diff options
author | Tino Reichardt <[email protected]> | 2022-01-03 17:43:11 +0100 |
---|---|---|
committer | Brian Behlendorf <[email protected]> | 2022-01-06 16:16:28 -0800 |
commit | a798b485aeff2bb0419ca95e5ed1cdd6bf7b6c00 (patch) | |
tree | 304f4216f7836c235fdcfa5fcdb460f8ac061e27 /module/icp/algs | |
parent | 3e310f099d1c795ef2e6e7e0c2bbbf8f122156cb (diff) |
Remove sha1 hashing from OpenZFS, it's not used anywhere.
Reviewed-by: Brian Behlendorf <[email protected]>
Reviewed-by: Attila Fülöp <[email protected]>
Signed-off-by: Tino Reichardt <[email protected]>
Signed-off-by: Ahelenia Ziemiańska <[email protected]>
Closes #12895
Closes #12902
Diffstat (limited to 'module/icp/algs')
-rw-r--r-- | module/icp/algs/sha1/sha1.c | 835 |
1 files changed, 0 insertions, 835 deletions
diff --git a/module/icp/algs/sha1/sha1.c b/module/icp/algs/sha1/sha1.c deleted file mode 100644 index da34222c8..000000000 --- a/module/icp/algs/sha1/sha1.c +++ /dev/null @@ -1,835 +0,0 @@ -/* - * Copyright 2009 Sun Microsystems, Inc. All rights reserved. - * Use is subject to license terms. - */ - -/* - * The basic framework for this code came from the reference - * implementation for MD5. That implementation is Copyright (C) - * 1991-2, RSA Data Security, Inc. Created 1991. All rights reserved. - * - * License to copy and use this software is granted provided that it - * is identified as the "RSA Data Security, Inc. MD5 Message-Digest - * Algorithm" in all material mentioning or referencing this software - * or this function. - * - * License is also granted to make and use derivative works provided - * that such works are identified as "derived from the RSA Data - * Security, Inc. MD5 Message-Digest Algorithm" in all material - * mentioning or referencing the derived work. - * - * RSA Data Security, Inc. makes no representations concerning either - * the merchantability of this software or the suitability of this - * software for any particular purpose. It is provided "as is" - * without express or implied warranty of any kind. - * - * These notices must be retained in any copies of any part of this - * documentation and/or software. - * - * NOTE: Cleaned-up and optimized, version of SHA1, based on the FIPS 180-1 - * standard, available at http://www.itl.nist.gov/fipspubs/fip180-1.htm - * Not as fast as one would like -- further optimizations are encouraged - * and appreciated. - */ - -#include <sys/zfs_context.h> -#include <sha1/sha1.h> -#include <sha1/sha1_consts.h> - -#ifdef _LITTLE_ENDIAN -#include <sys/byteorder.h> -#define HAVE_HTONL -#endif - -#define _RESTRICT_KYWD - -static void Encode(uint8_t *, const uint32_t *, size_t); - -#if defined(__sparc) - -#define SHA1_TRANSFORM(ctx, in) \ - SHA1Transform((ctx)->state[0], (ctx)->state[1], (ctx)->state[2], \ - (ctx)->state[3], (ctx)->state[4], (ctx), (in)) - -static void SHA1Transform(uint32_t, uint32_t, uint32_t, uint32_t, uint32_t, - SHA1_CTX *, const uint8_t *); - -#elif defined(__amd64) - -#define SHA1_TRANSFORM(ctx, in) sha1_block_data_order((ctx), (in), 1) -#define SHA1_TRANSFORM_BLOCKS(ctx, in, num) sha1_block_data_order((ctx), \ - (in), (num)) - -void sha1_block_data_order(SHA1_CTX *ctx, const void *inpp, size_t num_blocks); - -#else - -#define SHA1_TRANSFORM(ctx, in) SHA1Transform((ctx), (in)) - -static void SHA1Transform(SHA1_CTX *, const uint8_t *); - -#endif - - -static uint8_t PADDING[64] = { 0x80, /* all zeros */ }; - -/* - * F, G, and H are the basic SHA1 functions. - */ -#define F(b, c, d) (((b) & (c)) | ((~b) & (d))) -#define G(b, c, d) ((b) ^ (c) ^ (d)) -#define H(b, c, d) (((b) & (c)) | (((b)|(c)) & (d))) - -/* - * SHA1Init() - * - * purpose: initializes the sha1 context and begins and sha1 digest operation - * input: SHA1_CTX * : the context to initializes. - * output: void - */ - -void -SHA1Init(SHA1_CTX *ctx) -{ - ctx->count[0] = ctx->count[1] = 0; - - /* - * load magic initialization constants. Tell lint - * that these constants are unsigned by using U. - */ - - ctx->state[0] = 0x67452301U; - ctx->state[1] = 0xefcdab89U; - ctx->state[2] = 0x98badcfeU; - ctx->state[3] = 0x10325476U; - ctx->state[4] = 0xc3d2e1f0U; -} - -void -SHA1Update(SHA1_CTX *ctx, const void *inptr, size_t input_len) -{ - uint32_t i, buf_index, buf_len; - const uint8_t *input = inptr; -#if defined(__amd64) - uint32_t block_count; -#endif /* __amd64 */ - - /* check for noop */ - if (input_len == 0) - return; - - /* compute number of bytes mod 64 */ - buf_index = (ctx->count[1] >> 3) & 0x3F; - - /* update number of bits */ - if ((ctx->count[1] += (input_len << 3)) < (input_len << 3)) - ctx->count[0]++; - - ctx->count[0] += (input_len >> 29); - - buf_len = 64 - buf_index; - - /* transform as many times as possible */ - i = 0; - if (input_len >= buf_len) { - - /* - * general optimization: - * - * only do initial bcopy() and SHA1Transform() if - * buf_index != 0. if buf_index == 0, we're just - * wasting our time doing the bcopy() since there - * wasn't any data left over from a previous call to - * SHA1Update(). - */ - - if (buf_index) { - bcopy(input, &ctx->buf_un.buf8[buf_index], buf_len); - SHA1_TRANSFORM(ctx, ctx->buf_un.buf8); - i = buf_len; - } - -#if !defined(__amd64) - for (; i + 63 < input_len; i += 64) - SHA1_TRANSFORM(ctx, &input[i]); -#else - block_count = (input_len - i) >> 6; - if (block_count > 0) { - SHA1_TRANSFORM_BLOCKS(ctx, &input[i], block_count); - i += block_count << 6; - } -#endif /* !__amd64 */ - - /* - * general optimization: - * - * if i and input_len are the same, return now instead - * of calling bcopy(), since the bcopy() in this case - * will be an expensive nop. - */ - - if (input_len == i) - return; - - buf_index = 0; - } - - /* buffer remaining input */ - bcopy(&input[i], &ctx->buf_un.buf8[buf_index], input_len - i); -} - -/* - * SHA1Final() - * - * purpose: ends an sha1 digest operation, finalizing the message digest and - * zeroing the context. - * input: uchar_t * : A buffer to store the digest. - * : The function actually uses void* because many - * : callers pass things other than uchar_t here. - * SHA1_CTX * : the context to finalize, save, and zero - * output: void - */ - -void -SHA1Final(void *digest, SHA1_CTX *ctx) -{ - uint8_t bitcount_be[sizeof (ctx->count)]; - uint32_t index = (ctx->count[1] >> 3) & 0x3f; - - /* store bit count, big endian */ - Encode(bitcount_be, ctx->count, sizeof (bitcount_be)); - - /* pad out to 56 mod 64 */ - SHA1Update(ctx, PADDING, ((index < 56) ? 56 : 120) - index); - - /* append length (before padding) */ - SHA1Update(ctx, bitcount_be, sizeof (bitcount_be)); - - /* store state in digest */ - Encode(digest, ctx->state, sizeof (ctx->state)); - - /* zeroize sensitive information */ - bzero(ctx, sizeof (*ctx)); -} - - -#if !defined(__amd64) - -typedef uint32_t sha1word; - -/* - * sparc optimization: - * - * on the sparc, we can load big endian 32-bit data easily. note that - * special care must be taken to ensure the address is 32-bit aligned. - * in the interest of speed, we don't check to make sure, since - * careful programming can guarantee this for us. - */ - -#if defined(_ZFS_BIG_ENDIAN) -#define LOAD_BIG_32(addr) (*(uint32_t *)(addr)) - -#elif defined(HAVE_HTONL) -#define LOAD_BIG_32(addr) htonl(*((uint32_t *)(addr))) - -#else -#define LOAD_BIG_32(addr) BE_32(*((uint32_t *)(addr))) -#endif /* _BIG_ENDIAN */ - -/* - * SHA1Transform() - */ -#if defined(W_ARRAY) -#define W(n) w[n] -#else /* !defined(W_ARRAY) */ -#define W(n) w_ ## n -#endif /* !defined(W_ARRAY) */ - -/* - * ROTATE_LEFT rotates x left n bits. - */ - -#if defined(__GNUC__) && defined(_LP64) -static __inline__ uint64_t -ROTATE_LEFT(uint64_t value, uint32_t n) -{ - uint32_t t32; - - t32 = (uint32_t)value; - return ((t32 << n) | (t32 >> (32 - n))); -} - -#else - -#define ROTATE_LEFT(x, n) \ - (((x) << (n)) | ((x) >> ((sizeof (x) * NBBY)-(n)))) - -#endif - -#if defined(__sparc) - - -/* - * sparc register window optimization: - * - * `a', `b', `c', `d', and `e' are passed into SHA1Transform - * explicitly since it increases the number of registers available to - * the compiler. under this scheme, these variables can be held in - * %i0 - %i4, which leaves more local and out registers available. - * - * purpose: sha1 transformation -- updates the digest based on `block' - * input: uint32_t : bytes 1 - 4 of the digest - * uint32_t : bytes 5 - 8 of the digest - * uint32_t : bytes 9 - 12 of the digest - * uint32_t : bytes 12 - 16 of the digest - * uint32_t : bytes 16 - 20 of the digest - * SHA1_CTX * : the context to update - * uint8_t [64]: the block to use to update the digest - * output: void - */ - - -void -SHA1Transform(uint32_t a, uint32_t b, uint32_t c, uint32_t d, uint32_t e, - SHA1_CTX *ctx, const uint8_t blk[64]) -{ - /* - * sparc optimization: - * - * while it is somewhat counter-intuitive, on sparc, it is - * more efficient to place all the constants used in this - * function in an array and load the values out of the array - * than to manually load the constants. this is because - * setting a register to a 32-bit value takes two ops in most - * cases: a `sethi' and an `or', but loading a 32-bit value - * from memory only takes one `ld' (or `lduw' on v9). while - * this increases memory usage, the compiler can find enough - * other things to do while waiting to keep the pipeline does - * not stall. additionally, it is likely that many of these - * constants are cached so that later accesses do not even go - * out to the bus. - * - * this array is declared `static' to keep the compiler from - * having to bcopy() this array onto the stack frame of - * SHA1Transform() each time it is called -- which is - * unacceptably expensive. - * - * the `const' is to ensure that callers are good citizens and - * do not try to munge the array. since these routines are - * going to be called from inside multithreaded kernelland, - * this is a good safety check. -- `sha1_consts' will end up in - * .rodata. - * - * unfortunately, loading from an array in this manner hurts - * performance under Intel. So, there is a macro, - * SHA1_CONST(), used in SHA1Transform(), that either expands to - * a reference to this array, or to the actual constant, - * depending on what platform this code is compiled for. - */ - - - static const uint32_t sha1_consts[] = { - SHA1_CONST_0, SHA1_CONST_1, SHA1_CONST_2, SHA1_CONST_3 - }; - - - /* - * general optimization: - * - * use individual integers instead of using an array. this is a - * win, although the amount it wins by seems to vary quite a bit. - */ - - - uint32_t w_0, w_1, w_2, w_3, w_4, w_5, w_6, w_7; - uint32_t w_8, w_9, w_10, w_11, w_12, w_13, w_14, w_15; - - - /* - * sparc optimization: - * - * if `block' is already aligned on a 4-byte boundary, use - * LOAD_BIG_32() directly. otherwise, bcopy() into a - * buffer that *is* aligned on a 4-byte boundary and then do - * the LOAD_BIG_32() on that buffer. benchmarks have shown - * that using the bcopy() is better than loading the bytes - * individually and doing the endian-swap by hand. - * - * even though it's quite tempting to assign to do: - * - * blk = bcopy(ctx->buf_un.buf32, blk, sizeof (ctx->buf_un.buf32)); - * - * and only have one set of LOAD_BIG_32()'s, the compiler - * *does not* like that, so please resist the urge. - */ - - - if ((uintptr_t)blk & 0x3) { /* not 4-byte aligned? */ - bcopy(blk, ctx->buf_un.buf32, sizeof (ctx->buf_un.buf32)); - w_15 = LOAD_BIG_32(ctx->buf_un.buf32 + 15); - w_14 = LOAD_BIG_32(ctx->buf_un.buf32 + 14); - w_13 = LOAD_BIG_32(ctx->buf_un.buf32 + 13); - w_12 = LOAD_BIG_32(ctx->buf_un.buf32 + 12); - w_11 = LOAD_BIG_32(ctx->buf_un.buf32 + 11); - w_10 = LOAD_BIG_32(ctx->buf_un.buf32 + 10); - w_9 = LOAD_BIG_32(ctx->buf_un.buf32 + 9); - w_8 = LOAD_BIG_32(ctx->buf_un.buf32 + 8); - w_7 = LOAD_BIG_32(ctx->buf_un.buf32 + 7); - w_6 = LOAD_BIG_32(ctx->buf_un.buf32 + 6); - w_5 = LOAD_BIG_32(ctx->buf_un.buf32 + 5); - w_4 = LOAD_BIG_32(ctx->buf_un.buf32 + 4); - w_3 = LOAD_BIG_32(ctx->buf_un.buf32 + 3); - w_2 = LOAD_BIG_32(ctx->buf_un.buf32 + 2); - w_1 = LOAD_BIG_32(ctx->buf_un.buf32 + 1); - w_0 = LOAD_BIG_32(ctx->buf_un.buf32 + 0); - } else { - /* LINTED E_BAD_PTR_CAST_ALIGN */ - w_15 = LOAD_BIG_32(blk + 60); - /* LINTED E_BAD_PTR_CAST_ALIGN */ - w_14 = LOAD_BIG_32(blk + 56); - /* LINTED E_BAD_PTR_CAST_ALIGN */ - w_13 = LOAD_BIG_32(blk + 52); - /* LINTED E_BAD_PTR_CAST_ALIGN */ - w_12 = LOAD_BIG_32(blk + 48); - /* LINTED E_BAD_PTR_CAST_ALIGN */ - w_11 = LOAD_BIG_32(blk + 44); - /* LINTED E_BAD_PTR_CAST_ALIGN */ - w_10 = LOAD_BIG_32(blk + 40); - /* LINTED E_BAD_PTR_CAST_ALIGN */ - w_9 = LOAD_BIG_32(blk + 36); - /* LINTED E_BAD_PTR_CAST_ALIGN */ - w_8 = LOAD_BIG_32(blk + 32); - /* LINTED E_BAD_PTR_CAST_ALIGN */ - w_7 = LOAD_BIG_32(blk + 28); - /* LINTED E_BAD_PTR_CAST_ALIGN */ - w_6 = LOAD_BIG_32(blk + 24); - /* LINTED E_BAD_PTR_CAST_ALIGN */ - w_5 = LOAD_BIG_32(blk + 20); - /* LINTED E_BAD_PTR_CAST_ALIGN */ - w_4 = LOAD_BIG_32(blk + 16); - /* LINTED E_BAD_PTR_CAST_ALIGN */ - w_3 = LOAD_BIG_32(blk + 12); - /* LINTED E_BAD_PTR_CAST_ALIGN */ - w_2 = LOAD_BIG_32(blk + 8); - /* LINTED E_BAD_PTR_CAST_ALIGN */ - w_1 = LOAD_BIG_32(blk + 4); - /* LINTED E_BAD_PTR_CAST_ALIGN */ - w_0 = LOAD_BIG_32(blk + 0); - } -#else /* !defined(__sparc) */ - -void /* CSTYLED */ -SHA1Transform(SHA1_CTX *ctx, const uint8_t blk[64]) -{ - /* CSTYLED */ - sha1word a = ctx->state[0]; - sha1word b = ctx->state[1]; - sha1word c = ctx->state[2]; - sha1word d = ctx->state[3]; - sha1word e = ctx->state[4]; - -#if defined(W_ARRAY) - sha1word w[16]; -#else /* !defined(W_ARRAY) */ - sha1word w_0, w_1, w_2, w_3, w_4, w_5, w_6, w_7; - sha1word w_8, w_9, w_10, w_11, w_12, w_13, w_14, w_15; -#endif /* !defined(W_ARRAY) */ - - W(0) = LOAD_BIG_32((void *)(blk + 0)); - W(1) = LOAD_BIG_32((void *)(blk + 4)); - W(2) = LOAD_BIG_32((void *)(blk + 8)); - W(3) = LOAD_BIG_32((void *)(blk + 12)); - W(4) = LOAD_BIG_32((void *)(blk + 16)); - W(5) = LOAD_BIG_32((void *)(blk + 20)); - W(6) = LOAD_BIG_32((void *)(blk + 24)); - W(7) = LOAD_BIG_32((void *)(blk + 28)); - W(8) = LOAD_BIG_32((void *)(blk + 32)); - W(9) = LOAD_BIG_32((void *)(blk + 36)); - W(10) = LOAD_BIG_32((void *)(blk + 40)); - W(11) = LOAD_BIG_32((void *)(blk + 44)); - W(12) = LOAD_BIG_32((void *)(blk + 48)); - W(13) = LOAD_BIG_32((void *)(blk + 52)); - W(14) = LOAD_BIG_32((void *)(blk + 56)); - W(15) = LOAD_BIG_32((void *)(blk + 60)); - -#endif /* !defined(__sparc) */ - - /* - * general optimization: - * - * even though this approach is described in the standard as - * being slower algorithmically, it is 30-40% faster than the - * "faster" version under SPARC, because this version has more - * of the constraints specified at compile-time and uses fewer - * variables (and therefore has better register utilization) - * than its "speedier" brother. (i've tried both, trust me) - * - * for either method given in the spec, there is an "assignment" - * phase where the following takes place: - * - * tmp = (main_computation); - * e = d; d = c; c = rotate_left(b, 30); b = a; a = tmp; - * - * we can make the algorithm go faster by not doing this work, - * but just pretending that `d' is now `e', etc. this works - * really well and obviates the need for a temporary variable. - * however, we still explicitly perform the rotate action, - * since it is cheaper on SPARC to do it once than to have to - * do it over and over again. - */ - - /* round 1 */ - e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(0) + SHA1_CONST(0); /* 0 */ - b = ROTATE_LEFT(b, 30); - - d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(1) + SHA1_CONST(0); /* 1 */ - a = ROTATE_LEFT(a, 30); - - c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(2) + SHA1_CONST(0); /* 2 */ - e = ROTATE_LEFT(e, 30); - - b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(3) + SHA1_CONST(0); /* 3 */ - d = ROTATE_LEFT(d, 30); - - a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(4) + SHA1_CONST(0); /* 4 */ - c = ROTATE_LEFT(c, 30); - - e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(5) + SHA1_CONST(0); /* 5 */ - b = ROTATE_LEFT(b, 30); - - d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(6) + SHA1_CONST(0); /* 6 */ - a = ROTATE_LEFT(a, 30); - - c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(7) + SHA1_CONST(0); /* 7 */ - e = ROTATE_LEFT(e, 30); - - b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(8) + SHA1_CONST(0); /* 8 */ - d = ROTATE_LEFT(d, 30); - - a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(9) + SHA1_CONST(0); /* 9 */ - c = ROTATE_LEFT(c, 30); - - e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(10) + SHA1_CONST(0); /* 10 */ - b = ROTATE_LEFT(b, 30); - - d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(11) + SHA1_CONST(0); /* 11 */ - a = ROTATE_LEFT(a, 30); - - c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(12) + SHA1_CONST(0); /* 12 */ - e = ROTATE_LEFT(e, 30); - - b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(13) + SHA1_CONST(0); /* 13 */ - d = ROTATE_LEFT(d, 30); - - a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(14) + SHA1_CONST(0); /* 14 */ - c = ROTATE_LEFT(c, 30); - - e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(15) + SHA1_CONST(0); /* 15 */ - b = ROTATE_LEFT(b, 30); - - W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1); /* 16 */ - d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(0) + SHA1_CONST(0); - a = ROTATE_LEFT(a, 30); - - W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1); /* 17 */ - c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(1) + SHA1_CONST(0); - e = ROTATE_LEFT(e, 30); - - W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1); /* 18 */ - b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(2) + SHA1_CONST(0); - d = ROTATE_LEFT(d, 30); - - W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1); /* 19 */ - a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(3) + SHA1_CONST(0); - c = ROTATE_LEFT(c, 30); - - /* round 2 */ - W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1); /* 20 */ - e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(4) + SHA1_CONST(1); - b = ROTATE_LEFT(b, 30); - - W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1); /* 21 */ - d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(5) + SHA1_CONST(1); - a = ROTATE_LEFT(a, 30); - - W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1); /* 22 */ - c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(6) + SHA1_CONST(1); - e = ROTATE_LEFT(e, 30); - - W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1); /* 23 */ - b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(7) + SHA1_CONST(1); - d = ROTATE_LEFT(d, 30); - - W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1); /* 24 */ - a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(8) + SHA1_CONST(1); - c = ROTATE_LEFT(c, 30); - - W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1); /* 25 */ - e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(9) + SHA1_CONST(1); - b = ROTATE_LEFT(b, 30); - - W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1); /* 26 */ - d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(10) + SHA1_CONST(1); - a = ROTATE_LEFT(a, 30); - - W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1); /* 27 */ - c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(11) + SHA1_CONST(1); - e = ROTATE_LEFT(e, 30); - - W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1); /* 28 */ - b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(12) + SHA1_CONST(1); - d = ROTATE_LEFT(d, 30); - - W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 29 */ - a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(13) + SHA1_CONST(1); - c = ROTATE_LEFT(c, 30); - - W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1); /* 30 */ - e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(14) + SHA1_CONST(1); - b = ROTATE_LEFT(b, 30); - - W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1); /* 31 */ - d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(15) + SHA1_CONST(1); - a = ROTATE_LEFT(a, 30); - - W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1); /* 32 */ - c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(0) + SHA1_CONST(1); - e = ROTATE_LEFT(e, 30); - - W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1); /* 33 */ - b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(1) + SHA1_CONST(1); - d = ROTATE_LEFT(d, 30); - - W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1); /* 34 */ - a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(2) + SHA1_CONST(1); - c = ROTATE_LEFT(c, 30); - - W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1); /* 35 */ - e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(3) + SHA1_CONST(1); - b = ROTATE_LEFT(b, 30); - - W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1); /* 36 */ - d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(4) + SHA1_CONST(1); - a = ROTATE_LEFT(a, 30); - - W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1); /* 37 */ - c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(5) + SHA1_CONST(1); - e = ROTATE_LEFT(e, 30); - - W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1); /* 38 */ - b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(6) + SHA1_CONST(1); - d = ROTATE_LEFT(d, 30); - - W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1); /* 39 */ - a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(7) + SHA1_CONST(1); - c = ROTATE_LEFT(c, 30); - - /* round 3 */ - W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1); /* 40 */ - e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(8) + SHA1_CONST(2); - b = ROTATE_LEFT(b, 30); - - W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1); /* 41 */ - d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(9) + SHA1_CONST(2); - a = ROTATE_LEFT(a, 30); - - W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1); /* 42 */ - c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(10) + SHA1_CONST(2); - e = ROTATE_LEFT(e, 30); - - W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1); /* 43 */ - b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(11) + SHA1_CONST(2); - d = ROTATE_LEFT(d, 30); - - W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1); /* 44 */ - a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(12) + SHA1_CONST(2); - c = ROTATE_LEFT(c, 30); - - W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 45 */ - e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(13) + SHA1_CONST(2); - b = ROTATE_LEFT(b, 30); - - W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1); /* 46 */ - d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(14) + SHA1_CONST(2); - a = ROTATE_LEFT(a, 30); - - W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1); /* 47 */ - c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(15) + SHA1_CONST(2); - e = ROTATE_LEFT(e, 30); - - W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1); /* 48 */ - b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(0) + SHA1_CONST(2); - d = ROTATE_LEFT(d, 30); - - W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1); /* 49 */ - a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(1) + SHA1_CONST(2); - c = ROTATE_LEFT(c, 30); - - W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1); /* 50 */ - e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(2) + SHA1_CONST(2); - b = ROTATE_LEFT(b, 30); - - W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1); /* 51 */ - d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(3) + SHA1_CONST(2); - a = ROTATE_LEFT(a, 30); - - W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1); /* 52 */ - c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(4) + SHA1_CONST(2); - e = ROTATE_LEFT(e, 30); - - W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1); /* 53 */ - b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(5) + SHA1_CONST(2); - d = ROTATE_LEFT(d, 30); - - W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1); /* 54 */ - a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(6) + SHA1_CONST(2); - c = ROTATE_LEFT(c, 30); - - W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1); /* 55 */ - e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(7) + SHA1_CONST(2); - b = ROTATE_LEFT(b, 30); - - W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1); /* 56 */ - d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(8) + SHA1_CONST(2); - a = ROTATE_LEFT(a, 30); - - W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1); /* 57 */ - c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(9) + SHA1_CONST(2); - e = ROTATE_LEFT(e, 30); - - W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1); /* 58 */ - b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(10) + SHA1_CONST(2); - d = ROTATE_LEFT(d, 30); - - W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1); /* 59 */ - a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(11) + SHA1_CONST(2); - c = ROTATE_LEFT(c, 30); - - /* round 4 */ - W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1); /* 60 */ - e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(12) + SHA1_CONST(3); - b = ROTATE_LEFT(b, 30); - - W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 61 */ - d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(13) + SHA1_CONST(3); - a = ROTATE_LEFT(a, 30); - - W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1); /* 62 */ - c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(14) + SHA1_CONST(3); - e = ROTATE_LEFT(e, 30); - - W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1); /* 63 */ - b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(15) + SHA1_CONST(3); - d = ROTATE_LEFT(d, 30); - - W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1); /* 64 */ - a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(0) + SHA1_CONST(3); - c = ROTATE_LEFT(c, 30); - - W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1); /* 65 */ - e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(1) + SHA1_CONST(3); - b = ROTATE_LEFT(b, 30); - - W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1); /* 66 */ - d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(2) + SHA1_CONST(3); - a = ROTATE_LEFT(a, 30); - - W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1); /* 67 */ - c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(3) + SHA1_CONST(3); - e = ROTATE_LEFT(e, 30); - - W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1); /* 68 */ - b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(4) + SHA1_CONST(3); - d = ROTATE_LEFT(d, 30); - - W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1); /* 69 */ - a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(5) + SHA1_CONST(3); - c = ROTATE_LEFT(c, 30); - - W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1); /* 70 */ - e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(6) + SHA1_CONST(3); - b = ROTATE_LEFT(b, 30); - - W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1); /* 71 */ - d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(7) + SHA1_CONST(3); - a = ROTATE_LEFT(a, 30); - - W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1); /* 72 */ - c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(8) + SHA1_CONST(3); - e = ROTATE_LEFT(e, 30); - - W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1); /* 73 */ - b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(9) + SHA1_CONST(3); - d = ROTATE_LEFT(d, 30); - - W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1); /* 74 */ - a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(10) + SHA1_CONST(3); - c = ROTATE_LEFT(c, 30); - - W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1); /* 75 */ - e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(11) + SHA1_CONST(3); - b = ROTATE_LEFT(b, 30); - - W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1); /* 76 */ - d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(12) + SHA1_CONST(3); - a = ROTATE_LEFT(a, 30); - - W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 77 */ - c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(13) + SHA1_CONST(3); - e = ROTATE_LEFT(e, 30); - - W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1); /* 78 */ - b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(14) + SHA1_CONST(3); - d = ROTATE_LEFT(d, 30); - - W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1); /* 79 */ - - ctx->state[0] += ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(15) + - SHA1_CONST(3); - ctx->state[1] += b; - ctx->state[2] += ROTATE_LEFT(c, 30); - ctx->state[3] += d; - ctx->state[4] += e; - - /* zeroize sensitive information */ - W(0) = W(1) = W(2) = W(3) = W(4) = W(5) = W(6) = W(7) = W(8) = 0; - W(9) = W(10) = W(11) = W(12) = W(13) = W(14) = W(15) = 0; -} -#endif /* !__amd64 */ - - -/* - * Encode() - * - * purpose: to convert a list of numbers from little endian to big endian - * input: uint8_t * : place to store the converted big endian numbers - * uint32_t * : place to get numbers to convert from - * size_t : the length of the input in bytes - * output: void - */ - -static void -Encode(uint8_t *_RESTRICT_KYWD output, const uint32_t *_RESTRICT_KYWD input, - size_t len) -{ - size_t i, j; - -#if defined(__sparc) - if (IS_P2ALIGNED(output, sizeof (uint32_t))) { - for (i = 0, j = 0; j < len; i++, j += 4) { - /* LINTED E_BAD_PTR_CAST_ALIGN */ - *((uint32_t *)(output + j)) = input[i]; - } - } else { -#endif /* little endian -- will work on big endian, but slowly */ - - for (i = 0, j = 0; j < len; i++, j += 4) { - output[j] = (input[i] >> 24) & 0xff; - output[j + 1] = (input[i] >> 16) & 0xff; - output[j + 2] = (input[i] >> 8) & 0xff; - output[j + 3] = input[i] & 0xff; - } -#if defined(__sparc) - } -#endif -} |