summaryrefslogtreecommitdiffstats
path: root/module/icp/algs
diff options
context:
space:
mode:
authorTony Hutter <[email protected]>2016-06-15 15:47:05 -0700
committerTony Hutter <[email protected]>2016-10-03 14:51:15 -0700
commit3c67d83a8afb391f20bc53d36a0cebea6897b3e2 (patch)
tree2b862986c83414c7359c00219b43ad47dd73f81e /module/icp/algs
parent62a65a654e15a1388bfb571727e69b46e7cc07ab (diff)
OpenZFS 4185 - add new cryptographic checksums to ZFS: SHA-512, Skein, Edon-R
Reviewed by: George Wilson <[email protected]> Reviewed by: Prakash Surya <[email protected]> Reviewed by: Saso Kiselkov <[email protected]> Reviewed by: Richard Lowe <[email protected]> Approved by: Garrett D'Amore <[email protected]> Ported by: Tony Hutter <[email protected]> OpenZFS-issue: https://www.illumos.org/issues/4185 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/45818ee Porting Notes: This code is ported on top of the Illumos Crypto Framework code: https://github.com/zfsonlinux/zfs/pull/4329/commits/b5e030c8dbb9cd393d313571dee4756fbba8c22d The list of porting changes includes: - Copied module/icp/include/sha2/sha2.h directly from illumos - Removed from module/icp/algs/sha2/sha2.c: #pragma inline(SHA256Init, SHA384Init, SHA512Init) - Added 'ctx' to lib/libzfs/libzfs_sendrecv.c:zio_checksum_SHA256() since it now takes in an extra parameter. - Added CTASSERT() to assert.h from for module/zfs/edonr_zfs.c - Added skein & edonr to libicp/Makefile.am - Added sha512.S. It was generated from sha512-x86_64.pl in Illumos. - Updated ztest.c with new fletcher_4_*() args; used NULL for new CTX argument. - In icp/algs/edonr/edonr_byteorder.h, Removed the #if defined(__linux) section to not #include the non-existant endian.h. - In skein_test.c, renane NULL to 0 in "no test vector" array entries to get around a compiler warning. - Fixup test files: - Rename <sys/varargs.h> -> <varargs.h>, <strings.h> -> <string.h>, - Remove <note.h> and define NOTE() as NOP. - Define u_longlong_t - Rename "#!/usr/bin/ksh" -> "#!/bin/ksh -p" - Rename NULL to 0 in "no test vector" array entries to get around a compiler warning. - Remove "for isa in $($ISAINFO); do" stuff - Add/update Makefiles - Add some userspace headers like stdio.h/stdlib.h in places of sys/types.h. - EXPORT_SYMBOL *_Init/*_Update/*_Final... routines in ICP modules. - Update scripts/zfs2zol-patch.sed - include <sys/sha2.h> in sha2_impl.h - Add sha2.h to include/sys/Makefile.am - Add skein and edonr dirs to icp Makefile - Add new checksums to zpool_get.cfg - Move checksum switch block from zfs_secpolicy_setprop() to zfs_check_settable() - Fix -Wuninitialized error in edonr_byteorder.h on PPC - Fix stack frame size errors on ARM32 - Don't unroll loops in Skein on 32-bit to save stack space - Add memory barriers in sha2.c on 32-bit to save stack space - Add filetest_001_pos.ksh checksum sanity test - Add option to write psudorandom data in file_write utility
Diffstat (limited to 'module/icp/algs')
-rw-r--r--module/icp/algs/edonr/edonr.c751
-rw-r--r--module/icp/algs/edonr/edonr_byteorder.h216
-rw-r--r--module/icp/algs/sha2/sha2.c477
-rw-r--r--module/icp/algs/skein/THIRDPARTYLICENSE3
-rw-r--r--module/icp/algs/skein/THIRDPARTYLICENSE.descrip1
-rw-r--r--module/icp/algs/skein/skein.c921
-rw-r--r--module/icp/algs/skein/skein_block.c793
-rw-r--r--module/icp/algs/skein/skein_impl.h289
-rw-r--r--module/icp/algs/skein/skein_iv.c185
-rw-r--r--module/icp/algs/skein/skein_port.h128
10 files changed, 3758 insertions, 6 deletions
diff --git a/module/icp/algs/edonr/edonr.c b/module/icp/algs/edonr/edonr.c
new file mode 100644
index 000000000..8ae989890
--- /dev/null
+++ b/module/icp/algs/edonr/edonr.c
@@ -0,0 +1,751 @@
+/*
+ * IDI,NTNU
+ *
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or http://opensource.org/licenses/CDDL-1.0.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ *
+ * Copyright (C) 2009, 2010, Jorn Amundsen <[email protected]>
+ * Tweaked Edon-R implementation for SUPERCOP, based on NIST API.
+ *
+ * $Id: edonr.c 517 2013-02-17 20:34:39Z joern $
+ */
+/*
+ * Portions copyright (c) 2013, Saso Kiselkov, All rights reserved
+ */
+
+/* determine where we can get bcopy/bzero declarations */
+#ifdef _KERNEL
+#include <sys/systm.h>
+#else
+#include <strings.h>
+#endif
+#include <sys/edonr.h>
+#include <sys/debug.h>
+
+/* big endian support, provides no-op's if run on little endian hosts */
+#include "edonr_byteorder.h"
+
+#define hashState224(x) ((x)->pipe->p256)
+#define hashState256(x) ((x)->pipe->p256)
+#define hashState384(x) ((x)->pipe->p512)
+#define hashState512(x) ((x)->pipe->p512)
+
+/* shift and rotate shortcuts */
+#define shl(x, n) ((x) << n)
+#define shr(x, n) ((x) >> n)
+
+#define rotl32(x, n) (((x) << (n)) | ((x) >> (32 - (n))))
+#define rotr32(x, n) (((x) >> (n)) | ((x) << (32 - (n))))
+
+#define rotl64(x, n) (((x) << (n)) | ((x) >> (64 - (n))))
+#define rotr64(x, n) (((x) >> (n)) | ((x) << (64 - (n))))
+
+#if !defined(__C99_RESTRICT)
+#define restrict /* restrict */
+#endif
+
+#define EDONR_VALID_HASHBITLEN(x) \
+ ((x) == 512 || (x) == 384 || (x) == 256 || (x) == 224)
+
+/* EdonR224 initial double chaining pipe */
+static const uint32_t i224p2[16] = {
+ 0x00010203ul, 0x04050607ul, 0x08090a0bul, 0x0c0d0e0ful,
+ 0x10111213ul, 0x14151617ul, 0x18191a1bul, 0x1c1d1e1ful,
+ 0x20212223ul, 0x24252627ul, 0x28292a2bul, 0x2c2d2e2ful,
+ 0x30313233ul, 0x34353637ul, 0x38393a3bul, 0x3c3d3e3ful,
+};
+
+/* EdonR256 initial double chaining pipe */
+static const uint32_t i256p2[16] = {
+ 0x40414243ul, 0x44454647ul, 0x48494a4bul, 0x4c4d4e4ful,
+ 0x50515253ul, 0x54555657ul, 0x58595a5bul, 0x5c5d5e5ful,
+ 0x60616263ul, 0x64656667ul, 0x68696a6bul, 0x6c6d6e6ful,
+ 0x70717273ul, 0x74757677ul, 0x78797a7bul, 0x7c7d7e7ful,
+};
+
+/* EdonR384 initial double chaining pipe */
+static const uint64_t i384p2[16] = {
+ 0x0001020304050607ull, 0x08090a0b0c0d0e0full,
+ 0x1011121314151617ull, 0x18191a1b1c1d1e1full,
+ 0x2021222324252627ull, 0x28292a2b2c2d2e2full,
+ 0x3031323334353637ull, 0x38393a3b3c3d3e3full,
+ 0x4041424344454647ull, 0x48494a4b4c4d4e4full,
+ 0x5051525354555657ull, 0x58595a5b5c5d5e5full,
+ 0x6061626364656667ull, 0x68696a6b6c6d6e6full,
+ 0x7071727374757677ull, 0x78797a7b7c7d7e7full
+};
+
+/* EdonR512 initial double chaining pipe */
+static const uint64_t i512p2[16] = {
+ 0x8081828384858687ull, 0x88898a8b8c8d8e8full,
+ 0x9091929394959697ull, 0x98999a9b9c9d9e9full,
+ 0xa0a1a2a3a4a5a6a7ull, 0xa8a9aaabacadaeafull,
+ 0xb0b1b2b3b4b5b6b7ull, 0xb8b9babbbcbdbebfull,
+ 0xc0c1c2c3c4c5c6c7ull, 0xc8c9cacbcccdcecfull,
+ 0xd0d1d2d3d4d5d6d7ull, 0xd8d9dadbdcdddedfull,
+ 0xe0e1e2e3e4e5e6e7ull, 0xe8e9eaebecedeeefull,
+ 0xf0f1f2f3f4f5f6f7ull, 0xf8f9fafbfcfdfeffull
+};
+
+/*
+ * First Latin Square
+ * 0 7 1 3 2 4 6 5
+ * 4 1 7 6 3 0 5 2
+ * 7 0 4 2 5 3 1 6
+ * 1 4 0 5 6 2 7 3
+ * 2 3 6 7 1 5 0 4
+ * 5 2 3 1 7 6 4 0
+ * 3 6 5 0 4 7 2 1
+ * 6 5 2 4 0 1 3 7
+ */
+#define LS1_256(c, x0, x1, x2, x3, x4, x5, x6, x7) \
+{ \
+ uint32_t x04, x17, x23, x56, x07, x26; \
+ x04 = x0+x4, x17 = x1+x7, x07 = x04+x17; \
+ s0 = c + x07 + x2; \
+ s1 = rotl32(x07 + x3, 4); \
+ s2 = rotl32(x07 + x6, 8); \
+ x23 = x2 + x3; \
+ s5 = rotl32(x04 + x23 + x5, 22); \
+ x56 = x5 + x6; \
+ s6 = rotl32(x17 + x56 + x0, 24); \
+ x26 = x23+x56; \
+ s3 = rotl32(x26 + x7, 13); \
+ s4 = rotl32(x26 + x1, 17); \
+ s7 = rotl32(x26 + x4, 29); \
+}
+
+#define LS1_512(c, x0, x1, x2, x3, x4, x5, x6, x7) \
+{ \
+ uint64_t x04, x17, x23, x56, x07, x26; \
+ x04 = x0+x4, x17 = x1+x7, x07 = x04+x17; \
+ s0 = c + x07 + x2; \
+ s1 = rotl64(x07 + x3, 5); \
+ s2 = rotl64(x07 + x6, 15); \
+ x23 = x2 + x3; \
+ s5 = rotl64(x04 + x23 + x5, 40); \
+ x56 = x5 + x6; \
+ s6 = rotl64(x17 + x56 + x0, 50); \
+ x26 = x23+x56; \
+ s3 = rotl64(x26 + x7, 22); \
+ s4 = rotl64(x26 + x1, 31); \
+ s7 = rotl64(x26 + x4, 59); \
+}
+
+/*
+ * Second Orthogonal Latin Square
+ * 0 4 2 3 1 6 5 7
+ * 7 6 3 2 5 4 1 0
+ * 5 3 1 6 0 2 7 4
+ * 1 0 5 4 3 7 2 6
+ * 2 1 0 7 4 5 6 3
+ * 3 5 7 0 6 1 4 2
+ * 4 7 6 1 2 0 3 5
+ * 6 2 4 5 7 3 0 1
+ */
+#define LS2_256(c, y0, y1, y2, y3, y4, y5, y6, y7) \
+{ \
+ uint32_t y01, y25, y34, y67, y04, y05, y27, y37; \
+ y01 = y0+y1, y25 = y2+y5, y05 = y01+y25; \
+ t0 = ~c + y05 + y7; \
+ t2 = rotl32(y05 + y3, 9); \
+ y34 = y3+y4, y04 = y01+y34; \
+ t1 = rotl32(y04 + y6, 5); \
+ t4 = rotl32(y04 + y5, 15); \
+ y67 = y6+y7, y37 = y34+y67; \
+ t3 = rotl32(y37 + y2, 11); \
+ t7 = rotl32(y37 + y0, 27); \
+ y27 = y25+y67; \
+ t5 = rotl32(y27 + y4, 20); \
+ t6 = rotl32(y27 + y1, 25); \
+}
+
+#define LS2_512(c, y0, y1, y2, y3, y4, y5, y6, y7) \
+{ \
+ uint64_t y01, y25, y34, y67, y04, y05, y27, y37; \
+ y01 = y0+y1, y25 = y2+y5, y05 = y01+y25; \
+ t0 = ~c + y05 + y7; \
+ t2 = rotl64(y05 + y3, 19); \
+ y34 = y3+y4, y04 = y01+y34; \
+ t1 = rotl64(y04 + y6, 10); \
+ t4 = rotl64(y04 + y5, 36); \
+ y67 = y6+y7, y37 = y34+y67; \
+ t3 = rotl64(y37 + y2, 29); \
+ t7 = rotl64(y37 + y0, 55); \
+ y27 = y25+y67; \
+ t5 = rotl64(y27 + y4, 44); \
+ t6 = rotl64(y27 + y1, 48); \
+}
+
+#define quasi_exform256(r0, r1, r2, r3, r4, r5, r6, r7) \
+{ \
+ uint32_t s04, s17, s23, s56, t01, t25, t34, t67; \
+ s04 = s0 ^ s4, t01 = t0 ^ t1; \
+ r0 = (s04 ^ s1) + (t01 ^ t5); \
+ t67 = t6 ^ t7; \
+ r1 = (s04 ^ s7) + (t2 ^ t67); \
+ s23 = s2 ^ s3; \
+ r7 = (s23 ^ s5) + (t4 ^ t67); \
+ t34 = t3 ^ t4; \
+ r3 = (s23 ^ s4) + (t0 ^ t34); \
+ s56 = s5 ^ s6; \
+ r5 = (s3 ^ s56) + (t34 ^ t6); \
+ t25 = t2 ^ t5; \
+ r6 = (s2 ^ s56) + (t25 ^ t7); \
+ s17 = s1 ^ s7; \
+ r4 = (s0 ^ s17) + (t1 ^ t25); \
+ r2 = (s17 ^ s6) + (t01 ^ t3); \
+}
+
+#define quasi_exform512(r0, r1, r2, r3, r4, r5, r6, r7) \
+{ \
+ uint64_t s04, s17, s23, s56, t01, t25, t34, t67; \
+ s04 = s0 ^ s4, t01 = t0 ^ t1; \
+ r0 = (s04 ^ s1) + (t01 ^ t5); \
+ t67 = t6 ^ t7; \
+ r1 = (s04 ^ s7) + (t2 ^ t67); \
+ s23 = s2 ^ s3; \
+ r7 = (s23 ^ s5) + (t4 ^ t67); \
+ t34 = t3 ^ t4; \
+ r3 = (s23 ^ s4) + (t0 ^ t34); \
+ s56 = s5 ^ s6; \
+ r5 = (s3 ^ s56) + (t34 ^ t6); \
+ t25 = t2 ^ t5; \
+ r6 = (s2 ^ s56) + (t25 ^ t7); \
+ s17 = s1 ^ s7; \
+ r4 = (s0 ^ s17) + (t1 ^ t25); \
+ r2 = (s17 ^ s6) + (t01 ^ t3); \
+}
+
+static size_t
+Q256(size_t bitlen, const uint32_t *data, uint32_t *restrict p)
+{
+ size_t bl;
+
+ for (bl = bitlen; bl >= EdonR256_BLOCK_BITSIZE;
+ bl -= EdonR256_BLOCK_BITSIZE, data += 16) {
+ uint32_t s0, s1, s2, s3, s4, s5, s6, s7, t0, t1, t2, t3, t4,
+ t5, t6, t7;
+ uint32_t p0, p1, p2, p3, p4, p5, p6, p7, q0, q1, q2, q3, q4,
+ q5, q6, q7;
+ const uint32_t defix = 0xaaaaaaaa;
+#if defined(MACHINE_IS_BIG_ENDIAN)
+ uint32_t swp0, swp1, swp2, swp3, swp4, swp5, swp6, swp7, swp8,
+ swp9, swp10, swp11, swp12, swp13, swp14, swp15;
+#define d(j) swp ## j
+#define s32(j) ld_swap32((uint32_t *)data + j, swp ## j)
+#else
+#define d(j) data[j]
+#endif
+
+ /* First row of quasigroup e-transformations */
+#if defined(MACHINE_IS_BIG_ENDIAN)
+ s32(8);
+ s32(9);
+ s32(10);
+ s32(11);
+ s32(12);
+ s32(13);
+ s32(14);
+ s32(15);
+#endif
+ LS1_256(defix, d(15), d(14), d(13), d(12), d(11), d(10), d(9),
+ d(8));
+#if defined(MACHINE_IS_BIG_ENDIAN)
+ s32(0);
+ s32(1);
+ s32(2);
+ s32(3);
+ s32(4);
+ s32(5);
+ s32(6);
+ s32(7);
+#undef s32
+#endif
+ LS2_256(defix, d(0), d(1), d(2), d(3), d(4), d(5), d(6), d(7));
+ quasi_exform256(p0, p1, p2, p3, p4, p5, p6, p7);
+
+ LS1_256(defix, p0, p1, p2, p3, p4, p5, p6, p7);
+ LS2_256(defix, d(8), d(9), d(10), d(11), d(12), d(13), d(14),
+ d(15));
+ quasi_exform256(q0, q1, q2, q3, q4, q5, q6, q7);
+
+ /* Second row of quasigroup e-transformations */
+ LS1_256(defix, p[8], p[9], p[10], p[11], p[12], p[13], p[14],
+ p[15]);
+ LS2_256(defix, p0, p1, p2, p3, p4, p5, p6, p7);
+ quasi_exform256(p0, p1, p2, p3, p4, p5, p6, p7);
+
+ LS1_256(defix, p0, p1, p2, p3, p4, p5, p6, p7);
+ LS2_256(defix, q0, q1, q2, q3, q4, q5, q6, q7);
+ quasi_exform256(q0, q1, q2, q3, q4, q5, q6, q7);
+
+ /* Third row of quasigroup e-transformations */
+ LS1_256(defix, p0, p1, p2, p3, p4, p5, p6, p7);
+ LS2_256(defix, p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7]);
+ quasi_exform256(p0, p1, p2, p3, p4, p5, p6, p7);
+
+ LS1_256(defix, q0, q1, q2, q3, q4, q5, q6, q7);
+ LS2_256(defix, p0, p1, p2, p3, p4, p5, p6, p7);
+ quasi_exform256(q0, q1, q2, q3, q4, q5, q6, q7);
+
+ /* Fourth row of quasigroup e-transformations */
+ LS1_256(defix, d(7), d(6), d(5), d(4), d(3), d(2), d(1), d(0));
+ LS2_256(defix, p0, p1, p2, p3, p4, p5, p6, p7);
+ quasi_exform256(p0, p1, p2, p3, p4, p5, p6, p7);
+
+ LS1_256(defix, p0, p1, p2, p3, p4, p5, p6, p7);
+ LS2_256(defix, q0, q1, q2, q3, q4, q5, q6, q7);
+ quasi_exform256(q0, q1, q2, q3, q4, q5, q6, q7);
+
+ /* Edon-R tweak on the original SHA-3 Edon-R submission. */
+ p[0] ^= d(8) ^ p0;
+ p[1] ^= d(9) ^ p1;
+ p[2] ^= d(10) ^ p2;
+ p[3] ^= d(11) ^ p3;
+ p[4] ^= d(12) ^ p4;
+ p[5] ^= d(13) ^ p5;
+ p[6] ^= d(14) ^ p6;
+ p[7] ^= d(15) ^ p7;
+ p[8] ^= d(0) ^ q0;
+ p[9] ^= d(1) ^ q1;
+ p[10] ^= d(2) ^ q2;
+ p[11] ^= d(3) ^ q3;
+ p[12] ^= d(4) ^ q4;
+ p[13] ^= d(5) ^ q5;
+ p[14] ^= d(6) ^ q6;
+ p[15] ^= d(7) ^ q7;
+ }
+
+#undef d
+ return (bitlen - bl);
+}
+
+/*
+ * Why is this #pragma here?
+ *
+ * Checksum functions like this one can go over the stack frame size check
+ * Linux imposes on 32-bit platforms (-Wframe-larger-than=1024). We can
+ * safely ignore the compiler error since we know that in ZoL, that
+ * the function will be called from a worker thread that won't be using
+ * much stack. The only function that goes over the 1k limit is Q512(),
+ * which only goes over it by a hair (1248 bytes on ARM32).
+ */
+#include <sys/isa_defs.h> /* for _ILP32 */
+#ifdef _ILP32 /* We're 32-bit, assume small stack frames */
+#pragma GCC diagnostic ignored "-Wframe-larger-than="
+#endif
+
+#if defined(__IBMC__) && defined(_AIX) && defined(__64BIT__)
+static inline size_t
+#else
+static size_t
+#endif
+Q512(size_t bitlen, const uint64_t *data, uint64_t *restrict p)
+{
+ size_t bl;
+
+ for (bl = bitlen; bl >= EdonR512_BLOCK_BITSIZE;
+ bl -= EdonR512_BLOCK_BITSIZE, data += 16) {
+ uint64_t s0, s1, s2, s3, s4, s5, s6, s7, t0, t1, t2, t3, t4,
+ t5, t6, t7;
+ uint64_t p0, p1, p2, p3, p4, p5, p6, p7, q0, q1, q2, q3, q4,
+ q5, q6, q7;
+ const uint64_t defix = 0xaaaaaaaaaaaaaaaaull;
+#if defined(MACHINE_IS_BIG_ENDIAN)
+ uint64_t swp0, swp1, swp2, swp3, swp4, swp5, swp6, swp7, swp8,
+ swp9, swp10, swp11, swp12, swp13, swp14, swp15;
+#define d(j) swp##j
+#define s64(j) ld_swap64((uint64_t *)data+j, swp##j)
+#else
+#define d(j) data[j]
+#endif
+
+ /* First row of quasigroup e-transformations */
+#if defined(MACHINE_IS_BIG_ENDIAN)
+ s64(8);
+ s64(9);
+ s64(10);
+ s64(11);
+ s64(12);
+ s64(13);
+ s64(14);
+ s64(15);
+#endif
+ LS1_512(defix, d(15), d(14), d(13), d(12), d(11), d(10), d(9),
+ d(8));
+#if defined(MACHINE_IS_BIG_ENDIAN)
+ s64(0);
+ s64(1);
+ s64(2);
+ s64(3);
+ s64(4);
+ s64(5);
+ s64(6);
+ s64(7);
+#undef s64
+#endif
+ LS2_512(defix, d(0), d(1), d(2), d(3), d(4), d(5), d(6), d(7));
+ quasi_exform512(p0, p1, p2, p3, p4, p5, p6, p7);
+
+ LS1_512(defix, p0, p1, p2, p3, p4, p5, p6, p7);
+ LS2_512(defix, d(8), d(9), d(10), d(11), d(12), d(13), d(14),
+ d(15));
+ quasi_exform512(q0, q1, q2, q3, q4, q5, q6, q7);
+
+ /* Second row of quasigroup e-transformations */
+ LS1_512(defix, p[8], p[9], p[10], p[11], p[12], p[13], p[14],
+ p[15]);
+ LS2_512(defix, p0, p1, p2, p3, p4, p5, p6, p7);
+ quasi_exform512(p0, p1, p2, p3, p4, p5, p6, p7);
+
+ LS1_512(defix, p0, p1, p2, p3, p4, p5, p6, p7);
+ LS2_512(defix, q0, q1, q2, q3, q4, q5, q6, q7);
+ quasi_exform512(q0, q1, q2, q3, q4, q5, q6, q7);
+
+ /* Third row of quasigroup e-transformations */
+ LS1_512(defix, p0, p1, p2, p3, p4, p5, p6, p7);
+ LS2_512(defix, p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7]);
+ quasi_exform512(p0, p1, p2, p3, p4, p5, p6, p7);
+
+ LS1_512(defix, q0, q1, q2, q3, q4, q5, q6, q7);
+ LS2_512(defix, p0, p1, p2, p3, p4, p5, p6, p7);
+ quasi_exform512(q0, q1, q2, q3, q4, q5, q6, q7);
+
+ /* Fourth row of quasigroup e-transformations */
+ LS1_512(defix, d(7), d(6), d(5), d(4), d(3), d(2), d(1), d(0));
+ LS2_512(defix, p0, p1, p2, p3, p4, p5, p6, p7);
+ quasi_exform512(p0, p1, p2, p3, p4, p5, p6, p7);
+
+ LS1_512(defix, p0, p1, p2, p3, p4, p5, p6, p7);
+ LS2_512(defix, q0, q1, q2, q3, q4, q5, q6, q7);
+ quasi_exform512(q0, q1, q2, q3, q4, q5, q6, q7);
+
+ /* Edon-R tweak on the original SHA-3 Edon-R submission. */
+ p[0] ^= d(8) ^ p0;
+ p[1] ^= d(9) ^ p1;
+ p[2] ^= d(10) ^ p2;
+ p[3] ^= d(11) ^ p3;
+ p[4] ^= d(12) ^ p4;
+ p[5] ^= d(13) ^ p5;
+ p[6] ^= d(14) ^ p6;
+ p[7] ^= d(15) ^ p7;
+ p[8] ^= d(0) ^ q0;
+ p[9] ^= d(1) ^ q1;
+ p[10] ^= d(2) ^ q2;
+ p[11] ^= d(3) ^ q3;
+ p[12] ^= d(4) ^ q4;
+ p[13] ^= d(5) ^ q5;
+ p[14] ^= d(6) ^ q6;
+ p[15] ^= d(7) ^ q7;
+ }
+
+#undef d
+ return (bitlen - bl);
+}
+
+void
+EdonRInit(EdonRState *state, size_t hashbitlen)
+{
+ ASSERT(EDONR_VALID_HASHBITLEN(hashbitlen));
+ switch (hashbitlen) {
+ case 224:
+ state->hashbitlen = 224;
+ state->bits_processed = 0;
+ state->unprocessed_bits = 0;
+ bcopy(i224p2, hashState224(state)->DoublePipe,
+ 16 * sizeof (uint32_t));
+ break;
+
+ case 256:
+ state->hashbitlen = 256;
+ state->bits_processed = 0;
+ state->unprocessed_bits = 0;
+ bcopy(i256p2, hashState256(state)->DoublePipe,
+ 16 * sizeof (uint32_t));
+ break;
+
+ case 384:
+ state->hashbitlen = 384;
+ state->bits_processed = 0;
+ state->unprocessed_bits = 0;
+ bcopy(i384p2, hashState384(state)->DoublePipe,
+ 16 * sizeof (uint64_t));
+ break;
+
+ case 512:
+ state->hashbitlen = 512;
+ state->bits_processed = 0;
+ state->unprocessed_bits = 0;
+ bcopy(i512p2, hashState224(state)->DoublePipe,
+ 16 * sizeof (uint64_t));
+ break;
+ }
+}
+
+
+void
+EdonRUpdate(EdonRState *state, const uint8_t *data, size_t databitlen)
+{
+ uint32_t *data32;
+ uint64_t *data64;
+
+ size_t bits_processed;
+
+ ASSERT(EDONR_VALID_HASHBITLEN(state->hashbitlen));
+ switch (state->hashbitlen) {
+ case 224:
+ case 256:
+ if (state->unprocessed_bits > 0) {
+ /* LastBytes = databitlen / 8 */
+ int LastBytes = (int)databitlen >> 3;
+
+ ASSERT(state->unprocessed_bits + databitlen <=
+ EdonR256_BLOCK_SIZE * 8);
+
+ bcopy(data, hashState256(state)->LastPart
+ + (state->unprocessed_bits >> 3), LastBytes);
+ state->unprocessed_bits += (int)databitlen;
+ databitlen = state->unprocessed_bits;
+ /* LINTED E_BAD_PTR_CAST_ALIGN */
+ data32 = (uint32_t *)hashState256(state)->LastPart;
+ } else
+ /* LINTED E_BAD_PTR_CAST_ALIGN */
+ data32 = (uint32_t *)data;
+
+ bits_processed = Q256(databitlen, data32,
+ hashState256(state)->DoublePipe);
+ state->bits_processed += bits_processed;
+ databitlen -= bits_processed;
+ state->unprocessed_bits = (int)databitlen;
+ if (databitlen > 0) {
+ /* LastBytes = Ceil(databitlen / 8) */
+ int LastBytes =
+ ((~(((-(int)databitlen) >> 3) & 0x01ff)) +
+ 1) & 0x01ff;
+
+ data32 += bits_processed >> 5; /* byte size update */
+ bcopy(data32, hashState256(state)->LastPart, LastBytes);
+ }
+ break;
+
+ case 384:
+ case 512:
+ if (state->unprocessed_bits > 0) {
+ /* LastBytes = databitlen / 8 */
+ int LastBytes = (int)databitlen >> 3;
+
+ ASSERT(state->unprocessed_bits + databitlen <=
+ EdonR512_BLOCK_SIZE * 8);
+
+ bcopy(data, hashState512(state)->LastPart
+ + (state->unprocessed_bits >> 3), LastBytes);
+ state->unprocessed_bits += (int)databitlen;
+ databitlen = state->unprocessed_bits;
+ /* LINTED E_BAD_PTR_CAST_ALIGN */
+ data64 = (uint64_t *)hashState512(state)->LastPart;
+ } else
+ /* LINTED E_BAD_PTR_CAST_ALIGN */
+ data64 = (uint64_t *)data;
+
+ bits_processed = Q512(databitlen, data64,
+ hashState512(state)->DoublePipe);
+ state->bits_processed += bits_processed;
+ databitlen -= bits_processed;
+ state->unprocessed_bits = (int)databitlen;
+ if (databitlen > 0) {
+ /* LastBytes = Ceil(databitlen / 8) */
+ int LastBytes =
+ ((~(((-(int)databitlen) >> 3) & 0x03ff)) +
+ 1) & 0x03ff;
+
+ data64 += bits_processed >> 6; /* byte size update */
+ bcopy(data64, hashState512(state)->LastPart, LastBytes);
+ }
+ break;
+ }
+}
+
+void
+EdonRFinal(EdonRState *state, uint8_t *hashval)
+{
+ uint32_t *data32;
+ uint64_t *data64, num_bits;
+
+ size_t databitlen;
+ int LastByte, PadOnePosition;
+
+ num_bits = state->bits_processed + state->unprocessed_bits;
+ ASSERT(EDONR_VALID_HASHBITLEN(state->hashbitlen));
+ switch (state->hashbitlen) {
+ case 224:
+ case 256:
+ LastByte = (int)state->unprocessed_bits >> 3;
+ PadOnePosition = 7 - (state->unprocessed_bits & 0x07);
+ hashState256(state)->LastPart[LastByte] =
+ (hashState256(state)->LastPart[LastByte]
+ & (0xff << (PadOnePosition + 1))) ^
+ (0x01 << PadOnePosition);
+ /* LINTED E_BAD_PTR_CAST_ALIGN */
+ data64 = (uint64_t *)hashState256(state)->LastPart;
+
+ if (state->unprocessed_bits < 448) {
+ (void) memset((hashState256(state)->LastPart) +
+ LastByte + 1, 0x00,
+ EdonR256_BLOCK_SIZE - LastByte - 9);
+ databitlen = EdonR256_BLOCK_SIZE * 8;
+#if defined(MACHINE_IS_BIG_ENDIAN)
+ st_swap64(num_bits, data64 + 7);
+#else
+ data64[7] = num_bits;
+#endif
+ } else {
+ (void) memset((hashState256(state)->LastPart) +
+ LastByte + 1, 0x00,
+ EdonR256_BLOCK_SIZE * 2 - LastByte - 9);
+ databitlen = EdonR256_BLOCK_SIZE * 16;
+#if defined(MACHINE_IS_BIG_ENDIAN)
+ st_swap64(num_bits, data64 + 15);
+#else
+ data64[15] = num_bits;
+#endif
+ }
+
+ /* LINTED E_BAD_PTR_CAST_ALIGN */
+ data32 = (uint32_t *)hashState256(state)->LastPart;
+ state->bits_processed += Q256(databitlen, data32,
+ hashState256(state)->DoublePipe);
+ break;
+
+ case 384:
+ case 512:
+ LastByte = (int)state->unprocessed_bits >> 3;
+ PadOnePosition = 7 - (state->unprocessed_bits & 0x07);
+ hashState512(state)->LastPart[LastByte] =
+ (hashState512(state)->LastPart[LastByte]
+ & (0xff << (PadOnePosition + 1))) ^
+ (0x01 << PadOnePosition);
+ /* LINTED E_BAD_PTR_CAST_ALIGN */
+ data64 = (uint64_t *)hashState512(state)->LastPart;
+
+ if (state->unprocessed_bits < 960) {
+ (void) memset((hashState512(state)->LastPart) +
+ LastByte + 1, 0x00,
+ EdonR512_BLOCK_SIZE - LastByte - 9);
+ databitlen = EdonR512_BLOCK_SIZE * 8;
+#if defined(MACHINE_IS_BIG_ENDIAN)
+ st_swap64(num_bits, data64 + 15);
+#else
+ data64[15] = num_bits;
+#endif
+ } else {
+ (void) memset((hashState512(state)->LastPart) +
+ LastByte + 1, 0x00,
+ EdonR512_BLOCK_SIZE * 2 - LastByte - 9);
+ databitlen = EdonR512_BLOCK_SIZE * 16;
+#if defined(MACHINE_IS_BIG_ENDIAN)
+ st_swap64(num_bits, data64 + 31);
+#else
+ data64[31] = num_bits;
+#endif
+ }
+
+ state->bits_processed += Q512(databitlen, data64,
+ hashState512(state)->DoublePipe);
+ break;
+ }
+
+ switch (state->hashbitlen) {
+ case 224: {
+#if defined(MACHINE_IS_BIG_ENDIAN)
+ uint32_t *d32 = (uint32_t *)hashval;
+ uint32_t *s32 = hashState224(state)->DoublePipe + 9;
+ int j;
+
+ for (j = 0; j < EdonR224_DIGEST_SIZE >> 2; j++)
+ st_swap32(s32[j], d32 + j);
+#else
+ bcopy(hashState256(state)->DoublePipe + 9, hashval,
+ EdonR224_DIGEST_SIZE);
+#endif
+ break;
+ }
+ case 256: {
+#if defined(MACHINE_IS_BIG_ENDIAN)
+ uint32_t *d32 = (uint32_t *)hashval;
+ uint32_t *s32 = hashState224(state)->DoublePipe + 8;
+ int j;
+
+ for (j = 0; j < EdonR256_DIGEST_SIZE >> 2; j++)
+ st_swap32(s32[j], d32 + j);
+#else
+ bcopy(hashState256(state)->DoublePipe + 8, hashval,
+ EdonR256_DIGEST_SIZE);
+#endif
+ break;
+ }
+ case 384: {
+#if defined(MACHINE_IS_BIG_ENDIAN)
+ uint64_t *d64 = (uint64_t *)hashval;
+ uint64_t *s64 = hashState384(state)->DoublePipe + 10;
+ int j;
+
+ for (j = 0; j < EdonR384_DIGEST_SIZE >> 3; j++)
+ st_swap64(s64[j], d64 + j);
+#else
+ bcopy(hashState384(state)->DoublePipe + 10, hashval,
+ EdonR384_DIGEST_SIZE);
+#endif
+ break;
+ }
+ case 512: {
+#if defined(MACHINE_IS_BIG_ENDIAN)
+ uint64_t *d64 = (uint64_t *)hashval;
+ uint64_t *s64 = hashState512(state)->DoublePipe + 8;
+ int j;
+
+ for (j = 0; j < EdonR512_DIGEST_SIZE >> 3; j++)
+ st_swap64(s64[j], d64 + j);
+#else
+ bcopy(hashState512(state)->DoublePipe + 8, hashval,
+ EdonR512_DIGEST_SIZE);
+#endif
+ break;
+ }
+ }
+}
+
+
+void
+EdonRHash(size_t hashbitlen, const uint8_t *data, size_t databitlen,
+ uint8_t *hashval)
+{
+ EdonRState state;
+
+ EdonRInit(&state, hashbitlen);
+ EdonRUpdate(&state, data, databitlen);
+ EdonRFinal(&state, hashval);
+}
+
+#ifdef _KERNEL
+EXPORT_SYMBOL(EdonRInit);
+EXPORT_SYMBOL(EdonRUpdate);
+EXPORT_SYMBOL(EdonRHash);
+EXPORT_SYMBOL(EdonRFinal);
+#endif
diff --git a/module/icp/algs/edonr/edonr_byteorder.h b/module/icp/algs/edonr/edonr_byteorder.h
new file mode 100644
index 000000000..d17e8f1fd
--- /dev/null
+++ b/module/icp/algs/edonr/edonr_byteorder.h
@@ -0,0 +1,216 @@
+/*
+ * IDI,NTNU
+ *
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or http://opensource.org/licenses/CDDL-1.0.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ *
+ * Copyright (C) 2009, 2010, Jorn Amundsen <[email protected]>
+ *
+ * C header file to determine compile machine byte order. Take care when cross
+ * compiling.
+ *
+ * $Id: byteorder.h 517 2013-02-17 20:34:39Z joern $
+ */
+/*
+ * Portions copyright (c) 2013, Saso Kiselkov, All rights reserved
+ */
+
+#ifndef _CRYPTO_EDONR_BYTEORDER_H
+#define _CRYPTO_EDONR_BYTEORDER_H
+
+
+#include <sys/param.h>
+
+#if defined(__BYTE_ORDER)
+#if (__BYTE_ORDER == __BIG_ENDIAN)
+#define MACHINE_IS_BIG_ENDIAN
+#elif (__BYTE_ORDER == __LITTLE_ENDIAN)
+#define MACHINE_IS_LITTLE_ENDIAN
+#endif
+#elif defined(BYTE_ORDER)
+#if (BYTE_ORDER == BIG_ENDIAN)
+#define MACHINE_IS_BIG_ENDIAN
+#elif (BYTE_ORDER == LITTLE_ENDIAN)
+#define MACHINE_IS_LITTLE_ENDIAN
+#endif
+#endif /* __BYTE_ORDER || BYTE_ORDER */
+
+#if !defined(MACHINE_IS_BIG_ENDIAN) && !defined(MACHINE_IS_LITTLE_ENDIAN)
+#if defined(_BIG_ENDIAN) || defined(_MIPSEB)
+#define MACHINE_IS_BIG_ENDIAN
+#endif
+#if defined(_LITTLE_ENDIAN) || defined(_MIPSEL)
+#define MACHINE_IS_LITTLE_ENDIAN
+#endif
+#endif /* !MACHINE_IS_BIG_ENDIAN && !MACHINE_IS_LITTLE_ENDIAN */
+
+#if !defined(MACHINE_IS_BIG_ENDIAN) && !defined(MACHINE_IS_LITTLE_ENDIAN)
+#error unknown machine byte sex
+#endif
+
+#define BYTEORDER_INCLUDED
+
+#if defined(MACHINE_IS_BIG_ENDIAN)
+/*
+ * Byte swapping macros for big endian architectures and compilers,
+ * add as appropriate for other architectures and/or compilers.
+ *
+ * ld_swap64(src,dst) : uint64_t dst = *(src)
+ * st_swap64(src,dst) : *(dst) = uint64_t src
+ */
+
+#if defined(__PPC__) || defined(_ARCH_PPC)
+
+#if defined(__64BIT__)
+#if defined(_ARCH_PWR7)
+#define aix_ld_swap64(s64, d64)\
+ __asm__("ldbrx %0,0,%1" : "=r"(d64) : "r"(s64))
+#define aix_st_swap64(s64, d64)\
+ __asm__ volatile("stdbrx %1,0,%0" : : "r"(d64), "r"(s64))
+#else
+#define aix_ld_swap64(s64, d64) \
+{ \
+ uint64_t *s4 = 0, h; /* initialize to zero for gcc warning */ \
+ \
+ __asm__("addi %0,%3,4;lwbrx %1,0,%3;lwbrx %2,0,%0;rldimi %1,%2,32,0"\
+ : "+r"(s4), "=r"(d64), "=r"(h) : "b"(s64)); \
+}
+
+#define aix_st_swap64(s64, d64) \
+{ \
+ uint64_t *s4 = 0, h; /* initialize to zero for gcc warning */ \
+ h = (s64) >> 32; \
+ __asm__ volatile("addi %0,%3,4;stwbrx %1,0,%3;stwbrx %2,0,%0" \
+ : "+r"(s4) : "r"(s64), "r"(h), "b"(d64)); \
+}
+#endif /* 64BIT && PWR7 */
+#else
+#define aix_ld_swap64(s64, d64) \
+{ \
+ uint32_t *s4 = 0, h, l; /* initialize to zero for gcc warning */\
+ __asm__("addi %0,%3,4;lwbrx %1,0,%3;lwbrx %2,0,%0" \
+ : "+r"(s4), "=r"(l), "=r"(h) : "b"(s64)); \
+ d64 = ((uint64_t)h<<32) | l; \
+}
+
+#define aix_st_swap64(s64, d64) \
+{ \
+ uint32_t *s4 = 0, h, l; /* initialize to zero for gcc warning */\
+ l = (s64) & 0xfffffffful, h = (s64) >> 32; \
+ __asm__ volatile("addi %0,%3,4;stwbrx %1,0,%3;stwbrx %2,0,%0" \
+ : "+r"(s4) : "r"(l), "r"(h), "b"(d64)); \
+}
+#endif /* __64BIT__ */
+#define aix_ld_swap32(s32, d32)\
+ __asm__("lwbrx %0,0,%1" : "=r"(d32) : "r"(s32))
+#define aix_st_swap32(s32, d32)\
+ __asm__ volatile("stwbrx %1,0,%0" : : "r"(d32), "r"(s32))
+#define ld_swap32(s, d) aix_ld_swap32(s, d)
+#define st_swap32(s, d) aix_st_swap32(s, d)
+#define ld_swap64(s, d) aix_ld_swap64(s, d)
+#define st_swap64(s, d) aix_st_swap64(s, d)
+#endif /* __PPC__ || _ARCH_PPC */
+
+#if defined(__sparc)
+#if !defined(__arch64__) && !defined(__sparcv8) && defined(__sparcv9)
+#define __arch64__
+#endif
+#if defined(__GNUC__) || (defined(__SUNPRO_C) && __SUNPRO_C > 0x590)
+/* need Sun Studio C 5.10 and above for GNU inline assembly */
+#if defined(__arch64__)
+#define sparc_ld_swap64(s64, d64) \
+ __asm__("ldxa [%1]0x88,%0" : "=r"(d64) : "r"(s64))
+#define sparc_st_swap64(s64, d64) \
+ __asm__ volatile("stxa %0,[%1]0x88" : : "r"(s64), "r"(d64))
+#define st_swap64(s, d) sparc_st_swap64(s, d)
+#else
+#define sparc_ld_swap64(s64, d64) \
+{ \
+ uint32_t *s4, h, l; \
+ __asm__("add %3,4,%0\n\tlda [%3]0x88,%1\n\tlda [%0]0x88,%2" \
+ : "+r"(s4), "=r"(l), "=r"(h) : "r"(s64)); \
+ d64 = ((uint64_t)h<<32) | l; \
+}
+#define sparc_st_swap64(s64, d64) \
+{ \
+ uint32_t *s4, h, l; \
+ l = (s64) & 0xfffffffful, h = (s64) >> 32; \
+ __asm__ volatile("add %3,4,%0\n\tsta %1,[%3]0x88\n\tsta %2,[%0]0x88"\
+ : "+r"(s4) : "r"(l), "r"(h), "r"(d64)); \
+}
+#endif /* sparc64 */
+#define sparc_ld_swap32(s32, d32)\
+ __asm__("lda [%1]0x88,%0" : "=r"(d32) : "r"(s32))
+#define sparc_st_swap32(s32, d32)\
+ __asm__ volatile("sta %0,[%1]0x88" : : "r"(s32), "r"(d32))
+#define ld_swap32(s, d) sparc_ld_swap32(s, d)
+#define st_swap32(s, d) sparc_st_swap32(s, d)
+#define ld_swap64(s, d) sparc_ld_swap64(s, d)
+#define st_swap64(s, d) sparc_st_swap64(s, d)
+#endif /* GCC || Sun Studio C > 5.9 */
+#endif /* sparc */
+
+/* GCC fallback */
+#if ((__GNUC__ >= 4) || defined(__PGIC__)) && !defined(ld_swap32)
+#define ld_swap32(s, d) (d = __builtin_bswap32(*(s)))
+#define st_swap32(s, d) (*(d) = __builtin_bswap32(s))
+#endif /* GCC4/PGIC && !swap32 */
+#if ((__GNUC__ >= 4) || defined(__PGIC__)) && !defined(ld_swap64)
+#define ld_swap64(s, d) (d = __builtin_bswap64(*(s)))
+#define st_swap64(s, d) (*(d) = __builtin_bswap64(s))
+#endif /* GCC4/PGIC && !swap64 */
+
+/* generic fallback */
+#if !defined(ld_swap32)
+#define ld_swap32(s, d) \
+ (d = (*(s) >> 24) | (*(s) >> 8 & 0xff00) | \
+ (*(s) << 8 & 0xff0000) | (*(s) << 24))
+#define st_swap32(s, d) \
+ (*(d) = ((s) >> 24) | ((s) >> 8 & 0xff00) | \
+ ((s) << 8 & 0xff0000) | ((s) << 24))
+#endif
+#if !defined(ld_swap64)
+#define ld_swap64(s, d) \
+ (d = (*(s) >> 56) | (*(s) >> 40 & 0xff00) | \
+ (*(s) >> 24 & 0xff0000) | (*(s) >> 8 & 0xff000000) | \
+ (*(s) & 0xff000000) << 8 | (*(s) & 0xff0000) << 24 | \
+ (*(s) & 0xff00) << 40 | *(s) << 56)
+#define st_swap64(s, d) \
+ (*(d) = ((s) >> 56) | ((s) >> 40 & 0xff00) | \
+ ((s) >> 24 & 0xff0000) | ((s) >> 8 & 0xff000000) | \
+ ((s) & 0xff000000) << 8 | ((s) & 0xff0000) << 24 | \
+ ((s) & 0xff00) << 40 | (s) << 56)
+#endif
+
+#endif /* MACHINE_IS_BIG_ENDIAN */
+
+
+#if defined(MACHINE_IS_LITTLE_ENDIAN)
+/* replace swaps with simple assignments on little endian systems */
+#undef ld_swap32
+#undef st_swap32
+#define ld_swap32(s, d) (d = *(s))
+#define st_swap32(s, d) (*(d) = s)
+#undef ld_swap64
+#undef st_swap64
+#define ld_swap64(s, d) (d = *(s))
+#define st_swap64(s, d) (*(d) = s)
+#endif /* MACHINE_IS_LITTLE_ENDIAN */
+
+#endif /* _CRYPTO_EDONR_BYTEORDER_H */
diff --git a/module/icp/algs/sha2/sha2.c b/module/icp/algs/sha2/sha2.c
index 792ca8825..dbe008190 100644
--- a/module/icp/algs/sha2/sha2.c
+++ b/module/icp/algs/sha2/sha2.c
@@ -38,7 +38,7 @@
#include <sys/zfs_context.h>
#define _SHA2_IMPL
-#include <sha2/sha2.h>
+#include <sys/sha2.h>
#include <sha2/sha2_consts.h>
#define _RESTRICT_KYWD
@@ -47,18 +47,37 @@
#include <sys/byteorder.h>
#define HAVE_HTONL
#endif
+#include <sys/isa_defs.h> /* for _ILP32 */
static void Encode(uint8_t *, uint32_t *, size_t);
+static void Encode64(uint8_t *, uint64_t *, size_t);
#if defined(__amd64)
+#define SHA512Transform(ctx, in) SHA512TransformBlocks((ctx), (in), 1)
#define SHA256Transform(ctx, in) SHA256TransformBlocks((ctx), (in), 1)
+
+void SHA512TransformBlocks(SHA2_CTX *ctx, const void *in, size_t num);
void SHA256TransformBlocks(SHA2_CTX *ctx, const void *in, size_t num);
+
#else
static void SHA256Transform(SHA2_CTX *, const uint8_t *);
+static void SHA512Transform(SHA2_CTX *, const uint8_t *);
#endif /* __amd64 */
static uint8_t PADDING[128] = { 0x80, /* all zeros */ };
+/*
+ * The low-level checksum routines use a lot of stack space. On systems where
+ * small stacks are enforced (like 32-bit kernel builds), insert compiler memory
+ * barriers to reduce stack frame size. This can reduce the SHA512Transform()
+ * stack frame usage from 3k to <1k on ARM32, for example.
+ */
+#if defined(_ILP32) || defined(__powerpc) /* small stack */
+#define SMALL_STACK_MEMORY_BARRIER asm volatile("": : :"memory");
+#else
+#define SMALL_STACK_MEMORY_BARRIER
+#endif
+
/* Ch and Maj are the basic SHA2 functions. */
#define Ch(b, c, d) (((b) & (c)) ^ ((~b) & (d)))
#define Maj(b, c, d) (((b) & (c)) ^ ((b) & (d)) ^ ((c) & (d)))
@@ -82,6 +101,18 @@ static uint8_t PADDING[128] = { 0x80, /* all zeros */ };
T2 = BIGSIGMA0_256(a) + Maj(a, b, c); \
h = T1 + T2
+/* SHA384/512 Functions */
+#define BIGSIGMA0(x) (ROTR((x), 28) ^ ROTR((x), 34) ^ ROTR((x), 39))
+#define BIGSIGMA1(x) (ROTR((x), 14) ^ ROTR((x), 18) ^ ROTR((x), 41))
+#define SIGMA0(x) (ROTR((x), 1) ^ ROTR((x), 8) ^ SHR((x), 7))
+#define SIGMA1(x) (ROTR((x), 19) ^ ROTR((x), 61) ^ SHR((x), 6))
+#define SHA512ROUND(a, b, c, d, e, f, g, h, i, w) \
+ T1 = h + BIGSIGMA1(e) + Ch(e, f, g) + SHA512_CONST(i) + w; \
+ d += T1; \
+ T2 = BIGSIGMA0(a) + Maj(a, b, c); \
+ h = T1 + T2; \
+ SMALL_STACK_MEMORY_BARRIER;
+
/*
* sparc optimization:
*
@@ -130,6 +161,33 @@ SHA256Transform(SHA2_CTX *ctx, const uint8_t *blk)
uint32_t w8, w9, w10, w11, w12, w13, w14, w15;
uint32_t T1, T2;
+#if defined(__sparc)
+ static const uint32_t sha256_consts[] = {
+ SHA256_CONST_0, SHA256_CONST_1, SHA256_CONST_2,
+ SHA256_CONST_3, SHA256_CONST_4, SHA256_CONST_5,
+ SHA256_CONST_6, SHA256_CONST_7, SHA256_CONST_8,
+ SHA256_CONST_9, SHA256_CONST_10, SHA256_CONST_11,
+ SHA256_CONST_12, SHA256_CONST_13, SHA256_CONST_14,
+ SHA256_CONST_15, SHA256_CONST_16, SHA256_CONST_17,
+ SHA256_CONST_18, SHA256_CONST_19, SHA256_CONST_20,
+ SHA256_CONST_21, SHA256_CONST_22, SHA256_CONST_23,
+ SHA256_CONST_24, SHA256_CONST_25, SHA256_CONST_26,
+ SHA256_CONST_27, SHA256_CONST_28, SHA256_CONST_29,
+ SHA256_CONST_30, SHA256_CONST_31, SHA256_CONST_32,
+ SHA256_CONST_33, SHA256_CONST_34, SHA256_CONST_35,
+ SHA256_CONST_36, SHA256_CONST_37, SHA256_CONST_38,
+ SHA256_CONST_39, SHA256_CONST_40, SHA256_CONST_41,
+ SHA256_CONST_42, SHA256_CONST_43, SHA256_CONST_44,
+ SHA256_CONST_45, SHA256_CONST_46, SHA256_CONST_47,
+ SHA256_CONST_48, SHA256_CONST_49, SHA256_CONST_50,
+ SHA256_CONST_51, SHA256_CONST_52, SHA256_CONST_53,
+ SHA256_CONST_54, SHA256_CONST_55, SHA256_CONST_56,
+ SHA256_CONST_57, SHA256_CONST_58, SHA256_CONST_59,
+ SHA256_CONST_60, SHA256_CONST_61, SHA256_CONST_62,
+ SHA256_CONST_63
+ };
+#endif /* __sparc */
+
if ((uintptr_t)blk & 0x3) { /* not 4-byte aligned? */
bcopy(blk, ctx->buf_un.buf32, sizeof (ctx->buf_un.buf32));
blk = (uint8_t *)ctx->buf_un.buf32;
@@ -292,6 +350,256 @@ SHA256Transform(SHA2_CTX *ctx, const uint8_t *blk)
ctx->state.s32[6] += g;
ctx->state.s32[7] += h;
}
+
+
+/* SHA384 and SHA512 Transform */
+
+static void
+SHA512Transform(SHA2_CTX *ctx, const uint8_t *blk)
+{
+
+ uint64_t a = ctx->state.s64[0];
+ uint64_t b = ctx->state.s64[1];
+ uint64_t c = ctx->state.s64[2];
+ uint64_t d = ctx->state.s64[3];
+ uint64_t e = ctx->state.s64[4];
+ uint64_t f = ctx->state.s64[5];
+ uint64_t g = ctx->state.s64[6];
+ uint64_t h = ctx->state.s64[7];
+
+ uint64_t w0, w1, w2, w3, w4, w5, w6, w7;
+ uint64_t w8, w9, w10, w11, w12, w13, w14, w15;
+ uint64_t T1, T2;
+
+#if defined(__sparc)
+ static const uint64_t sha512_consts[] = {
+ SHA512_CONST_0, SHA512_CONST_1, SHA512_CONST_2,
+ SHA512_CONST_3, SHA512_CONST_4, SHA512_CONST_5,
+ SHA512_CONST_6, SHA512_CONST_7, SHA512_CONST_8,
+ SHA512_CONST_9, SHA512_CONST_10, SHA512_CONST_11,
+ SHA512_CONST_12, SHA512_CONST_13, SHA512_CONST_14,
+ SHA512_CONST_15, SHA512_CONST_16, SHA512_CONST_17,
+ SHA512_CONST_18, SHA512_CONST_19, SHA512_CONST_20,
+ SHA512_CONST_21, SHA512_CONST_22, SHA512_CONST_23,
+ SHA512_CONST_24, SHA512_CONST_25, SHA512_CONST_26,
+ SHA512_CONST_27, SHA512_CONST_28, SHA512_CONST_29,
+ SHA512_CONST_30, SHA512_CONST_31, SHA512_CONST_32,
+ SHA512_CONST_33, SHA512_CONST_34, SHA512_CONST_35,
+ SHA512_CONST_36, SHA512_CONST_37, SHA512_CONST_38,
+ SHA512_CONST_39, SHA512_CONST_40, SHA512_CONST_41,
+ SHA512_CONST_42, SHA512_CONST_43, SHA512_CONST_44,
+ SHA512_CONST_45, SHA512_CONST_46, SHA512_CONST_47,
+ SHA512_CONST_48, SHA512_CONST_49, SHA512_CONST_50,
+ SHA512_CONST_51, SHA512_CONST_52, SHA512_CONST_53,
+ SHA512_CONST_54, SHA512_CONST_55, SHA512_CONST_56,
+ SHA512_CONST_57, SHA512_CONST_58, SHA512_CONST_59,
+ SHA512_CONST_60, SHA512_CONST_61, SHA512_CONST_62,
+ SHA512_CONST_63, SHA512_CONST_64, SHA512_CONST_65,
+ SHA512_CONST_66, SHA512_CONST_67, SHA512_CONST_68,
+ SHA512_CONST_69, SHA512_CONST_70, SHA512_CONST_71,
+ SHA512_CONST_72, SHA512_CONST_73, SHA512_CONST_74,
+ SHA512_CONST_75, SHA512_CONST_76, SHA512_CONST_77,
+ SHA512_CONST_78, SHA512_CONST_79
+ };
+#endif /* __sparc */
+
+
+ if ((uintptr_t)blk & 0x7) { /* not 8-byte aligned? */
+ bcopy(blk, ctx->buf_un.buf64, sizeof (ctx->buf_un.buf64));
+ blk = (uint8_t *)ctx->buf_un.buf64;
+ }
+
+ /* LINTED E_BAD_PTR_CAST_ALIGN */
+ w0 = LOAD_BIG_64(blk + 8 * 0);
+ SHA512ROUND(a, b, c, d, e, f, g, h, 0, w0);
+ /* LINTED E_BAD_PTR_CAST_ALIGN */
+ w1 = LOAD_BIG_64(blk + 8 * 1);
+ SHA512ROUND(h, a, b, c, d, e, f, g, 1, w1);
+ /* LINTED E_BAD_PTR_CAST_ALIGN */
+ w2 = LOAD_BIG_64(blk + 8 * 2);
+ SHA512ROUND(g, h, a, b, c, d, e, f, 2, w2);
+ /* LINTED E_BAD_PTR_CAST_ALIGN */
+ w3 = LOAD_BIG_64(blk + 8 * 3);
+ SHA512ROUND(f, g, h, a, b, c, d, e, 3, w3);
+ /* LINTED E_BAD_PTR_CAST_ALIGN */
+ w4 = LOAD_BIG_64(blk + 8 * 4);
+ SHA512ROUND(e, f, g, h, a, b, c, d, 4, w4);
+ /* LINTED E_BAD_PTR_CAST_ALIGN */
+ w5 = LOAD_BIG_64(blk + 8 * 5);
+ SHA512ROUND(d, e, f, g, h, a, b, c, 5, w5);
+ /* LINTED E_BAD_PTR_CAST_ALIGN */
+ w6 = LOAD_BIG_64(blk + 8 * 6);
+ SHA512ROUND(c, d, e, f, g, h, a, b, 6, w6);
+ /* LINTED E_BAD_PTR_CAST_ALIGN */
+ w7 = LOAD_BIG_64(blk + 8 * 7);
+ SHA512ROUND(b, c, d, e, f, g, h, a, 7, w7);
+ /* LINTED E_BAD_PTR_CAST_ALIGN */
+ w8 = LOAD_BIG_64(blk + 8 * 8);
+ SHA512ROUND(a, b, c, d, e, f, g, h, 8, w8);
+ /* LINTED E_BAD_PTR_CAST_ALIGN */
+ w9 = LOAD_BIG_64(blk + 8 * 9);
+ SHA512ROUND(h, a, b, c, d, e, f, g, 9, w9);
+ /* LINTED E_BAD_PTR_CAST_ALIGN */
+ w10 = LOAD_BIG_64(blk + 8 * 10);
+ SHA512ROUND(g, h, a, b, c, d, e, f, 10, w10);
+ /* LINTED E_BAD_PTR_CAST_ALIGN */
+ w11 = LOAD_BIG_64(blk + 8 * 11);
+ SHA512ROUND(f, g, h, a, b, c, d, e, 11, w11);
+ /* LINTED E_BAD_PTR_CAST_ALIGN */
+ w12 = LOAD_BIG_64(blk + 8 * 12);
+ SHA512ROUND(e, f, g, h, a, b, c, d, 12, w12);
+ /* LINTED E_BAD_PTR_CAST_ALIGN */
+ w13 = LOAD_BIG_64(blk + 8 * 13);
+ SHA512ROUND(d, e, f, g, h, a, b, c, 13, w13);
+ /* LINTED E_BAD_PTR_CAST_ALIGN */
+ w14 = LOAD_BIG_64(blk + 8 * 14);
+ SHA512ROUND(c, d, e, f, g, h, a, b, 14, w14);
+ /* LINTED E_BAD_PTR_CAST_ALIGN */
+ w15 = LOAD_BIG_64(blk + 8 * 15);
+ SHA512ROUND(b, c, d, e, f, g, h, a, 15, w15);
+
+ w0 = SIGMA1(w14) + w9 + SIGMA0(w1) + w0;
+ SHA512ROUND(a, b, c, d, e, f, g, h, 16, w0);
+ w1 = SIGMA1(w15) + w10 + SIGMA0(w2) + w1;
+ SHA512ROUND(h, a, b, c, d, e, f, g, 17, w1);
+ w2 = SIGMA1(w0) + w11 + SIGMA0(w3) + w2;
+ SHA512ROUND(g, h, a, b, c, d, e, f, 18, w2);
+ w3 = SIGMA1(w1) + w12 + SIGMA0(w4) + w3;
+ SHA512ROUND(f, g, h, a, b, c, d, e, 19, w3);
+ w4 = SIGMA1(w2) + w13 + SIGMA0(w5) + w4;
+ SHA512ROUND(e, f, g, h, a, b, c, d, 20, w4);
+ w5 = SIGMA1(w3) + w14 + SIGMA0(w6) + w5;
+ SHA512ROUND(d, e, f, g, h, a, b, c, 21, w5);
+ w6 = SIGMA1(w4) + w15 + SIGMA0(w7) + w6;
+ SHA512ROUND(c, d, e, f, g, h, a, b, 22, w6);
+ w7 = SIGMA1(w5) + w0 + SIGMA0(w8) + w7;
+ SHA512ROUND(b, c, d, e, f, g, h, a, 23, w7);
+ w8 = SIGMA1(w6) + w1 + SIGMA0(w9) + w8;
+ SHA512ROUND(a, b, c, d, e, f, g, h, 24, w8);
+ w9 = SIGMA1(w7) + w2 + SIGMA0(w10) + w9;
+ SHA512ROUND(h, a, b, c, d, e, f, g, 25, w9);
+ w10 = SIGMA1(w8) + w3 + SIGMA0(w11) + w10;
+ SHA512ROUND(g, h, a, b, c, d, e, f, 26, w10);
+ w11 = SIGMA1(w9) + w4 + SIGMA0(w12) + w11;
+ SHA512ROUND(f, g, h, a, b, c, d, e, 27, w11);
+ w12 = SIGMA1(w10) + w5 + SIGMA0(w13) + w12;
+ SHA512ROUND(e, f, g, h, a, b, c, d, 28, w12);
+ w13 = SIGMA1(w11) + w6 + SIGMA0(w14) + w13;
+ SHA512ROUND(d, e, f, g, h, a, b, c, 29, w13);
+ w14 = SIGMA1(w12) + w7 + SIGMA0(w15) + w14;
+ SHA512ROUND(c, d, e, f, g, h, a, b, 30, w14);
+ w15 = SIGMA1(w13) + w8 + SIGMA0(w0) + w15;
+ SHA512ROUND(b, c, d, e, f, g, h, a, 31, w15);
+
+ w0 = SIGMA1(w14) + w9 + SIGMA0(w1) + w0;
+ SHA512ROUND(a, b, c, d, e, f, g, h, 32, w0);
+ w1 = SIGMA1(w15) + w10 + SIGMA0(w2) + w1;
+ SHA512ROUND(h, a, b, c, d, e, f, g, 33, w1);
+ w2 = SIGMA1(w0) + w11 + SIGMA0(w3) + w2;
+ SHA512ROUND(g, h, a, b, c, d, e, f, 34, w2);
+ w3 = SIGMA1(w1) + w12 + SIGMA0(w4) + w3;
+ SHA512ROUND(f, g, h, a, b, c, d, e, 35, w3);
+ w4 = SIGMA1(w2) + w13 + SIGMA0(w5) + w4;
+ SHA512ROUND(e, f, g, h, a, b, c, d, 36, w4);
+ w5 = SIGMA1(w3) + w14 + SIGMA0(w6) + w5;
+ SHA512ROUND(d, e, f, g, h, a, b, c, 37, w5);
+ w6 = SIGMA1(w4) + w15 + SIGMA0(w7) + w6;
+ SHA512ROUND(c, d, e, f, g, h, a, b, 38, w6);
+ w7 = SIGMA1(w5) + w0 + SIGMA0(w8) + w7;
+ SHA512ROUND(b, c, d, e, f, g, h, a, 39, w7);
+ w8 = SIGMA1(w6) + w1 + SIGMA0(w9) + w8;
+ SHA512ROUND(a, b, c, d, e, f, g, h, 40, w8);
+ w9 = SIGMA1(w7) + w2 + SIGMA0(w10) + w9;
+ SHA512ROUND(h, a, b, c, d, e, f, g, 41, w9);
+ w10 = SIGMA1(w8) + w3 + SIGMA0(w11) + w10;
+ SHA512ROUND(g, h, a, b, c, d, e, f, 42, w10);
+ w11 = SIGMA1(w9) + w4 + SIGMA0(w12) + w11;
+ SHA512ROUND(f, g, h, a, b, c, d, e, 43, w11);
+ w12 = SIGMA1(w10) + w5 + SIGMA0(w13) + w12;
+ SHA512ROUND(e, f, g, h, a, b, c, d, 44, w12);
+ w13 = SIGMA1(w11) + w6 + SIGMA0(w14) + w13;
+ SHA512ROUND(d, e, f, g, h, a, b, c, 45, w13);
+ w14 = SIGMA1(w12) + w7 + SIGMA0(w15) + w14;
+ SHA512ROUND(c, d, e, f, g, h, a, b, 46, w14);
+ w15 = SIGMA1(w13) + w8 + SIGMA0(w0) + w15;
+ SHA512ROUND(b, c, d, e, f, g, h, a, 47, w15);
+
+ w0 = SIGMA1(w14) + w9 + SIGMA0(w1) + w0;
+ SHA512ROUND(a, b, c, d, e, f, g, h, 48, w0);
+ w1 = SIGMA1(w15) + w10 + SIGMA0(w2) + w1;
+ SHA512ROUND(h, a, b, c, d, e, f, g, 49, w1);
+ w2 = SIGMA1(w0) + w11 + SIGMA0(w3) + w2;
+ SHA512ROUND(g, h, a, b, c, d, e, f, 50, w2);
+ w3 = SIGMA1(w1) + w12 + SIGMA0(w4) + w3;
+ SHA512ROUND(f, g, h, a, b, c, d, e, 51, w3);
+ w4 = SIGMA1(w2) + w13 + SIGMA0(w5) + w4;
+ SHA512ROUND(e, f, g, h, a, b, c, d, 52, w4);
+ w5 = SIGMA1(w3) + w14 + SIGMA0(w6) + w5;
+ SHA512ROUND(d, e, f, g, h, a, b, c, 53, w5);
+ w6 = SIGMA1(w4) + w15 + SIGMA0(w7) + w6;
+ SHA512ROUND(c, d, e, f, g, h, a, b, 54, w6);
+ w7 = SIGMA1(w5) + w0 + SIGMA0(w8) + w7;
+ SHA512ROUND(b, c, d, e, f, g, h, a, 55, w7);
+ w8 = SIGMA1(w6) + w1 + SIGMA0(w9) + w8;
+ SHA512ROUND(a, b, c, d, e, f, g, h, 56, w8);
+ w9 = SIGMA1(w7) + w2 + SIGMA0(w10) + w9;
+ SHA512ROUND(h, a, b, c, d, e, f, g, 57, w9);
+ w10 = SIGMA1(w8) + w3 + SIGMA0(w11) + w10;
+ SHA512ROUND(g, h, a, b, c, d, e, f, 58, w10);
+ w11 = SIGMA1(w9) + w4 + SIGMA0(w12) + w11;
+ SHA512ROUND(f, g, h, a, b, c, d, e, 59, w11);
+ w12 = SIGMA1(w10) + w5 + SIGMA0(w13) + w12;
+ SHA512ROUND(e, f, g, h, a, b, c, d, 60, w12);
+ w13 = SIGMA1(w11) + w6 + SIGMA0(w14) + w13;
+ SHA512ROUND(d, e, f, g, h, a, b, c, 61, w13);
+ w14 = SIGMA1(w12) + w7 + SIGMA0(w15) + w14;
+ SHA512ROUND(c, d, e, f, g, h, a, b, 62, w14);
+ w15 = SIGMA1(w13) + w8 + SIGMA0(w0) + w15;
+ SHA512ROUND(b, c, d, e, f, g, h, a, 63, w15);
+
+ w0 = SIGMA1(w14) + w9 + SIGMA0(w1) + w0;
+ SHA512ROUND(a, b, c, d, e, f, g, h, 64, w0);
+ w1 = SIGMA1(w15) + w10 + SIGMA0(w2) + w1;
+ SHA512ROUND(h, a, b, c, d, e, f, g, 65, w1);
+ w2 = SIGMA1(w0) + w11 + SIGMA0(w3) + w2;
+ SHA512ROUND(g, h, a, b, c, d, e, f, 66, w2);
+ w3 = SIGMA1(w1) + w12 + SIGMA0(w4) + w3;
+ SHA512ROUND(f, g, h, a, b, c, d, e, 67, w3);
+ w4 = SIGMA1(w2) + w13 + SIGMA0(w5) + w4;
+ SHA512ROUND(e, f, g, h, a, b, c, d, 68, w4);
+ w5 = SIGMA1(w3) + w14 + SIGMA0(w6) + w5;
+ SHA512ROUND(d, e, f, g, h, a, b, c, 69, w5);
+ w6 = SIGMA1(w4) + w15 + SIGMA0(w7) + w6;
+ SHA512ROUND(c, d, e, f, g, h, a, b, 70, w6);
+ w7 = SIGMA1(w5) + w0 + SIGMA0(w8) + w7;
+ SHA512ROUND(b, c, d, e, f, g, h, a, 71, w7);
+ w8 = SIGMA1(w6) + w1 + SIGMA0(w9) + w8;
+ SHA512ROUND(a, b, c, d, e, f, g, h, 72, w8);
+ w9 = SIGMA1(w7) + w2 + SIGMA0(w10) + w9;
+ SHA512ROUND(h, a, b, c, d, e, f, g, 73, w9);
+ w10 = SIGMA1(w8) + w3 + SIGMA0(w11) + w10;
+ SHA512ROUND(g, h, a, b, c, d, e, f, 74, w10);
+ w11 = SIGMA1(w9) + w4 + SIGMA0(w12) + w11;
+ SHA512ROUND(f, g, h, a, b, c, d, e, 75, w11);
+ w12 = SIGMA1(w10) + w5 + SIGMA0(w13) + w12;
+ SHA512ROUND(e, f, g, h, a, b, c, d, 76, w12);
+ w13 = SIGMA1(w11) + w6 + SIGMA0(w14) + w13;
+ SHA512ROUND(d, e, f, g, h, a, b, c, 77, w13);
+ w14 = SIGMA1(w12) + w7 + SIGMA0(w15) + w14;
+ SHA512ROUND(c, d, e, f, g, h, a, b, 78, w14);
+ w15 = SIGMA1(w13) + w8 + SIGMA0(w0) + w15;
+ SHA512ROUND(b, c, d, e, f, g, h, a, 79, w15);
+
+ ctx->state.s64[0] += a;
+ ctx->state.s64[1] += b;
+ ctx->state.s64[2] += c;
+ ctx->state.s64[3] += d;
+ ctx->state.s64[4] += e;
+ ctx->state.s64[5] += f;
+ ctx->state.s64[6] += g;
+ ctx->state.s64[7] += h;
+
+}
#endif /* !__amd64 */
@@ -311,14 +619,56 @@ Encode(uint8_t *_RESTRICT_KYWD output, uint32_t *_RESTRICT_KYWD input,
{
size_t i, j;
- for (i = 0, j = 0; j < len; i++, j += 4) {
- output[j] = (input[i] >> 24) & 0xff;
- output[j + 1] = (input[i] >> 16) & 0xff;
- output[j + 2] = (input[i] >> 8) & 0xff;
- output[j + 3] = input[i] & 0xff;
+#if defined(__sparc)
+ if (IS_P2ALIGNED(output, sizeof (uint32_t))) {
+ for (i = 0, j = 0; j < len; i++, j += 4) {
+ /* LINTED E_BAD_PTR_CAST_ALIGN */
+ *((uint32_t *)(output + j)) = input[i];
+ }
+ } else {
+#endif /* little endian -- will work on big endian, but slowly */
+ for (i = 0, j = 0; j < len; i++, j += 4) {
+ output[j] = (input[i] >> 24) & 0xff;
+ output[j + 1] = (input[i] >> 16) & 0xff;
+ output[j + 2] = (input[i] >> 8) & 0xff;
+ output[j + 3] = input[i] & 0xff;
+ }
+#if defined(__sparc)
}
+#endif
}
+static void
+Encode64(uint8_t *_RESTRICT_KYWD output, uint64_t *_RESTRICT_KYWD input,
+ size_t len)
+{
+ size_t i, j;
+
+#if defined(__sparc)
+ if (IS_P2ALIGNED(output, sizeof (uint64_t))) {
+ for (i = 0, j = 0; j < len; i++, j += 8) {
+ /* LINTED E_BAD_PTR_CAST_ALIGN */
+ *((uint64_t *)(output + j)) = input[i];
+ }
+ } else {
+#endif /* little endian -- will work on big endian, but slowly */
+ for (i = 0, j = 0; j < len; i++, j += 8) {
+
+ output[j] = (input[i] >> 56) & 0xff;
+ output[j + 1] = (input[i] >> 48) & 0xff;
+ output[j + 2] = (input[i] >> 40) & 0xff;
+ output[j + 3] = (input[i] >> 32) & 0xff;
+ output[j + 4] = (input[i] >> 24) & 0xff;
+ output[j + 5] = (input[i] >> 16) & 0xff;
+ output[j + 6] = (input[i] >> 8) & 0xff;
+ output[j + 7] = input[i] & 0xff;
+ }
+#if defined(__sparc)
+ }
+#endif
+}
+
+
void
SHA2Init(uint64_t mech, SHA2_CTX *ctx)
{
@@ -336,22 +686,86 @@ SHA2Init(uint64_t mech, SHA2_CTX *ctx)
ctx->state.s32[6] = 0x1f83d9abU;
ctx->state.s32[7] = 0x5be0cd19U;
break;
+ case SHA384_MECH_INFO_TYPE:
+ case SHA384_HMAC_MECH_INFO_TYPE:
+ case SHA384_HMAC_GEN_MECH_INFO_TYPE:
+ ctx->state.s64[0] = 0xcbbb9d5dc1059ed8ULL;
+ ctx->state.s64[1] = 0x629a292a367cd507ULL;
+ ctx->state.s64[2] = 0x9159015a3070dd17ULL;
+ ctx->state.s64[3] = 0x152fecd8f70e5939ULL;
+ ctx->state.s64[4] = 0x67332667ffc00b31ULL;
+ ctx->state.s64[5] = 0x8eb44a8768581511ULL;
+ ctx->state.s64[6] = 0xdb0c2e0d64f98fa7ULL;
+ ctx->state.s64[7] = 0x47b5481dbefa4fa4ULL;
+ break;
+ case SHA512_MECH_INFO_TYPE:
+ case SHA512_HMAC_MECH_INFO_TYPE:
+ case SHA512_HMAC_GEN_MECH_INFO_TYPE:
+ ctx->state.s64[0] = 0x6a09e667f3bcc908ULL;
+ ctx->state.s64[1] = 0xbb67ae8584caa73bULL;
+ ctx->state.s64[2] = 0x3c6ef372fe94f82bULL;
+ ctx->state.s64[3] = 0xa54ff53a5f1d36f1ULL;
+ ctx->state.s64[4] = 0x510e527fade682d1ULL;
+ ctx->state.s64[5] = 0x9b05688c2b3e6c1fULL;
+ ctx->state.s64[6] = 0x1f83d9abfb41bd6bULL;
+ ctx->state.s64[7] = 0x5be0cd19137e2179ULL;
+ break;
+ case SHA512_224_MECH_INFO_TYPE:
+ ctx->state.s64[0] = 0x8C3D37C819544DA2ULL;
+ ctx->state.s64[1] = 0x73E1996689DCD4D6ULL;
+ ctx->state.s64[2] = 0x1DFAB7AE32FF9C82ULL;
+ ctx->state.s64[3] = 0x679DD514582F9FCFULL;
+ ctx->state.s64[4] = 0x0F6D2B697BD44DA8ULL;
+ ctx->state.s64[5] = 0x77E36F7304C48942ULL;
+ ctx->state.s64[6] = 0x3F9D85A86A1D36C8ULL;
+ ctx->state.s64[7] = 0x1112E6AD91D692A1ULL;
+ break;
+ case SHA512_256_MECH_INFO_TYPE:
+ ctx->state.s64[0] = 0x22312194FC2BF72CULL;
+ ctx->state.s64[1] = 0x9F555FA3C84C64C2ULL;
+ ctx->state.s64[2] = 0x2393B86B6F53B151ULL;
+ ctx->state.s64[3] = 0x963877195940EABDULL;
+ ctx->state.s64[4] = 0x96283EE2A88EFFE3ULL;
+ ctx->state.s64[5] = 0xBE5E1E2553863992ULL;
+ ctx->state.s64[6] = 0x2B0199FC2C85B8AAULL;
+ ctx->state.s64[7] = 0x0EB72DDC81C52CA2ULL;
+ break;
+#ifdef _KERNEL
default:
cmn_err(CE_PANIC,
"sha2_init: failed to find a supported algorithm: 0x%x",
(uint32_t)mech);
+
+#endif /* _KERNEL */
}
ctx->algotype = (uint32_t)mech;
ctx->count.c64[0] = ctx->count.c64[1] = 0;
}
+#ifndef _KERNEL
+
+// #pragma inline(SHA256Init, SHA384Init, SHA512Init)
void
SHA256Init(SHA256_CTX *ctx)
{
SHA2Init(SHA256, ctx);
}
+void
+SHA384Init(SHA384_CTX *ctx)
+{
+ SHA2Init(SHA384, ctx);
+}
+
+void
+SHA512Init(SHA512_CTX *ctx)
+{
+ SHA2Init(SHA512, ctx);
+}
+
+#endif /* _KERNEL */
+
/*
* SHA2Update()
*
@@ -422,6 +836,8 @@ SHA2Update(SHA2_CTX *ctx, const void *inptr, size_t input_len)
bcopy(input, &ctx->buf_un.buf8[buf_index], buf_len);
if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE)
SHA256Transform(ctx, ctx->buf_un.buf8);
+ else
+ SHA512Transform(ctx, ctx->buf_un.buf8);
i = buf_len;
}
@@ -431,6 +847,10 @@ SHA2Update(SHA2_CTX *ctx, const void *inptr, size_t input_len)
for (; i + buf_limit - 1 < input_len; i += buf_limit) {
SHA256Transform(ctx, &input[i]);
}
+ } else {
+ for (; i + buf_limit - 1 < input_len; i += buf_limit) {
+ SHA512Transform(ctx, &input[i]);
+ }
}
#else
@@ -441,6 +861,13 @@ SHA2Update(SHA2_CTX *ctx, const void *inptr, size_t input_len)
block_count);
i += block_count << 6;
}
+ } else {
+ block_count = (input_len - i) >> 7;
+ if (block_count > 0) {
+ SHA512TransformBlocks(ctx, &input[i],
+ block_count);
+ i += block_count << 7;
+ }
}
#endif /* !__amd64 */
@@ -479,6 +906,7 @@ void
SHA2Final(void *digest, SHA2_CTX *ctx)
{
uint8_t bitcount_be[sizeof (ctx->count.c32)];
+ uint8_t bitcount_be64[sizeof (ctx->count.c64)];
uint32_t index;
uint32_t algotype = ctx->algotype;
@@ -488,8 +916,45 @@ SHA2Final(void *digest, SHA2_CTX *ctx)
SHA2Update(ctx, PADDING, ((index < 56) ? 56 : 120) - index);
SHA2Update(ctx, bitcount_be, sizeof (bitcount_be));
Encode(digest, ctx->state.s32, sizeof (ctx->state.s32));
+ } else {
+ index = (ctx->count.c64[1] >> 3) & 0x7f;
+ Encode64(bitcount_be64, ctx->count.c64,
+ sizeof (bitcount_be64));
+ SHA2Update(ctx, PADDING, ((index < 112) ? 112 : 240) - index);
+ SHA2Update(ctx, bitcount_be64, sizeof (bitcount_be64));
+ if (algotype <= SHA384_HMAC_GEN_MECH_INFO_TYPE) {
+ ctx->state.s64[6] = ctx->state.s64[7] = 0;
+ Encode64(digest, ctx->state.s64,
+ sizeof (uint64_t) * 6);
+ } else if (algotype == SHA512_224_MECH_INFO_TYPE) {
+ uint8_t last[sizeof (uint64_t)];
+ /*
+ * Since SHA-512/224 doesn't align well to 64-bit
+ * boundaries, we must do the encoding in three steps:
+ * 1) encode the three 64-bit words that fit neatly
+ * 2) encode the last 64-bit word to a temp buffer
+ * 3) chop out the lower 32-bits from the temp buffer
+ * and append them to the digest
+ */
+ Encode64(digest, ctx->state.s64, sizeof (uint64_t) * 3);
+ Encode64(last, &ctx->state.s64[3], sizeof (uint64_t));
+ bcopy(last, (uint8_t *)digest + 24, 4);
+ } else if (algotype == SHA512_256_MECH_INFO_TYPE) {
+ Encode64(digest, ctx->state.s64, sizeof (uint64_t) * 4);
+ } else {
+ Encode64(digest, ctx->state.s64,
+ sizeof (ctx->state.s64));
+ }
}
/* zeroize sensitive information */
bzero(ctx, sizeof (*ctx));
}
+
+
+
+#ifdef _KERNEL
+EXPORT_SYMBOL(SHA2Init);
+EXPORT_SYMBOL(SHA2Update);
+EXPORT_SYMBOL(SHA2Final);
+#endif
diff --git a/module/icp/algs/skein/THIRDPARTYLICENSE b/module/icp/algs/skein/THIRDPARTYLICENSE
new file mode 100644
index 000000000..b7434fd17
--- /dev/null
+++ b/module/icp/algs/skein/THIRDPARTYLICENSE
@@ -0,0 +1,3 @@
+Implementation of the Skein hash function.
+Source code author: Doug Whiting, 2008.
+This algorithm and source code is released to the public domain.
diff --git a/module/icp/algs/skein/THIRDPARTYLICENSE.descrip b/module/icp/algs/skein/THIRDPARTYLICENSE.descrip
new file mode 100644
index 000000000..0ae89cfdf
--- /dev/null
+++ b/module/icp/algs/skein/THIRDPARTYLICENSE.descrip
@@ -0,0 +1 @@
+LICENSE TERMS OF SKEIN HASH ALGORITHM IMPLEMENTATION
diff --git a/module/icp/algs/skein/skein.c b/module/icp/algs/skein/skein.c
new file mode 100644
index 000000000..0981eee08
--- /dev/null
+++ b/module/icp/algs/skein/skein.c
@@ -0,0 +1,921 @@
+/*
+ * Implementation of the Skein hash function.
+ * Source code author: Doug Whiting, 2008.
+ * This algorithm and source code is released to the public domain.
+ */
+/* Copyright 2013 Doug Whiting. This code is released to the public domain. */
+
+#define SKEIN_PORT_CODE /* instantiate any code in skein_port.h */
+
+#include <sys/types.h>
+#include <sys/note.h>
+#include <sys/skein.h> /* get the Skein API definitions */
+#include "skein_impl.h" /* get internal definitions */
+
+/* External function to process blkCnt (nonzero) full block(s) of data. */
+void Skein_256_Process_Block(Skein_256_Ctxt_t *ctx, const uint8_t *blkPtr,
+ size_t blkCnt, size_t byteCntAdd);
+void Skein_512_Process_Block(Skein_512_Ctxt_t *ctx, const uint8_t *blkPtr,
+ size_t blkCnt, size_t byteCntAdd);
+void Skein1024_Process_Block(Skein1024_Ctxt_t *ctx, const uint8_t *blkPtr,
+ size_t blkCnt, size_t byteCntAdd);
+
+/* 256-bit Skein */
+/* init the context for a straight hashing operation */
+int
+Skein_256_Init(Skein_256_Ctxt_t *ctx, size_t hashBitLen)
+{
+ union {
+ uint8_t b[SKEIN_256_STATE_BYTES];
+ uint64_t w[SKEIN_256_STATE_WORDS];
+ } cfg; /* config block */
+
+ Skein_Assert(hashBitLen > 0, SKEIN_BAD_HASHLEN);
+ ctx->h.hashBitLen = hashBitLen; /* output hash bit count */
+
+ switch (hashBitLen) { /* use pre-computed values, where available */
+#ifndef SKEIN_NO_PRECOMP
+ case 256:
+ bcopy(SKEIN_256_IV_256, ctx->X, sizeof (ctx->X));
+ break;
+ case 224:
+ bcopy(SKEIN_256_IV_224, ctx->X, sizeof (ctx->X));
+ break;
+ case 160:
+ bcopy(SKEIN_256_IV_160, ctx->X, sizeof (ctx->X));
+ break;
+ case 128:
+ bcopy(SKEIN_256_IV_128, ctx->X, sizeof (ctx->X));
+ break;
+#endif
+ default:
+ /* here if there is no precomputed IV value available */
+ /*
+ * build/process the config block, type == CONFIG (could be
+ * precomputed)
+ */
+ /* set tweaks: T0=0; T1=CFG | FINAL */
+ Skein_Start_New_Type(ctx, CFG_FINAL);
+
+ /* set the schema, version */
+ cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER);
+ /* hash result length in bits */
+ cfg.w[1] = Skein_Swap64(hashBitLen);
+ cfg.w[2] = Skein_Swap64(SKEIN_CFG_TREE_INFO_SEQUENTIAL);
+ /* zero pad config block */
+ bzero(&cfg.w[3], sizeof (cfg) - 3 * sizeof (cfg.w[0]));
+
+ /* compute the initial chaining values from config block */
+ /* zero the chaining variables */
+ bzero(ctx->X, sizeof (ctx->X));
+ Skein_256_Process_Block(ctx, cfg.b, 1, SKEIN_CFG_STR_LEN);
+ break;
+ }
+ /*
+ * The chaining vars ctx->X are now initialized for the given
+ * hashBitLen.
+ * Set up to process the data message portion of the hash (default)
+ */
+ Skein_Start_New_Type(ctx, MSG); /* T0=0, T1= MSG type */
+
+ return (SKEIN_SUCCESS);
+}
+
+/* init the context for a MAC and/or tree hash operation */
+/*
+ * [identical to Skein_256_Init() when keyBytes == 0 &&
+ * treeInfo == SKEIN_CFG_TREE_INFO_SEQUENTIAL]
+ */
+int
+Skein_256_InitExt(Skein_256_Ctxt_t *ctx, size_t hashBitLen, uint64_t treeInfo,
+ const uint8_t *key, size_t keyBytes)
+{
+ union {
+ uint8_t b[SKEIN_256_STATE_BYTES];
+ uint64_t w[SKEIN_256_STATE_WORDS];
+ } cfg; /* config block */
+
+ Skein_Assert(hashBitLen > 0, SKEIN_BAD_HASHLEN);
+ Skein_Assert(keyBytes == 0 || key != NULL, SKEIN_FAIL);
+
+ /* compute the initial chaining values ctx->X[], based on key */
+ if (keyBytes == 0) { /* is there a key? */
+ /* no key: use all zeroes as key for config block */
+ bzero(ctx->X, sizeof (ctx->X));
+ } else { /* here to pre-process a key */
+
+ Skein_assert(sizeof (cfg.b) >= sizeof (ctx->X));
+ /* do a mini-Init right here */
+ /* set output hash bit count = state size */
+ ctx->h.hashBitLen = 8 * sizeof (ctx->X);
+ /* set tweaks: T0 = 0; T1 = KEY type */
+ Skein_Start_New_Type(ctx, KEY);
+ /* zero the initial chaining variables */
+ bzero(ctx->X, sizeof (ctx->X));
+ /* hash the key */
+ (void) Skein_256_Update(ctx, key, keyBytes);
+ /* put result into cfg.b[] */
+ (void) Skein_256_Final_Pad(ctx, cfg.b);
+ /* copy over into ctx->X[] */
+ bcopy(cfg.b, ctx->X, sizeof (cfg.b));
+#if SKEIN_NEED_SWAP
+ {
+ uint_t i;
+ /* convert key bytes to context words */
+ for (i = 0; i < SKEIN_256_STATE_WORDS; i++)
+ ctx->X[i] = Skein_Swap64(ctx->X[i]);
+ }
+#endif
+ }
+ /*
+ * build/process the config block, type == CONFIG (could be
+ * precomputed for each key)
+ */
+ ctx->h.hashBitLen = hashBitLen; /* output hash bit count */
+ Skein_Start_New_Type(ctx, CFG_FINAL);
+
+ bzero(&cfg.w, sizeof (cfg.w)); /* pre-pad cfg.w[] with zeroes */
+ cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER);
+ cfg.w[1] = Skein_Swap64(hashBitLen); /* hash result length in bits */
+ /* tree hash config info (or SKEIN_CFG_TREE_INFO_SEQUENTIAL) */
+ cfg.w[2] = Skein_Swap64(treeInfo);
+
+ Skein_Show_Key(256, &ctx->h, key, keyBytes);
+
+ /* compute the initial chaining values from config block */
+ Skein_256_Process_Block(ctx, cfg.b, 1, SKEIN_CFG_STR_LEN);
+
+ /* The chaining vars ctx->X are now initialized */
+ /* Set up to process the data message portion of the hash (default) */
+ ctx->h.bCnt = 0; /* buffer b[] starts out empty */
+ Skein_Start_New_Type(ctx, MSG);
+
+ return (SKEIN_SUCCESS);
+}
+
+/* process the input bytes */
+int
+Skein_256_Update(Skein_256_Ctxt_t *ctx, const uint8_t *msg, size_t msgByteCnt)
+{
+ size_t n;
+
+ /* catch uninitialized context */
+ Skein_Assert(ctx->h.bCnt <= SKEIN_256_BLOCK_BYTES, SKEIN_FAIL);
+
+ /* process full blocks, if any */
+ if (msgByteCnt + ctx->h.bCnt > SKEIN_256_BLOCK_BYTES) {
+ /* finish up any buffered message data */
+ if (ctx->h.bCnt) {
+ /* # bytes free in buffer b[] */
+ n = SKEIN_256_BLOCK_BYTES - ctx->h.bCnt;
+ if (n) {
+ /* check on our logic here */
+ Skein_assert(n < msgByteCnt);
+ bcopy(msg, &ctx->b[ctx->h.bCnt], n);
+ msgByteCnt -= n;
+ msg += n;
+ ctx->h.bCnt += n;
+ }
+ Skein_assert(ctx->h.bCnt == SKEIN_256_BLOCK_BYTES);
+ Skein_256_Process_Block(ctx, ctx->b, 1,
+ SKEIN_256_BLOCK_BYTES);
+ ctx->h.bCnt = 0;
+ }
+ /*
+ * now process any remaining full blocks, directly from input
+ * message data
+ */
+ if (msgByteCnt > SKEIN_256_BLOCK_BYTES) {
+ /* number of full blocks to process */
+ n = (msgByteCnt - 1) / SKEIN_256_BLOCK_BYTES;
+ Skein_256_Process_Block(ctx, msg, n,
+ SKEIN_256_BLOCK_BYTES);
+ msgByteCnt -= n * SKEIN_256_BLOCK_BYTES;
+ msg += n * SKEIN_256_BLOCK_BYTES;
+ }
+ Skein_assert(ctx->h.bCnt == 0);
+ }
+
+ /* copy any remaining source message data bytes into b[] */
+ if (msgByteCnt) {
+ Skein_assert(msgByteCnt + ctx->h.bCnt <= SKEIN_256_BLOCK_BYTES);
+ bcopy(msg, &ctx->b[ctx->h.bCnt], msgByteCnt);
+ ctx->h.bCnt += msgByteCnt;
+ }
+
+ return (SKEIN_SUCCESS);
+}
+
+/* finalize the hash computation and output the result */
+int
+Skein_256_Final(Skein_256_Ctxt_t *ctx, uint8_t *hashVal)
+{
+ size_t i, n, byteCnt;
+ uint64_t X[SKEIN_256_STATE_WORDS];
+
+ /* catch uninitialized context */
+ Skein_Assert(ctx->h.bCnt <= SKEIN_256_BLOCK_BYTES, SKEIN_FAIL);
+
+ ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL; /* tag as the final block */
+ /* zero pad b[] if necessary */
+ if (ctx->h.bCnt < SKEIN_256_BLOCK_BYTES)
+ bzero(&ctx->b[ctx->h.bCnt],
+ SKEIN_256_BLOCK_BYTES - ctx->h.bCnt);
+
+ /* process the final block */
+ Skein_256_Process_Block(ctx, ctx->b, 1, ctx->h.bCnt);
+
+ /* now output the result */
+ /* total number of output bytes */
+ byteCnt = (ctx->h.hashBitLen + 7) >> 3;
+
+ /* run Threefish in "counter mode" to generate output */
+ /* zero out b[], so it can hold the counter */
+ bzero(ctx->b, sizeof (ctx->b));
+ /* keep a local copy of counter mode "key" */
+ bcopy(ctx->X, X, sizeof (X));
+ for (i = 0; i * SKEIN_256_BLOCK_BYTES < byteCnt; i++) {
+ /* build the counter block */
+ uint64_t tmp = Skein_Swap64((uint64_t)i);
+ bcopy(&tmp, ctx->b, sizeof (tmp));
+ Skein_Start_New_Type(ctx, OUT_FINAL);
+ /* run "counter mode" */
+ Skein_256_Process_Block(ctx, ctx->b, 1, sizeof (uint64_t));
+ /* number of output bytes left to go */
+ n = byteCnt - i * SKEIN_256_BLOCK_BYTES;
+ if (n >= SKEIN_256_BLOCK_BYTES)
+ n = SKEIN_256_BLOCK_BYTES;
+ Skein_Put64_LSB_First(hashVal + i * SKEIN_256_BLOCK_BYTES,
+ ctx->X, n); /* "output" the ctr mode bytes */
+ Skein_Show_Final(256, &ctx->h, n,
+ hashVal + i * SKEIN_256_BLOCK_BYTES);
+ /* restore the counter mode key for next time */
+ bcopy(X, ctx->X, sizeof (X));
+ }
+ return (SKEIN_SUCCESS);
+}
+
+/* 512-bit Skein */
+
+/* init the context for a straight hashing operation */
+int
+Skein_512_Init(Skein_512_Ctxt_t *ctx, size_t hashBitLen)
+{
+ union {
+ uint8_t b[SKEIN_512_STATE_BYTES];
+ uint64_t w[SKEIN_512_STATE_WORDS];
+ } cfg; /* config block */
+
+ Skein_Assert(hashBitLen > 0, SKEIN_BAD_HASHLEN);
+ ctx->h.hashBitLen = hashBitLen; /* output hash bit count */
+
+ switch (hashBitLen) { /* use pre-computed values, where available */
+#ifndef SKEIN_NO_PRECOMP
+ case 512:
+ bcopy(SKEIN_512_IV_512, ctx->X, sizeof (ctx->X));
+ break;
+ case 384:
+ bcopy(SKEIN_512_IV_384, ctx->X, sizeof (ctx->X));
+ break;
+ case 256:
+ bcopy(SKEIN_512_IV_256, ctx->X, sizeof (ctx->X));
+ break;
+ case 224:
+ bcopy(SKEIN_512_IV_224, ctx->X, sizeof (ctx->X));
+ break;
+#endif
+ default:
+ /*
+ * here if there is no precomputed IV value available
+ * build/process the config block, type == CONFIG (could be
+ * precomputed)
+ */
+ /* set tweaks: T0=0; T1=CFG | FINAL */
+ Skein_Start_New_Type(ctx, CFG_FINAL);
+
+ /* set the schema, version */
+ cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER);
+ /* hash result length in bits */
+ cfg.w[1] = Skein_Swap64(hashBitLen);
+ cfg.w[2] = Skein_Swap64(SKEIN_CFG_TREE_INFO_SEQUENTIAL);
+ /* zero pad config block */
+ bzero(&cfg.w[3], sizeof (cfg) - 3 * sizeof (cfg.w[0]));
+
+ /* compute the initial chaining values from config block */
+ /* zero the chaining variables */
+ bzero(ctx->X, sizeof (ctx->X));
+ Skein_512_Process_Block(ctx, cfg.b, 1, SKEIN_CFG_STR_LEN);
+ break;
+ }
+
+ /*
+ * The chaining vars ctx->X are now initialized for the given
+ * hashBitLen. Set up to process the data message portion of the
+ * hash (default)
+ */
+ Skein_Start_New_Type(ctx, MSG); /* T0=0, T1= MSG type */
+
+ return (SKEIN_SUCCESS);
+}
+
+/* init the context for a MAC and/or tree hash operation */
+/*
+ * [identical to Skein_512_Init() when keyBytes == 0 &&
+ * treeInfo == SKEIN_CFG_TREE_INFO_SEQUENTIAL]
+ */
+int
+Skein_512_InitExt(Skein_512_Ctxt_t *ctx, size_t hashBitLen, uint64_t treeInfo,
+ const uint8_t *key, size_t keyBytes)
+{
+ union {
+ uint8_t b[SKEIN_512_STATE_BYTES];
+ uint64_t w[SKEIN_512_STATE_WORDS];
+ } cfg; /* config block */
+
+ Skein_Assert(hashBitLen > 0, SKEIN_BAD_HASHLEN);
+ Skein_Assert(keyBytes == 0 || key != NULL, SKEIN_FAIL);
+
+ /* compute the initial chaining values ctx->X[], based on key */
+ if (keyBytes == 0) { /* is there a key? */
+ /* no key: use all zeroes as key for config block */
+ bzero(ctx->X, sizeof (ctx->X));
+ } else { /* here to pre-process a key */
+
+ Skein_assert(sizeof (cfg.b) >= sizeof (ctx->X));
+ /* do a mini-Init right here */
+ /* set output hash bit count = state size */
+ ctx->h.hashBitLen = 8 * sizeof (ctx->X);
+ /* set tweaks: T0 = 0; T1 = KEY type */
+ Skein_Start_New_Type(ctx, KEY);
+ /* zero the initial chaining variables */
+ bzero(ctx->X, sizeof (ctx->X));
+ (void) Skein_512_Update(ctx, key, keyBytes); /* hash the key */
+ /* put result into cfg.b[] */
+ (void) Skein_512_Final_Pad(ctx, cfg.b);
+ /* copy over into ctx->X[] */
+ bcopy(cfg.b, ctx->X, sizeof (cfg.b));
+#if SKEIN_NEED_SWAP
+ {
+ uint_t i;
+ /* convert key bytes to context words */
+ for (i = 0; i < SKEIN_512_STATE_WORDS; i++)
+ ctx->X[i] = Skein_Swap64(ctx->X[i]);
+ }
+#endif
+ }
+ /*
+ * build/process the config block, type == CONFIG (could be
+ * precomputed for each key)
+ */
+ ctx->h.hashBitLen = hashBitLen; /* output hash bit count */
+ Skein_Start_New_Type(ctx, CFG_FINAL);
+
+ bzero(&cfg.w, sizeof (cfg.w)); /* pre-pad cfg.w[] with zeroes */
+ cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER);
+ cfg.w[1] = Skein_Swap64(hashBitLen); /* hash result length in bits */
+ /* tree hash config info (or SKEIN_CFG_TREE_INFO_SEQUENTIAL) */
+ cfg.w[2] = Skein_Swap64(treeInfo);
+
+ Skein_Show_Key(512, &ctx->h, key, keyBytes);
+
+ /* compute the initial chaining values from config block */
+ Skein_512_Process_Block(ctx, cfg.b, 1, SKEIN_CFG_STR_LEN);
+
+ /* The chaining vars ctx->X are now initialized */
+ /* Set up to process the data message portion of the hash (default) */
+ ctx->h.bCnt = 0; /* buffer b[] starts out empty */
+ Skein_Start_New_Type(ctx, MSG);
+
+ return (SKEIN_SUCCESS);
+}
+
+/* process the input bytes */
+int
+Skein_512_Update(Skein_512_Ctxt_t *ctx, const uint8_t *msg, size_t msgByteCnt)
+{
+ size_t n;
+
+ /* catch uninitialized context */
+ Skein_Assert(ctx->h.bCnt <= SKEIN_512_BLOCK_BYTES, SKEIN_FAIL);
+
+ /* process full blocks, if any */
+ if (msgByteCnt + ctx->h.bCnt > SKEIN_512_BLOCK_BYTES) {
+ /* finish up any buffered message data */
+ if (ctx->h.bCnt) {
+ /* # bytes free in buffer b[] */
+ n = SKEIN_512_BLOCK_BYTES - ctx->h.bCnt;
+ if (n) {
+ /* check on our logic here */
+ Skein_assert(n < msgByteCnt);
+ bcopy(msg, &ctx->b[ctx->h.bCnt], n);
+ msgByteCnt -= n;
+ msg += n;
+ ctx->h.bCnt += n;
+ }
+ Skein_assert(ctx->h.bCnt == SKEIN_512_BLOCK_BYTES);
+ Skein_512_Process_Block(ctx, ctx->b, 1,
+ SKEIN_512_BLOCK_BYTES);
+ ctx->h.bCnt = 0;
+ }
+ /*
+ * now process any remaining full blocks, directly from input
+ * message data
+ */
+ if (msgByteCnt > SKEIN_512_BLOCK_BYTES) {
+ /* number of full blocks to process */
+ n = (msgByteCnt - 1) / SKEIN_512_BLOCK_BYTES;
+ Skein_512_Process_Block(ctx, msg, n,
+ SKEIN_512_BLOCK_BYTES);
+ msgByteCnt -= n * SKEIN_512_BLOCK_BYTES;
+ msg += n * SKEIN_512_BLOCK_BYTES;
+ }
+ Skein_assert(ctx->h.bCnt == 0);
+ }
+
+ /* copy any remaining source message data bytes into b[] */
+ if (msgByteCnt) {
+ Skein_assert(msgByteCnt + ctx->h.bCnt <= SKEIN_512_BLOCK_BYTES);
+ bcopy(msg, &ctx->b[ctx->h.bCnt], msgByteCnt);
+ ctx->h.bCnt += msgByteCnt;
+ }
+
+ return (SKEIN_SUCCESS);
+}
+
+/* finalize the hash computation and output the result */
+int
+Skein_512_Final(Skein_512_Ctxt_t *ctx, uint8_t *hashVal)
+{
+ size_t i, n, byteCnt;
+ uint64_t X[SKEIN_512_STATE_WORDS];
+
+ /* catch uninitialized context */
+ Skein_Assert(ctx->h.bCnt <= SKEIN_512_BLOCK_BYTES, SKEIN_FAIL);
+
+ ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL; /* tag as the final block */
+ /* zero pad b[] if necessary */
+ if (ctx->h.bCnt < SKEIN_512_BLOCK_BYTES)
+ bzero(&ctx->b[ctx->h.bCnt],
+ SKEIN_512_BLOCK_BYTES - ctx->h.bCnt);
+
+ /* process the final block */
+ Skein_512_Process_Block(ctx, ctx->b, 1, ctx->h.bCnt);
+
+ /* now output the result */
+ /* total number of output bytes */
+ byteCnt = (ctx->h.hashBitLen + 7) >> 3;
+
+ /* run Threefish in "counter mode" to generate output */
+ /* zero out b[], so it can hold the counter */
+ bzero(ctx->b, sizeof (ctx->b));
+ /* keep a local copy of counter mode "key" */
+ bcopy(ctx->X, X, sizeof (X));
+ for (i = 0; i * SKEIN_512_BLOCK_BYTES < byteCnt; i++) {
+ /* build the counter block */
+ uint64_t tmp = Skein_Swap64((uint64_t)i);
+ bcopy(&tmp, ctx->b, sizeof (tmp));
+ Skein_Start_New_Type(ctx, OUT_FINAL);
+ /* run "counter mode" */
+ Skein_512_Process_Block(ctx, ctx->b, 1, sizeof (uint64_t));
+ /* number of output bytes left to go */
+ n = byteCnt - i * SKEIN_512_BLOCK_BYTES;
+ if (n >= SKEIN_512_BLOCK_BYTES)
+ n = SKEIN_512_BLOCK_BYTES;
+ Skein_Put64_LSB_First(hashVal + i * SKEIN_512_BLOCK_BYTES,
+ ctx->X, n); /* "output" the ctr mode bytes */
+ Skein_Show_Final(512, &ctx->h, n,
+ hashVal + i * SKEIN_512_BLOCK_BYTES);
+ /* restore the counter mode key for next time */
+ bcopy(X, ctx->X, sizeof (X));
+ }
+ return (SKEIN_SUCCESS);
+}
+
+/* 1024-bit Skein */
+
+/* init the context for a straight hashing operation */
+int
+Skein1024_Init(Skein1024_Ctxt_t *ctx, size_t hashBitLen)
+{
+ union {
+ uint8_t b[SKEIN1024_STATE_BYTES];
+ uint64_t w[SKEIN1024_STATE_WORDS];
+ } cfg; /* config block */
+
+ Skein_Assert(hashBitLen > 0, SKEIN_BAD_HASHLEN);
+ ctx->h.hashBitLen = hashBitLen; /* output hash bit count */
+
+ switch (hashBitLen) { /* use pre-computed values, where available */
+#ifndef SKEIN_NO_PRECOMP
+ case 512:
+ bcopy(SKEIN1024_IV_512, ctx->X, sizeof (ctx->X));
+ break;
+ case 384:
+ bcopy(SKEIN1024_IV_384, ctx->X, sizeof (ctx->X));
+ break;
+ case 1024:
+ bcopy(SKEIN1024_IV_1024, ctx->X, sizeof (ctx->X));
+ break;
+#endif
+ default:
+ /* here if there is no precomputed IV value available */
+ /*
+ * build/process the config block, type == CONFIG (could be
+ * precomputed)
+ */
+ /* set tweaks: T0=0; T1=CFG | FINAL */
+ Skein_Start_New_Type(ctx, CFG_FINAL);
+
+ /* set the schema, version */
+ cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER);
+ /* hash result length in bits */
+ cfg.w[1] = Skein_Swap64(hashBitLen);
+ cfg.w[2] = Skein_Swap64(SKEIN_CFG_TREE_INFO_SEQUENTIAL);
+ /* zero pad config block */
+ bzero(&cfg.w[3], sizeof (cfg) - 3 * sizeof (cfg.w[0]));
+
+ /* compute the initial chaining values from config block */
+ /* zero the chaining variables */
+ bzero(ctx->X, sizeof (ctx->X));
+ Skein1024_Process_Block(ctx, cfg.b, 1, SKEIN_CFG_STR_LEN);
+ break;
+ }
+
+ /*
+ * The chaining vars ctx->X are now initialized for the given
+ * hashBitLen. Set up to process the data message portion of the hash
+ * (default)
+ */
+ Skein_Start_New_Type(ctx, MSG); /* T0=0, T1= MSG type */
+
+ return (SKEIN_SUCCESS);
+}
+
+/* init the context for a MAC and/or tree hash operation */
+/*
+ * [identical to Skein1024_Init() when keyBytes == 0 &&
+ * treeInfo == SKEIN_CFG_TREE_INFO_SEQUENTIAL]
+ */
+int
+Skein1024_InitExt(Skein1024_Ctxt_t *ctx, size_t hashBitLen, uint64_t treeInfo,
+ const uint8_t *key, size_t keyBytes)
+{
+ union {
+ uint8_t b[SKEIN1024_STATE_BYTES];
+ uint64_t w[SKEIN1024_STATE_WORDS];
+ } cfg; /* config block */
+
+ Skein_Assert(hashBitLen > 0, SKEIN_BAD_HASHLEN);
+ Skein_Assert(keyBytes == 0 || key != NULL, SKEIN_FAIL);
+
+ /* compute the initial chaining values ctx->X[], based on key */
+ if (keyBytes == 0) { /* is there a key? */
+ /* no key: use all zeroes as key for config block */
+ bzero(ctx->X, sizeof (ctx->X));
+ } else { /* here to pre-process a key */
+ Skein_assert(sizeof (cfg.b) >= sizeof (ctx->X));
+ /* do a mini-Init right here */
+ /* set output hash bit count = state size */
+ ctx->h.hashBitLen = 8 * sizeof (ctx->X);
+ /* set tweaks: T0 = 0; T1 = KEY type */
+ Skein_Start_New_Type(ctx, KEY);
+ /* zero the initial chaining variables */
+ bzero(ctx->X, sizeof (ctx->X));
+ (void) Skein1024_Update(ctx, key, keyBytes); /* hash the key */
+ /* put result into cfg.b[] */
+ (void) Skein1024_Final_Pad(ctx, cfg.b);
+ /* copy over into ctx->X[] */
+ bcopy(cfg.b, ctx->X, sizeof (cfg.b));
+#if SKEIN_NEED_SWAP
+ {
+ uint_t i;
+ /* convert key bytes to context words */
+ for (i = 0; i < SKEIN1024_STATE_WORDS; i++)
+ ctx->X[i] = Skein_Swap64(ctx->X[i]);
+ }
+#endif
+ }
+ /*
+ * build/process the config block, type == CONFIG (could be
+ * precomputed for each key)
+ */
+ ctx->h.hashBitLen = hashBitLen; /* output hash bit count */
+ Skein_Start_New_Type(ctx, CFG_FINAL);
+
+ bzero(&cfg.w, sizeof (cfg.w)); /* pre-pad cfg.w[] with zeroes */
+ cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER);
+ /* hash result length in bits */
+ cfg.w[1] = Skein_Swap64(hashBitLen);
+ /* tree hash config info (or SKEIN_CFG_TREE_INFO_SEQUENTIAL) */
+ cfg.w[2] = Skein_Swap64(treeInfo);
+
+ Skein_Show_Key(1024, &ctx->h, key, keyBytes);
+
+ /* compute the initial chaining values from config block */
+ Skein1024_Process_Block(ctx, cfg.b, 1, SKEIN_CFG_STR_LEN);
+
+ /* The chaining vars ctx->X are now initialized */
+ /* Set up to process the data message portion of the hash (default) */
+ ctx->h.bCnt = 0; /* buffer b[] starts out empty */
+ Skein_Start_New_Type(ctx, MSG);
+
+ return (SKEIN_SUCCESS);
+}
+
+/* process the input bytes */
+int
+Skein1024_Update(Skein1024_Ctxt_t *ctx, const uint8_t *msg, size_t msgByteCnt)
+{
+ size_t n;
+
+ /* catch uninitialized context */
+ Skein_Assert(ctx->h.bCnt <= SKEIN1024_BLOCK_BYTES, SKEIN_FAIL);
+
+ /* process full blocks, if any */
+ if (msgByteCnt + ctx->h.bCnt > SKEIN1024_BLOCK_BYTES) {
+ /* finish up any buffered message data */
+ if (ctx->h.bCnt) {
+ /* # bytes free in buffer b[] */
+ n = SKEIN1024_BLOCK_BYTES - ctx->h.bCnt;
+ if (n) {
+ /* check on our logic here */
+ Skein_assert(n < msgByteCnt);
+ bcopy(msg, &ctx->b[ctx->h.bCnt], n);
+ msgByteCnt -= n;
+ msg += n;
+ ctx->h.bCnt += n;
+ }
+ Skein_assert(ctx->h.bCnt == SKEIN1024_BLOCK_BYTES);
+ Skein1024_Process_Block(ctx, ctx->b, 1,
+ SKEIN1024_BLOCK_BYTES);
+ ctx->h.bCnt = 0;
+ }
+ /*
+ * now process any remaining full blocks, directly from
+ * input message data
+ */
+ if (msgByteCnt > SKEIN1024_BLOCK_BYTES) {
+ /* number of full blocks to process */
+ n = (msgByteCnt - 1) / SKEIN1024_BLOCK_BYTES;
+ Skein1024_Process_Block(ctx, msg, n,
+ SKEIN1024_BLOCK_BYTES);
+ msgByteCnt -= n * SKEIN1024_BLOCK_BYTES;
+ msg += n * SKEIN1024_BLOCK_BYTES;
+ }
+ Skein_assert(ctx->h.bCnt == 0);
+ }
+
+ /* copy any remaining source message data bytes into b[] */
+ if (msgByteCnt) {
+ Skein_assert(msgByteCnt + ctx->h.bCnt <= SKEIN1024_BLOCK_BYTES);
+ bcopy(msg, &ctx->b[ctx->h.bCnt], msgByteCnt);
+ ctx->h.bCnt += msgByteCnt;
+ }
+
+ return (SKEIN_SUCCESS);
+}
+
+/* finalize the hash computation and output the result */
+int
+Skein1024_Final(Skein1024_Ctxt_t *ctx, uint8_t *hashVal)
+{
+ size_t i, n, byteCnt;
+ uint64_t X[SKEIN1024_STATE_WORDS];
+
+ /* catch uninitialized context */
+ Skein_Assert(ctx->h.bCnt <= SKEIN1024_BLOCK_BYTES, SKEIN_FAIL);
+
+ ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL; /* tag as the final block */
+ /* zero pad b[] if necessary */
+ if (ctx->h.bCnt < SKEIN1024_BLOCK_BYTES)
+ bzero(&ctx->b[ctx->h.bCnt],
+ SKEIN1024_BLOCK_BYTES - ctx->h.bCnt);
+
+ /* process the final block */
+ Skein1024_Process_Block(ctx, ctx->b, 1, ctx->h.bCnt);
+
+ /* now output the result */
+ /* total number of output bytes */
+ byteCnt = (ctx->h.hashBitLen + 7) >> 3;
+
+ /* run Threefish in "counter mode" to generate output */
+ /* zero out b[], so it can hold the counter */
+ bzero(ctx->b, sizeof (ctx->b));
+ /* keep a local copy of counter mode "key" */
+ bcopy(ctx->X, X, sizeof (X));
+ for (i = 0; i * SKEIN1024_BLOCK_BYTES < byteCnt; i++) {
+ /* build the counter block */
+ uint64_t tmp = Skein_Swap64((uint64_t)i);
+ bcopy(&tmp, ctx->b, sizeof (tmp));
+ Skein_Start_New_Type(ctx, OUT_FINAL);
+ /* run "counter mode" */
+ Skein1024_Process_Block(ctx, ctx->b, 1, sizeof (uint64_t));
+ /* number of output bytes left to go */
+ n = byteCnt - i * SKEIN1024_BLOCK_BYTES;
+ if (n >= SKEIN1024_BLOCK_BYTES)
+ n = SKEIN1024_BLOCK_BYTES;
+ Skein_Put64_LSB_First(hashVal + i * SKEIN1024_BLOCK_BYTES,
+ ctx->X, n); /* "output" the ctr mode bytes */
+ Skein_Show_Final(1024, &ctx->h, n,
+ hashVal + i * SKEIN1024_BLOCK_BYTES);
+ /* restore the counter mode key for next time */
+ bcopy(X, ctx->X, sizeof (X));
+ }
+ return (SKEIN_SUCCESS);
+}
+
+/* Functions to support MAC/tree hashing */
+/* (this code is identical for Optimized and Reference versions) */
+
+/* finalize the hash computation and output the block, no OUTPUT stage */
+int
+Skein_256_Final_Pad(Skein_256_Ctxt_t *ctx, uint8_t *hashVal)
+{
+ /* catch uninitialized context */
+ Skein_Assert(ctx->h.bCnt <= SKEIN_256_BLOCK_BYTES, SKEIN_FAIL);
+
+ ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL; /* tag as the final block */
+ /* zero pad b[] if necessary */
+ if (ctx->h.bCnt < SKEIN_256_BLOCK_BYTES)
+ bzero(&ctx->b[ctx->h.bCnt],
+ SKEIN_256_BLOCK_BYTES - ctx->h.bCnt);
+ /* process the final block */
+ Skein_256_Process_Block(ctx, ctx->b, 1, ctx->h.bCnt);
+
+ /* "output" the state bytes */
+ Skein_Put64_LSB_First(hashVal, ctx->X, SKEIN_256_BLOCK_BYTES);
+
+ return (SKEIN_SUCCESS);
+}
+
+/* finalize the hash computation and output the block, no OUTPUT stage */
+int
+Skein_512_Final_Pad(Skein_512_Ctxt_t *ctx, uint8_t *hashVal)
+{
+ /* catch uninitialized context */
+ Skein_Assert(ctx->h.bCnt <= SKEIN_512_BLOCK_BYTES, SKEIN_FAIL);
+
+ ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL; /* tag as the final block */
+ /* zero pad b[] if necessary */
+ if (ctx->h.bCnt < SKEIN_512_BLOCK_BYTES)
+ bzero(&ctx->b[ctx->h.bCnt],
+ SKEIN_512_BLOCK_BYTES - ctx->h.bCnt);
+ /* process the final block */
+ Skein_512_Process_Block(ctx, ctx->b, 1, ctx->h.bCnt);
+
+ /* "output" the state bytes */
+ Skein_Put64_LSB_First(hashVal, ctx->X, SKEIN_512_BLOCK_BYTES);
+
+ return (SKEIN_SUCCESS);
+}
+
+/* finalize the hash computation and output the block, no OUTPUT stage */
+int
+Skein1024_Final_Pad(Skein1024_Ctxt_t *ctx, uint8_t *hashVal)
+{
+ /* catch uninitialized context */
+ Skein_Assert(ctx->h.bCnt <= SKEIN1024_BLOCK_BYTES, SKEIN_FAIL);
+
+ /* tag as the final block */
+ ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL;
+ /* zero pad b[] if necessary */
+ if (ctx->h.bCnt < SKEIN1024_BLOCK_BYTES)
+ bzero(&ctx->b[ctx->h.bCnt],
+ SKEIN1024_BLOCK_BYTES - ctx->h.bCnt);
+ /* process the final block */
+ Skein1024_Process_Block(ctx, ctx->b, 1, ctx->h.bCnt);
+
+ /* "output" the state bytes */
+ Skein_Put64_LSB_First(hashVal, ctx->X, SKEIN1024_BLOCK_BYTES);
+
+ return (SKEIN_SUCCESS);
+}
+
+#if SKEIN_TREE_HASH
+/* just do the OUTPUT stage */
+int
+Skein_256_Output(Skein_256_Ctxt_t *ctx, uint8_t *hashVal)
+{
+ size_t i, n, byteCnt;
+ uint64_t X[SKEIN_256_STATE_WORDS];
+
+ /* catch uninitialized context */
+ Skein_Assert(ctx->h.bCnt <= SKEIN_256_BLOCK_BYTES, SKEIN_FAIL);
+
+ /* now output the result */
+ /* total number of output bytes */
+ byteCnt = (ctx->h.hashBitLen + 7) >> 3;
+
+ /* run Threefish in "counter mode" to generate output */
+ /* zero out b[], so it can hold the counter */
+ bzero(ctx->b, sizeof (ctx->b));
+ /* keep a local copy of counter mode "key" */
+ bcopy(ctx->X, X, sizeof (X));
+ for (i = 0; i * SKEIN_256_BLOCK_BYTES < byteCnt; i++) {
+ /* build the counter block */
+ uint64_t tmp = Skein_Swap64((uint64_t)i);
+ bcopy(&tmp, ctx->b, sizeof (tmp));
+ Skein_Start_New_Type(ctx, OUT_FINAL);
+ /* run "counter mode" */
+ Skein_256_Process_Block(ctx, ctx->b, 1, sizeof (uint64_t));
+ /* number of output bytes left to go */
+ n = byteCnt - i * SKEIN_256_BLOCK_BYTES;
+ if (n >= SKEIN_256_BLOCK_BYTES)
+ n = SKEIN_256_BLOCK_BYTES;
+ Skein_Put64_LSB_First(hashVal + i * SKEIN_256_BLOCK_BYTES,
+ ctx->X, n); /* "output" the ctr mode bytes */
+ Skein_Show_Final(256, &ctx->h, n,
+ hashVal + i * SKEIN_256_BLOCK_BYTES);
+ /* restore the counter mode key for next time */
+ bcopy(X, ctx->X, sizeof (X));
+ }
+ return (SKEIN_SUCCESS);
+}
+
+/* just do the OUTPUT stage */
+int
+Skein_512_Output(Skein_512_Ctxt_t *ctx, uint8_t *hashVal)
+{
+ size_t i, n, byteCnt;
+ uint64_t X[SKEIN_512_STATE_WORDS];
+
+ /* catch uninitialized context */
+ Skein_Assert(ctx->h.bCnt <= SKEIN_512_BLOCK_BYTES, SKEIN_FAIL);
+
+ /* now output the result */
+ /* total number of output bytes */
+ byteCnt = (ctx->h.hashBitLen + 7) >> 3;
+
+ /* run Threefish in "counter mode" to generate output */
+ /* zero out b[], so it can hold the counter */
+ bzero(ctx->b, sizeof (ctx->b));
+ /* keep a local copy of counter mode "key" */
+ bcopy(ctx->X, X, sizeof (X));
+ for (i = 0; i * SKEIN_512_BLOCK_BYTES < byteCnt; i++) {
+ /* build the counter block */
+ uint64_t tmp = Skein_Swap64((uint64_t)i);
+ bcopy(&tmp, ctx->b, sizeof (tmp));
+ Skein_Start_New_Type(ctx, OUT_FINAL);
+ /* run "counter mode" */
+ Skein_512_Process_Block(ctx, ctx->b, 1, sizeof (uint64_t));
+ /* number of output bytes left to go */
+ n = byteCnt - i * SKEIN_512_BLOCK_BYTES;
+ if (n >= SKEIN_512_BLOCK_BYTES)
+ n = SKEIN_512_BLOCK_BYTES;
+ Skein_Put64_LSB_First(hashVal + i * SKEIN_512_BLOCK_BYTES,
+ ctx->X, n); /* "output" the ctr mode bytes */
+ Skein_Show_Final(256, &ctx->h, n,
+ hashVal + i * SKEIN_512_BLOCK_BYTES);
+ /* restore the counter mode key for next time */
+ bcopy(X, ctx->X, sizeof (X));
+ }
+ return (SKEIN_SUCCESS);
+}
+
+/* just do the OUTPUT stage */
+int
+Skein1024_Output(Skein1024_Ctxt_t *ctx, uint8_t *hashVal)
+{
+ size_t i, n, byteCnt;
+ uint64_t X[SKEIN1024_STATE_WORDS];
+
+ /* catch uninitialized context */
+ Skein_Assert(ctx->h.bCnt <= SKEIN1024_BLOCK_BYTES, SKEIN_FAIL);
+
+ /* now output the result */
+ /* total number of output bytes */
+ byteCnt = (ctx->h.hashBitLen + 7) >> 3;
+
+ /* run Threefish in "counter mode" to generate output */
+ /* zero out b[], so it can hold the counter */
+ bzero(ctx->b, sizeof (ctx->b));
+ /* keep a local copy of counter mode "key" */
+ bcopy(ctx->X, X, sizeof (X));
+ for (i = 0; i * SKEIN1024_BLOCK_BYTES < byteCnt; i++) {
+ /* build the counter block */
+ uint64_t tmp = Skein_Swap64((uint64_t)i);
+ bcopy(&tmp, ctx->b, sizeof (tmp));
+ Skein_Start_New_Type(ctx, OUT_FINAL);
+ /* run "counter mode" */
+ Skein1024_Process_Block(ctx, ctx->b, 1, sizeof (uint64_t));
+ /* number of output bytes left to go */
+ n = byteCnt - i * SKEIN1024_BLOCK_BYTES;
+ if (n >= SKEIN1024_BLOCK_BYTES)
+ n = SKEIN1024_BLOCK_BYTES;
+ Skein_Put64_LSB_First(hashVal + i * SKEIN1024_BLOCK_BYTES,
+ ctx->X, n); /* "output" the ctr mode bytes */
+ Skein_Show_Final(256, &ctx->h, n,
+ hashVal + i * SKEIN1024_BLOCK_BYTES);
+ /* restore the counter mode key for next time */
+ bcopy(X, ctx->X, sizeof (X));
+ }
+ return (SKEIN_SUCCESS);
+}
+#endif
+
+#ifdef _KERNEL
+EXPORT_SYMBOL(Skein_512_Init);
+EXPORT_SYMBOL(Skein_512_InitExt);
+EXPORT_SYMBOL(Skein_512_Update);
+EXPORT_SYMBOL(Skein_512_Final);
+#endif
diff --git a/module/icp/algs/skein/skein_block.c b/module/icp/algs/skein/skein_block.c
new file mode 100644
index 000000000..d2e811963
--- /dev/null
+++ b/module/icp/algs/skein/skein_block.c
@@ -0,0 +1,793 @@
+/*
+ * Implementation of the Skein block functions.
+ * Source code author: Doug Whiting, 2008.
+ * This algorithm and source code is released to the public domain.
+ * Compile-time switches:
+ * SKEIN_USE_ASM -- set bits (256/512/1024) to select which
+ * versions use ASM code for block processing
+ * [default: use C for all block sizes]
+ */
+/* Copyright 2013 Doug Whiting. This code is released to the public domain. */
+
+#include <sys/skein.h>
+#include "skein_impl.h"
+#include <sys/isa_defs.h> /* for _ILP32 */
+
+#ifndef SKEIN_USE_ASM
+#define SKEIN_USE_ASM (0) /* default is all C code (no ASM) */
+#endif
+
+#ifndef SKEIN_LOOP
+/*
+ * The low-level checksum routines use a lot of stack space. On systems where
+ * small stacks frame are enforced (like 32-bit kernel builds), do not unroll
+ * checksum calculations to save stack space.
+ *
+ * Even with no loops unrolled, we still can exceed the 1k stack frame limit
+ * in Skein1024_Process_Block() (it hits 1272 bytes on ARM32). We can
+ * safely ignore it though, since that the checksum functions will be called
+ * from a worker thread that won't be using much stack. That's why we have
+ * the #pragma here to ignore the warning.
+ */
+#if defined(_ILP32) || defined(__powerpc) /* Assume small stack */
+#pragma GCC diagnostic ignored "-Wframe-larger-than="
+/*
+ * We're running on 32-bit, don't unroll loops to save stack frame space
+ *
+ * Due to the ways the calculations on SKEIN_LOOP are done in
+ * Skein_*_Process_Block(), a value of 111 disables unrolling loops
+ * in any of those functions.
+ */
+#define SKEIN_LOOP 111
+#else
+/* We're compiling with large stacks */
+#define SKEIN_LOOP 001 /* default: unroll 256 and 512, but not 1024 */
+#endif
+#endif
+
+/* some useful definitions for code here */
+#define BLK_BITS (WCNT*64)
+#define KW_TWK_BASE (0)
+#define KW_KEY_BASE (3)
+#define ks (kw + KW_KEY_BASE)
+#define ts (kw + KW_TWK_BASE)
+
+/* no debugging in Illumos version */
+#define DebugSaveTweak(ctx)
+
+/* Skein_256 */
+#if !(SKEIN_USE_ASM & 256)
+
+void
+Skein_256_Process_Block(Skein_256_Ctxt_t *ctx, const uint8_t *blkPtr,
+ size_t blkCnt, size_t byteCntAdd)
+{ /* do it in C */
+ enum {
+ WCNT = SKEIN_256_STATE_WORDS
+ };
+#undef RCNT
+#define RCNT (SKEIN_256_ROUNDS_TOTAL / 8)
+
+#ifdef SKEIN_LOOP /* configure how much to unroll the loop */
+#define SKEIN_UNROLL_256 (((SKEIN_LOOP) / 100) % 10)
+#else
+#define SKEIN_UNROLL_256 (0)
+#endif
+
+#if SKEIN_UNROLL_256
+#if (RCNT % SKEIN_UNROLL_256)
+#error "Invalid SKEIN_UNROLL_256" /* sanity check on unroll count */
+#endif
+ size_t r;
+ /* key schedule words : chaining vars + tweak + "rotation" */
+ uint64_t kw[WCNT + 4 + RCNT * 2];
+#else
+ uint64_t kw[WCNT + 4]; /* key schedule words : chaining vars + tweak */
+#endif
+ /* local copy of context vars, for speed */
+ uint64_t X0, X1, X2, X3;
+ uint64_t w[WCNT]; /* local copy of input block */
+#ifdef SKEIN_DEBUG
+ /* use for debugging (help compiler put Xn in registers) */
+ const uint64_t *Xptr[4];
+ Xptr[0] = &X0;
+ Xptr[1] = &X1;
+ Xptr[2] = &X2;
+ Xptr[3] = &X3;
+#endif
+ Skein_assert(blkCnt != 0); /* never call with blkCnt == 0! */
+ ts[0] = ctx->h.T[0];
+ ts[1] = ctx->h.T[1];
+ do {
+ /*
+ * this implementation only supports 2**64 input bytes
+ * (no carry out here)
+ */
+ ts[0] += byteCntAdd; /* update processed length */
+
+ /* precompute the key schedule for this block */
+ ks[0] = ctx->X[0];
+ ks[1] = ctx->X[1];
+ ks[2] = ctx->X[2];
+ ks[3] = ctx->X[3];
+ ks[4] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^ SKEIN_KS_PARITY;
+
+ ts[2] = ts[0] ^ ts[1];
+
+ /* get input block in little-endian format */
+ Skein_Get64_LSB_First(w, blkPtr, WCNT);
+ DebugSaveTweak(ctx);
+ Skein_Show_Block(BLK_BITS, &ctx->h, ctx->X, blkPtr, w, ks, ts);
+
+ X0 = w[0] + ks[0]; /* do the first full key injection */
+ X1 = w[1] + ks[1] + ts[0];
+ X2 = w[2] + ks[2] + ts[1];
+ X3 = w[3] + ks[3];
+
+ Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INITIAL,
+ Xptr); /* show starting state values */
+
+ blkPtr += SKEIN_256_BLOCK_BYTES;
+
+ /* run the rounds */
+
+#define Round256(p0, p1, p2, p3, ROT, rNum) \
+ X##p0 += X##p1; X##p1 = RotL_64(X##p1, ROT##_0); X##p1 ^= X##p0; \
+ X##p2 += X##p3; X##p3 = RotL_64(X##p3, ROT##_1); X##p3 ^= X##p2; \
+
+#if SKEIN_UNROLL_256 == 0
+#define R256(p0, p1, p2, p3, ROT, rNum) /* fully unrolled */ \
+ Round256(p0, p1, p2, p3, ROT, rNum) \
+ Skein_Show_R_Ptr(BLK_BITS, &ctx->h, rNum, Xptr);
+
+#define I256(R) \
+ X0 += ks[((R) + 1) % 5]; /* inject the key schedule value */ \
+ X1 += ks[((R) + 2) % 5] + ts[((R) + 1) % 3]; \
+ X2 += ks[((R) + 3) % 5] + ts[((R) + 2) % 3]; \
+ X3 += ks[((R) + 4) % 5] + (R) + 1; \
+ Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr);
+#else /* looping version */
+#define R256(p0, p1, p2, p3, ROT, rNum) \
+ Round256(p0, p1, p2, p3, ROT, rNum) \
+ Skein_Show_R_Ptr(BLK_BITS, &ctx->h, 4 * (r - 1) + rNum, Xptr);
+
+#define I256(R) \
+ X0 += ks[r + (R) + 0]; /* inject the key schedule value */ \
+ X1 += ks[r + (R) + 1] + ts[r + (R) + 0]; \
+ X2 += ks[r + (R) + 2] + ts[r + (R) + 1]; \
+ X3 += ks[r + (R) + 3] + r + (R); \
+ ks[r + (R) + 4] = ks[r + (R) - 1]; /* rotate key schedule */ \
+ ts[r + (R) + 2] = ts[r + (R) - 1]; \
+ Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr);
+
+ /* loop thru it */
+ for (r = 1; r < 2 * RCNT; r += 2 * SKEIN_UNROLL_256)
+#endif
+ {
+#define R256_8_rounds(R) \
+ R256(0, 1, 2, 3, R_256_0, 8 * (R) + 1); \
+ R256(0, 3, 2, 1, R_256_1, 8 * (R) + 2); \
+ R256(0, 1, 2, 3, R_256_2, 8 * (R) + 3); \
+ R256(0, 3, 2, 1, R_256_3, 8 * (R) + 4); \
+ I256(2 * (R)); \
+ R256(0, 1, 2, 3, R_256_4, 8 * (R) + 5); \
+ R256(0, 3, 2, 1, R_256_5, 8 * (R) + 6); \
+ R256(0, 1, 2, 3, R_256_6, 8 * (R) + 7); \
+ R256(0, 3, 2, 1, R_256_7, 8 * (R) + 8); \
+ I256(2 * (R) + 1);
+
+ R256_8_rounds(0);
+
+#define R256_Unroll_R(NN) \
+ ((SKEIN_UNROLL_256 == 0 && SKEIN_256_ROUNDS_TOTAL / 8 > (NN)) || \
+ (SKEIN_UNROLL_256 > (NN)))
+
+#if R256_Unroll_R(1)
+ R256_8_rounds(1);
+#endif
+#if R256_Unroll_R(2)
+ R256_8_rounds(2);
+#endif
+#if R256_Unroll_R(3)
+ R256_8_rounds(3);
+#endif
+#if R256_Unroll_R(4)
+ R256_8_rounds(4);
+#endif
+#if R256_Unroll_R(5)
+ R256_8_rounds(5);
+#endif
+#if R256_Unroll_R(6)
+ R256_8_rounds(6);
+#endif
+#if R256_Unroll_R(7)
+ R256_8_rounds(7);
+#endif
+#if R256_Unroll_R(8)
+ R256_8_rounds(8);
+#endif
+#if R256_Unroll_R(9)
+ R256_8_rounds(9);
+#endif
+#if R256_Unroll_R(10)
+ R256_8_rounds(10);
+#endif
+#if R256_Unroll_R(11)
+ R256_8_rounds(11);
+#endif
+#if R256_Unroll_R(12)
+ R256_8_rounds(12);
+#endif
+#if R256_Unroll_R(13)
+ R256_8_rounds(13);
+#endif
+#if R256_Unroll_R(14)
+ R256_8_rounds(14);
+#endif
+#if (SKEIN_UNROLL_256 > 14)
+#error "need more unrolling in Skein_256_Process_Block"
+#endif
+ }
+ /*
+ * do the final "feedforward" xor, update context chaining vars
+ */
+ ctx->X[0] = X0 ^ w[0];
+ ctx->X[1] = X1 ^ w[1];
+ ctx->X[2] = X2 ^ w[2];
+ ctx->X[3] = X3 ^ w[3];
+
+ Skein_Show_Round(BLK_BITS, &ctx->h, SKEIN_RND_FEED_FWD, ctx->X);
+
+ ts[1] &= ~SKEIN_T1_FLAG_FIRST;
+ }
+ while (--blkCnt);
+ ctx->h.T[0] = ts[0];
+ ctx->h.T[1] = ts[1];
+}
+
+#if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
+size_t
+Skein_256_Process_Block_CodeSize(void)
+{
+ return ((uint8_t *)Skein_256_Process_Block_CodeSize) -
+ ((uint8_t *)Skein_256_Process_Block);
+}
+
+uint_t
+Skein_256_Unroll_Cnt(void)
+{
+ return (SKEIN_UNROLL_256);
+}
+#endif
+#endif
+
+/* Skein_512 */
+#if !(SKEIN_USE_ASM & 512)
+void
+Skein_512_Process_Block(Skein_512_Ctxt_t *ctx, const uint8_t *blkPtr,
+ size_t blkCnt, size_t byteCntAdd)
+{ /* do it in C */
+ enum {
+ WCNT = SKEIN_512_STATE_WORDS
+ };
+#undef RCNT
+#define RCNT (SKEIN_512_ROUNDS_TOTAL / 8)
+
+#ifdef SKEIN_LOOP /* configure how much to unroll the loop */
+#define SKEIN_UNROLL_512 (((SKEIN_LOOP) / 10) % 10)
+#else
+#define SKEIN_UNROLL_512 (0)
+#endif
+
+#if SKEIN_UNROLL_512
+#if (RCNT % SKEIN_UNROLL_512)
+#error "Invalid SKEIN_UNROLL_512" /* sanity check on unroll count */
+#endif
+ size_t r;
+ /* key schedule words : chaining vars + tweak + "rotation" */
+ uint64_t kw[WCNT + 4 + RCNT * 2];
+#else
+ uint64_t kw[WCNT + 4]; /* key schedule words : chaining vars + tweak */
+#endif
+ /* local copy of vars, for speed */
+ uint64_t X0, X1, X2, X3, X4, X5, X6, X7;
+ uint64_t w[WCNT]; /* local copy of input block */
+#ifdef SKEIN_DEBUG
+ /* use for debugging (help compiler put Xn in registers) */
+ const uint64_t *Xptr[8];
+ Xptr[0] = &X0;
+ Xptr[1] = &X1;
+ Xptr[2] = &X2;
+ Xptr[3] = &X3;
+ Xptr[4] = &X4;
+ Xptr[5] = &X5;
+ Xptr[6] = &X6;
+ Xptr[7] = &X7;
+#endif
+
+ Skein_assert(blkCnt != 0); /* never call with blkCnt == 0! */
+ ts[0] = ctx->h.T[0];
+ ts[1] = ctx->h.T[1];
+ do {
+ /*
+ * this implementation only supports 2**64 input bytes
+ * (no carry out here)
+ */
+ ts[0] += byteCntAdd; /* update processed length */
+
+ /* precompute the key schedule for this block */
+ ks[0] = ctx->X[0];
+ ks[1] = ctx->X[1];
+ ks[2] = ctx->X[2];
+ ks[3] = ctx->X[3];
+ ks[4] = ctx->X[4];
+ ks[5] = ctx->X[5];
+ ks[6] = ctx->X[6];
+ ks[7] = ctx->X[7];
+ ks[8] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^
+ ks[4] ^ ks[5] ^ ks[6] ^ ks[7] ^ SKEIN_KS_PARITY;
+
+ ts[2] = ts[0] ^ ts[1];
+
+ /* get input block in little-endian format */
+ Skein_Get64_LSB_First(w, blkPtr, WCNT);
+ DebugSaveTweak(ctx);
+ Skein_Show_Block(BLK_BITS, &ctx->h, ctx->X, blkPtr, w, ks, ts);
+
+ X0 = w[0] + ks[0]; /* do the first full key injection */
+ X1 = w[1] + ks[1];
+ X2 = w[2] + ks[2];
+ X3 = w[3] + ks[3];
+ X4 = w[4] + ks[4];
+ X5 = w[5] + ks[5] + ts[0];
+ X6 = w[6] + ks[6] + ts[1];
+ X7 = w[7] + ks[7];
+
+ blkPtr += SKEIN_512_BLOCK_BYTES;
+
+ Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INITIAL,
+ Xptr);
+ /* run the rounds */
+#define Round512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, rNum) \
+ X##p0 += X##p1; X##p1 = RotL_64(X##p1, ROT##_0); X##p1 ^= X##p0;\
+ X##p2 += X##p3; X##p3 = RotL_64(X##p3, ROT##_1); X##p3 ^= X##p2;\
+ X##p4 += X##p5; X##p5 = RotL_64(X##p5, ROT##_2); X##p5 ^= X##p4;\
+ X##p6 += X##p7; X##p7 = RotL_64(X##p7, ROT##_3); X##p7 ^= X##p6;
+
+#if SKEIN_UNROLL_512 == 0
+#define R512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, rNum) /* unrolled */ \
+ Round512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, rNum) \
+ Skein_Show_R_Ptr(BLK_BITS, &ctx->h, rNum, Xptr);
+
+#define I512(R) \
+ X0 += ks[((R) + 1) % 9]; /* inject the key schedule value */\
+ X1 += ks[((R) + 2) % 9]; \
+ X2 += ks[((R) + 3) % 9]; \
+ X3 += ks[((R) + 4) % 9]; \
+ X4 += ks[((R) + 5) % 9]; \
+ X5 += ks[((R) + 6) % 9] + ts[((R) + 1) % 3]; \
+ X6 += ks[((R) + 7) % 9] + ts[((R) + 2) % 3]; \
+ X7 += ks[((R) + 8) % 9] + (R) + 1; \
+ Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr);
+#else /* looping version */
+#define R512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, rNum) \
+ Round512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, rNum) \
+ Skein_Show_R_Ptr(BLK_BITS, &ctx->h, 4 * (r - 1) + rNum, Xptr);
+
+#define I512(R) \
+ X0 += ks[r + (R) + 0]; /* inject the key schedule value */ \
+ X1 += ks[r + (R) + 1]; \
+ X2 += ks[r + (R) + 2]; \
+ X3 += ks[r + (R) + 3]; \
+ X4 += ks[r + (R) + 4]; \
+ X5 += ks[r + (R) + 5] + ts[r + (R) + 0]; \
+ X6 += ks[r + (R) + 6] + ts[r + (R) + 1]; \
+ X7 += ks[r + (R) + 7] + r + (R); \
+ ks[r + (R)+8] = ks[r + (R) - 1]; /* rotate key schedule */\
+ ts[r + (R)+2] = ts[r + (R) - 1]; \
+ Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr);
+
+ /* loop thru it */
+ for (r = 1; r < 2 * RCNT; r += 2 * SKEIN_UNROLL_512)
+#endif /* end of looped code definitions */
+ {
+#define R512_8_rounds(R) /* do 8 full rounds */ \
+ R512(0, 1, 2, 3, 4, 5, 6, 7, R_512_0, 8 * (R) + 1); \
+ R512(2, 1, 4, 7, 6, 5, 0, 3, R_512_1, 8 * (R) + 2); \
+ R512(4, 1, 6, 3, 0, 5, 2, 7, R_512_2, 8 * (R) + 3); \
+ R512(6, 1, 0, 7, 2, 5, 4, 3, R_512_3, 8 * (R) + 4); \
+ I512(2 * (R)); \
+ R512(0, 1, 2, 3, 4, 5, 6, 7, R_512_4, 8 * (R) + 5); \
+ R512(2, 1, 4, 7, 6, 5, 0, 3, R_512_5, 8 * (R) + 6); \
+ R512(4, 1, 6, 3, 0, 5, 2, 7, R_512_6, 8 * (R) + 7); \
+ R512(6, 1, 0, 7, 2, 5, 4, 3, R_512_7, 8 * (R) + 8); \
+ I512(2*(R) + 1); /* and key injection */
+
+ R512_8_rounds(0);
+
+#define R512_Unroll_R(NN) \
+ ((SKEIN_UNROLL_512 == 0 && SKEIN_512_ROUNDS_TOTAL / 8 > (NN)) || \
+ (SKEIN_UNROLL_512 > (NN)))
+
+#if R512_Unroll_R(1)
+ R512_8_rounds(1);
+#endif
+#if R512_Unroll_R(2)
+ R512_8_rounds(2);
+#endif
+#if R512_Unroll_R(3)
+ R512_8_rounds(3);
+#endif
+#if R512_Unroll_R(4)
+ R512_8_rounds(4);
+#endif
+#if R512_Unroll_R(5)
+ R512_8_rounds(5);
+#endif
+#if R512_Unroll_R(6)
+ R512_8_rounds(6);
+#endif
+#if R512_Unroll_R(7)
+ R512_8_rounds(7);
+#endif
+#if R512_Unroll_R(8)
+ R512_8_rounds(8);
+#endif
+#if R512_Unroll_R(9)
+ R512_8_rounds(9);
+#endif
+#if R512_Unroll_R(10)
+ R512_8_rounds(10);
+#endif
+#if R512_Unroll_R(11)
+ R512_8_rounds(11);
+#endif
+#if R512_Unroll_R(12)
+ R512_8_rounds(12);
+#endif
+#if R512_Unroll_R(13)
+ R512_8_rounds(13);
+#endif
+#if R512_Unroll_R(14)
+ R512_8_rounds(14);
+#endif
+#if (SKEIN_UNROLL_512 > 14)
+#error "need more unrolling in Skein_512_Process_Block"
+#endif
+ }
+
+ /*
+ * do the final "feedforward" xor, update context chaining vars
+ */
+ ctx->X[0] = X0 ^ w[0];
+ ctx->X[1] = X1 ^ w[1];
+ ctx->X[2] = X2 ^ w[2];
+ ctx->X[3] = X3 ^ w[3];
+ ctx->X[4] = X4 ^ w[4];
+ ctx->X[5] = X5 ^ w[5];
+ ctx->X[6] = X6 ^ w[6];
+ ctx->X[7] = X7 ^ w[7];
+ Skein_Show_Round(BLK_BITS, &ctx->h, SKEIN_RND_FEED_FWD, ctx->X);
+
+ ts[1] &= ~SKEIN_T1_FLAG_FIRST;
+ }
+ while (--blkCnt);
+ ctx->h.T[0] = ts[0];
+ ctx->h.T[1] = ts[1];
+}
+
+#if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
+size_t
+Skein_512_Process_Block_CodeSize(void)
+{
+ return ((uint8_t *)Skein_512_Process_Block_CodeSize) -
+ ((uint8_t *)Skein_512_Process_Block);
+}
+
+uint_t
+Skein_512_Unroll_Cnt(void)
+{
+ return (SKEIN_UNROLL_512);
+}
+#endif
+#endif
+
+/* Skein1024 */
+#if !(SKEIN_USE_ASM & 1024)
+void
+Skein1024_Process_Block(Skein1024_Ctxt_t *ctx, const uint8_t *blkPtr,
+ size_t blkCnt, size_t byteCntAdd)
+{
+ /* do it in C, always looping (unrolled is bigger AND slower!) */
+ enum {
+ WCNT = SKEIN1024_STATE_WORDS
+ };
+#undef RCNT
+#define RCNT (SKEIN1024_ROUNDS_TOTAL/8)
+
+#ifdef SKEIN_LOOP /* configure how much to unroll the loop */
+#define SKEIN_UNROLL_1024 ((SKEIN_LOOP)%10)
+#else
+#define SKEIN_UNROLL_1024 (0)
+#endif
+
+#if (SKEIN_UNROLL_1024 != 0)
+#if (RCNT % SKEIN_UNROLL_1024)
+#error "Invalid SKEIN_UNROLL_1024" /* sanity check on unroll count */
+#endif
+ size_t r;
+ /* key schedule words : chaining vars + tweak + "rotation" */
+ uint64_t kw[WCNT + 4 + RCNT * 2];
+#else
+ uint64_t kw[WCNT + 4]; /* key schedule words : chaining vars + tweak */
+#endif
+
+ /* local copy of vars, for speed */
+ uint64_t X00, X01, X02, X03, X04, X05, X06, X07, X08, X09, X10, X11,
+ X12, X13, X14, X15;
+ uint64_t w[WCNT]; /* local copy of input block */
+#ifdef SKEIN_DEBUG
+ /* use for debugging (help compiler put Xn in registers) */
+ const uint64_t *Xptr[16];
+ Xptr[0] = &X00;
+ Xptr[1] = &X01;
+ Xptr[2] = &X02;
+ Xptr[3] = &X03;
+ Xptr[4] = &X04;
+ Xptr[5] = &X05;
+ Xptr[6] = &X06;
+ Xptr[7] = &X07;
+ Xptr[8] = &X08;
+ Xptr[9] = &X09;
+ Xptr[10] = &X10;
+ Xptr[11] = &X11;
+ Xptr[12] = &X12;
+ Xptr[13] = &X13;
+ Xptr[14] = &X14;
+ Xptr[15] = &X15;
+#endif
+
+ Skein_assert(blkCnt != 0); /* never call with blkCnt == 0! */
+ ts[0] = ctx->h.T[0];
+ ts[1] = ctx->h.T[1];
+ do {
+ /*
+ * this implementation only supports 2**64 input bytes
+ * (no carry out here)
+ */
+ ts[0] += byteCntAdd; /* update processed length */
+
+ /* precompute the key schedule for this block */
+ ks[0] = ctx->X[0];
+ ks[1] = ctx->X[1];
+ ks[2] = ctx->X[2];
+ ks[3] = ctx->X[3];
+ ks[4] = ctx->X[4];
+ ks[5] = ctx->X[5];
+ ks[6] = ctx->X[6];
+ ks[7] = ctx->X[7];
+ ks[8] = ctx->X[8];
+ ks[9] = ctx->X[9];
+ ks[10] = ctx->X[10];
+ ks[11] = ctx->X[11];
+ ks[12] = ctx->X[12];
+ ks[13] = ctx->X[13];
+ ks[14] = ctx->X[14];
+ ks[15] = ctx->X[15];
+ ks[16] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^
+ ks[4] ^ ks[5] ^ ks[6] ^ ks[7] ^
+ ks[8] ^ ks[9] ^ ks[10] ^ ks[11] ^
+ ks[12] ^ ks[13] ^ ks[14] ^ ks[15] ^ SKEIN_KS_PARITY;
+
+ ts[2] = ts[0] ^ ts[1];
+
+ /* get input block in little-endian format */
+ Skein_Get64_LSB_First(w, blkPtr, WCNT);
+ DebugSaveTweak(ctx);
+ Skein_Show_Block(BLK_BITS, &ctx->h, ctx->X, blkPtr, w, ks, ts);
+
+ X00 = w[0] + ks[0]; /* do the first full key injection */
+ X01 = w[1] + ks[1];
+ X02 = w[2] + ks[2];
+ X03 = w[3] + ks[3];
+ X04 = w[4] + ks[4];
+ X05 = w[5] + ks[5];
+ X06 = w[6] + ks[6];
+ X07 = w[7] + ks[7];
+ X08 = w[8] + ks[8];
+ X09 = w[9] + ks[9];
+ X10 = w[10] + ks[10];
+ X11 = w[11] + ks[11];
+ X12 = w[12] + ks[12];
+ X13 = w[13] + ks[13] + ts[0];
+ X14 = w[14] + ks[14] + ts[1];
+ X15 = w[15] + ks[15];
+
+ Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INITIAL,
+ Xptr);
+
+#define Round1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, \
+ pD, pE, pF, ROT, rNum) \
+ X##p0 += X##p1; X##p1 = RotL_64(X##p1, ROT##_0); X##p1 ^= X##p0;\
+ X##p2 += X##p3; X##p3 = RotL_64(X##p3, ROT##_1); X##p3 ^= X##p2;\
+ X##p4 += X##p5; X##p5 = RotL_64(X##p5, ROT##_2); X##p5 ^= X##p4;\
+ X##p6 += X##p7; X##p7 = RotL_64(X##p7, ROT##_3); X##p7 ^= X##p6;\
+ X##p8 += X##p9; X##p9 = RotL_64(X##p9, ROT##_4); X##p9 ^= X##p8;\
+ X##pA += X##pB; X##pB = RotL_64(X##pB, ROT##_5); X##pB ^= X##pA;\
+ X##pC += X##pD; X##pD = RotL_64(X##pD, ROT##_6); X##pD ^= X##pC;\
+ X##pE += X##pF; X##pF = RotL_64(X##pF, ROT##_7); X##pF ^= X##pE;
+
+#if SKEIN_UNROLL_1024 == 0
+#define R1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, \
+ pE, pF, ROT, rn) \
+ Round1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, \
+ pD, pE, pF, ROT, rn) \
+ Skein_Show_R_Ptr(BLK_BITS, &ctx->h, rn, Xptr);
+
+#define I1024(R) \
+ X00 += ks[((R) + 1) % 17]; /* inject the key schedule value */\
+ X01 += ks[((R) + 2) % 17]; \
+ X02 += ks[((R) + 3) % 17]; \
+ X03 += ks[((R) + 4) % 17]; \
+ X04 += ks[((R) + 5) % 17]; \
+ X05 += ks[((R) + 6) % 17]; \
+ X06 += ks[((R) + 7) % 17]; \
+ X07 += ks[((R) + 8) % 17]; \
+ X08 += ks[((R) + 9) % 17]; \
+ X09 += ks[((R) + 10) % 17]; \
+ X10 += ks[((R) + 11) % 17]; \
+ X11 += ks[((R) + 12) % 17]; \
+ X12 += ks[((R) + 13) % 17]; \
+ X13 += ks[((R) + 14) % 17] + ts[((R) + 1) % 3]; \
+ X14 += ks[((R) + 15) % 17] + ts[((R) + 2) % 3]; \
+ X15 += ks[((R) + 16) % 17] + (R) +1; \
+ Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr);
+#else /* looping version */
+#define R1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, \
+ pE, pF, ROT, rn) \
+ Round1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, \
+ pD, pE, pF, ROT, rn) \
+ Skein_Show_R_Ptr(BLK_BITS, &ctx->h, 4 * (r - 1) + rn, Xptr);
+
+#define I1024(R) \
+ X00 += ks[r + (R) + 0]; /* inject the key schedule value */ \
+ X01 += ks[r + (R) + 1]; \
+ X02 += ks[r + (R) + 2]; \
+ X03 += ks[r + (R) + 3]; \
+ X04 += ks[r + (R) + 4]; \
+ X05 += ks[r + (R) + 5]; \
+ X06 += ks[r + (R) + 6]; \
+ X07 += ks[r + (R) + 7]; \
+ X08 += ks[r + (R) + 8]; \
+ X09 += ks[r + (R) + 9]; \
+ X10 += ks[r + (R) + 10]; \
+ X11 += ks[r + (R) + 11]; \
+ X12 += ks[r + (R) + 12]; \
+ X13 += ks[r + (R) + 13] + ts[r + (R) + 0]; \
+ X14 += ks[r + (R) + 14] + ts[r + (R) + 1]; \
+ X15 += ks[r + (R) + 15] + r + (R); \
+ ks[r + (R) + 16] = ks[r + (R) - 1]; /* rotate key schedule */\
+ ts[r + (R) + 2] = ts[r + (R) - 1]; \
+ Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr);
+
+ /* loop thru it */
+ for (r = 1; r <= 2 * RCNT; r += 2 * SKEIN_UNROLL_1024)
+#endif
+ {
+#define R1024_8_rounds(R) /* do 8 full rounds */ \
+ R1024(00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, \
+ 14, 15, R1024_0, 8 * (R) + 1); \
+ R1024(00, 09, 02, 13, 06, 11, 04, 15, 10, 07, 12, 03, 14, 05, \
+ 08, 01, R1024_1, 8 * (R) + 2); \
+ R1024(00, 07, 02, 05, 04, 03, 06, 01, 12, 15, 14, 13, 08, 11, \
+ 10, 09, R1024_2, 8 * (R) + 3); \
+ R1024(00, 15, 02, 11, 06, 13, 04, 09, 14, 01, 08, 05, 10, 03, \
+ 12, 07, R1024_3, 8 * (R) + 4); \
+ I1024(2 * (R)); \
+ R1024(00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, \
+ 14, 15, R1024_4, 8 * (R) + 5); \
+ R1024(00, 09, 02, 13, 06, 11, 04, 15, 10, 07, 12, 03, 14, 05, \
+ 08, 01, R1024_5, 8 * (R) + 6); \
+ R1024(00, 07, 02, 05, 04, 03, 06, 01, 12, 15, 14, 13, 08, 11, \
+ 10, 09, R1024_6, 8 * (R) + 7); \
+ R1024(00, 15, 02, 11, 06, 13, 04, 09, 14, 01, 08, 05, 10, 03, \
+ 12, 07, R1024_7, 8 * (R) + 8); \
+ I1024(2 * (R) + 1);
+
+ R1024_8_rounds(0);
+
+#define R1024_Unroll_R(NN) \
+ ((SKEIN_UNROLL_1024 == 0 && SKEIN1024_ROUNDS_TOTAL/8 > (NN)) || \
+ (SKEIN_UNROLL_1024 > (NN)))
+
+#if R1024_Unroll_R(1)
+ R1024_8_rounds(1);
+#endif
+#if R1024_Unroll_R(2)
+ R1024_8_rounds(2);
+#endif
+#if R1024_Unroll_R(3)
+ R1024_8_rounds(3);
+#endif
+#if R1024_Unroll_R(4)
+ R1024_8_rounds(4);
+#endif
+#if R1024_Unroll_R(5)
+ R1024_8_rounds(5);
+#endif
+#if R1024_Unroll_R(6)
+ R1024_8_rounds(6);
+#endif
+#if R1024_Unroll_R(7)
+ R1024_8_rounds(7);
+#endif
+#if R1024_Unroll_R(8)
+ R1024_8_rounds(8);
+#endif
+#if R1024_Unroll_R(9)
+ R1024_8_rounds(9);
+#endif
+#if R1024_Unroll_R(10)
+ R1024_8_rounds(10);
+#endif
+#if R1024_Unroll_R(11)
+ R1024_8_rounds(11);
+#endif
+#if R1024_Unroll_R(12)
+ R1024_8_rounds(12);
+#endif
+#if R1024_Unroll_R(13)
+ R1024_8_rounds(13);
+#endif
+#if R1024_Unroll_R(14)
+ R1024_8_rounds(14);
+#endif
+#if (SKEIN_UNROLL_1024 > 14)
+#error "need more unrolling in Skein_1024_Process_Block"
+#endif
+ }
+ /*
+ * do the final "feedforward" xor, update context chaining vars
+ */
+
+ ctx->X[0] = X00 ^ w[0];
+ ctx->X[1] = X01 ^ w[1];
+ ctx->X[2] = X02 ^ w[2];
+ ctx->X[3] = X03 ^ w[3];
+ ctx->X[4] = X04 ^ w[4];
+ ctx->X[5] = X05 ^ w[5];
+ ctx->X[6] = X06 ^ w[6];
+ ctx->X[7] = X07 ^ w[7];
+ ctx->X[8] = X08 ^ w[8];
+ ctx->X[9] = X09 ^ w[9];
+ ctx->X[10] = X10 ^ w[10];
+ ctx->X[11] = X11 ^ w[11];
+ ctx->X[12] = X12 ^ w[12];
+ ctx->X[13] = X13 ^ w[13];
+ ctx->X[14] = X14 ^ w[14];
+ ctx->X[15] = X15 ^ w[15];
+
+ Skein_Show_Round(BLK_BITS, &ctx->h, SKEIN_RND_FEED_FWD, ctx->X);
+
+ ts[1] &= ~SKEIN_T1_FLAG_FIRST;
+ blkPtr += SKEIN1024_BLOCK_BYTES;
+ } while (--blkCnt);
+ ctx->h.T[0] = ts[0];
+ ctx->h.T[1] = ts[1];
+}
+
+#if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
+size_t
+Skein1024_Process_Block_CodeSize(void)
+{
+ return ((uint8_t *)Skein1024_Process_Block_CodeSize) -
+ ((uint8_t *)Skein1024_Process_Block);
+}
+
+uint_t
+Skein1024_Unroll_Cnt(void)
+{
+ return (SKEIN_UNROLL_1024);
+}
+#endif
+#endif
diff --git a/module/icp/algs/skein/skein_impl.h b/module/icp/algs/skein/skein_impl.h
new file mode 100644
index 000000000..e83a06971
--- /dev/null
+++ b/module/icp/algs/skein/skein_impl.h
@@ -0,0 +1,289 @@
+/*
+ * Internal definitions for Skein hashing.
+ * Source code author: Doug Whiting, 2008.
+ * This algorithm and source code is released to the public domain.
+ *
+ * The following compile-time switches may be defined to control some
+ * tradeoffs between speed, code size, error checking, and security.
+ *
+ * The "default" note explains what happens when the switch is not defined.
+ *
+ * SKEIN_DEBUG -- make callouts from inside Skein code
+ * to examine/display intermediate values.
+ * [default: no callouts (no overhead)]
+ *
+ * SKEIN_ERR_CHECK -- how error checking is handled inside Skein
+ * code. If not defined, most error checking
+ * is disabled (for performance). Otherwise,
+ * the switch value is interpreted as:
+ * 0: use assert() to flag errors
+ * 1: return SKEIN_FAIL to flag errors
+ */
+/* Copyright 2013 Doug Whiting. This code is released to the public domain. */
+
+#ifndef _SKEIN_IMPL_H_
+#define _SKEIN_IMPL_H_
+
+#include <sys/skein.h>
+#include "skein_impl.h"
+#include "skein_port.h"
+
+/* determine where we can get bcopy/bzero declarations */
+#ifdef _KERNEL
+#include <sys/systm.h>
+#else
+#include <strings.h>
+#endif
+
+/*
+ * "Internal" Skein definitions
+ * -- not needed for sequential hashing API, but will be
+ * helpful for other uses of Skein (e.g., tree hash mode).
+ * -- included here so that they can be shared between
+ * reference and optimized code.
+ */
+
+/* tweak word T[1]: bit field starting positions */
+/* offset 64 because it's the second word */
+#define SKEIN_T1_BIT(BIT) ((BIT) - 64)
+
+/* bits 112..118: level in hash tree */
+#define SKEIN_T1_POS_TREE_LVL SKEIN_T1_BIT(112)
+/* bit 119: partial final input byte */
+#define SKEIN_T1_POS_BIT_PAD SKEIN_T1_BIT(119)
+/* bits 120..125: type field */
+#define SKEIN_T1_POS_BLK_TYPE SKEIN_T1_BIT(120)
+/* bits 126: first block flag */
+#define SKEIN_T1_POS_FIRST SKEIN_T1_BIT(126)
+/* bit 127: final block flag */
+#define SKEIN_T1_POS_FINAL SKEIN_T1_BIT(127)
+
+/* tweak word T[1]: flag bit definition(s) */
+#define SKEIN_T1_FLAG_FIRST (((uint64_t)1) << SKEIN_T1_POS_FIRST)
+#define SKEIN_T1_FLAG_FINAL (((uint64_t)1) << SKEIN_T1_POS_FINAL)
+#define SKEIN_T1_FLAG_BIT_PAD (((uint64_t)1) << SKEIN_T1_POS_BIT_PAD)
+
+/* tweak word T[1]: tree level bit field mask */
+#define SKEIN_T1_TREE_LVL_MASK (((uint64_t)0x7F) << SKEIN_T1_POS_TREE_LVL)
+#define SKEIN_T1_TREE_LEVEL(n) (((uint64_t)(n)) << SKEIN_T1_POS_TREE_LVL)
+
+/* tweak word T[1]: block type field */
+#define SKEIN_BLK_TYPE_KEY (0) /* key, for MAC and KDF */
+#define SKEIN_BLK_TYPE_CFG (4) /* configuration block */
+#define SKEIN_BLK_TYPE_PERS (8) /* personalization string */
+#define SKEIN_BLK_TYPE_PK (12) /* public key (for signature hashing) */
+#define SKEIN_BLK_TYPE_KDF (16) /* key identifier for KDF */
+#define SKEIN_BLK_TYPE_NONCE (20) /* nonce for PRNG */
+#define SKEIN_BLK_TYPE_MSG (48) /* message processing */
+#define SKEIN_BLK_TYPE_OUT (63) /* output stage */
+#define SKEIN_BLK_TYPE_MASK (63) /* bit field mask */
+
+#define SKEIN_T1_BLK_TYPE(T) \
+ (((uint64_t)(SKEIN_BLK_TYPE_##T)) << SKEIN_T1_POS_BLK_TYPE)
+/* key, for MAC and KDF */
+#define SKEIN_T1_BLK_TYPE_KEY SKEIN_T1_BLK_TYPE(KEY)
+/* configuration block */
+#define SKEIN_T1_BLK_TYPE_CFG SKEIN_T1_BLK_TYPE(CFG)
+/* personalization string */
+#define SKEIN_T1_BLK_TYPE_PERS SKEIN_T1_BLK_TYPE(PERS)
+/* public key (for digital signature hashing) */
+#define SKEIN_T1_BLK_TYPE_PK SKEIN_T1_BLK_TYPE(PK)
+/* key identifier for KDF */
+#define SKEIN_T1_BLK_TYPE_KDF SKEIN_T1_BLK_TYPE(KDF)
+/* nonce for PRNG */
+#define SKEIN_T1_BLK_TYPE_NONCE SKEIN_T1_BLK_TYPE(NONCE)
+/* message processing */
+#define SKEIN_T1_BLK_TYPE_MSG SKEIN_T1_BLK_TYPE(MSG)
+/* output stage */
+#define SKEIN_T1_BLK_TYPE_OUT SKEIN_T1_BLK_TYPE(OUT)
+/* field bit mask */
+#define SKEIN_T1_BLK_TYPE_MASK SKEIN_T1_BLK_TYPE(MASK)
+
+#define SKEIN_T1_BLK_TYPE_CFG_FINAL \
+ (SKEIN_T1_BLK_TYPE_CFG | SKEIN_T1_FLAG_FINAL)
+#define SKEIN_T1_BLK_TYPE_OUT_FINAL \
+ (SKEIN_T1_BLK_TYPE_OUT | SKEIN_T1_FLAG_FINAL)
+
+#define SKEIN_VERSION (1)
+
+#ifndef SKEIN_ID_STRING_LE /* allow compile-time personalization */
+#define SKEIN_ID_STRING_LE (0x33414853) /* "SHA3" (little-endian) */
+#endif
+
+#define SKEIN_MK_64(hi32, lo32) ((lo32) + (((uint64_t)(hi32)) << 32))
+#define SKEIN_SCHEMA_VER SKEIN_MK_64(SKEIN_VERSION, SKEIN_ID_STRING_LE)
+#define SKEIN_KS_PARITY SKEIN_MK_64(0x1BD11BDA, 0xA9FC1A22)
+
+#define SKEIN_CFG_STR_LEN (4*8)
+
+/* bit field definitions in config block treeInfo word */
+#define SKEIN_CFG_TREE_LEAF_SIZE_POS (0)
+#define SKEIN_CFG_TREE_NODE_SIZE_POS (8)
+#define SKEIN_CFG_TREE_MAX_LEVEL_POS (16)
+
+#define SKEIN_CFG_TREE_LEAF_SIZE_MSK \
+ (((uint64_t)0xFF) << SKEIN_CFG_TREE_LEAF_SIZE_POS)
+#define SKEIN_CFG_TREE_NODE_SIZE_MSK \
+ (((uint64_t)0xFF) << SKEIN_CFG_TREE_NODE_SIZE_POS)
+#define SKEIN_CFG_TREE_MAX_LEVEL_MSK \
+ (((uint64_t)0xFF) << SKEIN_CFG_TREE_MAX_LEVEL_POS)
+
+#define SKEIN_CFG_TREE_INFO(leaf, node, maxLvl) \
+ ((((uint64_t)(leaf)) << SKEIN_CFG_TREE_LEAF_SIZE_POS) | \
+ (((uint64_t)(node)) << SKEIN_CFG_TREE_NODE_SIZE_POS) | \
+ (((uint64_t)(maxLvl)) << SKEIN_CFG_TREE_MAX_LEVEL_POS))
+
+/* use as treeInfo in InitExt() call for sequential processing */
+#define SKEIN_CFG_TREE_INFO_SEQUENTIAL SKEIN_CFG_TREE_INFO(0, 0, 0)
+
+/*
+ * Skein macros for getting/setting tweak words, etc.
+ * These are useful for partial input bytes, hash tree init/update, etc.
+ */
+#define Skein_Get_Tweak(ctxPtr, TWK_NUM) ((ctxPtr)->h.T[TWK_NUM])
+#define Skein_Set_Tweak(ctxPtr, TWK_NUM, tVal) \
+ do { \
+ (ctxPtr)->h.T[TWK_NUM] = (tVal); \
+ _NOTE(CONSTCOND) \
+ } while (0)
+
+#define Skein_Get_T0(ctxPtr) Skein_Get_Tweak(ctxPtr, 0)
+#define Skein_Get_T1(ctxPtr) Skein_Get_Tweak(ctxPtr, 1)
+#define Skein_Set_T0(ctxPtr, T0) Skein_Set_Tweak(ctxPtr, 0, T0)
+#define Skein_Set_T1(ctxPtr, T1) Skein_Set_Tweak(ctxPtr, 1, T1)
+
+/* set both tweak words at once */
+#define Skein_Set_T0_T1(ctxPtr, T0, T1) \
+ do { \
+ Skein_Set_T0(ctxPtr, (T0)); \
+ Skein_Set_T1(ctxPtr, (T1)); \
+ _NOTE(CONSTCOND) \
+ } while (0)
+
+#define Skein_Set_Type(ctxPtr, BLK_TYPE) \
+ Skein_Set_T1(ctxPtr, SKEIN_T1_BLK_TYPE_##BLK_TYPE)
+
+/*
+ * set up for starting with a new type: h.T[0]=0; h.T[1] = NEW_TYPE; h.bCnt=0;
+ */
+#define Skein_Start_New_Type(ctxPtr, BLK_TYPE) \
+ do { \
+ Skein_Set_T0_T1(ctxPtr, 0, SKEIN_T1_FLAG_FIRST | \
+ SKEIN_T1_BLK_TYPE_ ## BLK_TYPE); \
+ (ctxPtr)->h.bCnt = 0; \
+ _NOTE(CONSTCOND) \
+ } while (0)
+
+#define Skein_Clear_First_Flag(hdr) \
+ do { \
+ (hdr).T[1] &= ~SKEIN_T1_FLAG_FIRST; \
+ _NOTE(CONSTCOND) \
+ } while (0)
+#define Skein_Set_Bit_Pad_Flag(hdr) \
+ do { \
+ (hdr).T[1] |= SKEIN_T1_FLAG_BIT_PAD; \
+ _NOTE(CONSTCOND) \
+ } while (0)
+
+#define Skein_Set_Tree_Level(hdr, height) \
+ do { \
+ (hdr).T[1] |= SKEIN_T1_TREE_LEVEL(height); \
+ _NOTE(CONSTCOND) \
+ } while (0)
+
+/*
+ * "Internal" Skein definitions for debugging and error checking
+ * Note: in Illumos we always disable debugging features.
+ */
+#define Skein_Show_Block(bits, ctx, X, blkPtr, wPtr, ksEvenPtr, ksOddPtr)
+#define Skein_Show_Round(bits, ctx, r, X)
+#define Skein_Show_R_Ptr(bits, ctx, r, X_ptr)
+#define Skein_Show_Final(bits, ctx, cnt, outPtr)
+#define Skein_Show_Key(bits, ctx, key, keyBytes)
+
+/* run-time checks (e.g., bad params, uninitialized context)? */
+#ifndef SKEIN_ERR_CHECK
+/* default: ignore all Asserts, for performance */
+#define Skein_Assert(x, retCode)
+#define Skein_assert(x)
+#elif defined(SKEIN_ASSERT)
+#include <sys/debug.h>
+#define Skein_Assert(x, retCode) ASSERT(x)
+#define Skein_assert(x) ASSERT(x)
+#else
+#include <sys/debug.h>
+/* caller error */
+#define Skein_Assert(x, retCode) \
+ do { \
+ if (!(x)) \
+ return (retCode); \
+ _NOTE(CONSTCOND) \
+ } while (0)
+/* internal error */
+#define Skein_assert(x) ASSERT(x)
+#endif
+
+/*
+ * Skein block function constants (shared across Ref and Opt code)
+ */
+enum {
+ /* Skein_256 round rotation constants */
+ R_256_0_0 = 14, R_256_0_1 = 16,
+ R_256_1_0 = 52, R_256_1_1 = 57,
+ R_256_2_0 = 23, R_256_2_1 = 40,
+ R_256_3_0 = 5, R_256_3_1 = 37,
+ R_256_4_0 = 25, R_256_4_1 = 33,
+ R_256_5_0 = 46, R_256_5_1 = 12,
+ R_256_6_0 = 58, R_256_6_1 = 22,
+ R_256_7_0 = 32, R_256_7_1 = 32,
+
+ /* Skein_512 round rotation constants */
+ R_512_0_0 = 46, R_512_0_1 = 36, R_512_0_2 = 19, R_512_0_3 = 37,
+ R_512_1_0 = 33, R_512_1_1 = 27, R_512_1_2 = 14, R_512_1_3 = 42,
+ R_512_2_0 = 17, R_512_2_1 = 49, R_512_2_2 = 36, R_512_2_3 = 39,
+ R_512_3_0 = 44, R_512_3_1 = 9, R_512_3_2 = 54, R_512_3_3 = 56,
+ R_512_4_0 = 39, R_512_4_1 = 30, R_512_4_2 = 34, R_512_4_3 = 24,
+ R_512_5_0 = 13, R_512_5_1 = 50, R_512_5_2 = 10, R_512_5_3 = 17,
+ R_512_6_0 = 25, R_512_6_1 = 29, R_512_6_2 = 39, R_512_6_3 = 43,
+ R_512_7_0 = 8, R_512_7_1 = 35, R_512_7_2 = 56, R_512_7_3 = 22,
+
+ /* Skein1024 round rotation constants */
+ R1024_0_0 = 24, R1024_0_1 = 13, R1024_0_2 = 8, R1024_0_3 =
+ 47, R1024_0_4 = 8, R1024_0_5 = 17, R1024_0_6 = 22, R1024_0_7 = 37,
+ R1024_1_0 = 38, R1024_1_1 = 19, R1024_1_2 = 10, R1024_1_3 =
+ 55, R1024_1_4 = 49, R1024_1_5 = 18, R1024_1_6 = 23, R1024_1_7 = 52,
+ R1024_2_0 = 33, R1024_2_1 = 4, R1024_2_2 = 51, R1024_2_3 =
+ 13, R1024_2_4 = 34, R1024_2_5 = 41, R1024_2_6 = 59, R1024_2_7 = 17,
+ R1024_3_0 = 5, R1024_3_1 = 20, R1024_3_2 = 48, R1024_3_3 =
+ 41, R1024_3_4 = 47, R1024_3_5 = 28, R1024_3_6 = 16, R1024_3_7 = 25,
+ R1024_4_0 = 41, R1024_4_1 = 9, R1024_4_2 = 37, R1024_4_3 =
+ 31, R1024_4_4 = 12, R1024_4_5 = 47, R1024_4_6 = 44, R1024_4_7 = 30,
+ R1024_5_0 = 16, R1024_5_1 = 34, R1024_5_2 = 56, R1024_5_3 =
+ 51, R1024_5_4 = 4, R1024_5_5 = 53, R1024_5_6 = 42, R1024_5_7 = 41,
+ R1024_6_0 = 31, R1024_6_1 = 44, R1024_6_2 = 47, R1024_6_3 =
+ 46, R1024_6_4 = 19, R1024_6_5 = 42, R1024_6_6 = 44, R1024_6_7 = 25,
+ R1024_7_0 = 9, R1024_7_1 = 48, R1024_7_2 = 35, R1024_7_3 =
+ 52, R1024_7_4 = 23, R1024_7_5 = 31, R1024_7_6 = 37, R1024_7_7 = 20
+};
+
+/* number of rounds for the different block sizes */
+#define SKEIN_256_ROUNDS_TOTAL (72)
+#define SKEIN_512_ROUNDS_TOTAL (72)
+#define SKEIN1024_ROUNDS_TOTAL (80)
+
+
+extern const uint64_t SKEIN_256_IV_128[];
+extern const uint64_t SKEIN_256_IV_160[];
+extern const uint64_t SKEIN_256_IV_224[];
+extern const uint64_t SKEIN_256_IV_256[];
+extern const uint64_t SKEIN_512_IV_128[];
+extern const uint64_t SKEIN_512_IV_160[];
+extern const uint64_t SKEIN_512_IV_224[];
+extern const uint64_t SKEIN_512_IV_256[];
+extern const uint64_t SKEIN_512_IV_384[];
+extern const uint64_t SKEIN_512_IV_512[];
+extern const uint64_t SKEIN1024_IV_384[];
+extern const uint64_t SKEIN1024_IV_512[];
+extern const uint64_t SKEIN1024_IV_1024[];
+
+#endif /* _SKEIN_IMPL_H_ */
diff --git a/module/icp/algs/skein/skein_iv.c b/module/icp/algs/skein/skein_iv.c
new file mode 100644
index 000000000..140d38f76
--- /dev/null
+++ b/module/icp/algs/skein/skein_iv.c
@@ -0,0 +1,185 @@
+/*
+ * Pre-computed Skein IVs
+ *
+ * NOTE: these values are not "magic" constants, but
+ * are generated using the Threefish block function.
+ * They are pre-computed here only for speed; i.e., to
+ * avoid the need for a Threefish call during Init().
+ *
+ * The IV for any fixed hash length may be pre-computed.
+ * Only the most common values are included here.
+ */
+/* Copyright 2013 Doug Whiting. This code is released to the public domain. */
+/*
+ * Illumos implementation note: these constants are for Skein v1.3 as per:
+ * http://www.skein-hash.info/sites/default/files/skein1.3.pdf
+ */
+
+#include <sys/skein.h> /* get Skein macros and types */
+#include "skein_impl.h" /* get internal definitions */
+
+#define MK_64 SKEIN_MK_64
+
+/* blkSize = 256 bits. hashSize = 128 bits */
+const uint64_t SKEIN_256_IV_128[] = {
+ MK_64(0xE1111906, 0x964D7260),
+ MK_64(0x883DAAA7, 0x7C8D811C),
+ MK_64(0x10080DF4, 0x91960F7A),
+ MK_64(0xCCF7DDE5, 0xB45BC1C2)
+};
+
+/* blkSize = 256 bits. hashSize = 160 bits */
+const uint64_t SKEIN_256_IV_160[] = {
+ MK_64(0x14202314, 0x72825E98),
+ MK_64(0x2AC4E9A2, 0x5A77E590),
+ MK_64(0xD47A5856, 0x8838D63E),
+ MK_64(0x2DD2E496, 0x8586AB7D)
+};
+
+/* blkSize = 256 bits. hashSize = 224 bits */
+const uint64_t SKEIN_256_IV_224[] = {
+ MK_64(0xC6098A8C, 0x9AE5EA0B),
+ MK_64(0x876D5686, 0x08C5191C),
+ MK_64(0x99CB88D7, 0xD7F53884),
+ MK_64(0x384BDDB1, 0xAEDDB5DE)
+};
+
+/* blkSize = 256 bits. hashSize = 256 bits */
+const uint64_t SKEIN_256_IV_256[] = {
+ MK_64(0xFC9DA860, 0xD048B449),
+ MK_64(0x2FCA6647, 0x9FA7D833),
+ MK_64(0xB33BC389, 0x6656840F),
+ MK_64(0x6A54E920, 0xFDE8DA69)
+};
+
+/* blkSize = 512 bits. hashSize = 128 bits */
+const uint64_t SKEIN_512_IV_128[] = {
+ MK_64(0xA8BC7BF3, 0x6FBF9F52),
+ MK_64(0x1E9872CE, 0xBD1AF0AA),
+ MK_64(0x309B1790, 0xB32190D3),
+ MK_64(0xBCFBB854, 0x3F94805C),
+ MK_64(0x0DA61BCD, 0x6E31B11B),
+ MK_64(0x1A18EBEA, 0xD46A32E3),
+ MK_64(0xA2CC5B18, 0xCE84AA82),
+ MK_64(0x6982AB28, 0x9D46982D)
+};
+
+/* blkSize = 512 bits. hashSize = 160 bits */
+const uint64_t SKEIN_512_IV_160[] = {
+ MK_64(0x28B81A2A, 0xE013BD91),
+ MK_64(0xC2F11668, 0xB5BDF78F),
+ MK_64(0x1760D8F3, 0xF6A56F12),
+ MK_64(0x4FB74758, 0x8239904F),
+ MK_64(0x21EDE07F, 0x7EAF5056),
+ MK_64(0xD908922E, 0x63ED70B8),
+ MK_64(0xB8EC76FF, 0xECCB52FA),
+ MK_64(0x01A47BB8, 0xA3F27A6E)
+};
+
+/* blkSize = 512 bits. hashSize = 224 bits */
+const uint64_t SKEIN_512_IV_224[] = {
+ MK_64(0xCCD06162, 0x48677224),
+ MK_64(0xCBA65CF3, 0xA92339EF),
+ MK_64(0x8CCD69D6, 0x52FF4B64),
+ MK_64(0x398AED7B, 0x3AB890B4),
+ MK_64(0x0F59D1B1, 0x457D2BD0),
+ MK_64(0x6776FE65, 0x75D4EB3D),
+ MK_64(0x99FBC70E, 0x997413E9),
+ MK_64(0x9E2CFCCF, 0xE1C41EF7)
+};
+
+/* blkSize = 512 bits. hashSize = 256 bits */
+const uint64_t SKEIN_512_IV_256[] = {
+ MK_64(0xCCD044A1, 0x2FDB3E13),
+ MK_64(0xE8359030, 0x1A79A9EB),
+ MK_64(0x55AEA061, 0x4F816E6F),
+ MK_64(0x2A2767A4, 0xAE9B94DB),
+ MK_64(0xEC06025E, 0x74DD7683),
+ MK_64(0xE7A436CD, 0xC4746251),
+ MK_64(0xC36FBAF9, 0x393AD185),
+ MK_64(0x3EEDBA18, 0x33EDFC13)
+};
+
+/* blkSize = 512 bits. hashSize = 384 bits */
+const uint64_t SKEIN_512_IV_384[] = {
+ MK_64(0xA3F6C6BF, 0x3A75EF5F),
+ MK_64(0xB0FEF9CC, 0xFD84FAA4),
+ MK_64(0x9D77DD66, 0x3D770CFE),
+ MK_64(0xD798CBF3, 0xB468FDDA),
+ MK_64(0x1BC4A666, 0x8A0E4465),
+ MK_64(0x7ED7D434, 0xE5807407),
+ MK_64(0x548FC1AC, 0xD4EC44D6),
+ MK_64(0x266E1754, 0x6AA18FF8)
+};
+
+/* blkSize = 512 bits. hashSize = 512 bits */
+const uint64_t SKEIN_512_IV_512[] = {
+ MK_64(0x4903ADFF, 0x749C51CE),
+ MK_64(0x0D95DE39, 0x9746DF03),
+ MK_64(0x8FD19341, 0x27C79BCE),
+ MK_64(0x9A255629, 0xFF352CB1),
+ MK_64(0x5DB62599, 0xDF6CA7B0),
+ MK_64(0xEABE394C, 0xA9D5C3F4),
+ MK_64(0x991112C7, 0x1A75B523),
+ MK_64(0xAE18A40B, 0x660FCC33)
+};
+
+/* blkSize = 1024 bits. hashSize = 384 bits */
+const uint64_t SKEIN1024_IV_384[] = {
+ MK_64(0x5102B6B8, 0xC1894A35),
+ MK_64(0xFEEBC9E3, 0xFE8AF11A),
+ MK_64(0x0C807F06, 0xE32BED71),
+ MK_64(0x60C13A52, 0xB41A91F6),
+ MK_64(0x9716D35D, 0xD4917C38),
+ MK_64(0xE780DF12, 0x6FD31D3A),
+ MK_64(0x797846B6, 0xC898303A),
+ MK_64(0xB172C2A8, 0xB3572A3B),
+ MK_64(0xC9BC8203, 0xA6104A6C),
+ MK_64(0x65909338, 0xD75624F4),
+ MK_64(0x94BCC568, 0x4B3F81A0),
+ MK_64(0x3EBBF51E, 0x10ECFD46),
+ MK_64(0x2DF50F0B, 0xEEB08542),
+ MK_64(0x3B5A6530, 0x0DBC6516),
+ MK_64(0x484B9CD2, 0x167BBCE1),
+ MK_64(0x2D136947, 0xD4CBAFEA)
+};
+
+/* blkSize = 1024 bits. hashSize = 512 bits */
+const uint64_t SKEIN1024_IV_512[] = {
+ MK_64(0xCAEC0E5D, 0x7C1B1B18),
+ MK_64(0xA01B0E04, 0x5F03E802),
+ MK_64(0x33840451, 0xED912885),
+ MK_64(0x374AFB04, 0xEAEC2E1C),
+ MK_64(0xDF25A0E2, 0x813581F7),
+ MK_64(0xE4004093, 0x8B12F9D2),
+ MK_64(0xA662D539, 0xC2ED39B6),
+ MK_64(0xFA8B85CF, 0x45D8C75A),
+ MK_64(0x8316ED8E, 0x29EDE796),
+ MK_64(0x053289C0, 0x2E9F91B8),
+ MK_64(0xC3F8EF1D, 0x6D518B73),
+ MK_64(0xBDCEC3C4, 0xD5EF332E),
+ MK_64(0x549A7E52, 0x22974487),
+ MK_64(0x67070872, 0x5B749816),
+ MK_64(0xB9CD28FB, 0xF0581BD1),
+ MK_64(0x0E2940B8, 0x15804974)
+};
+
+/* blkSize = 1024 bits. hashSize = 1024 bits */
+const uint64_t SKEIN1024_IV_1024[] = {
+ MK_64(0xD593DA07, 0x41E72355),
+ MK_64(0x15B5E511, 0xAC73E00C),
+ MK_64(0x5180E5AE, 0xBAF2C4F0),
+ MK_64(0x03BD41D3, 0xFCBCAFAF),
+ MK_64(0x1CAEC6FD, 0x1983A898),
+ MK_64(0x6E510B8B, 0xCDD0589F),
+ MK_64(0x77E2BDFD, 0xC6394ADA),
+ MK_64(0xC11E1DB5, 0x24DCB0A3),
+ MK_64(0xD6D14AF9, 0xC6329AB5),
+ MK_64(0x6A9B0BFC, 0x6EB67E0D),
+ MK_64(0x9243C60D, 0xCCFF1332),
+ MK_64(0x1A1F1DDE, 0x743F02D4),
+ MK_64(0x0996753C, 0x10ED0BB8),
+ MK_64(0x6572DD22, 0xF2B4969A),
+ MK_64(0x61FD3062, 0xD00A579A),
+ MK_64(0x1DE0536E, 0x8682E539)
+};
diff --git a/module/icp/algs/skein/skein_port.h b/module/icp/algs/skein/skein_port.h
new file mode 100644
index 000000000..1b0225236
--- /dev/null
+++ b/module/icp/algs/skein/skein_port.h
@@ -0,0 +1,128 @@
+/*
+ * Platform-specific definitions for Skein hash function.
+ *
+ * Source code author: Doug Whiting, 2008.
+ *
+ * This algorithm and source code is released to the public domain.
+ *
+ * Many thanks to Brian Gladman for his portable header files.
+ *
+ * To port Skein to an "unsupported" platform, change the definitions
+ * in this file appropriately.
+ */
+/* Copyright 2013 Doug Whiting. This code is released to the public domain. */
+
+#ifndef _SKEIN_PORT_H_
+#define _SKEIN_PORT_H_
+
+#include <sys/types.h> /* get integer type definitions */
+#include <sys/systm.h> /* for bcopy() */
+
+#ifndef RotL_64
+#define RotL_64(x, N) (((x) << (N)) | ((x) >> (64 - (N))))
+#endif
+
+/*
+ * Skein is "natively" little-endian (unlike SHA-xxx), for optimal
+ * performance on x86 CPUs. The Skein code requires the following
+ * definitions for dealing with endianness:
+ *
+ * SKEIN_NEED_SWAP: 0 for little-endian, 1 for big-endian
+ * Skein_Put64_LSB_First
+ * Skein_Get64_LSB_First
+ * Skein_Swap64
+ *
+ * If SKEIN_NEED_SWAP is defined at compile time, it is used here
+ * along with the portable versions of Put64/Get64/Swap64, which
+ * are slow in general.
+ *
+ * Otherwise, an "auto-detect" of endianness is attempted below.
+ * If the default handling doesn't work well, the user may insert
+ * platform-specific code instead (e.g., for big-endian CPUs).
+ *
+ */
+#ifndef SKEIN_NEED_SWAP /* compile-time "override" for endianness? */
+
+#include <sys/isa_defs.h> /* get endianness selection */
+
+#define PLATFORM_MUST_ALIGN _ALIGNMENT_REQUIRED
+#if defined(_BIG_ENDIAN)
+/* here for big-endian CPUs */
+#define SKEIN_NEED_SWAP (1)
+#else
+/* here for x86 and x86-64 CPUs (and other detected little-endian CPUs) */
+#define SKEIN_NEED_SWAP (0)
+#if PLATFORM_MUST_ALIGN == 0 /* ok to use "fast" versions? */
+#define Skein_Put64_LSB_First(dst08, src64, bCnt) bcopy(src64, dst08, bCnt)
+#define Skein_Get64_LSB_First(dst64, src08, wCnt) \
+ bcopy(src08, dst64, 8 * (wCnt))
+#endif
+#endif
+
+#endif /* ifndef SKEIN_NEED_SWAP */
+
+/*
+ * Provide any definitions still needed.
+ */
+#ifndef Skein_Swap64 /* swap for big-endian, nop for little-endian */
+#if SKEIN_NEED_SWAP
+#define Skein_Swap64(w64) \
+ (((((uint64_t)(w64)) & 0xFF) << 56) | \
+ (((((uint64_t)(w64)) >> 8) & 0xFF) << 48) | \
+ (((((uint64_t)(w64)) >> 16) & 0xFF) << 40) | \
+ (((((uint64_t)(w64)) >> 24) & 0xFF) << 32) | \
+ (((((uint64_t)(w64)) >> 32) & 0xFF) << 24) | \
+ (((((uint64_t)(w64)) >> 40) & 0xFF) << 16) | \
+ (((((uint64_t)(w64)) >> 48) & 0xFF) << 8) | \
+ (((((uint64_t)(w64)) >> 56) & 0xFF)))
+#else
+#define Skein_Swap64(w64) (w64)
+#endif
+#endif /* ifndef Skein_Swap64 */
+
+#ifndef Skein_Put64_LSB_First
+void
+Skein_Put64_LSB_First(uint8_t *dst, const uint64_t *src, size_t bCnt)
+#ifdef SKEIN_PORT_CODE /* instantiate the function code here? */
+{
+ /*
+ * this version is fully portable (big-endian or little-endian),
+ * but slow
+ */
+ size_t n;
+
+ for (n = 0; n < bCnt; n++)
+ dst[n] = (uint8_t)(src[n >> 3] >> (8 * (n & 7)));
+}
+#else
+; /* output only the function prototype */
+#endif
+#endif /* ifndef Skein_Put64_LSB_First */
+
+#ifndef Skein_Get64_LSB_First
+void
+Skein_Get64_LSB_First(uint64_t *dst, const uint8_t *src, size_t wCnt)
+#ifdef SKEIN_PORT_CODE /* instantiate the function code here? */
+{
+ /*
+ * this version is fully portable (big-endian or little-endian),
+ * but slow
+ */
+ size_t n;
+
+ for (n = 0; n < 8 * wCnt; n += 8)
+ dst[n / 8] = (((uint64_t)src[n])) +
+ (((uint64_t)src[n + 1]) << 8) +
+ (((uint64_t)src[n + 2]) << 16) +
+ (((uint64_t)src[n + 3]) << 24) +
+ (((uint64_t)src[n + 4]) << 32) +
+ (((uint64_t)src[n + 5]) << 40) +
+ (((uint64_t)src[n + 6]) << 48) +
+ (((uint64_t)src[n + 7]) << 56);
+}
+#else
+; /* output only the function prototype */
+#endif
+#endif /* ifndef Skein_Get64_LSB_First */
+
+#endif /* _SKEIN_PORT_H_ */