summaryrefslogtreecommitdiffstats
path: root/module/zcommon
diff options
context:
space:
mode:
authorBrian Behlendorf <[email protected]>2019-07-12 09:31:20 -0700
committerGitHub <[email protected]>2019-07-12 09:31:20 -0700
commite5db31349484e5e859c7a942eb15b98d68ce5b4d (patch)
tree0f1f6ab52249113c3643eb135791287a471f6707 /module/zcommon
parentd230a65c3b161d33de3a8f96e78f8a35edce6708 (diff)
Linux 5.0 compat: SIMD compatibility
Restore the SIMD optimization for 4.19.38 LTS, 4.14.120 LTS, and 5.0 and newer kernels. This is accomplished by leveraging the fact that by definition dedicated kernel threads never need to concern themselves with saving and restoring the user FPU state. Therefore, they may use the FPU as long as we can guarantee user tasks always restore their FPU state before context switching back to user space. For the 5.0 and 5.1 kernels disabling preemption and local interrupts is sufficient to allow the FPU to be used. All non-kernel threads will restore the preserved user FPU state. For 5.2 and latter kernels the user FPU state restoration will be skipped if the kernel determines the registers have not changed. Therefore, for these kernels we need to perform the additional step of saving and restoring the FPU registers. Invalidating the per-cpu global tracking the FPU state would force a restore but that functionality is private to the core x86 FPU implementation and unavailable. In practice, restricting SIMD to kernel threads is not a major restriction for ZFS. The vast majority of SIMD operations are already performed by the IO pipeline. The remaining cases are relatively infrequent and can be handled by the generic code without significant impact. The two most noteworthy cases are: 1) Decrypting the wrapping key for an encrypted dataset, i.e. `zfs load-key`. All other encryption and decryption operations will use the SIMD optimized implementations. 2) Generating the payload checksums for a `zfs send` stream. In order to avoid making any changes to the higher layers of ZFS all of the `*_get_ops()` functions were updated to take in to consideration the calling context. This allows for the fastest implementation to be used as appropriate (see kfpu_allowed()). The only other notable instance of SIMD operations being used outside a kernel thread was at module load time. This code was moved in to a taskq in order to accommodate the new kernel thread restriction. Finally, a few other modifications were made in order to further harden this code and facilitate testing. They include updating each implementations operations structure to be declared as a constant. And allowing "cycle" to be set when selecting the preferred ops in the kernel as well as user space. Reviewed-by: Tony Hutter <[email protected]> Signed-off-by: Brian Behlendorf <[email protected]> Closes #8754 Closes #8793 Closes #8965
Diffstat (limited to 'module/zcommon')
-rw-r--r--module/zcommon/zfs_fletcher.c88
-rw-r--r--module/zcommon/zfs_fletcher_aarch64_neon.c2
-rw-r--r--module/zcommon/zfs_fletcher_avx512.c2
-rw-r--r--module/zcommon/zfs_fletcher_intel.c2
-rw-r--r--module/zcommon/zfs_fletcher_sse.c5
5 files changed, 64 insertions, 35 deletions
diff --git a/module/zcommon/zfs_fletcher.c b/module/zcommon/zfs_fletcher.c
index 5a991ba60..b75d8ab00 100644
--- a/module/zcommon/zfs_fletcher.c
+++ b/module/zcommon/zfs_fletcher.c
@@ -140,6 +140,7 @@
#include <sys/zio_checksum.h>
#include <sys/zfs_context.h>
#include <zfs_fletcher.h>
+#include <linux/simd.h>
#define FLETCHER_MIN_SIMD_SIZE 64
@@ -205,21 +206,19 @@ static struct fletcher_4_impl_selector {
const char *fis_name;
uint32_t fis_sel;
} fletcher_4_impl_selectors[] = {
-#if !defined(_KERNEL)
{ "cycle", IMPL_CYCLE },
-#endif
{ "fastest", IMPL_FASTEST },
{ "scalar", IMPL_SCALAR }
};
#if defined(_KERNEL)
static kstat_t *fletcher_4_kstat;
-#endif
static struct fletcher_4_kstat {
uint64_t native;
uint64_t byteswap;
} fletcher_4_stat_data[ARRAY_SIZE(fletcher_4_impls) + 1];
+#endif
/* Indicate that benchmark has been completed */
static boolean_t fletcher_4_initialized = B_FALSE;
@@ -408,32 +407,36 @@ fletcher_4_impl_set(const char *val)
return (err);
}
+/*
+ * Returns the Fletcher 4 operations for checksums. When a SIMD
+ * implementation is not allowed in the current context, then fallback
+ * to the fastest generic implementation.
+ */
static inline const fletcher_4_ops_t *
fletcher_4_impl_get(void)
{
- fletcher_4_ops_t *ops = NULL;
- const uint32_t impl = IMPL_READ(fletcher_4_impl_chosen);
+ if (!kfpu_allowed())
+ return (&fletcher_4_superscalar4_ops);
+
+ const fletcher_4_ops_t *ops = NULL;
+ uint32_t impl = IMPL_READ(fletcher_4_impl_chosen);
switch (impl) {
case IMPL_FASTEST:
ASSERT(fletcher_4_initialized);
ops = &fletcher_4_fastest_impl;
break;
-#if !defined(_KERNEL)
- case IMPL_CYCLE: {
+ case IMPL_CYCLE:
+ /* Cycle through supported implementations */
ASSERT(fletcher_4_initialized);
ASSERT3U(fletcher_4_supp_impls_cnt, >, 0);
-
static uint32_t cycle_count = 0;
uint32_t idx = (++cycle_count) % fletcher_4_supp_impls_cnt;
ops = fletcher_4_supp_impls[idx];
- }
- break;
-#endif
+ break;
default:
ASSERT3U(fletcher_4_supp_impls_cnt, >, 0);
ASSERT3U(impl, <, fletcher_4_supp_impls_cnt);
-
ops = fletcher_4_supp_impls[impl];
break;
}
@@ -658,6 +661,7 @@ fletcher_4_kstat_addr(kstat_t *ksp, loff_t n)
typedef void fletcher_checksum_func_t(const void *, uint64_t, const void *,
zio_cksum_t *);
+#if defined(_KERNEL)
static void
fletcher_4_benchmark_impl(boolean_t native, char *data, uint64_t data_size)
{
@@ -716,16 +720,18 @@ fletcher_4_benchmark_impl(boolean_t native, char *data, uint64_t data_size)
/* restore original selection */
atomic_swap_32(&fletcher_4_impl_chosen, sel_save);
}
+#endif /* _KERNEL */
-void
-fletcher_4_init(void)
+/*
+ * Initialize and benchmark all supported implementations.
+ */
+static void
+fletcher_4_benchmark(void *arg)
{
- static const size_t data_size = 1 << SPA_OLD_MAXBLOCKSHIFT; /* 128kiB */
fletcher_4_ops_t *curr_impl;
- char *databuf;
int i, c;
- /* move supported impl into fletcher_4_supp_impls */
+ /* Move supported implementations into fletcher_4_supp_impls */
for (i = 0, c = 0; i < ARRAY_SIZE(fletcher_4_impls); i++) {
curr_impl = (fletcher_4_ops_t *)fletcher_4_impls[i];
@@ -735,19 +741,10 @@ fletcher_4_init(void)
membar_producer(); /* complete fletcher_4_supp_impls[] init */
fletcher_4_supp_impls_cnt = c; /* number of supported impl */
-#if !defined(_KERNEL)
- /* Skip benchmarking and use last implementation as fastest */
- memcpy(&fletcher_4_fastest_impl,
- fletcher_4_supp_impls[fletcher_4_supp_impls_cnt-1],
- sizeof (fletcher_4_fastest_impl));
- fletcher_4_fastest_impl.name = "fastest";
- membar_producer();
+#if defined(_KERNEL)
+ static const size_t data_size = 1 << SPA_OLD_MAXBLOCKSHIFT; /* 128kiB */
+ char *databuf = vmem_alloc(data_size, KM_SLEEP);
- fletcher_4_initialized = B_TRUE;
- return;
-#endif
- /* Benchmark all supported implementations */
- databuf = vmem_alloc(data_size, KM_SLEEP);
for (i = 0; i < data_size / sizeof (uint64_t); i++)
((uint64_t *)databuf)[i] = (uintptr_t)(databuf+i); /* warm-up */
@@ -755,9 +752,38 @@ fletcher_4_init(void)
fletcher_4_benchmark_impl(B_TRUE, databuf, data_size);
vmem_free(databuf, data_size);
+#else
+ /*
+ * Skip the benchmark in user space to avoid impacting libzpool
+ * consumers (zdb, zhack, zinject, ztest). The last implementation
+ * is assumed to be the fastest and used by default.
+ */
+ memcpy(&fletcher_4_fastest_impl,
+ fletcher_4_supp_impls[fletcher_4_supp_impls_cnt - 1],
+ sizeof (fletcher_4_fastest_impl));
+ fletcher_4_fastest_impl.name = "fastest";
+ membar_producer();
+#endif /* _KERNEL */
+}
+void
+fletcher_4_init(void)
+{
#if defined(_KERNEL)
- /* install kstats for all implementations */
+ /*
+ * For 5.0 and latter Linux kernels the fletcher 4 benchmarks are
+ * run in a kernel threads. This is needed to take advantage of the
+ * SIMD functionality, see include/linux/simd_x86.h for details.
+ */
+ taskqid_t id = taskq_dispatch(system_taskq, fletcher_4_benchmark,
+ NULL, TQ_SLEEP);
+ if (id != TASKQID_INVALID) {
+ taskq_wait_id(system_taskq, id);
+ } else {
+ fletcher_4_benchmark(NULL);
+ }
+
+ /* Install kstats for all implementations */
fletcher_4_kstat = kstat_create("zfs", 0, "fletcher_4_bench", "misc",
KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VIRTUAL);
if (fletcher_4_kstat != NULL) {
@@ -769,6 +795,8 @@ fletcher_4_init(void)
fletcher_4_kstat_addr);
kstat_install(fletcher_4_kstat);
}
+#else
+ fletcher_4_benchmark(NULL);
#endif
/* Finish initialization */
diff --git a/module/zcommon/zfs_fletcher_aarch64_neon.c b/module/zcommon/zfs_fletcher_aarch64_neon.c
index bd2db2b20..3b3c1b52b 100644
--- a/module/zcommon/zfs_fletcher_aarch64_neon.c
+++ b/module/zcommon/zfs_fletcher_aarch64_neon.c
@@ -198,7 +198,7 @@ unsigned char SRC __attribute__((vector_size(16)));
static boolean_t fletcher_4_aarch64_neon_valid(void)
{
- return (B_TRUE);
+ return (kfpu_allowed());
}
const fletcher_4_ops_t fletcher_4_aarch64_neon_ops = {
diff --git a/module/zcommon/zfs_fletcher_avx512.c b/module/zcommon/zfs_fletcher_avx512.c
index 7260a9864..0d4cff21a 100644
--- a/module/zcommon/zfs_fletcher_avx512.c
+++ b/module/zcommon/zfs_fletcher_avx512.c
@@ -157,7 +157,7 @@ STACK_FRAME_NON_STANDARD(fletcher_4_avx512f_byteswap);
static boolean_t
fletcher_4_avx512f_valid(void)
{
- return (zfs_avx512f_available());
+ return (kfpu_allowed() && zfs_avx512f_available());
}
const fletcher_4_ops_t fletcher_4_avx512f_ops = {
diff --git a/module/zcommon/zfs_fletcher_intel.c b/module/zcommon/zfs_fletcher_intel.c
index 6dac047da..7f12efe6d 100644
--- a/module/zcommon/zfs_fletcher_intel.c
+++ b/module/zcommon/zfs_fletcher_intel.c
@@ -156,7 +156,7 @@ fletcher_4_avx2_byteswap(fletcher_4_ctx_t *ctx, const void *buf, uint64_t size)
static boolean_t fletcher_4_avx2_valid(void)
{
- return (zfs_avx_available() && zfs_avx2_available());
+ return (kfpu_allowed() && zfs_avx_available() && zfs_avx2_available());
}
const fletcher_4_ops_t fletcher_4_avx2_ops = {
diff --git a/module/zcommon/zfs_fletcher_sse.c b/module/zcommon/zfs_fletcher_sse.c
index a0b42e5f5..e6389d6e5 100644
--- a/module/zcommon/zfs_fletcher_sse.c
+++ b/module/zcommon/zfs_fletcher_sse.c
@@ -157,7 +157,7 @@ fletcher_4_sse2_byteswap(fletcher_4_ctx_t *ctx, const void *buf, uint64_t size)
static boolean_t fletcher_4_sse2_valid(void)
{
- return (zfs_sse2_available());
+ return (kfpu_allowed() && zfs_sse2_available());
}
const fletcher_4_ops_t fletcher_4_sse2_ops = {
@@ -214,7 +214,8 @@ fletcher_4_ssse3_byteswap(fletcher_4_ctx_t *ctx, const void *buf, uint64_t size)
static boolean_t fletcher_4_ssse3_valid(void)
{
- return (zfs_sse2_available() && zfs_ssse3_available());
+ return (kfpu_allowed() && zfs_sse2_available() &&
+ zfs_ssse3_available());
}
const fletcher_4_ops_t fletcher_4_ssse3_ops = {