aboutsummaryrefslogtreecommitdiffstats
path: root/module/icp/algs
diff options
context:
space:
mode:
authorTino Reichardt <[email protected]>2022-01-03 17:43:11 +0100
committerBrian Behlendorf <[email protected]>2022-01-06 16:16:28 -0800
commita798b485aeff2bb0419ca95e5ed1cdd6bf7b6c00 (patch)
tree304f4216f7836c235fdcfa5fcdb460f8ac061e27 /module/icp/algs
parent3e310f099d1c795ef2e6e7e0c2bbbf8f122156cb (diff)
Remove sha1 hashing from OpenZFS, it's not used anywhere.
Reviewed-by: Brian Behlendorf <[email protected]> Reviewed-by: Attila Fülöp <[email protected]> Signed-off-by: Tino Reichardt <[email protected]> Signed-off-by: Ahelenia Ziemiańska <[email protected]> Closes #12895 Closes #12902
Diffstat (limited to 'module/icp/algs')
-rw-r--r--module/icp/algs/sha1/sha1.c835
1 files changed, 0 insertions, 835 deletions
diff --git a/module/icp/algs/sha1/sha1.c b/module/icp/algs/sha1/sha1.c
deleted file mode 100644
index da34222c8..000000000
--- a/module/icp/algs/sha1/sha1.c
+++ /dev/null
@@ -1,835 +0,0 @@
-/*
- * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
- * Use is subject to license terms.
- */
-
-/*
- * The basic framework for this code came from the reference
- * implementation for MD5. That implementation is Copyright (C)
- * 1991-2, RSA Data Security, Inc. Created 1991. All rights reserved.
- *
- * License to copy and use this software is granted provided that it
- * is identified as the "RSA Data Security, Inc. MD5 Message-Digest
- * Algorithm" in all material mentioning or referencing this software
- * or this function.
- *
- * License is also granted to make and use derivative works provided
- * that such works are identified as "derived from the RSA Data
- * Security, Inc. MD5 Message-Digest Algorithm" in all material
- * mentioning or referencing the derived work.
- *
- * RSA Data Security, Inc. makes no representations concerning either
- * the merchantability of this software or the suitability of this
- * software for any particular purpose. It is provided "as is"
- * without express or implied warranty of any kind.
- *
- * These notices must be retained in any copies of any part of this
- * documentation and/or software.
- *
- * NOTE: Cleaned-up and optimized, version of SHA1, based on the FIPS 180-1
- * standard, available at http://www.itl.nist.gov/fipspubs/fip180-1.htm
- * Not as fast as one would like -- further optimizations are encouraged
- * and appreciated.
- */
-
-#include <sys/zfs_context.h>
-#include <sha1/sha1.h>
-#include <sha1/sha1_consts.h>
-
-#ifdef _LITTLE_ENDIAN
-#include <sys/byteorder.h>
-#define HAVE_HTONL
-#endif
-
-#define _RESTRICT_KYWD
-
-static void Encode(uint8_t *, const uint32_t *, size_t);
-
-#if defined(__sparc)
-
-#define SHA1_TRANSFORM(ctx, in) \
- SHA1Transform((ctx)->state[0], (ctx)->state[1], (ctx)->state[2], \
- (ctx)->state[3], (ctx)->state[4], (ctx), (in))
-
-static void SHA1Transform(uint32_t, uint32_t, uint32_t, uint32_t, uint32_t,
- SHA1_CTX *, const uint8_t *);
-
-#elif defined(__amd64)
-
-#define SHA1_TRANSFORM(ctx, in) sha1_block_data_order((ctx), (in), 1)
-#define SHA1_TRANSFORM_BLOCKS(ctx, in, num) sha1_block_data_order((ctx), \
- (in), (num))
-
-void sha1_block_data_order(SHA1_CTX *ctx, const void *inpp, size_t num_blocks);
-
-#else
-
-#define SHA1_TRANSFORM(ctx, in) SHA1Transform((ctx), (in))
-
-static void SHA1Transform(SHA1_CTX *, const uint8_t *);
-
-#endif
-
-
-static uint8_t PADDING[64] = { 0x80, /* all zeros */ };
-
-/*
- * F, G, and H are the basic SHA1 functions.
- */
-#define F(b, c, d) (((b) & (c)) | ((~b) & (d)))
-#define G(b, c, d) ((b) ^ (c) ^ (d))
-#define H(b, c, d) (((b) & (c)) | (((b)|(c)) & (d)))
-
-/*
- * SHA1Init()
- *
- * purpose: initializes the sha1 context and begins and sha1 digest operation
- * input: SHA1_CTX * : the context to initializes.
- * output: void
- */
-
-void
-SHA1Init(SHA1_CTX *ctx)
-{
- ctx->count[0] = ctx->count[1] = 0;
-
- /*
- * load magic initialization constants. Tell lint
- * that these constants are unsigned by using U.
- */
-
- ctx->state[0] = 0x67452301U;
- ctx->state[1] = 0xefcdab89U;
- ctx->state[2] = 0x98badcfeU;
- ctx->state[3] = 0x10325476U;
- ctx->state[4] = 0xc3d2e1f0U;
-}
-
-void
-SHA1Update(SHA1_CTX *ctx, const void *inptr, size_t input_len)
-{
- uint32_t i, buf_index, buf_len;
- const uint8_t *input = inptr;
-#if defined(__amd64)
- uint32_t block_count;
-#endif /* __amd64 */
-
- /* check for noop */
- if (input_len == 0)
- return;
-
- /* compute number of bytes mod 64 */
- buf_index = (ctx->count[1] >> 3) & 0x3F;
-
- /* update number of bits */
- if ((ctx->count[1] += (input_len << 3)) < (input_len << 3))
- ctx->count[0]++;
-
- ctx->count[0] += (input_len >> 29);
-
- buf_len = 64 - buf_index;
-
- /* transform as many times as possible */
- i = 0;
- if (input_len >= buf_len) {
-
- /*
- * general optimization:
- *
- * only do initial bcopy() and SHA1Transform() if
- * buf_index != 0. if buf_index == 0, we're just
- * wasting our time doing the bcopy() since there
- * wasn't any data left over from a previous call to
- * SHA1Update().
- */
-
- if (buf_index) {
- bcopy(input, &ctx->buf_un.buf8[buf_index], buf_len);
- SHA1_TRANSFORM(ctx, ctx->buf_un.buf8);
- i = buf_len;
- }
-
-#if !defined(__amd64)
- for (; i + 63 < input_len; i += 64)
- SHA1_TRANSFORM(ctx, &input[i]);
-#else
- block_count = (input_len - i) >> 6;
- if (block_count > 0) {
- SHA1_TRANSFORM_BLOCKS(ctx, &input[i], block_count);
- i += block_count << 6;
- }
-#endif /* !__amd64 */
-
- /*
- * general optimization:
- *
- * if i and input_len are the same, return now instead
- * of calling bcopy(), since the bcopy() in this case
- * will be an expensive nop.
- */
-
- if (input_len == i)
- return;
-
- buf_index = 0;
- }
-
- /* buffer remaining input */
- bcopy(&input[i], &ctx->buf_un.buf8[buf_index], input_len - i);
-}
-
-/*
- * SHA1Final()
- *
- * purpose: ends an sha1 digest operation, finalizing the message digest and
- * zeroing the context.
- * input: uchar_t * : A buffer to store the digest.
- * : The function actually uses void* because many
- * : callers pass things other than uchar_t here.
- * SHA1_CTX * : the context to finalize, save, and zero
- * output: void
- */
-
-void
-SHA1Final(void *digest, SHA1_CTX *ctx)
-{
- uint8_t bitcount_be[sizeof (ctx->count)];
- uint32_t index = (ctx->count[1] >> 3) & 0x3f;
-
- /* store bit count, big endian */
- Encode(bitcount_be, ctx->count, sizeof (bitcount_be));
-
- /* pad out to 56 mod 64 */
- SHA1Update(ctx, PADDING, ((index < 56) ? 56 : 120) - index);
-
- /* append length (before padding) */
- SHA1Update(ctx, bitcount_be, sizeof (bitcount_be));
-
- /* store state in digest */
- Encode(digest, ctx->state, sizeof (ctx->state));
-
- /* zeroize sensitive information */
- bzero(ctx, sizeof (*ctx));
-}
-
-
-#if !defined(__amd64)
-
-typedef uint32_t sha1word;
-
-/*
- * sparc optimization:
- *
- * on the sparc, we can load big endian 32-bit data easily. note that
- * special care must be taken to ensure the address is 32-bit aligned.
- * in the interest of speed, we don't check to make sure, since
- * careful programming can guarantee this for us.
- */
-
-#if defined(_ZFS_BIG_ENDIAN)
-#define LOAD_BIG_32(addr) (*(uint32_t *)(addr))
-
-#elif defined(HAVE_HTONL)
-#define LOAD_BIG_32(addr) htonl(*((uint32_t *)(addr)))
-
-#else
-#define LOAD_BIG_32(addr) BE_32(*((uint32_t *)(addr)))
-#endif /* _BIG_ENDIAN */
-
-/*
- * SHA1Transform()
- */
-#if defined(W_ARRAY)
-#define W(n) w[n]
-#else /* !defined(W_ARRAY) */
-#define W(n) w_ ## n
-#endif /* !defined(W_ARRAY) */
-
-/*
- * ROTATE_LEFT rotates x left n bits.
- */
-
-#if defined(__GNUC__) && defined(_LP64)
-static __inline__ uint64_t
-ROTATE_LEFT(uint64_t value, uint32_t n)
-{
- uint32_t t32;
-
- t32 = (uint32_t)value;
- return ((t32 << n) | (t32 >> (32 - n)));
-}
-
-#else
-
-#define ROTATE_LEFT(x, n) \
- (((x) << (n)) | ((x) >> ((sizeof (x) * NBBY)-(n))))
-
-#endif
-
-#if defined(__sparc)
-
-
-/*
- * sparc register window optimization:
- *
- * `a', `b', `c', `d', and `e' are passed into SHA1Transform
- * explicitly since it increases the number of registers available to
- * the compiler. under this scheme, these variables can be held in
- * %i0 - %i4, which leaves more local and out registers available.
- *
- * purpose: sha1 transformation -- updates the digest based on `block'
- * input: uint32_t : bytes 1 - 4 of the digest
- * uint32_t : bytes 5 - 8 of the digest
- * uint32_t : bytes 9 - 12 of the digest
- * uint32_t : bytes 12 - 16 of the digest
- * uint32_t : bytes 16 - 20 of the digest
- * SHA1_CTX * : the context to update
- * uint8_t [64]: the block to use to update the digest
- * output: void
- */
-
-
-void
-SHA1Transform(uint32_t a, uint32_t b, uint32_t c, uint32_t d, uint32_t e,
- SHA1_CTX *ctx, const uint8_t blk[64])
-{
- /*
- * sparc optimization:
- *
- * while it is somewhat counter-intuitive, on sparc, it is
- * more efficient to place all the constants used in this
- * function in an array and load the values out of the array
- * than to manually load the constants. this is because
- * setting a register to a 32-bit value takes two ops in most
- * cases: a `sethi' and an `or', but loading a 32-bit value
- * from memory only takes one `ld' (or `lduw' on v9). while
- * this increases memory usage, the compiler can find enough
- * other things to do while waiting to keep the pipeline does
- * not stall. additionally, it is likely that many of these
- * constants are cached so that later accesses do not even go
- * out to the bus.
- *
- * this array is declared `static' to keep the compiler from
- * having to bcopy() this array onto the stack frame of
- * SHA1Transform() each time it is called -- which is
- * unacceptably expensive.
- *
- * the `const' is to ensure that callers are good citizens and
- * do not try to munge the array. since these routines are
- * going to be called from inside multithreaded kernelland,
- * this is a good safety check. -- `sha1_consts' will end up in
- * .rodata.
- *
- * unfortunately, loading from an array in this manner hurts
- * performance under Intel. So, there is a macro,
- * SHA1_CONST(), used in SHA1Transform(), that either expands to
- * a reference to this array, or to the actual constant,
- * depending on what platform this code is compiled for.
- */
-
-
- static const uint32_t sha1_consts[] = {
- SHA1_CONST_0, SHA1_CONST_1, SHA1_CONST_2, SHA1_CONST_3
- };
-
-
- /*
- * general optimization:
- *
- * use individual integers instead of using an array. this is a
- * win, although the amount it wins by seems to vary quite a bit.
- */
-
-
- uint32_t w_0, w_1, w_2, w_3, w_4, w_5, w_6, w_7;
- uint32_t w_8, w_9, w_10, w_11, w_12, w_13, w_14, w_15;
-
-
- /*
- * sparc optimization:
- *
- * if `block' is already aligned on a 4-byte boundary, use
- * LOAD_BIG_32() directly. otherwise, bcopy() into a
- * buffer that *is* aligned on a 4-byte boundary and then do
- * the LOAD_BIG_32() on that buffer. benchmarks have shown
- * that using the bcopy() is better than loading the bytes
- * individually and doing the endian-swap by hand.
- *
- * even though it's quite tempting to assign to do:
- *
- * blk = bcopy(ctx->buf_un.buf32, blk, sizeof (ctx->buf_un.buf32));
- *
- * and only have one set of LOAD_BIG_32()'s, the compiler
- * *does not* like that, so please resist the urge.
- */
-
-
- if ((uintptr_t)blk & 0x3) { /* not 4-byte aligned? */
- bcopy(blk, ctx->buf_un.buf32, sizeof (ctx->buf_un.buf32));
- w_15 = LOAD_BIG_32(ctx->buf_un.buf32 + 15);
- w_14 = LOAD_BIG_32(ctx->buf_un.buf32 + 14);
- w_13 = LOAD_BIG_32(ctx->buf_un.buf32 + 13);
- w_12 = LOAD_BIG_32(ctx->buf_un.buf32 + 12);
- w_11 = LOAD_BIG_32(ctx->buf_un.buf32 + 11);
- w_10 = LOAD_BIG_32(ctx->buf_un.buf32 + 10);
- w_9 = LOAD_BIG_32(ctx->buf_un.buf32 + 9);
- w_8 = LOAD_BIG_32(ctx->buf_un.buf32 + 8);
- w_7 = LOAD_BIG_32(ctx->buf_un.buf32 + 7);
- w_6 = LOAD_BIG_32(ctx->buf_un.buf32 + 6);
- w_5 = LOAD_BIG_32(ctx->buf_un.buf32 + 5);
- w_4 = LOAD_BIG_32(ctx->buf_un.buf32 + 4);
- w_3 = LOAD_BIG_32(ctx->buf_un.buf32 + 3);
- w_2 = LOAD_BIG_32(ctx->buf_un.buf32 + 2);
- w_1 = LOAD_BIG_32(ctx->buf_un.buf32 + 1);
- w_0 = LOAD_BIG_32(ctx->buf_un.buf32 + 0);
- } else {
- /* LINTED E_BAD_PTR_CAST_ALIGN */
- w_15 = LOAD_BIG_32(blk + 60);
- /* LINTED E_BAD_PTR_CAST_ALIGN */
- w_14 = LOAD_BIG_32(blk + 56);
- /* LINTED E_BAD_PTR_CAST_ALIGN */
- w_13 = LOAD_BIG_32(blk + 52);
- /* LINTED E_BAD_PTR_CAST_ALIGN */
- w_12 = LOAD_BIG_32(blk + 48);
- /* LINTED E_BAD_PTR_CAST_ALIGN */
- w_11 = LOAD_BIG_32(blk + 44);
- /* LINTED E_BAD_PTR_CAST_ALIGN */
- w_10 = LOAD_BIG_32(blk + 40);
- /* LINTED E_BAD_PTR_CAST_ALIGN */
- w_9 = LOAD_BIG_32(blk + 36);
- /* LINTED E_BAD_PTR_CAST_ALIGN */
- w_8 = LOAD_BIG_32(blk + 32);
- /* LINTED E_BAD_PTR_CAST_ALIGN */
- w_7 = LOAD_BIG_32(blk + 28);
- /* LINTED E_BAD_PTR_CAST_ALIGN */
- w_6 = LOAD_BIG_32(blk + 24);
- /* LINTED E_BAD_PTR_CAST_ALIGN */
- w_5 = LOAD_BIG_32(blk + 20);
- /* LINTED E_BAD_PTR_CAST_ALIGN */
- w_4 = LOAD_BIG_32(blk + 16);
- /* LINTED E_BAD_PTR_CAST_ALIGN */
- w_3 = LOAD_BIG_32(blk + 12);
- /* LINTED E_BAD_PTR_CAST_ALIGN */
- w_2 = LOAD_BIG_32(blk + 8);
- /* LINTED E_BAD_PTR_CAST_ALIGN */
- w_1 = LOAD_BIG_32(blk + 4);
- /* LINTED E_BAD_PTR_CAST_ALIGN */
- w_0 = LOAD_BIG_32(blk + 0);
- }
-#else /* !defined(__sparc) */
-
-void /* CSTYLED */
-SHA1Transform(SHA1_CTX *ctx, const uint8_t blk[64])
-{
- /* CSTYLED */
- sha1word a = ctx->state[0];
- sha1word b = ctx->state[1];
- sha1word c = ctx->state[2];
- sha1word d = ctx->state[3];
- sha1word e = ctx->state[4];
-
-#if defined(W_ARRAY)
- sha1word w[16];
-#else /* !defined(W_ARRAY) */
- sha1word w_0, w_1, w_2, w_3, w_4, w_5, w_6, w_7;
- sha1word w_8, w_9, w_10, w_11, w_12, w_13, w_14, w_15;
-#endif /* !defined(W_ARRAY) */
-
- W(0) = LOAD_BIG_32((void *)(blk + 0));
- W(1) = LOAD_BIG_32((void *)(blk + 4));
- W(2) = LOAD_BIG_32((void *)(blk + 8));
- W(3) = LOAD_BIG_32((void *)(blk + 12));
- W(4) = LOAD_BIG_32((void *)(blk + 16));
- W(5) = LOAD_BIG_32((void *)(blk + 20));
- W(6) = LOAD_BIG_32((void *)(blk + 24));
- W(7) = LOAD_BIG_32((void *)(blk + 28));
- W(8) = LOAD_BIG_32((void *)(blk + 32));
- W(9) = LOAD_BIG_32((void *)(blk + 36));
- W(10) = LOAD_BIG_32((void *)(blk + 40));
- W(11) = LOAD_BIG_32((void *)(blk + 44));
- W(12) = LOAD_BIG_32((void *)(blk + 48));
- W(13) = LOAD_BIG_32((void *)(blk + 52));
- W(14) = LOAD_BIG_32((void *)(blk + 56));
- W(15) = LOAD_BIG_32((void *)(blk + 60));
-
-#endif /* !defined(__sparc) */
-
- /*
- * general optimization:
- *
- * even though this approach is described in the standard as
- * being slower algorithmically, it is 30-40% faster than the
- * "faster" version under SPARC, because this version has more
- * of the constraints specified at compile-time and uses fewer
- * variables (and therefore has better register utilization)
- * than its "speedier" brother. (i've tried both, trust me)
- *
- * for either method given in the spec, there is an "assignment"
- * phase where the following takes place:
- *
- * tmp = (main_computation);
- * e = d; d = c; c = rotate_left(b, 30); b = a; a = tmp;
- *
- * we can make the algorithm go faster by not doing this work,
- * but just pretending that `d' is now `e', etc. this works
- * really well and obviates the need for a temporary variable.
- * however, we still explicitly perform the rotate action,
- * since it is cheaper on SPARC to do it once than to have to
- * do it over and over again.
- */
-
- /* round 1 */
- e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(0) + SHA1_CONST(0); /* 0 */
- b = ROTATE_LEFT(b, 30);
-
- d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(1) + SHA1_CONST(0); /* 1 */
- a = ROTATE_LEFT(a, 30);
-
- c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(2) + SHA1_CONST(0); /* 2 */
- e = ROTATE_LEFT(e, 30);
-
- b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(3) + SHA1_CONST(0); /* 3 */
- d = ROTATE_LEFT(d, 30);
-
- a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(4) + SHA1_CONST(0); /* 4 */
- c = ROTATE_LEFT(c, 30);
-
- e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(5) + SHA1_CONST(0); /* 5 */
- b = ROTATE_LEFT(b, 30);
-
- d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(6) + SHA1_CONST(0); /* 6 */
- a = ROTATE_LEFT(a, 30);
-
- c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(7) + SHA1_CONST(0); /* 7 */
- e = ROTATE_LEFT(e, 30);
-
- b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(8) + SHA1_CONST(0); /* 8 */
- d = ROTATE_LEFT(d, 30);
-
- a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(9) + SHA1_CONST(0); /* 9 */
- c = ROTATE_LEFT(c, 30);
-
- e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(10) + SHA1_CONST(0); /* 10 */
- b = ROTATE_LEFT(b, 30);
-
- d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(11) + SHA1_CONST(0); /* 11 */
- a = ROTATE_LEFT(a, 30);
-
- c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(12) + SHA1_CONST(0); /* 12 */
- e = ROTATE_LEFT(e, 30);
-
- b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(13) + SHA1_CONST(0); /* 13 */
- d = ROTATE_LEFT(d, 30);
-
- a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(14) + SHA1_CONST(0); /* 14 */
- c = ROTATE_LEFT(c, 30);
-
- e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(15) + SHA1_CONST(0); /* 15 */
- b = ROTATE_LEFT(b, 30);
-
- W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1); /* 16 */
- d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(0) + SHA1_CONST(0);
- a = ROTATE_LEFT(a, 30);
-
- W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1); /* 17 */
- c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(1) + SHA1_CONST(0);
- e = ROTATE_LEFT(e, 30);
-
- W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1); /* 18 */
- b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(2) + SHA1_CONST(0);
- d = ROTATE_LEFT(d, 30);
-
- W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1); /* 19 */
- a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(3) + SHA1_CONST(0);
- c = ROTATE_LEFT(c, 30);
-
- /* round 2 */
- W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1); /* 20 */
- e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(4) + SHA1_CONST(1);
- b = ROTATE_LEFT(b, 30);
-
- W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1); /* 21 */
- d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(5) + SHA1_CONST(1);
- a = ROTATE_LEFT(a, 30);
-
- W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1); /* 22 */
- c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(6) + SHA1_CONST(1);
- e = ROTATE_LEFT(e, 30);
-
- W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1); /* 23 */
- b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(7) + SHA1_CONST(1);
- d = ROTATE_LEFT(d, 30);
-
- W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1); /* 24 */
- a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(8) + SHA1_CONST(1);
- c = ROTATE_LEFT(c, 30);
-
- W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1); /* 25 */
- e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(9) + SHA1_CONST(1);
- b = ROTATE_LEFT(b, 30);
-
- W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1); /* 26 */
- d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(10) + SHA1_CONST(1);
- a = ROTATE_LEFT(a, 30);
-
- W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1); /* 27 */
- c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(11) + SHA1_CONST(1);
- e = ROTATE_LEFT(e, 30);
-
- W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1); /* 28 */
- b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(12) + SHA1_CONST(1);
- d = ROTATE_LEFT(d, 30);
-
- W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 29 */
- a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(13) + SHA1_CONST(1);
- c = ROTATE_LEFT(c, 30);
-
- W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1); /* 30 */
- e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(14) + SHA1_CONST(1);
- b = ROTATE_LEFT(b, 30);
-
- W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1); /* 31 */
- d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(15) + SHA1_CONST(1);
- a = ROTATE_LEFT(a, 30);
-
- W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1); /* 32 */
- c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(0) + SHA1_CONST(1);
- e = ROTATE_LEFT(e, 30);
-
- W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1); /* 33 */
- b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(1) + SHA1_CONST(1);
- d = ROTATE_LEFT(d, 30);
-
- W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1); /* 34 */
- a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(2) + SHA1_CONST(1);
- c = ROTATE_LEFT(c, 30);
-
- W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1); /* 35 */
- e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(3) + SHA1_CONST(1);
- b = ROTATE_LEFT(b, 30);
-
- W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1); /* 36 */
- d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(4) + SHA1_CONST(1);
- a = ROTATE_LEFT(a, 30);
-
- W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1); /* 37 */
- c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(5) + SHA1_CONST(1);
- e = ROTATE_LEFT(e, 30);
-
- W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1); /* 38 */
- b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(6) + SHA1_CONST(1);
- d = ROTATE_LEFT(d, 30);
-
- W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1); /* 39 */
- a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(7) + SHA1_CONST(1);
- c = ROTATE_LEFT(c, 30);
-
- /* round 3 */
- W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1); /* 40 */
- e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(8) + SHA1_CONST(2);
- b = ROTATE_LEFT(b, 30);
-
- W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1); /* 41 */
- d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(9) + SHA1_CONST(2);
- a = ROTATE_LEFT(a, 30);
-
- W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1); /* 42 */
- c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(10) + SHA1_CONST(2);
- e = ROTATE_LEFT(e, 30);
-
- W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1); /* 43 */
- b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(11) + SHA1_CONST(2);
- d = ROTATE_LEFT(d, 30);
-
- W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1); /* 44 */
- a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(12) + SHA1_CONST(2);
- c = ROTATE_LEFT(c, 30);
-
- W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 45 */
- e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(13) + SHA1_CONST(2);
- b = ROTATE_LEFT(b, 30);
-
- W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1); /* 46 */
- d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(14) + SHA1_CONST(2);
- a = ROTATE_LEFT(a, 30);
-
- W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1); /* 47 */
- c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(15) + SHA1_CONST(2);
- e = ROTATE_LEFT(e, 30);
-
- W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1); /* 48 */
- b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(0) + SHA1_CONST(2);
- d = ROTATE_LEFT(d, 30);
-
- W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1); /* 49 */
- a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(1) + SHA1_CONST(2);
- c = ROTATE_LEFT(c, 30);
-
- W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1); /* 50 */
- e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(2) + SHA1_CONST(2);
- b = ROTATE_LEFT(b, 30);
-
- W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1); /* 51 */
- d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(3) + SHA1_CONST(2);
- a = ROTATE_LEFT(a, 30);
-
- W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1); /* 52 */
- c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(4) + SHA1_CONST(2);
- e = ROTATE_LEFT(e, 30);
-
- W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1); /* 53 */
- b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(5) + SHA1_CONST(2);
- d = ROTATE_LEFT(d, 30);
-
- W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1); /* 54 */
- a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(6) + SHA1_CONST(2);
- c = ROTATE_LEFT(c, 30);
-
- W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1); /* 55 */
- e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(7) + SHA1_CONST(2);
- b = ROTATE_LEFT(b, 30);
-
- W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1); /* 56 */
- d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(8) + SHA1_CONST(2);
- a = ROTATE_LEFT(a, 30);
-
- W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1); /* 57 */
- c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(9) + SHA1_CONST(2);
- e = ROTATE_LEFT(e, 30);
-
- W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1); /* 58 */
- b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(10) + SHA1_CONST(2);
- d = ROTATE_LEFT(d, 30);
-
- W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1); /* 59 */
- a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(11) + SHA1_CONST(2);
- c = ROTATE_LEFT(c, 30);
-
- /* round 4 */
- W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1); /* 60 */
- e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(12) + SHA1_CONST(3);
- b = ROTATE_LEFT(b, 30);
-
- W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 61 */
- d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(13) + SHA1_CONST(3);
- a = ROTATE_LEFT(a, 30);
-
- W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1); /* 62 */
- c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(14) + SHA1_CONST(3);
- e = ROTATE_LEFT(e, 30);
-
- W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1); /* 63 */
- b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(15) + SHA1_CONST(3);
- d = ROTATE_LEFT(d, 30);
-
- W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1); /* 64 */
- a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(0) + SHA1_CONST(3);
- c = ROTATE_LEFT(c, 30);
-
- W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1); /* 65 */
- e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(1) + SHA1_CONST(3);
- b = ROTATE_LEFT(b, 30);
-
- W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1); /* 66 */
- d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(2) + SHA1_CONST(3);
- a = ROTATE_LEFT(a, 30);
-
- W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1); /* 67 */
- c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(3) + SHA1_CONST(3);
- e = ROTATE_LEFT(e, 30);
-
- W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1); /* 68 */
- b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(4) + SHA1_CONST(3);
- d = ROTATE_LEFT(d, 30);
-
- W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1); /* 69 */
- a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(5) + SHA1_CONST(3);
- c = ROTATE_LEFT(c, 30);
-
- W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1); /* 70 */
- e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(6) + SHA1_CONST(3);
- b = ROTATE_LEFT(b, 30);
-
- W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1); /* 71 */
- d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(7) + SHA1_CONST(3);
- a = ROTATE_LEFT(a, 30);
-
- W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1); /* 72 */
- c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(8) + SHA1_CONST(3);
- e = ROTATE_LEFT(e, 30);
-
- W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1); /* 73 */
- b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(9) + SHA1_CONST(3);
- d = ROTATE_LEFT(d, 30);
-
- W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1); /* 74 */
- a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(10) + SHA1_CONST(3);
- c = ROTATE_LEFT(c, 30);
-
- W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1); /* 75 */
- e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(11) + SHA1_CONST(3);
- b = ROTATE_LEFT(b, 30);
-
- W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1); /* 76 */
- d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(12) + SHA1_CONST(3);
- a = ROTATE_LEFT(a, 30);
-
- W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 77 */
- c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(13) + SHA1_CONST(3);
- e = ROTATE_LEFT(e, 30);
-
- W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1); /* 78 */
- b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(14) + SHA1_CONST(3);
- d = ROTATE_LEFT(d, 30);
-
- W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1); /* 79 */
-
- ctx->state[0] += ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(15) +
- SHA1_CONST(3);
- ctx->state[1] += b;
- ctx->state[2] += ROTATE_LEFT(c, 30);
- ctx->state[3] += d;
- ctx->state[4] += e;
-
- /* zeroize sensitive information */
- W(0) = W(1) = W(2) = W(3) = W(4) = W(5) = W(6) = W(7) = W(8) = 0;
- W(9) = W(10) = W(11) = W(12) = W(13) = W(14) = W(15) = 0;
-}
-#endif /* !__amd64 */
-
-
-/*
- * Encode()
- *
- * purpose: to convert a list of numbers from little endian to big endian
- * input: uint8_t * : place to store the converted big endian numbers
- * uint32_t * : place to get numbers to convert from
- * size_t : the length of the input in bytes
- * output: void
- */
-
-static void
-Encode(uint8_t *_RESTRICT_KYWD output, const uint32_t *_RESTRICT_KYWD input,
- size_t len)
-{
- size_t i, j;
-
-#if defined(__sparc)
- if (IS_P2ALIGNED(output, sizeof (uint32_t))) {
- for (i = 0, j = 0; j < len; i++, j += 4) {
- /* LINTED E_BAD_PTR_CAST_ALIGN */
- *((uint32_t *)(output + j)) = input[i];
- }
- } else {
-#endif /* little endian -- will work on big endian, but slowly */
-
- for (i = 0, j = 0; j < len; i++, j += 4) {
- output[j] = (input[i] >> 24) & 0xff;
- output[j + 1] = (input[i] >> 16) & 0xff;
- output[j + 2] = (input[i] >> 8) & 0xff;
- output[j + 3] = input[i] & 0xff;
- }
-#if defined(__sparc)
- }
-#endif
-}