obj(dp, snapobj, dsflags, gmep, &snapds);
+ if (err == 0) {
+ /*
+ * If this is a deduplicated raw send stream, we need
+ * to make sure that we can still read raw blocks from
+ * earlier datasets in the stream, so we set the
+ * os_raw_receive flag now.
+ */
+ if (raw) {
+ err = dmu_objset_from_ds(snapds, &os);
+ if (err != 0) {
+ dsl_dataset_disown(snapds, dsflags, FTAG);
+ dsl_pool_rele(dp, FTAG);
+ kmem_free(gmep, sizeof (*gmep));
+ return (err);
+ }
+ os->os_raw_receive = B_TRUE;
+ }
+
+ gmep->raw = raw;
+ gmep->guid = dsl_dataset_phys(snapds)->ds_guid;
+ gmep->gme_ds = snapds;
+ avl_add(guid_map, gmep);
+ } else {
+ kmem_free(gmep, sizeof (*gmep));
+ }
+
+ dsl_pool_rele(dp, FTAG);
+ return (err);
+}
+
+static int dmu_recv_end_modified_blocks = 3;
+
+static int
+dmu_recv_existing_end(dmu_recv_cookie_t *drc)
+{
+#ifdef _KERNEL
+ /*
+ * We will be destroying the ds; make sure its origin is unmounted if
+ * necessary.
+ */
+ char name[ZFS_MAX_DATASET_NAME_LEN];
+ dsl_dataset_name(drc->drc_ds, name);
+ zfs_destroy_unmount_origin(name);
+#endif
+
+ return (dsl_sync_task(drc->drc_tofs,
+ dmu_recv_end_check, dmu_recv_end_sync, drc,
+ dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
+}
+
+static int
+dmu_recv_new_end(dmu_recv_cookie_t *drc)
+{
+ return (dsl_sync_task(drc->drc_tofs,
+ dmu_recv_end_check, dmu_recv_end_sync, drc,
+ dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
+}
+
+int
+dmu_recv_end(dmu_recv_cookie_t *drc, void *owner)
+{
+ int error;
+
+ drc->drc_owner = owner;
+
+ if (drc->drc_newfs)
+ error = dmu_recv_new_end(drc);
+ else
+ error = dmu_recv_existing_end(drc);
+
+ if (error != 0) {
+ dmu_recv_cleanup_ds(drc);
+ nvlist_free(drc->drc_keynvl);
+ } else if (drc->drc_guid_to_ds_map != NULL) {
+ (void) add_ds_to_guidmap(drc->drc_tofs, drc->drc_guid_to_ds_map,
+ drc->drc_newsnapobj, drc->drc_raw);
+ }
+ return (error);
+}
+
+/*
+ * Return TRUE if this objset is currently being received into.
+ */
+boolean_t
+dmu_objset_is_receiving(objset_t *os)
+{
+ return (os->os_dsl_dataset != NULL &&
+ os->os_dsl_dataset->ds_owner == dmu_recv_tag);
+}
+
+#if defined(_KERNEL)
+module_param(zfs_recv_queue_length, int, 0644);
+MODULE_PARM_DESC(zfs_recv_queue_length, "Maximum receive queue length");
+#endif