summaryrefslogtreecommitdiffstats
path: root/module/zcommon/zfs_fletcher.c
diff options
context:
space:
mode:
authorBrian Behlendorf <[email protected]>2010-05-28 13:45:14 -0700
committerBrian Behlendorf <[email protected]>2010-05-28 13:45:14 -0700
commit428870ff734fdaccc342b33fc53cf94724409a46 (patch)
tree164e83c0ceda52a843795ed7cd9e95637d02c177 /module/zcommon/zfs_fletcher.c
parent6119cb885a976e175a6e827894accf657ff1984f (diff)
Update core ZFS code from build 121 to build 141.
Diffstat (limited to 'module/zcommon/zfs_fletcher.c')
-rw-r--r--module/zcommon/zfs_fletcher.c246
1 files changed, 246 insertions, 0 deletions
diff --git a/module/zcommon/zfs_fletcher.c b/module/zcommon/zfs_fletcher.c
new file mode 100644
index 000000000..fa43ce6bd
--- /dev/null
+++ b/module/zcommon/zfs_fletcher.c
@@ -0,0 +1,246 @@
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+/*
+ * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms.
+ */
+
+/*
+ * Fletcher Checksums
+ * ------------------
+ *
+ * ZFS's 2nd and 4th order Fletcher checksums are defined by the following
+ * recurrence relations:
+ *
+ * a = a + f
+ * i i-1 i-1
+ *
+ * b = b + a
+ * i i-1 i
+ *
+ * c = c + b (fletcher-4 only)
+ * i i-1 i
+ *
+ * d = d + c (fletcher-4 only)
+ * i i-1 i
+ *
+ * Where
+ * a_0 = b_0 = c_0 = d_0 = 0
+ * and
+ * f_0 .. f_(n-1) are the input data.
+ *
+ * Using standard techniques, these translate into the following series:
+ *
+ * __n_ __n_
+ * \ | \ |
+ * a = > f b = > i * f
+ * n /___| n - i n /___| n - i
+ * i = 1 i = 1
+ *
+ *
+ * __n_ __n_
+ * \ | i*(i+1) \ | i*(i+1)*(i+2)
+ * c = > ------- f d = > ------------- f
+ * n /___| 2 n - i n /___| 6 n - i
+ * i = 1 i = 1
+ *
+ * For fletcher-2, the f_is are 64-bit, and [ab]_i are 64-bit accumulators.
+ * Since the additions are done mod (2^64), errors in the high bits may not
+ * be noticed. For this reason, fletcher-2 is deprecated.
+ *
+ * For fletcher-4, the f_is are 32-bit, and [abcd]_i are 64-bit accumulators.
+ * A conservative estimate of how big the buffer can get before we overflow
+ * can be estimated using f_i = 0xffffffff for all i:
+ *
+ * % bc
+ * f=2^32-1;d=0; for (i = 1; d<2^64; i++) { d += f*i*(i+1)*(i+2)/6 }; (i-1)*4
+ * 2264
+ * quit
+ * %
+ *
+ * So blocks of up to 2k will not overflow. Our largest block size is
+ * 128k, which has 32k 4-byte words, so we can compute the largest possible
+ * accumulators, then divide by 2^64 to figure the max amount of overflow:
+ *
+ * % bc
+ * a=b=c=d=0; f=2^32-1; for (i=1; i<=32*1024; i++) { a+=f; b+=a; c+=b; d+=c }
+ * a/2^64;b/2^64;c/2^64;d/2^64
+ * 0
+ * 0
+ * 1365
+ * 11186858
+ * quit
+ * %
+ *
+ * So a and b cannot overflow. To make sure each bit of input has some
+ * effect on the contents of c and d, we can look at what the factors of
+ * the coefficients in the equations for c_n and d_n are. The number of 2s
+ * in the factors determines the lowest set bit in the multiplier. Running
+ * through the cases for n*(n+1)/2 reveals that the highest power of 2 is
+ * 2^14, and for n*(n+1)*(n+2)/6 it is 2^15. So while some data may overflow
+ * the 64-bit accumulators, every bit of every f_i effects every accumulator,
+ * even for 128k blocks.
+ *
+ * If we wanted to make a stronger version of fletcher4 (fletcher4c?),
+ * we could do our calculations mod (2^32 - 1) by adding in the carries
+ * periodically, and store the number of carries in the top 32-bits.
+ *
+ * --------------------
+ * Checksum Performance
+ * --------------------
+ *
+ * There are two interesting components to checksum performance: cached and
+ * uncached performance. With cached data, fletcher-2 is about four times
+ * faster than fletcher-4. With uncached data, the performance difference is
+ * negligible, since the cost of a cache fill dominates the processing time.
+ * Even though fletcher-4 is slower than fletcher-2, it is still a pretty
+ * efficient pass over the data.
+ *
+ * In normal operation, the data which is being checksummed is in a buffer
+ * which has been filled either by:
+ *
+ * 1. a compression step, which will be mostly cached, or
+ * 2. a bcopy() or copyin(), which will be uncached (because the
+ * copy is cache-bypassing).
+ *
+ * For both cached and uncached data, both fletcher checksums are much faster
+ * than sha-256, and slower than 'off', which doesn't touch the data at all.
+ */
+
+#include <sys/types.h>
+#include <sys/sysmacros.h>
+#include <sys/byteorder.h>
+#include <sys/zio.h>
+#include <sys/spa.h>
+
+void
+fletcher_2_native(const void *buf, uint64_t size, zio_cksum_t *zcp)
+{
+ const uint64_t *ip = buf;
+ const uint64_t *ipend = ip + (size / sizeof (uint64_t));
+ uint64_t a0, b0, a1, b1;
+
+ for (a0 = b0 = a1 = b1 = 0; ip < ipend; ip += 2) {
+ a0 += ip[0];
+ a1 += ip[1];
+ b0 += a0;
+ b1 += a1;
+ }
+
+ ZIO_SET_CHECKSUM(zcp, a0, a1, b0, b1);
+}
+
+void
+fletcher_2_byteswap(const void *buf, uint64_t size, zio_cksum_t *zcp)
+{
+ const uint64_t *ip = buf;
+ const uint64_t *ipend = ip + (size / sizeof (uint64_t));
+ uint64_t a0, b0, a1, b1;
+
+ for (a0 = b0 = a1 = b1 = 0; ip < ipend; ip += 2) {
+ a0 += BSWAP_64(ip[0]);
+ a1 += BSWAP_64(ip[1]);
+ b0 += a0;
+ b1 += a1;
+ }
+
+ ZIO_SET_CHECKSUM(zcp, a0, a1, b0, b1);
+}
+
+void
+fletcher_4_native(const void *buf, uint64_t size, zio_cksum_t *zcp)
+{
+ const uint32_t *ip = buf;
+ const uint32_t *ipend = ip + (size / sizeof (uint32_t));
+ uint64_t a, b, c, d;
+
+ for (a = b = c = d = 0; ip < ipend; ip++) {
+ a += ip[0];
+ b += a;
+ c += b;
+ d += c;
+ }
+
+ ZIO_SET_CHECKSUM(zcp, a, b, c, d);
+}
+
+void
+fletcher_4_byteswap(const void *buf, uint64_t size, zio_cksum_t *zcp)
+{
+ const uint32_t *ip = buf;
+ const uint32_t *ipend = ip + (size / sizeof (uint32_t));
+ uint64_t a, b, c, d;
+
+ for (a = b = c = d = 0; ip < ipend; ip++) {
+ a += BSWAP_32(ip[0]);
+ b += a;
+ c += b;
+ d += c;
+ }
+
+ ZIO_SET_CHECKSUM(zcp, a, b, c, d);
+}
+
+void
+fletcher_4_incremental_native(const void *buf, uint64_t size,
+ zio_cksum_t *zcp)
+{
+ const uint32_t *ip = buf;
+ const uint32_t *ipend = ip + (size / sizeof (uint32_t));
+ uint64_t a, b, c, d;
+
+ a = zcp->zc_word[0];
+ b = zcp->zc_word[1];
+ c = zcp->zc_word[2];
+ d = zcp->zc_word[3];
+
+ for (; ip < ipend; ip++) {
+ a += ip[0];
+ b += a;
+ c += b;
+ d += c;
+ }
+
+ ZIO_SET_CHECKSUM(zcp, a, b, c, d);
+}
+
+void
+fletcher_4_incremental_byteswap(const void *buf, uint64_t size,
+ zio_cksum_t *zcp)
+{
+ const uint32_t *ip = buf;
+ const uint32_t *ipend = ip + (size / sizeof (uint32_t));
+ uint64_t a, b, c, d;
+
+ a = zcp->zc_word[0];
+ b = zcp->zc_word[1];
+ c = zcp->zc_word[2];
+ d = zcp->zc_word[3];
+
+ for (; ip < ipend; ip++) {
+ a += BSWAP_32(ip[0]);
+ b += a;
+ c += b;
+ d += c;
+ }
+
+ ZIO_SET_CHECKSUM(zcp, a, b, c, d);
+}