aboutsummaryrefslogtreecommitdiffstats
path: root/module/icp/algs
diff options
context:
space:
mode:
authorTino Reichardt <[email protected]>2022-06-09 00:55:57 +0200
committerGitHub <[email protected]>2022-06-08 15:55:57 -0700
commit985c33b132f6c23a69bd808e008ae0f46131a31e (patch)
tree4d973e14592e15a4908ae3de6d61cf3270a1b37c /module/icp/algs
parentb9d98453f9387c413f91d1d9cdb0cba8e04dbd95 (diff)
Introduce BLAKE3 checksums as an OpenZFS feature
This commit adds BLAKE3 checksums to OpenZFS, it has similar performance to Edon-R, but without the caveats around the latter. Homepage of BLAKE3: https://github.com/BLAKE3-team/BLAKE3 Wikipedia: https://en.wikipedia.org/wiki/BLAKE_(hash_function)#BLAKE3 Short description of Wikipedia: BLAKE3 is a cryptographic hash function based on Bao and BLAKE2, created by Jack O'Connor, Jean-Philippe Aumasson, Samuel Neves, and Zooko Wilcox-O'Hearn. It was announced on January 9, 2020, at Real World Crypto. BLAKE3 is a single algorithm with many desirable features (parallelism, XOF, KDF, PRF and MAC), in contrast to BLAKE and BLAKE2, which are algorithm families with multiple variants. BLAKE3 has a binary tree structure, so it supports a practically unlimited degree of parallelism (both SIMD and multithreading) given enough input. The official Rust and C implementations are dual-licensed as public domain (CC0) and the Apache License. Along with adding the BLAKE3 hash into the OpenZFS infrastructure a new benchmarking file called chksum_bench was introduced. When read it reports the speed of the available checksum functions. On Linux: cat /proc/spl/kstat/zfs/chksum_bench On FreeBSD: sysctl kstat.zfs.misc.chksum_bench This is an example output of an i3-1005G1 test system with Debian 11: implementation 1k 4k 16k 64k 256k 1m 4m edonr-generic 1196 1602 1761 1749 1762 1759 1751 skein-generic 546 591 608 615 619 612 616 sha256-generic 240 300 316 314 304 285 276 sha512-generic 353 441 467 476 472 467 426 blake3-generic 308 313 313 313 312 313 312 blake3-sse2 402 1289 1423 1446 1432 1458 1413 blake3-sse41 427 1470 1625 1704 1679 1607 1629 blake3-avx2 428 1920 3095 3343 3356 3318 3204 blake3-avx512 473 2687 4905 5836 5844 5643 5374 Output on Debian 5.10.0-10-amd64 system: (Ryzen 7 5800X) implementation 1k 4k 16k 64k 256k 1m 4m edonr-generic 1840 2458 2665 2719 2711 2723 2693 skein-generic 870 966 996 992 1003 1005 1009 sha256-generic 415 442 453 455 457 457 457 sha512-generic 608 690 711 718 719 720 721 blake3-generic 301 313 311 309 309 310 310 blake3-sse2 343 1865 2124 2188 2180 2181 2186 blake3-sse41 364 2091 2396 2509 2463 2482 2488 blake3-avx2 365 2590 4399 4971 4915 4802 4764 Output on Debian 5.10.0-9-powerpc64le system: (POWER 9) implementation 1k 4k 16k 64k 256k 1m 4m edonr-generic 1213 1703 1889 1918 1957 1902 1907 skein-generic 434 492 520 522 511 525 525 sha256-generic 167 183 187 188 188 187 188 sha512-generic 186 216 222 221 225 224 224 blake3-generic 153 152 154 153 151 153 153 blake3-sse2 391 1170 1366 1406 1428 1426 1414 blake3-sse41 352 1049 1212 1174 1262 1258 1259 Output on Debian 5.10.0-11-arm64 system: (Pi400) implementation 1k 4k 16k 64k 256k 1m 4m edonr-generic 487 603 629 639 643 641 641 skein-generic 271 299 303 308 309 309 307 sha256-generic 117 127 128 130 130 129 130 sha512-generic 145 165 170 172 173 174 175 blake3-generic 81 29 71 89 89 89 89 blake3-sse2 112 323 368 379 380 371 374 blake3-sse41 101 315 357 368 369 364 360 Structurally, the new code is mainly split into these parts: - 1x cross platform generic c variant: blake3_generic.c - 4x assembly for X86-64 (SSE2, SSE4.1, AVX2, AVX512) - 2x assembly for ARMv8 (NEON converted from SSE2) - 2x assembly for PPC64-LE (POWER8 converted from SSE2) - one file for switching between the implementations Note the PPC64 assembly requires the VSX instruction set and the kfpu_begin() / kfpu_end() calls on PowerPC were updated accordingly. Reviewed-by: Felix Dörre <[email protected]> Reviewed-by: Ahelenia Ziemiańska <[email protected]> Reviewed-by: Brian Behlendorf <[email protected]> Signed-off-by: Tino Reichardt <[email protected]> Co-authored-by: Rich Ercolani <[email protected]> Closes #10058 Closes #12918
Diffstat (limited to 'module/icp/algs')
-rw-r--r--module/icp/algs/blake3/blake3.c732
-rw-r--r--module/icp/algs/blake3/blake3_generic.c202
-rw-r--r--module/icp/algs/blake3/blake3_impl.c256
-rw-r--r--module/icp/algs/blake3/blake3_impl.h213
-rw-r--r--module/icp/algs/blake3/blake3_x86-64.c248
5 files changed, 1651 insertions, 0 deletions
diff --git a/module/icp/algs/blake3/blake3.c b/module/icp/algs/blake3/blake3.c
new file mode 100644
index 000000000..8c9c06eb9
--- /dev/null
+++ b/module/icp/algs/blake3/blake3.c
@@ -0,0 +1,732 @@
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+
+/*
+ * Based on BLAKE3 v1.3.1, https://github.com/BLAKE3-team/BLAKE3
+ * Copyright (c) 2019-2020 Samuel Neves and Jack O'Connor
+ * Copyright (c) 2021-2022 Tino Reichardt <[email protected]>
+ */
+
+#include <sys/zfs_context.h>
+#include <sys/blake3.h>
+
+#include "blake3_impl.h"
+
+/*
+ * We need 1056 byte stack for blake3_compress_subtree_wide()
+ * - we define this pragma to make gcc happy
+ */
+#if defined(__GNUC__)
+#pragma GCC diagnostic ignored "-Wframe-larger-than="
+#endif
+
+/* internal used */
+typedef struct {
+ uint32_t input_cv[8];
+ uint64_t counter;
+ uint8_t block[BLAKE3_BLOCK_LEN];
+ uint8_t block_len;
+ uint8_t flags;
+} output_t;
+
+/* internal flags */
+enum blake3_flags {
+ CHUNK_START = 1 << 0,
+ CHUNK_END = 1 << 1,
+ PARENT = 1 << 2,
+ ROOT = 1 << 3,
+ KEYED_HASH = 1 << 4,
+ DERIVE_KEY_CONTEXT = 1 << 5,
+ DERIVE_KEY_MATERIAL = 1 << 6,
+};
+
+/* internal start */
+static void chunk_state_init(blake3_chunk_state_t *ctx,
+ const uint32_t key[8], uint8_t flags)
+{
+ memcpy(ctx->cv, key, BLAKE3_KEY_LEN);
+ ctx->chunk_counter = 0;
+ memset(ctx->buf, 0, BLAKE3_BLOCK_LEN);
+ ctx->buf_len = 0;
+ ctx->blocks_compressed = 0;
+ ctx->flags = flags;
+}
+
+static void chunk_state_reset(blake3_chunk_state_t *ctx,
+ const uint32_t key[8], uint64_t chunk_counter)
+{
+ memcpy(ctx->cv, key, BLAKE3_KEY_LEN);
+ ctx->chunk_counter = chunk_counter;
+ ctx->blocks_compressed = 0;
+ memset(ctx->buf, 0, BLAKE3_BLOCK_LEN);
+ ctx->buf_len = 0;
+}
+
+static size_t chunk_state_len(const blake3_chunk_state_t *ctx)
+{
+ return (BLAKE3_BLOCK_LEN * (size_t)ctx->blocks_compressed) +
+ ((size_t)ctx->buf_len);
+}
+
+static size_t chunk_state_fill_buf(blake3_chunk_state_t *ctx,
+ const uint8_t *input, size_t input_len)
+{
+ size_t take = BLAKE3_BLOCK_LEN - ((size_t)ctx->buf_len);
+ if (take > input_len) {
+ take = input_len;
+ }
+ uint8_t *dest = ctx->buf + ((size_t)ctx->buf_len);
+ memcpy(dest, input, take);
+ ctx->buf_len += (uint8_t)take;
+ return (take);
+}
+
+static uint8_t chunk_state_maybe_start_flag(const blake3_chunk_state_t *ctx)
+{
+ if (ctx->blocks_compressed == 0) {
+ return (CHUNK_START);
+ } else {
+ return (0);
+ }
+}
+
+static output_t make_output(const uint32_t input_cv[8],
+ const uint8_t *block, uint8_t block_len,
+ uint64_t counter, uint8_t flags)
+{
+ output_t ret;
+ memcpy(ret.input_cv, input_cv, 32);
+ memcpy(ret.block, block, BLAKE3_BLOCK_LEN);
+ ret.block_len = block_len;
+ ret.counter = counter;
+ ret.flags = flags;
+ return (ret);
+}
+
+/*
+ * Chaining values within a given chunk (specifically the compress_in_place
+ * interface) are represented as words. This avoids unnecessary bytes<->words
+ * conversion overhead in the portable implementation. However, the hash_many
+ * interface handles both user input and parent node blocks, so it accepts
+ * bytes. For that reason, chaining values in the CV stack are represented as
+ * bytes.
+ */
+static void output_chaining_value(const blake3_impl_ops_t *ops,
+ const output_t *ctx, uint8_t cv[32])
+{
+ uint32_t cv_words[8];
+ memcpy(cv_words, ctx->input_cv, 32);
+ ops->compress_in_place(cv_words, ctx->block, ctx->block_len,
+ ctx->counter, ctx->flags);
+ store_cv_words(cv, cv_words);
+}
+
+static void output_root_bytes(const blake3_impl_ops_t *ops, const output_t *ctx,
+ uint64_t seek, uint8_t *out, size_t out_len)
+{
+ uint64_t output_block_counter = seek / 64;
+ size_t offset_within_block = seek % 64;
+ uint8_t wide_buf[64];
+ while (out_len > 0) {
+ ops->compress_xof(ctx->input_cv, ctx->block, ctx->block_len,
+ output_block_counter, ctx->flags | ROOT, wide_buf);
+ size_t available_bytes = 64 - offset_within_block;
+ size_t memcpy_len;
+ if (out_len > available_bytes) {
+ memcpy_len = available_bytes;
+ } else {
+ memcpy_len = out_len;
+ }
+ memcpy(out, wide_buf + offset_within_block, memcpy_len);
+ out += memcpy_len;
+ out_len -= memcpy_len;
+ output_block_counter += 1;
+ offset_within_block = 0;
+ }
+}
+
+static void chunk_state_update(const blake3_impl_ops_t *ops,
+ blake3_chunk_state_t *ctx, const uint8_t *input, size_t input_len)
+{
+ if (ctx->buf_len > 0) {
+ size_t take = chunk_state_fill_buf(ctx, input, input_len);
+ input += take;
+ input_len -= take;
+ if (input_len > 0) {
+ ops->compress_in_place(ctx->cv, ctx->buf,
+ BLAKE3_BLOCK_LEN, ctx->chunk_counter,
+ ctx->flags|chunk_state_maybe_start_flag(ctx));
+ ctx->blocks_compressed += 1;
+ ctx->buf_len = 0;
+ memset(ctx->buf, 0, BLAKE3_BLOCK_LEN);
+ }
+ }
+
+ while (input_len > BLAKE3_BLOCK_LEN) {
+ ops->compress_in_place(ctx->cv, input, BLAKE3_BLOCK_LEN,
+ ctx->chunk_counter,
+ ctx->flags|chunk_state_maybe_start_flag(ctx));
+ ctx->blocks_compressed += 1;
+ input += BLAKE3_BLOCK_LEN;
+ input_len -= BLAKE3_BLOCK_LEN;
+ }
+
+ size_t take = chunk_state_fill_buf(ctx, input, input_len);
+ input += take;
+ input_len -= take;
+}
+
+static output_t chunk_state_output(const blake3_chunk_state_t *ctx)
+{
+ uint8_t block_flags =
+ ctx->flags | chunk_state_maybe_start_flag(ctx) | CHUNK_END;
+ return (make_output(ctx->cv, ctx->buf, ctx->buf_len, ctx->chunk_counter,
+ block_flags));
+}
+
+static output_t parent_output(const uint8_t block[BLAKE3_BLOCK_LEN],
+ const uint32_t key[8], uint8_t flags)
+{
+ return (make_output(key, block, BLAKE3_BLOCK_LEN, 0, flags | PARENT));
+}
+
+/*
+ * Given some input larger than one chunk, return the number of bytes that
+ * should go in the left subtree. This is the largest power-of-2 number of
+ * chunks that leaves at least 1 byte for the right subtree.
+ */
+static size_t left_len(size_t content_len)
+{
+ /*
+ * Subtract 1 to reserve at least one byte for the right side.
+ * content_len
+ * should always be greater than BLAKE3_CHUNK_LEN.
+ */
+ size_t full_chunks = (content_len - 1) / BLAKE3_CHUNK_LEN;
+ return (round_down_to_power_of_2(full_chunks) * BLAKE3_CHUNK_LEN);
+}
+
+/*
+ * Use SIMD parallelism to hash up to MAX_SIMD_DEGREE chunks at the same time
+ * on a single thread. Write out the chunk chaining values and return the
+ * number of chunks hashed. These chunks are never the root and never empty;
+ * those cases use a different codepath.
+ */
+static size_t compress_chunks_parallel(const blake3_impl_ops_t *ops,
+ const uint8_t *input, size_t input_len, const uint32_t key[8],
+ uint64_t chunk_counter, uint8_t flags, uint8_t *out)
+{
+ const uint8_t *chunks_array[MAX_SIMD_DEGREE];
+ size_t input_position = 0;
+ size_t chunks_array_len = 0;
+ while (input_len - input_position >= BLAKE3_CHUNK_LEN) {
+ chunks_array[chunks_array_len] = &input[input_position];
+ input_position += BLAKE3_CHUNK_LEN;
+ chunks_array_len += 1;
+ }
+
+ ops->hash_many(chunks_array, chunks_array_len, BLAKE3_CHUNK_LEN /
+ BLAKE3_BLOCK_LEN, key, chunk_counter, B_TRUE, flags, CHUNK_START,
+ CHUNK_END, out);
+
+ /*
+ * Hash the remaining partial chunk, if there is one. Note that the
+ * empty chunk (meaning the empty message) is a different codepath.
+ */
+ if (input_len > input_position) {
+ uint64_t counter = chunk_counter + (uint64_t)chunks_array_len;
+ blake3_chunk_state_t chunk_state;
+ chunk_state_init(&chunk_state, key, flags);
+ chunk_state.chunk_counter = counter;
+ chunk_state_update(ops, &chunk_state, &input[input_position],
+ input_len - input_position);
+ output_t output = chunk_state_output(&chunk_state);
+ output_chaining_value(ops, &output, &out[chunks_array_len *
+ BLAKE3_OUT_LEN]);
+ return (chunks_array_len + 1);
+ } else {
+ return (chunks_array_len);
+ }
+}
+
+/*
+ * Use SIMD parallelism to hash up to MAX_SIMD_DEGREE parents at the same time
+ * on a single thread. Write out the parent chaining values and return the
+ * number of parents hashed. (If there's an odd input chaining value left over,
+ * return it as an additional output.) These parents are never the root and
+ * never empty; those cases use a different codepath.
+ */
+static size_t compress_parents_parallel(const blake3_impl_ops_t *ops,
+ const uint8_t *child_chaining_values, size_t num_chaining_values,
+ const uint32_t key[8], uint8_t flags, uint8_t *out)
+{
+ const uint8_t *parents_array[MAX_SIMD_DEGREE_OR_2];
+ size_t parents_array_len = 0;
+
+ while (num_chaining_values - (2 * parents_array_len) >= 2) {
+ parents_array[parents_array_len] = &child_chaining_values[2 *
+ parents_array_len * BLAKE3_OUT_LEN];
+ parents_array_len += 1;
+ }
+
+ ops->hash_many(parents_array, parents_array_len, 1, key, 0, B_FALSE,
+ flags | PARENT, 0, 0, out);
+
+ /* If there's an odd child left over, it becomes an output. */
+ if (num_chaining_values > 2 * parents_array_len) {
+ memcpy(&out[parents_array_len * BLAKE3_OUT_LEN],
+ &child_chaining_values[2 * parents_array_len *
+ BLAKE3_OUT_LEN], BLAKE3_OUT_LEN);
+ return (parents_array_len + 1);
+ } else {
+ return (parents_array_len);
+ }
+}
+
+/*
+ * The wide helper function returns (writes out) an array of chaining values
+ * and returns the length of that array. The number of chaining values returned
+ * is the dyanmically detected SIMD degree, at most MAX_SIMD_DEGREE. Or fewer,
+ * if the input is shorter than that many chunks. The reason for maintaining a
+ * wide array of chaining values going back up the tree, is to allow the
+ * implementation to hash as many parents in parallel as possible.
+ *
+ * As a special case when the SIMD degree is 1, this function will still return
+ * at least 2 outputs. This guarantees that this function doesn't perform the
+ * root compression. (If it did, it would use the wrong flags, and also we
+ * wouldn't be able to implement exendable ouput.) Note that this function is
+ * not used when the whole input is only 1 chunk long; that's a different
+ * codepath.
+ *
+ * Why not just have the caller split the input on the first update(), instead
+ * of implementing this special rule? Because we don't want to limit SIMD or
+ * multi-threading parallelism for that update().
+ */
+static size_t blake3_compress_subtree_wide(const blake3_impl_ops_t *ops,
+ const uint8_t *input, size_t input_len, const uint32_t key[8],
+ uint64_t chunk_counter, uint8_t flags, uint8_t *out)
+{
+ /*
+ * Note that the single chunk case does *not* bump the SIMD degree up
+ * to 2 when it is 1. If this implementation adds multi-threading in
+ * the future, this gives us the option of multi-threading even the
+ * 2-chunk case, which can help performance on smaller platforms.
+ */
+ if (input_len <= (size_t)(ops->degree * BLAKE3_CHUNK_LEN)) {
+ return (compress_chunks_parallel(ops, input, input_len, key,
+ chunk_counter, flags, out));
+ }
+
+
+ /*
+ * With more than simd_degree chunks, we need to recurse. Start by
+ * dividing the input into left and right subtrees. (Note that this is
+ * only optimal as long as the SIMD degree is a power of 2. If we ever
+ * get a SIMD degree of 3 or something, we'll need a more complicated
+ * strategy.)
+ */
+ size_t left_input_len = left_len(input_len);
+ size_t right_input_len = input_len - left_input_len;
+ const uint8_t *right_input = &input[left_input_len];
+ uint64_t right_chunk_counter = chunk_counter +
+ (uint64_t)(left_input_len / BLAKE3_CHUNK_LEN);
+
+ /*
+ * Make space for the child outputs. Here we use MAX_SIMD_DEGREE_OR_2
+ * to account for the special case of returning 2 outputs when the
+ * SIMD degree is 1.
+ */
+ uint8_t cv_array[2 * MAX_SIMD_DEGREE_OR_2 * BLAKE3_OUT_LEN];
+ size_t degree = ops->degree;
+ if (left_input_len > BLAKE3_CHUNK_LEN && degree == 1) {
+
+ /*
+ * The special case: We always use a degree of at least two,
+ * to make sure there are two outputs. Except, as noted above,
+ * at the chunk level, where we allow degree=1. (Note that the
+ * 1-chunk-input case is a different codepath.)
+ */
+ degree = 2;
+ }
+ uint8_t *right_cvs = &cv_array[degree * BLAKE3_OUT_LEN];
+
+ /*
+ * Recurse! If this implementation adds multi-threading support in the
+ * future, this is where it will go.
+ */
+ size_t left_n = blake3_compress_subtree_wide(ops, input, left_input_len,
+ key, chunk_counter, flags, cv_array);
+ size_t right_n = blake3_compress_subtree_wide(ops, right_input,
+ right_input_len, key, right_chunk_counter, flags, right_cvs);
+
+ /*
+ * The special case again. If simd_degree=1, then we'll have left_n=1
+ * and right_n=1. Rather than compressing them into a single output,
+ * return them directly, to make sure we always have at least two
+ * outputs.
+ */
+ if (left_n == 1) {
+ memcpy(out, cv_array, 2 * BLAKE3_OUT_LEN);
+ return (2);
+ }
+
+ /* Otherwise, do one layer of parent node compression. */
+ size_t num_chaining_values = left_n + right_n;
+ return compress_parents_parallel(ops, cv_array,
+ num_chaining_values, key, flags, out);
+}
+
+/*
+ * Hash a subtree with compress_subtree_wide(), and then condense the resulting
+ * list of chaining values down to a single parent node. Don't compress that
+ * last parent node, however. Instead, return its message bytes (the
+ * concatenated chaining values of its children). This is necessary when the
+ * first call to update() supplies a complete subtree, because the topmost
+ * parent node of that subtree could end up being the root. It's also necessary
+ * for extended output in the general case.
+ *
+ * As with compress_subtree_wide(), this function is not used on inputs of 1
+ * chunk or less. That's a different codepath.
+ */
+static void compress_subtree_to_parent_node(const blake3_impl_ops_t *ops,
+ const uint8_t *input, size_t input_len, const uint32_t key[8],
+ uint64_t chunk_counter, uint8_t flags, uint8_t out[2 * BLAKE3_OUT_LEN])
+{
+ uint8_t cv_array[MAX_SIMD_DEGREE_OR_2 * BLAKE3_OUT_LEN];
+ size_t num_cvs = blake3_compress_subtree_wide(ops, input, input_len,
+ key, chunk_counter, flags, cv_array);
+
+ /*
+ * If MAX_SIMD_DEGREE is greater than 2 and there's enough input,
+ * compress_subtree_wide() returns more than 2 chaining values. Condense
+ * them into 2 by forming parent nodes repeatedly.
+ */
+ uint8_t out_array[MAX_SIMD_DEGREE_OR_2 * BLAKE3_OUT_LEN / 2];
+ while (num_cvs > 2) {
+ num_cvs = compress_parents_parallel(ops, cv_array, num_cvs, key,
+ flags, out_array);
+ memcpy(cv_array, out_array, num_cvs * BLAKE3_OUT_LEN);
+ }
+ memcpy(out, cv_array, 2 * BLAKE3_OUT_LEN);
+}
+
+static void hasher_init_base(BLAKE3_CTX *ctx, const uint32_t key[8],
+ uint8_t flags)
+{
+ memcpy(ctx->key, key, BLAKE3_KEY_LEN);
+ chunk_state_init(&ctx->chunk, key, flags);
+ ctx->cv_stack_len = 0;
+ ctx->ops = blake3_impl_get_ops();
+}
+
+/*
+ * As described in hasher_push_cv() below, we do "lazy merging", delaying
+ * merges until right before the next CV is about to be added. This is
+ * different from the reference implementation. Another difference is that we
+ * aren't always merging 1 chunk at a time. Instead, each CV might represent
+ * any power-of-two number of chunks, as long as the smaller-above-larger
+ * stack order is maintained. Instead of the "count the trailing 0-bits"
+ * algorithm described in the spec, we use a "count the total number of
+ * 1-bits" variant that doesn't require us to retain the subtree size of the
+ * CV on top of the stack. The principle is the same: each CV that should
+ * remain in the stack is represented by a 1-bit in the total number of chunks
+ * (or bytes) so far.
+ */
+static void hasher_merge_cv_stack(BLAKE3_CTX *ctx, uint64_t total_len)
+{
+ size_t post_merge_stack_len = (size_t)popcnt(total_len);
+ while (ctx->cv_stack_len > post_merge_stack_len) {
+ uint8_t *parent_node =
+ &ctx->cv_stack[(ctx->cv_stack_len - 2) * BLAKE3_OUT_LEN];
+ output_t output =
+ parent_output(parent_node, ctx->key, ctx->chunk.flags);
+ output_chaining_value(ctx->ops, &output, parent_node);
+ ctx->cv_stack_len -= 1;
+ }
+}
+
+/*
+ * In reference_impl.rs, we merge the new CV with existing CVs from the stack
+ * before pushing it. We can do that because we know more input is coming, so
+ * we know none of the merges are root.
+ *
+ * This setting is different. We want to feed as much input as possible to
+ * compress_subtree_wide(), without setting aside anything for the chunk_state.
+ * If the user gives us 64 KiB, we want to parallelize over all 64 KiB at once
+ * as a single subtree, if at all possible.
+ *
+ * This leads to two problems:
+ * 1) This 64 KiB input might be the only call that ever gets made to update.
+ * In this case, the root node of the 64 KiB subtree would be the root node
+ * of the whole tree, and it would need to be ROOT finalized. We can't
+ * compress it until we know.
+ * 2) This 64 KiB input might complete a larger tree, whose root node is
+ * similarly going to be the the root of the whole tree. For example, maybe
+ * we have 196 KiB (that is, 128 + 64) hashed so far. We can't compress the
+ * node at the root of the 256 KiB subtree until we know how to finalize it.
+ *
+ * The second problem is solved with "lazy merging". That is, when we're about
+ * to add a CV to the stack, we don't merge it with anything first, as the
+ * reference impl does. Instead we do merges using the *previous* CV that was
+ * added, which is sitting on top of the stack, and we put the new CV
+ * (unmerged) on top of the stack afterwards. This guarantees that we never
+ * merge the root node until finalize().
+ *
+ * Solving the first problem requires an additional tool,
+ * compress_subtree_to_parent_node(). That function always returns the top
+ * *two* chaining values of the subtree it's compressing. We then do lazy
+ * merging with each of them separately, so that the second CV will always
+ * remain unmerged. (That also helps us support extendable output when we're
+ * hashing an input all-at-once.)
+ */
+static void hasher_push_cv(BLAKE3_CTX *ctx, uint8_t new_cv[BLAKE3_OUT_LEN],
+ uint64_t chunk_counter)
+{
+ hasher_merge_cv_stack(ctx, chunk_counter);
+ memcpy(&ctx->cv_stack[ctx->cv_stack_len * BLAKE3_OUT_LEN], new_cv,
+ BLAKE3_OUT_LEN);
+ ctx->cv_stack_len += 1;
+}
+
+void
+Blake3_Init(BLAKE3_CTX *ctx)
+{
+ hasher_init_base(ctx, BLAKE3_IV, 0);
+}
+
+void
+Blake3_InitKeyed(BLAKE3_CTX *ctx, const uint8_t key[BLAKE3_KEY_LEN])
+{
+ uint32_t key_words[8];
+ load_key_words(key, key_words);
+ hasher_init_base(ctx, key_words, KEYED_HASH);
+}
+
+static void
+Blake3_Update2(BLAKE3_CTX *ctx, const void *input, size_t input_len)
+{
+ /*
+ * Explicitly checking for zero avoids causing UB by passing a null
+ * pointer to memcpy. This comes up in practice with things like:
+ * std::vector<uint8_t> v;
+ * blake3_hasher_update(&hasher, v.data(), v.size());
+ */
+ if (input_len == 0) {
+ return;
+ }
+
+ const uint8_t *input_bytes = (const uint8_t *)input;
+
+ /*
+ * If we have some partial chunk bytes in the internal chunk_state, we
+ * need to finish that chunk first.
+ */
+ if (chunk_state_len(&ctx->chunk) > 0) {
+ size_t take = BLAKE3_CHUNK_LEN - chunk_state_len(&ctx->chunk);
+ if (take > input_len) {
+ take = input_len;
+ }
+ chunk_state_update(ctx->ops, &ctx->chunk, input_bytes, take);
+ input_bytes += take;
+ input_len -= take;
+ /*
+ * If we've filled the current chunk and there's more coming,
+ * finalize this chunk and proceed. In this case we know it's
+ * not the root.
+ */
+ if (input_len > 0) {
+ output_t output = chunk_state_output(&ctx->chunk);
+ uint8_t chunk_cv[32];
+ output_chaining_value(ctx->ops, &output, chunk_cv);
+ hasher_push_cv(ctx, chunk_cv, ctx->chunk.chunk_counter);
+ chunk_state_reset(&ctx->chunk, ctx->key,
+ ctx->chunk.chunk_counter + 1);
+ } else {
+ return;
+ }
+ }
+
+ /*
+ * Now the chunk_state is clear, and we have more input. If there's
+ * more than a single chunk (so, definitely not the root chunk), hash
+ * the largest whole subtree we can, with the full benefits of SIMD
+ * (and maybe in the future, multi-threading) parallelism. Two
+ * restrictions:
+ * - The subtree has to be a power-of-2 number of chunks. Only
+ * subtrees along the right edge can be incomplete, and we don't know
+ * where the right edge is going to be until we get to finalize().
+ * - The subtree must evenly divide the total number of chunks up
+ * until this point (if total is not 0). If the current incomplete
+ * subtree is only waiting for 1 more chunk, we can't hash a subtree
+ * of 4 chunks. We have to complete the current subtree first.
+ * Because we might need to break up the input to form powers of 2, or
+ * to evenly divide what we already have, this part runs in a loop.
+ */
+ while (input_len > BLAKE3_CHUNK_LEN) {
+ size_t subtree_len = round_down_to_power_of_2(input_len);
+ uint64_t count_so_far =
+ ctx->chunk.chunk_counter * BLAKE3_CHUNK_LEN;
+ /*
+ * Shrink the subtree_len until it evenly divides the count so
+ * far. We know that subtree_len itself is a power of 2, so we
+ * can use a bitmasking trick instead of an actual remainder
+ * operation. (Note that if the caller consistently passes
+ * power-of-2 inputs of the same size, as is hopefully
+ * typical, this loop condition will always fail, and
+ * subtree_len will always be the full length of the input.)
+ *
+ * An aside: We don't have to shrink subtree_len quite this
+ * much. For example, if count_so_far is 1, we could pass 2
+ * chunks to compress_subtree_to_parent_node. Since we'll get
+ * 2 CVs back, we'll still get the right answer in the end,
+ * and we might get to use 2-way SIMD parallelism. The problem
+ * with this optimization, is that it gets us stuck always
+ * hashing 2 chunks. The total number of chunks will remain
+ * odd, and we'll never graduate to higher degrees of
+ * parallelism. See
+ * https://github.com/BLAKE3-team/BLAKE3/issues/69.
+ */
+ while ((((uint64_t)(subtree_len - 1)) & count_so_far) != 0) {
+ subtree_len /= 2;
+ }
+ /*
+ * The shrunken subtree_len might now be 1 chunk long. If so,
+ * hash that one chunk by itself. Otherwise, compress the
+ * subtree into a pair of CVs.
+ */
+ uint64_t subtree_chunks = subtree_len / BLAKE3_CHUNK_LEN;
+ if (subtree_len <= BLAKE3_CHUNK_LEN) {
+ blake3_chunk_state_t chunk_state;
+ chunk_state_init(&chunk_state, ctx->key,
+ ctx->chunk.flags);
+ chunk_state.chunk_counter = ctx->chunk.chunk_counter;
+ chunk_state_update(ctx->ops, &chunk_state, input_bytes,
+ subtree_len);
+ output_t output = chunk_state_output(&chunk_state);
+ uint8_t cv[BLAKE3_OUT_LEN];
+ output_chaining_value(ctx->ops, &output, cv);
+ hasher_push_cv(ctx, cv, chunk_state.chunk_counter);
+ } else {
+ /*
+ * This is the high-performance happy path, though
+ * getting here depends on the caller giving us a long
+ * enough input.
+ */
+ uint8_t cv_pair[2 * BLAKE3_OUT_LEN];
+ compress_subtree_to_parent_node(ctx->ops, input_bytes,
+ subtree_len, ctx->key, ctx-> chunk.chunk_counter,
+ ctx->chunk.flags, cv_pair);
+ hasher_push_cv(ctx, cv_pair, ctx->chunk.chunk_counter);
+ hasher_push_cv(ctx, &cv_pair[BLAKE3_OUT_LEN],
+ ctx->chunk.chunk_counter + (subtree_chunks / 2));
+ }
+ ctx->chunk.chunk_counter += subtree_chunks;
+ input_bytes += subtree_len;
+ input_len -= subtree_len;
+ }
+
+ /*
+ * If there's any remaining input less than a full chunk, add it to
+ * the chunk state. In that case, also do a final merge loop to make
+ * sure the subtree stack doesn't contain any unmerged pairs. The
+ * remaining input means we know these merges are non-root. This merge
+ * loop isn't strictly necessary here, because hasher_push_chunk_cv
+ * already does its own merge loop, but it simplifies
+ * blake3_hasher_finalize below.
+ */
+ if (input_len > 0) {
+ chunk_state_update(ctx->ops, &ctx->chunk, input_bytes,
+ input_len);
+ hasher_merge_cv_stack(ctx, ctx->chunk.chunk_counter);
+ }
+}
+
+void
+Blake3_Update(BLAKE3_CTX *ctx, const void *input, size_t todo)
+{
+ size_t done = 0;
+ const uint8_t *data = input;
+ const size_t block_max = 1024 * 64;
+
+ /* max feed buffer to leave the stack size small */
+ while (todo != 0) {
+ size_t block = (todo >= block_max) ? block_max : todo;
+ Blake3_Update2(ctx, data + done, block);
+ done += block;
+ todo -= block;
+ }
+}
+
+void
+Blake3_Final(const BLAKE3_CTX *ctx, uint8_t *out)
+{
+ Blake3_FinalSeek(ctx, 0, out, BLAKE3_OUT_LEN);
+}
+
+void
+Blake3_FinalSeek(const BLAKE3_CTX *ctx, uint64_t seek, uint8_t *out,
+ size_t out_len)
+{
+ /*
+ * Explicitly checking for zero avoids causing UB by passing a null
+ * pointer to memcpy. This comes up in practice with things like:
+ * std::vector<uint8_t> v;
+ * blake3_hasher_finalize(&hasher, v.data(), v.size());
+ */
+ if (out_len == 0) {
+ return;
+ }
+ /* If the subtree stack is empty, then the current chunk is the root. */
+ if (ctx->cv_stack_len == 0) {
+ output_t output = chunk_state_output(&ctx->chunk);
+ output_root_bytes(ctx->ops, &output, seek, out, out_len);
+ return;
+ }
+ /*
+ * If there are any bytes in the chunk state, finalize that chunk and
+ * do a roll-up merge between that chunk hash and every subtree in the
+ * stack. In this case, the extra merge loop at the end of
+ * blake3_hasher_update guarantees that none of the subtrees in the
+ * stack need to be merged with each other first. Otherwise, if there
+ * are no bytes in the chunk state, then the top of the stack is a
+ * chunk hash, and we start the merge from that.
+ */
+ output_t output;
+ size_t cvs_remaining;
+ if (chunk_state_len(&ctx->chunk) > 0) {
+ cvs_remaining = ctx->cv_stack_len;
+ output = chunk_state_output(&ctx->chunk);
+ } else {
+ /* There are always at least 2 CVs in the stack in this case. */
+ cvs_remaining = ctx->cv_stack_len - 2;
+ output = parent_output(&ctx->cv_stack[cvs_remaining * 32],
+ ctx->key, ctx->chunk.flags);
+ }
+ while (cvs_remaining > 0) {
+ cvs_remaining -= 1;
+ uint8_t parent_block[BLAKE3_BLOCK_LEN];
+ memcpy(parent_block, &ctx->cv_stack[cvs_remaining * 32], 32);
+ output_chaining_value(ctx->ops, &output, &parent_block[32]);
+ output = parent_output(parent_block, ctx->key,
+ ctx->chunk.flags);
+ }
+ output_root_bytes(ctx->ops, &output, seek, out, out_len);
+}
diff --git a/module/icp/algs/blake3/blake3_generic.c b/module/icp/algs/blake3/blake3_generic.c
new file mode 100644
index 000000000..6ff9a845c
--- /dev/null
+++ b/module/icp/algs/blake3/blake3_generic.c
@@ -0,0 +1,202 @@
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+
+/*
+ * Based on BLAKE3 v1.3.1, https://github.com/BLAKE3-team/BLAKE3
+ * Copyright (c) 2019-2020 Samuel Neves and Jack O'Connor
+ * Copyright (c) 2021-2022 Tino Reichardt <[email protected]>
+ */
+
+#include <sys/zfs_context.h>
+#include "blake3_impl.h"
+
+#define rotr32(x, n) (((x) >> (n)) | ((x) << (32 - (n))))
+static inline void g(uint32_t *state, size_t a, size_t b, size_t c, size_t d,
+ uint32_t x, uint32_t y)
+{
+ state[a] = state[a] + state[b] + x;
+ state[d] = rotr32(state[d] ^ state[a], 16);
+ state[c] = state[c] + state[d];
+ state[b] = rotr32(state[b] ^ state[c], 12);
+ state[a] = state[a] + state[b] + y;
+ state[d] = rotr32(state[d] ^ state[a], 8);
+ state[c] = state[c] + state[d];
+ state[b] = rotr32(state[b] ^ state[c], 7);
+}
+
+static inline void round_fn(uint32_t state[16], const uint32_t *msg,
+ size_t round)
+{
+ /* Select the message schedule based on the round. */
+ const uint8_t *schedule = BLAKE3_MSG_SCHEDULE[round];
+
+ /* Mix the columns. */
+ g(state, 0, 4, 8, 12, msg[schedule[0]], msg[schedule[1]]);
+ g(state, 1, 5, 9, 13, msg[schedule[2]], msg[schedule[3]]);
+ g(state, 2, 6, 10, 14, msg[schedule[4]], msg[schedule[5]]);
+ g(state, 3, 7, 11, 15, msg[schedule[6]], msg[schedule[7]]);
+
+ /* Mix the rows. */
+ g(state, 0, 5, 10, 15, msg[schedule[8]], msg[schedule[9]]);
+ g(state, 1, 6, 11, 12, msg[schedule[10]], msg[schedule[11]]);
+ g(state, 2, 7, 8, 13, msg[schedule[12]], msg[schedule[13]]);
+ g(state, 3, 4, 9, 14, msg[schedule[14]], msg[schedule[15]]);
+}
+
+static inline void compress_pre(uint32_t state[16], const uint32_t cv[8],
+ const uint8_t block[BLAKE3_BLOCK_LEN], uint8_t block_len,
+ uint64_t counter, uint8_t flags)
+{
+ uint32_t block_words[16];
+ block_words[0] = load32(block + 4 * 0);
+ block_words[1] = load32(block + 4 * 1);
+ block_words[2] = load32(block + 4 * 2);
+ block_words[3] = load32(block + 4 * 3);
+ block_words[4] = load32(block + 4 * 4);
+ block_words[5] = load32(block + 4 * 5);
+ block_words[6] = load32(block + 4 * 6);
+ block_words[7] = load32(block + 4 * 7);
+ block_words[8] = load32(block + 4 * 8);
+ block_words[9] = load32(block + 4 * 9);
+ block_words[10] = load32(block + 4 * 10);
+ block_words[11] = load32(block + 4 * 11);
+ block_words[12] = load32(block + 4 * 12);
+ block_words[13] = load32(block + 4 * 13);
+ block_words[14] = load32(block + 4 * 14);
+ block_words[15] = load32(block + 4 * 15);
+
+ state[0] = cv[0];
+ state[1] = cv[1];
+ state[2] = cv[2];
+ state[3] = cv[3];
+ state[4] = cv[4];
+ state[5] = cv[5];
+ state[6] = cv[6];
+ state[7] = cv[7];
+ state[8] = BLAKE3_IV[0];
+ state[9] = BLAKE3_IV[1];
+ state[10] = BLAKE3_IV[2];
+ state[11] = BLAKE3_IV[3];
+ state[12] = counter_low(counter);
+ state[13] = counter_high(counter);
+ state[14] = (uint32_t)block_len;
+ state[15] = (uint32_t)flags;
+
+ round_fn(state, &block_words[0], 0);
+ round_fn(state, &block_words[0], 1);
+ round_fn(state, &block_words[0], 2);
+ round_fn(state, &block_words[0], 3);
+ round_fn(state, &block_words[0], 4);
+ round_fn(state, &block_words[0], 5);
+ round_fn(state, &block_words[0], 6);
+}
+
+static inline void blake3_compress_in_place_generic(uint32_t cv[8],
+ const uint8_t block[BLAKE3_BLOCK_LEN], uint8_t block_len,
+ uint64_t counter, uint8_t flags)
+{
+ uint32_t state[16];
+ compress_pre(state, cv, block, block_len, counter, flags);
+ cv[0] = state[0] ^ state[8];
+ cv[1] = state[1] ^ state[9];
+ cv[2] = state[2] ^ state[10];
+ cv[3] = state[3] ^ state[11];
+ cv[4] = state[4] ^ state[12];
+ cv[5] = state[5] ^ state[13];
+ cv[6] = state[6] ^ state[14];
+ cv[7] = state[7] ^ state[15];
+}
+
+static inline void hash_one_generic(const uint8_t *input, size_t blocks,
+ const uint32_t key[8], uint64_t counter, uint8_t flags,
+ uint8_t flags_start, uint8_t flags_end, uint8_t out[BLAKE3_OUT_LEN])
+{
+ uint32_t cv[8];
+ memcpy(cv, key, BLAKE3_KEY_LEN);
+ uint8_t block_flags = flags | flags_start;
+ while (blocks > 0) {
+ if (blocks == 1) {
+ block_flags |= flags_end;
+ }
+ blake3_compress_in_place_generic(cv, input, BLAKE3_BLOCK_LEN,
+ counter, block_flags);
+ input = &input[BLAKE3_BLOCK_LEN];
+ blocks -= 1;
+ block_flags = flags;
+ }
+ store_cv_words(out, cv);
+}
+
+static inline void blake3_compress_xof_generic(const uint32_t cv[8],
+ const uint8_t block[BLAKE3_BLOCK_LEN], uint8_t block_len,
+ uint64_t counter, uint8_t flags, uint8_t out[64])
+{
+ uint32_t state[16];
+ compress_pre(state, cv, block, block_len, counter, flags);
+
+ store32(&out[0 * 4], state[0] ^ state[8]);
+ store32(&out[1 * 4], state[1] ^ state[9]);
+ store32(&out[2 * 4], state[2] ^ state[10]);
+ store32(&out[3 * 4], state[3] ^ state[11]);
+ store32(&out[4 * 4], state[4] ^ state[12]);
+ store32(&out[5 * 4], state[5] ^ state[13]);
+ store32(&out[6 * 4], state[6] ^ state[14]);
+ store32(&out[7 * 4], state[7] ^ state[15]);
+ store32(&out[8 * 4], state[8] ^ cv[0]);
+ store32(&out[9 * 4], state[9] ^ cv[1]);
+ store32(&out[10 * 4], state[10] ^ cv[2]);
+ store32(&out[11 * 4], state[11] ^ cv[3]);
+ store32(&out[12 * 4], state[12] ^ cv[4]);
+ store32(&out[13 * 4], state[13] ^ cv[5]);
+ store32(&out[14 * 4], state[14] ^ cv[6]);
+ store32(&out[15 * 4], state[15] ^ cv[7]);
+}
+
+static inline void blake3_hash_many_generic(const uint8_t * const *inputs,
+ size_t num_inputs, size_t blocks, const uint32_t key[8], uint64_t counter,
+ boolean_t increment_counter, uint8_t flags, uint8_t flags_start,
+ uint8_t flags_end, uint8_t *out)
+{
+ while (num_inputs > 0) {
+ hash_one_generic(inputs[0], blocks, key, counter, flags,
+ flags_start, flags_end, out);
+ if (increment_counter) {
+ counter += 1;
+ }
+ inputs += 1;
+ num_inputs -= 1;
+ out = &out[BLAKE3_OUT_LEN];
+ }
+}
+
+static inline boolean_t blake3_is_generic_supported(void)
+{
+ return (B_TRUE);
+}
+
+const blake3_impl_ops_t blake3_generic_impl = {
+ .compress_in_place = blake3_compress_in_place_generic,
+ .compress_xof = blake3_compress_xof_generic,
+ .hash_many = blake3_hash_many_generic,
+ .is_supported = blake3_is_generic_supported,
+ .degree = 4,
+ .name = "generic"
+};
diff --git a/module/icp/algs/blake3/blake3_impl.c b/module/icp/algs/blake3/blake3_impl.c
new file mode 100644
index 000000000..c3268ec13
--- /dev/null
+++ b/module/icp/algs/blake3/blake3_impl.c
@@ -0,0 +1,256 @@
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+
+/*
+ * Copyright (c) 2021-2022 Tino Reichardt <[email protected]>
+ */
+
+#include <sys/zfs_context.h>
+#include <sys/zio_checksum.h>
+
+#include "blake3_impl.h"
+
+static const blake3_impl_ops_t *const blake3_impls[] = {
+ &blake3_generic_impl,
+#if defined(__aarch64__) || \
+ (defined(__x86_64) && defined(HAVE_SSE2)) || \
+ (defined(__PPC64__) && defined(__LITTLE_ENDIAN__))
+ &blake3_sse2_impl,
+#endif
+#if defined(__aarch64__) || \
+ (defined(__x86_64) && defined(HAVE_SSE4_1)) || \
+ (defined(__PPC64__) && defined(__LITTLE_ENDIAN__))
+ &blake3_sse41_impl,
+#endif
+#if defined(__x86_64) && defined(HAVE_SSE4_1) && defined(HAVE_AVX2)
+ &blake3_avx2_impl,
+#endif
+#if defined(__x86_64) && defined(HAVE_AVX512F) && defined(HAVE_AVX512VL)
+ &blake3_avx512_impl,
+#endif
+};
+
+/* this pointer holds current ops for implementation */
+static const blake3_impl_ops_t *blake3_selected_impl = &blake3_generic_impl;
+
+/* special implementation selections */
+#define IMPL_FASTEST (UINT32_MAX)
+#define IMPL_CYCLE (UINT32_MAX-1)
+#define IMPL_USER (UINT32_MAX-2)
+#define IMPL_PARAM (UINT32_MAX-3)
+
+#define IMPL_READ(i) (*(volatile uint32_t *) &(i))
+static uint32_t icp_blake3_impl = IMPL_FASTEST;
+
+#define BLAKE3_IMPL_NAME_MAX 16
+
+/* id of fastest implementation */
+static uint32_t blake3_fastest_id = 0;
+
+/* currently used id */
+static uint32_t blake3_current_id = 0;
+
+/* id of module parameter (-1 == unused) */
+static int blake3_param_id = -1;
+
+/* return number of supported implementations */
+int
+blake3_get_impl_count(void)
+{
+ static int impls = 0;
+ int i;
+
+ if (impls)
+ return (impls);
+
+ for (i = 0; i < ARRAY_SIZE(blake3_impls); i++) {
+ if (!blake3_impls[i]->is_supported()) continue;
+ impls++;
+ }
+
+ return (impls);
+}
+
+/* return id of selected implementation */
+int
+blake3_get_impl_id(void)
+{
+ return (blake3_current_id);
+}
+
+/* return name of selected implementation */
+const char *
+blake3_get_impl_name(void)
+{
+ return (blake3_selected_impl->name);
+}
+
+/* setup id as fastest implementation */
+void
+blake3_set_impl_fastest(uint32_t id)
+{
+ blake3_fastest_id = id;
+}
+
+/* set implementation by id */
+void
+blake3_set_impl_id(uint32_t id)
+{
+ int i, cid;
+
+ /* select fastest */
+ if (id == IMPL_FASTEST)
+ id = blake3_fastest_id;
+
+ /* select next or first */
+ if (id == IMPL_CYCLE)
+ id = (++blake3_current_id) % blake3_get_impl_count();
+
+ /* 0..N for the real impl */
+ for (i = 0, cid = 0; i < ARRAY_SIZE(blake3_impls); i++) {
+ if (!blake3_impls[i]->is_supported()) continue;
+ if (cid == id) {
+ blake3_current_id = cid;
+ blake3_selected_impl = blake3_impls[i];
+ return;
+ }
+ cid++;
+ }
+}
+
+/* set implementation by name */
+int
+blake3_set_impl_name(const char *name)
+{
+ int i, cid;
+
+ if (strcmp(name, "fastest") == 0) {
+ atomic_swap_32(&icp_blake3_impl, IMPL_FASTEST);
+ blake3_set_impl_id(IMPL_FASTEST);
+ return (0);
+ } else if (strcmp(name, "cycle") == 0) {
+ atomic_swap_32(&icp_blake3_impl, IMPL_CYCLE);
+ blake3_set_impl_id(IMPL_CYCLE);
+ return (0);
+ }
+
+ for (i = 0, cid = 0; i < ARRAY_SIZE(blake3_impls); i++) {
+ if (!blake3_impls[i]->is_supported()) continue;
+ if (strcmp(name, blake3_impls[i]->name) == 0) {
+ if (icp_blake3_impl == IMPL_PARAM) {
+ blake3_param_id = cid;
+ return (0);
+ }
+ blake3_selected_impl = blake3_impls[i];
+ blake3_current_id = cid;
+ return (0);
+ }
+ cid++;
+ }
+
+ return (-EINVAL);
+}
+
+/* setup implementation */
+void
+blake3_setup_impl(void)
+{
+ switch (IMPL_READ(icp_blake3_impl)) {
+ case IMPL_PARAM:
+ blake3_set_impl_id(blake3_param_id);
+ atomic_swap_32(&icp_blake3_impl, IMPL_USER);
+ break;
+ case IMPL_FASTEST:
+ blake3_set_impl_id(IMPL_FASTEST);
+ break;
+ case IMPL_CYCLE:
+ blake3_set_impl_id(IMPL_CYCLE);
+ break;
+ default:
+ blake3_set_impl_id(blake3_current_id);
+ break;
+ }
+}
+
+/* return selected implementation */
+const blake3_impl_ops_t *
+blake3_impl_get_ops(void)
+{
+ /* each call to ops will cycle */
+ if (icp_blake3_impl == IMPL_CYCLE)
+ blake3_set_impl_id(IMPL_CYCLE);
+
+ return (blake3_selected_impl);
+}
+
+#if defined(_KERNEL) && defined(__linux__)
+static int
+icp_blake3_impl_set(const char *name, zfs_kernel_param_t *kp)
+{
+ char req_name[BLAKE3_IMPL_NAME_MAX];
+ size_t i;
+
+ /* sanitize input */
+ i = strnlen(name, BLAKE3_IMPL_NAME_MAX);
+ if (i == 0 || i >= BLAKE3_IMPL_NAME_MAX)
+ return (-EINVAL);
+
+ strlcpy(req_name, name, BLAKE3_IMPL_NAME_MAX);
+ while (i > 0 && isspace(req_name[i-1]))
+ i--;
+ req_name[i] = '\0';
+
+ atomic_swap_32(&icp_blake3_impl, IMPL_PARAM);
+ return (blake3_set_impl_name(req_name));
+}
+
+static int
+icp_blake3_impl_get(char *buffer, zfs_kernel_param_t *kp)
+{
+ int i, cid, cnt = 0;
+ char *fmt;
+
+ /* cycling */
+ fmt = (icp_blake3_impl == IMPL_CYCLE) ? "[cycle] " : "cycle ";
+ cnt += sprintf(buffer + cnt, fmt);
+
+ /* fastest one */
+ fmt = (icp_blake3_impl == IMPL_FASTEST) ? "[fastest] " : "fastest ";
+ cnt += sprintf(buffer + cnt, fmt);
+
+ /* user selected */
+ for (i = 0, cid = 0; i < ARRAY_SIZE(blake3_impls); i++) {
+ if (!blake3_impls[i]->is_supported()) continue;
+ fmt = (icp_blake3_impl == IMPL_USER &&
+ cid == blake3_current_id) ? "[%s] " : "%s ";
+ cnt += sprintf(buffer + cnt, fmt, blake3_impls[i]->name);
+ cid++;
+ }
+
+ buffer[cnt] = 0;
+
+ return (cnt);
+}
+
+module_param_call(icp_blake3_impl, icp_blake3_impl_set, icp_blake3_impl_get,
+ NULL, 0644);
+MODULE_PARM_DESC(icp_blake3_impl, "Select BLAKE3 implementation.");
+#endif
diff --git a/module/icp/algs/blake3/blake3_impl.h b/module/icp/algs/blake3/blake3_impl.h
new file mode 100644
index 000000000..7b40cc4d3
--- /dev/null
+++ b/module/icp/algs/blake3/blake3_impl.h
@@ -0,0 +1,213 @@
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+
+/*
+ * Based on BLAKE3 v1.3.1, https://github.com/BLAKE3-team/BLAKE3
+ * Copyright (c) 2019-2020 Samuel Neves and Jack O'Connor
+ * Copyright (c) 2021-2022 Tino Reichardt <[email protected]>
+ */
+
+#ifndef BLAKE3_IMPL_H
+#define BLAKE3_IMPL_H
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#include <sys/types.h>
+#include <sys/blake3.h>
+#include <sys/simd.h>
+
+/*
+ * Methods used to define BLAKE3 assembler implementations
+ */
+typedef void (*blake3_compress_in_place_f)(uint32_t cv[8],
+ const uint8_t block[BLAKE3_BLOCK_LEN],
+ uint8_t block_len, uint64_t counter,
+ uint8_t flags);
+
+typedef void (*blake3_compress_xof_f)(const uint32_t cv[8],
+ const uint8_t block[BLAKE3_BLOCK_LEN], uint8_t block_len,
+ uint64_t counter, uint8_t flags, uint8_t out[64]);
+
+typedef void (*blake3_hash_many_f)(const uint8_t * const *inputs,
+ size_t num_inputs, size_t blocks, const uint32_t key[8],
+ uint64_t counter, boolean_t increment_counter, uint8_t flags,
+ uint8_t flags_start, uint8_t flags_end, uint8_t *out);
+
+typedef boolean_t (*blake3_is_supported_f)(void);
+
+typedef struct blake3_impl_ops {
+ blake3_compress_in_place_f compress_in_place;
+ blake3_compress_xof_f compress_xof;
+ blake3_hash_many_f hash_many;
+ blake3_is_supported_f is_supported;
+ int degree;
+ const char *name;
+} blake3_impl_ops_t;
+
+/* Return selected BLAKE3 implementation ops */
+extern const blake3_impl_ops_t *blake3_impl_get_ops(void);
+
+extern const blake3_impl_ops_t blake3_generic_impl;
+
+#if defined(__aarch64__) || \
+ (defined(__x86_64) && defined(HAVE_SSE2)) || \
+ (defined(__PPC64__) && defined(__LITTLE_ENDIAN__))
+extern const blake3_impl_ops_t blake3_sse2_impl;
+#endif
+
+#if defined(__aarch64__) || \
+ (defined(__x86_64) && defined(HAVE_SSE4_1)) || \
+ (defined(__PPC64__) && defined(__LITTLE_ENDIAN__))
+extern const blake3_impl_ops_t blake3_sse41_impl;
+#endif
+
+#if defined(__x86_64) && defined(HAVE_SSE4_1) && defined(HAVE_AVX2)
+extern const blake3_impl_ops_t blake3_avx2_impl;
+#endif
+
+#if defined(__x86_64) && defined(HAVE_AVX512F) && defined(HAVE_AVX512VL)
+extern const blake3_impl_ops_t blake3_avx512_impl;
+#endif
+
+#if defined(__x86_64)
+#define MAX_SIMD_DEGREE 16
+#else
+#define MAX_SIMD_DEGREE 4
+#endif
+
+#define MAX_SIMD_DEGREE_OR_2 (MAX_SIMD_DEGREE > 2 ? MAX_SIMD_DEGREE : 2)
+
+static const uint32_t BLAKE3_IV[8] = {
+ 0x6A09E667UL, 0xBB67AE85UL, 0x3C6EF372UL, 0xA54FF53AUL,
+ 0x510E527FUL, 0x9B05688CUL, 0x1F83D9ABUL, 0x5BE0CD19UL};
+
+static const uint8_t BLAKE3_MSG_SCHEDULE[7][16] = {
+ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15},
+ {2, 6, 3, 10, 7, 0, 4, 13, 1, 11, 12, 5, 9, 14, 15, 8},
+ {3, 4, 10, 12, 13, 2, 7, 14, 6, 5, 9, 0, 11, 15, 8, 1},
+ {10, 7, 12, 9, 14, 3, 13, 15, 4, 0, 11, 2, 5, 8, 1, 6},
+ {12, 13, 9, 11, 15, 10, 14, 8, 7, 2, 5, 3, 0, 1, 6, 4},
+ {9, 14, 11, 5, 8, 12, 15, 1, 13, 3, 0, 10, 2, 6, 4, 7},
+ {11, 15, 5, 0, 1, 9, 8, 6, 14, 10, 2, 12, 3, 4, 7, 13},
+};
+
+/* Find index of the highest set bit */
+static inline unsigned int highest_one(uint64_t x) {
+#if defined(__GNUC__) || defined(__clang__)
+ return (63 ^ __builtin_clzll(x));
+#elif defined(_MSC_VER) && defined(IS_X86_64)
+ unsigned long index;
+ _BitScanReverse64(&index, x);
+ return (index);
+#elif defined(_MSC_VER) && defined(IS_X86_32)
+ if (x >> 32) {
+ unsigned long index;
+ _BitScanReverse(&index, x >> 32);
+ return (32 + index);
+ } else {
+ unsigned long index;
+ _BitScanReverse(&index, x);
+ return (index);
+ }
+#else
+ unsigned int c = 0;
+ if (x & 0xffffffff00000000ULL) { x >>= 32; c += 32; }
+ if (x & 0x00000000ffff0000ULL) { x >>= 16; c += 16; }
+ if (x & 0x000000000000ff00ULL) { x >>= 8; c += 8; }
+ if (x & 0x00000000000000f0ULL) { x >>= 4; c += 4; }
+ if (x & 0x000000000000000cULL) { x >>= 2; c += 2; }
+ if (x & 0x0000000000000002ULL) { c += 1; }
+ return (c);
+#endif
+}
+
+/* Count the number of 1 bits. */
+static inline unsigned int popcnt(uint64_t x) {
+ unsigned int count = 0;
+
+ while (x != 0) {
+ count += 1;
+ x &= x - 1;
+ }
+
+ return (count);
+}
+
+/*
+ * Largest power of two less than or equal to x.
+ * As a special case, returns 1 when x is 0.
+ */
+static inline uint64_t round_down_to_power_of_2(uint64_t x) {
+ return (1ULL << highest_one(x | 1));
+}
+
+static inline uint32_t counter_low(uint64_t counter) {
+ return ((uint32_t)counter);
+}
+
+static inline uint32_t counter_high(uint64_t counter) {
+ return ((uint32_t)(counter >> 32));
+}
+
+static inline uint32_t load32(const void *src) {
+ const uint8_t *p = (const uint8_t *)src;
+ return ((uint32_t)(p[0]) << 0) | ((uint32_t)(p[1]) << 8) |
+ ((uint32_t)(p[2]) << 16) | ((uint32_t)(p[3]) << 24);
+}
+
+static inline void load_key_words(const uint8_t key[BLAKE3_KEY_LEN],
+ uint32_t key_words[8]) {
+ key_words[0] = load32(&key[0 * 4]);
+ key_words[1] = load32(&key[1 * 4]);
+ key_words[2] = load32(&key[2 * 4]);
+ key_words[3] = load32(&key[3 * 4]);
+ key_words[4] = load32(&key[4 * 4]);
+ key_words[5] = load32(&key[5 * 4]);
+ key_words[6] = load32(&key[6 * 4]);
+ key_words[7] = load32(&key[7 * 4]);
+}
+
+static inline void store32(void *dst, uint32_t w) {
+ uint8_t *p = (uint8_t *)dst;
+ p[0] = (uint8_t)(w >> 0);
+ p[1] = (uint8_t)(w >> 8);
+ p[2] = (uint8_t)(w >> 16);
+ p[3] = (uint8_t)(w >> 24);
+}
+
+static inline void store_cv_words(uint8_t bytes_out[32], uint32_t cv_words[8]) {
+ store32(&bytes_out[0 * 4], cv_words[0]);
+ store32(&bytes_out[1 * 4], cv_words[1]);
+ store32(&bytes_out[2 * 4], cv_words[2]);
+ store32(&bytes_out[3 * 4], cv_words[3]);
+ store32(&bytes_out[4 * 4], cv_words[4]);
+ store32(&bytes_out[5 * 4], cv_words[5]);
+ store32(&bytes_out[6 * 4], cv_words[6]);
+ store32(&bytes_out[7 * 4], cv_words[7]);
+}
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* BLAKE3_IMPL_H */
diff --git a/module/icp/algs/blake3/blake3_x86-64.c b/module/icp/algs/blake3/blake3_x86-64.c
new file mode 100644
index 000000000..48715e212
--- /dev/null
+++ b/module/icp/algs/blake3/blake3_x86-64.c
@@ -0,0 +1,248 @@
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+
+/*
+ * Copyright (c) 2021-2022 Tino Reichardt <[email protected]>
+ */
+
+#include "blake3_impl.h"
+
+#if defined(__aarch64__) || \
+ (defined(__x86_64) && defined(HAVE_SSE2)) || \
+ (defined(__PPC64__) && defined(__LITTLE_ENDIAN__))
+
+extern void zfs_blake3_compress_in_place_sse2(uint32_t cv[8],
+ const uint8_t block[BLAKE3_BLOCK_LEN], uint8_t block_len,
+ uint64_t counter, uint8_t flags);
+
+extern void zfs_blake3_compress_xof_sse2(const uint32_t cv[8],
+ const uint8_t block[BLAKE3_BLOCK_LEN], uint8_t block_len,
+ uint64_t counter, uint8_t flags, uint8_t out[64]);
+
+extern void zfs_blake3_hash_many_sse2(const uint8_t * const *inputs,
+ size_t num_inputs, size_t blocks, const uint32_t key[8],
+ uint64_t counter, boolean_t increment_counter, uint8_t flags,
+ uint8_t flags_start, uint8_t flags_end, uint8_t *out);
+
+static void blake3_compress_in_place_sse2(uint32_t cv[8],
+ const uint8_t block[BLAKE3_BLOCK_LEN], uint8_t block_len,
+ uint64_t counter, uint8_t flags) {
+ kfpu_begin();
+ zfs_blake3_compress_in_place_sse2(cv, block, block_len, counter,
+ flags);
+ kfpu_end();
+}
+
+static void blake3_compress_xof_sse2(const uint32_t cv[8],
+ const uint8_t block[BLAKE3_BLOCK_LEN], uint8_t block_len,
+ uint64_t counter, uint8_t flags, uint8_t out[64]) {
+ kfpu_begin();
+ zfs_blake3_compress_xof_sse2(cv, block, block_len, counter, flags,
+ out);
+ kfpu_end();
+}
+
+static void blake3_hash_many_sse2(const uint8_t * const *inputs,
+ size_t num_inputs, size_t blocks, const uint32_t key[8],
+ uint64_t counter, boolean_t increment_counter, uint8_t flags,
+ uint8_t flags_start, uint8_t flags_end, uint8_t *out) {
+ kfpu_begin();
+ zfs_blake3_hash_many_sse2(inputs, num_inputs, blocks, key, counter,
+ increment_counter, flags, flags_start, flags_end, out);
+ kfpu_end();
+}
+
+static boolean_t blake3_is_sse2_supported(void)
+{
+#if defined(__x86_64)
+ return (kfpu_allowed() && zfs_sse2_available());
+#elif defined(__PPC64__)
+ return (kfpu_allowed() && zfs_vsx_available());
+#else
+ return (kfpu_allowed());
+#endif
+}
+
+const blake3_impl_ops_t blake3_sse2_impl = {
+ .compress_in_place = blake3_compress_in_place_sse2,
+ .compress_xof = blake3_compress_xof_sse2,
+ .hash_many = blake3_hash_many_sse2,
+ .is_supported = blake3_is_sse2_supported,
+ .degree = 4,
+ .name = "sse2"
+};
+#endif
+
+#if defined(__aarch64__) || \
+ (defined(__x86_64) && defined(HAVE_SSE2)) || \
+ (defined(__PPC64__) && defined(__LITTLE_ENDIAN__))
+
+extern void zfs_blake3_compress_in_place_sse41(uint32_t cv[8],
+ const uint8_t block[BLAKE3_BLOCK_LEN], uint8_t block_len,
+ uint64_t counter, uint8_t flags);
+
+extern void zfs_blake3_compress_xof_sse41(const uint32_t cv[8],
+ const uint8_t block[BLAKE3_BLOCK_LEN], uint8_t block_len,
+ uint64_t counter, uint8_t flags, uint8_t out[64]);
+
+extern void zfs_blake3_hash_many_sse41(const uint8_t * const *inputs,
+ size_t num_inputs, size_t blocks, const uint32_t key[8],
+ uint64_t counter, boolean_t increment_counter, uint8_t flags,
+ uint8_t flags_start, uint8_t flags_end, uint8_t *out);
+
+static void blake3_compress_in_place_sse41(uint32_t cv[8],
+ const uint8_t block[BLAKE3_BLOCK_LEN], uint8_t block_len,
+ uint64_t counter, uint8_t flags) {
+ kfpu_begin();
+ zfs_blake3_compress_in_place_sse41(cv, block, block_len, counter,
+ flags);
+ kfpu_end();
+}
+
+static void blake3_compress_xof_sse41(const uint32_t cv[8],
+ const uint8_t block[BLAKE3_BLOCK_LEN], uint8_t block_len,
+ uint64_t counter, uint8_t flags, uint8_t out[64]) {
+ kfpu_begin();
+ zfs_blake3_compress_xof_sse41(cv, block, block_len, counter, flags,
+ out);
+ kfpu_end();
+}
+
+static void blake3_hash_many_sse41(const uint8_t * const *inputs,
+ size_t num_inputs, size_t blocks, const uint32_t key[8],
+ uint64_t counter, boolean_t increment_counter, uint8_t flags,
+ uint8_t flags_start, uint8_t flags_end, uint8_t *out) {
+ kfpu_begin();
+ zfs_blake3_hash_many_sse41(inputs, num_inputs, blocks, key, counter,
+ increment_counter, flags, flags_start, flags_end, out);
+ kfpu_end();
+}
+
+static boolean_t blake3_is_sse41_supported(void)
+{
+#if defined(__x86_64)
+ return (kfpu_allowed() && zfs_sse4_1_available());
+#elif defined(__PPC64__)
+ return (kfpu_allowed() && zfs_vsx_available());
+#else
+ return (kfpu_allowed());
+#endif
+}
+
+const blake3_impl_ops_t blake3_sse41_impl = {
+ .compress_in_place = blake3_compress_in_place_sse41,
+ .compress_xof = blake3_compress_xof_sse41,
+ .hash_many = blake3_hash_many_sse41,
+ .is_supported = blake3_is_sse41_supported,
+ .degree = 4,
+ .name = "sse41"
+};
+#endif
+
+#if defined(__x86_64) && defined(HAVE_SSE4_1) && defined(HAVE_AVX2)
+extern void zfs_blake3_hash_many_avx2(const uint8_t * const *inputs,
+ size_t num_inputs, size_t blocks, const uint32_t key[8],
+ uint64_t counter, boolean_t increment_counter, uint8_t flags,
+ uint8_t flags_start, uint8_t flags_end, uint8_t *out);
+
+static void blake3_hash_many_avx2(const uint8_t * const *inputs,
+ size_t num_inputs, size_t blocks, const uint32_t key[8],
+ uint64_t counter, boolean_t increment_counter, uint8_t flags,
+ uint8_t flags_start, uint8_t flags_end, uint8_t *out) {
+ kfpu_begin();
+ zfs_blake3_hash_many_avx2(inputs, num_inputs, blocks, key, counter,
+ increment_counter, flags, flags_start, flags_end, out);
+ kfpu_end();
+}
+
+static boolean_t blake3_is_avx2_supported(void)
+{
+ return (kfpu_allowed() && zfs_sse4_1_available() &&
+ zfs_avx2_available());
+}
+
+const blake3_impl_ops_t blake3_avx2_impl = {
+ .compress_in_place = blake3_compress_in_place_sse41,
+ .compress_xof = blake3_compress_xof_sse41,
+ .hash_many = blake3_hash_many_avx2,
+ .is_supported = blake3_is_avx2_supported,
+ .degree = 8,
+ .name = "avx2"
+};
+#endif
+
+#if defined(__x86_64) && defined(HAVE_AVX512F) && defined(HAVE_AVX512VL)
+extern void zfs_blake3_compress_in_place_avx512(uint32_t cv[8],
+ const uint8_t block[BLAKE3_BLOCK_LEN], uint8_t block_len,
+ uint64_t counter, uint8_t flags);
+
+extern void zfs_blake3_compress_xof_avx512(const uint32_t cv[8],
+ const uint8_t block[BLAKE3_BLOCK_LEN], uint8_t block_len,
+ uint64_t counter, uint8_t flags, uint8_t out[64]);
+
+extern void zfs_blake3_hash_many_avx512(const uint8_t * const *inputs,
+ size_t num_inputs, size_t blocks, const uint32_t key[8],
+ uint64_t counter, boolean_t increment_counter, uint8_t flags,
+ uint8_t flags_start, uint8_t flags_end, uint8_t *out);
+
+static void blake3_compress_in_place_avx512(uint32_t cv[8],
+ const uint8_t block[BLAKE3_BLOCK_LEN], uint8_t block_len,
+ uint64_t counter, uint8_t flags) {
+ kfpu_begin();
+ zfs_blake3_compress_in_place_avx512(cv, block, block_len, counter,
+ flags);
+ kfpu_end();
+}
+
+static void blake3_compress_xof_avx512(const uint32_t cv[8],
+ const uint8_t block[BLAKE3_BLOCK_LEN], uint8_t block_len,
+ uint64_t counter, uint8_t flags, uint8_t out[64]) {
+ kfpu_begin();
+ zfs_blake3_compress_xof_avx512(cv, block, block_len, counter, flags,
+ out);
+ kfpu_end();
+}
+
+static void blake3_hash_many_avx512(const uint8_t * const *inputs,
+ size_t num_inputs, size_t blocks, const uint32_t key[8],
+ uint64_t counter, boolean_t increment_counter, uint8_t flags,
+ uint8_t flags_start, uint8_t flags_end, uint8_t *out) {
+ kfpu_begin();
+ zfs_blake3_hash_many_avx512(inputs, num_inputs, blocks, key, counter,
+ increment_counter, flags, flags_start, flags_end, out);
+ kfpu_end();
+}
+
+static boolean_t blake3_is_avx512_supported(void)
+{
+ return (kfpu_allowed() && zfs_avx512f_available() &&
+ zfs_avx512vl_available());
+}
+
+const blake3_impl_ops_t blake3_avx512_impl = {
+ .compress_in_place = blake3_compress_in_place_avx512,
+ .compress_xof = blake3_compress_xof_avx512,
+ .hash_many = blake3_hash_many_avx512,
+ .is_supported = blake3_is_avx512_supported,
+ .degree = 16,
+ .name = "avx512"
+};
+#endif