aboutsummaryrefslogtreecommitdiffstats
path: root/module/icp/algs/sha1/sha1.c
diff options
context:
space:
mode:
authorTom Caputi <[email protected]>2016-05-12 10:51:24 -0400
committerBrian Behlendorf <[email protected]>2016-07-20 10:43:30 -0700
commit0b04990a5de594659d2cf20458965277dd6efeb1 (patch)
tree74369a3236e03359f7276cb9b19687e28c7f6d59 /module/icp/algs/sha1/sha1.c
parentbe88e733a634ad0d7f20350e1a17ede51922d3ff (diff)
Illumos Crypto Port module added to enable native encryption in zfs
A port of the Illumos Crypto Framework to a Linux kernel module (found in module/icp). This is needed to do the actual encryption work. We cannot use the Linux kernel's built in crypto api because it is only exported to GPL-licensed modules. Having the ICP also means the crypto code can run on any of the other kernels under OpenZFS. I ended up porting over most of the internals of the framework, which means that porting over other API calls (if we need them) should be fairly easy. Specifically, I have ported over the API functions related to encryption, digests, macs, and crypto templates. The ICP is able to use assembly-accelerated encryption on amd64 machines and AES-NI instructions on Intel chips that support it. There are place-holder directories for similar assembly optimizations for other architectures (although they have not been written). Signed-off-by: Tom Caputi <[email protected]> Signed-off-by: Tony Hutter <[email protected]> Signed-off-by: Brian Behlendorf <[email protected]> Issue #4329
Diffstat (limited to 'module/icp/algs/sha1/sha1.c')
-rw-r--r--module/icp/algs/sha1/sha1.c663
1 files changed, 663 insertions, 0 deletions
diff --git a/module/icp/algs/sha1/sha1.c b/module/icp/algs/sha1/sha1.c
new file mode 100644
index 000000000..b826c54ad
--- /dev/null
+++ b/module/icp/algs/sha1/sha1.c
@@ -0,0 +1,663 @@
+/*
+ * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms.
+ */
+
+/*
+ * The basic framework for this code came from the reference
+ * implementation for MD5. That implementation is Copyright (C)
+ * 1991-2, RSA Data Security, Inc. Created 1991. All rights reserved.
+ *
+ * License to copy and use this software is granted provided that it
+ * is identified as the "RSA Data Security, Inc. MD5 Message-Digest
+ * Algorithm" in all material mentioning or referencing this software
+ * or this function.
+ *
+ * License is also granted to make and use derivative works provided
+ * that such works are identified as "derived from the RSA Data
+ * Security, Inc. MD5 Message-Digest Algorithm" in all material
+ * mentioning or referencing the derived work.
+ *
+ * RSA Data Security, Inc. makes no representations concerning either
+ * the merchantability of this software or the suitability of this
+ * software for any particular purpose. It is provided "as is"
+ * without express or implied warranty of any kind.
+ *
+ * These notices must be retained in any copies of any part of this
+ * documentation and/or software.
+ *
+ * NOTE: Cleaned-up and optimized, version of SHA1, based on the FIPS 180-1
+ * standard, available at http://www.itl.nist.gov/fipspubs/fip180-1.htm
+ * Not as fast as one would like -- further optimizations are encouraged
+ * and appreciated.
+ */
+
+#include <sys/zfs_context.h>
+#include <sha1/sha1.h>
+#include <sha1/sha1_consts.h>
+
+#ifdef _LITTLE_ENDIAN
+#include <sys/byteorder.h>
+#define HAVE_HTONL
+#endif
+
+#define _RESTRICT_KYWD
+
+static void Encode(uint8_t *, const uint32_t *, size_t);
+
+#if defined(__amd64)
+
+#define SHA1_TRANSFORM(ctx, in) sha1_block_data_order((ctx), (in), 1)
+#define SHA1_TRANSFORM_BLOCKS(ctx, in, num) sha1_block_data_order((ctx), \
+ (in), (num))
+
+void sha1_block_data_order(SHA1_CTX *ctx, const void *inpp, size_t num_blocks);
+
+#else
+
+#define SHA1_TRANSFORM(ctx, in) SHA1Transform((ctx), (in))
+
+static void SHA1Transform(SHA1_CTX *, const uint8_t *);
+
+#endif
+
+
+static uint8_t PADDING[64] = { 0x80, /* all zeros */ };
+
+/*
+ * F, G, and H are the basic SHA1 functions.
+ */
+#define F(b, c, d) (((b) & (c)) | ((~b) & (d)))
+#define G(b, c, d) ((b) ^ (c) ^ (d))
+#define H(b, c, d) (((b) & (c)) | (((b)|(c)) & (d)))
+
+/*
+ * ROTATE_LEFT rotates x left n bits.
+ */
+
+#if defined(__GNUC__) && defined(_LP64)
+static __inline__ uint64_t
+ROTATE_LEFT(uint64_t value, uint32_t n)
+{
+ uint32_t t32;
+
+ t32 = (uint32_t)value;
+ return ((t32 << n) | (t32 >> (32 - n)));
+}
+
+#else
+
+#define ROTATE_LEFT(x, n) \
+ (((x) << (n)) | ((x) >> ((sizeof (x) * NBBY)-(n))))
+
+#endif
+
+
+/*
+ * SHA1Init()
+ *
+ * purpose: initializes the sha1 context and begins and sha1 digest operation
+ * input: SHA1_CTX * : the context to initializes.
+ * output: void
+ */
+
+void
+SHA1Init(SHA1_CTX *ctx)
+{
+ ctx->count[0] = ctx->count[1] = 0;
+
+ /*
+ * load magic initialization constants. Tell lint
+ * that these constants are unsigned by using U.
+ */
+
+ ctx->state[0] = 0x67452301U;
+ ctx->state[1] = 0xefcdab89U;
+ ctx->state[2] = 0x98badcfeU;
+ ctx->state[3] = 0x10325476U;
+ ctx->state[4] = 0xc3d2e1f0U;
+}
+
+void
+SHA1Update(SHA1_CTX *ctx, const void *inptr, size_t input_len)
+{
+ uint32_t i, buf_index, buf_len;
+ const uint8_t *input = inptr;
+#if defined(__amd64)
+ uint32_t block_count;
+#endif /* __amd64 */
+
+ /* check for noop */
+ if (input_len == 0)
+ return;
+
+ /* compute number of bytes mod 64 */
+ buf_index = (ctx->count[1] >> 3) & 0x3F;
+
+ /* update number of bits */
+ if ((ctx->count[1] += (input_len << 3)) < (input_len << 3))
+ ctx->count[0]++;
+
+ ctx->count[0] += (input_len >> 29);
+
+ buf_len = 64 - buf_index;
+
+ /* transform as many times as possible */
+ i = 0;
+ if (input_len >= buf_len) {
+
+ /*
+ * general optimization:
+ *
+ * only do initial bcopy() and SHA1Transform() if
+ * buf_index != 0. if buf_index == 0, we're just
+ * wasting our time doing the bcopy() since there
+ * wasn't any data left over from a previous call to
+ * SHA1Update().
+ */
+
+ if (buf_index) {
+ bcopy(input, &ctx->buf_un.buf8[buf_index], buf_len);
+ SHA1_TRANSFORM(ctx, ctx->buf_un.buf8);
+ i = buf_len;
+ }
+
+#if !defined(__amd64)
+ for (; i + 63 < input_len; i += 64)
+ SHA1_TRANSFORM(ctx, &input[i]);
+#else
+ block_count = (input_len - i) >> 6;
+ if (block_count > 0) {
+ SHA1_TRANSFORM_BLOCKS(ctx, &input[i], block_count);
+ i += block_count << 6;
+ }
+#endif /* !__amd64 */
+
+ /*
+ * general optimization:
+ *
+ * if i and input_len are the same, return now instead
+ * of calling bcopy(), since the bcopy() in this case
+ * will be an expensive nop.
+ */
+
+ if (input_len == i)
+ return;
+
+ buf_index = 0;
+ }
+
+ /* buffer remaining input */
+ bcopy(&input[i], &ctx->buf_un.buf8[buf_index], input_len - i);
+}
+
+/*
+ * SHA1Final()
+ *
+ * purpose: ends an sha1 digest operation, finalizing the message digest and
+ * zeroing the context.
+ * input: uchar_t * : A buffer to store the digest.
+ * : The function actually uses void* because many
+ * : callers pass things other than uchar_t here.
+ * SHA1_CTX * : the context to finalize, save, and zero
+ * output: void
+ */
+
+void
+SHA1Final(void *digest, SHA1_CTX *ctx)
+{
+ uint8_t bitcount_be[sizeof (ctx->count)];
+ uint32_t index = (ctx->count[1] >> 3) & 0x3f;
+
+ /* store bit count, big endian */
+ Encode(bitcount_be, ctx->count, sizeof (bitcount_be));
+
+ /* pad out to 56 mod 64 */
+ SHA1Update(ctx, PADDING, ((index < 56) ? 56 : 120) - index);
+
+ /* append length (before padding) */
+ SHA1Update(ctx, bitcount_be, sizeof (bitcount_be));
+
+ /* store state in digest */
+ Encode(digest, ctx->state, sizeof (ctx->state));
+
+ /* zeroize sensitive information */
+ bzero(ctx, sizeof (*ctx));
+}
+
+
+#if !defined(__amd64)
+
+typedef uint32_t sha1word;
+
+/*
+ * sparc optimization:
+ *
+ * on the sparc, we can load big endian 32-bit data easily. note that
+ * special care must be taken to ensure the address is 32-bit aligned.
+ * in the interest of speed, we don't check to make sure, since
+ * careful programming can guarantee this for us.
+ */
+
+#if defined(_BIG_ENDIAN)
+#define LOAD_BIG_32(addr) (*(uint32_t *)(addr))
+
+#elif defined(HAVE_HTONL)
+#define LOAD_BIG_32(addr) htonl(*((uint32_t *)(addr)))
+
+#else
+/* little endian -- will work on big endian, but slowly */
+#define LOAD_BIG_32(addr) \
+ (((addr)[0] << 24) | ((addr)[1] << 16) | ((addr)[2] << 8) | (addr)[3])
+#endif /* _BIG_ENDIAN */
+
+/*
+ * SHA1Transform()
+ */
+#if defined(W_ARRAY)
+#define W(n) w[n]
+#else /* !defined(W_ARRAY) */
+#define W(n) w_ ## n
+#endif /* !defined(W_ARRAY) */
+
+void /* CSTYLED */
+SHA1Transform(SHA1_CTX *ctx, const uint8_t blk[64])
+{
+ /* CSTYLED */
+ sha1word a = ctx->state[0];
+ sha1word b = ctx->state[1];
+ sha1word c = ctx->state[2];
+ sha1word d = ctx->state[3];
+ sha1word e = ctx->state[4];
+
+#if defined(W_ARRAY)
+ sha1word w[16];
+#else /* !defined(W_ARRAY) */
+ sha1word w_0, w_1, w_2, w_3, w_4, w_5, w_6, w_7;
+ sha1word w_8, w_9, w_10, w_11, w_12, w_13, w_14, w_15;
+#endif /* !defined(W_ARRAY) */
+
+ W(0) = LOAD_BIG_32((void *)(blk + 0));
+ W(1) = LOAD_BIG_32((void *)(blk + 4));
+ W(2) = LOAD_BIG_32((void *)(blk + 8));
+ W(3) = LOAD_BIG_32((void *)(blk + 12));
+ W(4) = LOAD_BIG_32((void *)(blk + 16));
+ W(5) = LOAD_BIG_32((void *)(blk + 20));
+ W(6) = LOAD_BIG_32((void *)(blk + 24));
+ W(7) = LOAD_BIG_32((void *)(blk + 28));
+ W(8) = LOAD_BIG_32((void *)(blk + 32));
+ W(9) = LOAD_BIG_32((void *)(blk + 36));
+ W(10) = LOAD_BIG_32((void *)(blk + 40));
+ W(11) = LOAD_BIG_32((void *)(blk + 44));
+ W(12) = LOAD_BIG_32((void *)(blk + 48));
+ W(13) = LOAD_BIG_32((void *)(blk + 52));
+ W(14) = LOAD_BIG_32((void *)(blk + 56));
+ W(15) = LOAD_BIG_32((void *)(blk + 60));
+
+ /*
+ * general optimization:
+ *
+ * even though this approach is described in the standard as
+ * being slower algorithmically, it is 30-40% faster than the
+ * "faster" version under SPARC, because this version has more
+ * of the constraints specified at compile-time and uses fewer
+ * variables (and therefore has better register utilization)
+ * than its "speedier" brother. (i've tried both, trust me)
+ *
+ * for either method given in the spec, there is an "assignment"
+ * phase where the following takes place:
+ *
+ * tmp = (main_computation);
+ * e = d; d = c; c = rotate_left(b, 30); b = a; a = tmp;
+ *
+ * we can make the algorithm go faster by not doing this work,
+ * but just pretending that `d' is now `e', etc. this works
+ * really well and obviates the need for a temporary variable.
+ * however, we still explicitly perform the rotate action,
+ * since it is cheaper on SPARC to do it once than to have to
+ * do it over and over again.
+ */
+
+ /* round 1 */
+ e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(0) + SHA1_CONST(0); /* 0 */
+ b = ROTATE_LEFT(b, 30);
+
+ d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(1) + SHA1_CONST(0); /* 1 */
+ a = ROTATE_LEFT(a, 30);
+
+ c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(2) + SHA1_CONST(0); /* 2 */
+ e = ROTATE_LEFT(e, 30);
+
+ b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(3) + SHA1_CONST(0); /* 3 */
+ d = ROTATE_LEFT(d, 30);
+
+ a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(4) + SHA1_CONST(0); /* 4 */
+ c = ROTATE_LEFT(c, 30);
+
+ e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(5) + SHA1_CONST(0); /* 5 */
+ b = ROTATE_LEFT(b, 30);
+
+ d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(6) + SHA1_CONST(0); /* 6 */
+ a = ROTATE_LEFT(a, 30);
+
+ c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(7) + SHA1_CONST(0); /* 7 */
+ e = ROTATE_LEFT(e, 30);
+
+ b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(8) + SHA1_CONST(0); /* 8 */
+ d = ROTATE_LEFT(d, 30);
+
+ a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(9) + SHA1_CONST(0); /* 9 */
+ c = ROTATE_LEFT(c, 30);
+
+ e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(10) + SHA1_CONST(0); /* 10 */
+ b = ROTATE_LEFT(b, 30);
+
+ d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(11) + SHA1_CONST(0); /* 11 */
+ a = ROTATE_LEFT(a, 30);
+
+ c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(12) + SHA1_CONST(0); /* 12 */
+ e = ROTATE_LEFT(e, 30);
+
+ b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(13) + SHA1_CONST(0); /* 13 */
+ d = ROTATE_LEFT(d, 30);
+
+ a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(14) + SHA1_CONST(0); /* 14 */
+ c = ROTATE_LEFT(c, 30);
+
+ e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(15) + SHA1_CONST(0); /* 15 */
+ b = ROTATE_LEFT(b, 30);
+
+ W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1); /* 16 */
+ d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(0) + SHA1_CONST(0);
+ a = ROTATE_LEFT(a, 30);
+
+ W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1); /* 17 */
+ c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(1) + SHA1_CONST(0);
+ e = ROTATE_LEFT(e, 30);
+
+ W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1); /* 18 */
+ b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(2) + SHA1_CONST(0);
+ d = ROTATE_LEFT(d, 30);
+
+ W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1); /* 19 */
+ a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(3) + SHA1_CONST(0);
+ c = ROTATE_LEFT(c, 30);
+
+ /* round 2 */
+ W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1); /* 20 */
+ e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(4) + SHA1_CONST(1);
+ b = ROTATE_LEFT(b, 30);
+
+ W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1); /* 21 */
+ d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(5) + SHA1_CONST(1);
+ a = ROTATE_LEFT(a, 30);
+
+ W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1); /* 22 */
+ c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(6) + SHA1_CONST(1);
+ e = ROTATE_LEFT(e, 30);
+
+ W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1); /* 23 */
+ b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(7) + SHA1_CONST(1);
+ d = ROTATE_LEFT(d, 30);
+
+ W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1); /* 24 */
+ a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(8) + SHA1_CONST(1);
+ c = ROTATE_LEFT(c, 30);
+
+ W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1); /* 25 */
+ e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(9) + SHA1_CONST(1);
+ b = ROTATE_LEFT(b, 30);
+
+ W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1); /* 26 */
+ d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(10) + SHA1_CONST(1);
+ a = ROTATE_LEFT(a, 30);
+
+ W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1); /* 27 */
+ c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(11) + SHA1_CONST(1);
+ e = ROTATE_LEFT(e, 30);
+
+ W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1); /* 28 */
+ b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(12) + SHA1_CONST(1);
+ d = ROTATE_LEFT(d, 30);
+
+ W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 29 */
+ a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(13) + SHA1_CONST(1);
+ c = ROTATE_LEFT(c, 30);
+
+ W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1); /* 30 */
+ e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(14) + SHA1_CONST(1);
+ b = ROTATE_LEFT(b, 30);
+
+ W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1); /* 31 */
+ d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(15) + SHA1_CONST(1);
+ a = ROTATE_LEFT(a, 30);
+
+ W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1); /* 32 */
+ c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(0) + SHA1_CONST(1);
+ e = ROTATE_LEFT(e, 30);
+
+ W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1); /* 33 */
+ b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(1) + SHA1_CONST(1);
+ d = ROTATE_LEFT(d, 30);
+
+ W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1); /* 34 */
+ a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(2) + SHA1_CONST(1);
+ c = ROTATE_LEFT(c, 30);
+
+ W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1); /* 35 */
+ e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(3) + SHA1_CONST(1);
+ b = ROTATE_LEFT(b, 30);
+
+ W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1); /* 36 */
+ d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(4) + SHA1_CONST(1);
+ a = ROTATE_LEFT(a, 30);
+
+ W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1); /* 37 */
+ c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(5) + SHA1_CONST(1);
+ e = ROTATE_LEFT(e, 30);
+
+ W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1); /* 38 */
+ b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(6) + SHA1_CONST(1);
+ d = ROTATE_LEFT(d, 30);
+
+ W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1); /* 39 */
+ a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(7) + SHA1_CONST(1);
+ c = ROTATE_LEFT(c, 30);
+
+ /* round 3 */
+ W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1); /* 40 */
+ e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(8) + SHA1_CONST(2);
+ b = ROTATE_LEFT(b, 30);
+
+ W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1); /* 41 */
+ d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(9) + SHA1_CONST(2);
+ a = ROTATE_LEFT(a, 30);
+
+ W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1); /* 42 */
+ c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(10) + SHA1_CONST(2);
+ e = ROTATE_LEFT(e, 30);
+
+ W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1); /* 43 */
+ b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(11) + SHA1_CONST(2);
+ d = ROTATE_LEFT(d, 30);
+
+ W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1); /* 44 */
+ a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(12) + SHA1_CONST(2);
+ c = ROTATE_LEFT(c, 30);
+
+ W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 45 */
+ e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(13) + SHA1_CONST(2);
+ b = ROTATE_LEFT(b, 30);
+
+ W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1); /* 46 */
+ d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(14) + SHA1_CONST(2);
+ a = ROTATE_LEFT(a, 30);
+
+ W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1); /* 47 */
+ c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(15) + SHA1_CONST(2);
+ e = ROTATE_LEFT(e, 30);
+
+ W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1); /* 48 */
+ b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(0) + SHA1_CONST(2);
+ d = ROTATE_LEFT(d, 30);
+
+ W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1); /* 49 */
+ a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(1) + SHA1_CONST(2);
+ c = ROTATE_LEFT(c, 30);
+
+ W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1); /* 50 */
+ e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(2) + SHA1_CONST(2);
+ b = ROTATE_LEFT(b, 30);
+
+ W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1); /* 51 */
+ d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(3) + SHA1_CONST(2);
+ a = ROTATE_LEFT(a, 30);
+
+ W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1); /* 52 */
+ c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(4) + SHA1_CONST(2);
+ e = ROTATE_LEFT(e, 30);
+
+ W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1); /* 53 */
+ b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(5) + SHA1_CONST(2);
+ d = ROTATE_LEFT(d, 30);
+
+ W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1); /* 54 */
+ a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(6) + SHA1_CONST(2);
+ c = ROTATE_LEFT(c, 30);
+
+ W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1); /* 55 */
+ e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(7) + SHA1_CONST(2);
+ b = ROTATE_LEFT(b, 30);
+
+ W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1); /* 56 */
+ d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(8) + SHA1_CONST(2);
+ a = ROTATE_LEFT(a, 30);
+
+ W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1); /* 57 */
+ c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(9) + SHA1_CONST(2);
+ e = ROTATE_LEFT(e, 30);
+
+ W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1); /* 58 */
+ b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(10) + SHA1_CONST(2);
+ d = ROTATE_LEFT(d, 30);
+
+ W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1); /* 59 */
+ a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(11) + SHA1_CONST(2);
+ c = ROTATE_LEFT(c, 30);
+
+ /* round 4 */
+ W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1); /* 60 */
+ e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(12) + SHA1_CONST(3);
+ b = ROTATE_LEFT(b, 30);
+
+ W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 61 */
+ d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(13) + SHA1_CONST(3);
+ a = ROTATE_LEFT(a, 30);
+
+ W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1); /* 62 */
+ c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(14) + SHA1_CONST(3);
+ e = ROTATE_LEFT(e, 30);
+
+ W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1); /* 63 */
+ b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(15) + SHA1_CONST(3);
+ d = ROTATE_LEFT(d, 30);
+
+ W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1); /* 64 */
+ a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(0) + SHA1_CONST(3);
+ c = ROTATE_LEFT(c, 30);
+
+ W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1); /* 65 */
+ e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(1) + SHA1_CONST(3);
+ b = ROTATE_LEFT(b, 30);
+
+ W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1); /* 66 */
+ d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(2) + SHA1_CONST(3);
+ a = ROTATE_LEFT(a, 30);
+
+ W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1); /* 67 */
+ c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(3) + SHA1_CONST(3);
+ e = ROTATE_LEFT(e, 30);
+
+ W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1); /* 68 */
+ b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(4) + SHA1_CONST(3);
+ d = ROTATE_LEFT(d, 30);
+
+ W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1); /* 69 */
+ a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(5) + SHA1_CONST(3);
+ c = ROTATE_LEFT(c, 30);
+
+ W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1); /* 70 */
+ e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(6) + SHA1_CONST(3);
+ b = ROTATE_LEFT(b, 30);
+
+ W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1); /* 71 */
+ d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(7) + SHA1_CONST(3);
+ a = ROTATE_LEFT(a, 30);
+
+ W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1); /* 72 */
+ c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(8) + SHA1_CONST(3);
+ e = ROTATE_LEFT(e, 30);
+
+ W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1); /* 73 */
+ b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(9) + SHA1_CONST(3);
+ d = ROTATE_LEFT(d, 30);
+
+ W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1); /* 74 */
+ a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(10) + SHA1_CONST(3);
+ c = ROTATE_LEFT(c, 30);
+
+ W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1); /* 75 */
+ e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(11) + SHA1_CONST(3);
+ b = ROTATE_LEFT(b, 30);
+
+ W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1); /* 76 */
+ d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(12) + SHA1_CONST(3);
+ a = ROTATE_LEFT(a, 30);
+
+ W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 77 */
+ c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(13) + SHA1_CONST(3);
+ e = ROTATE_LEFT(e, 30);
+
+ W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1); /* 78 */
+ b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(14) + SHA1_CONST(3);
+ d = ROTATE_LEFT(d, 30);
+
+ W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1); /* 79 */
+
+ ctx->state[0] += ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(15) +
+ SHA1_CONST(3);
+ ctx->state[1] += b;
+ ctx->state[2] += ROTATE_LEFT(c, 30);
+ ctx->state[3] += d;
+ ctx->state[4] += e;
+
+ /* zeroize sensitive information */
+ W(0) = W(1) = W(2) = W(3) = W(4) = W(5) = W(6) = W(7) = W(8) = 0;
+ W(9) = W(10) = W(11) = W(12) = W(13) = W(14) = W(15) = 0;
+}
+#endif /* !__amd64 */
+
+
+/*
+ * Encode()
+ *
+ * purpose: to convert a list of numbers from little endian to big endian
+ * input: uint8_t * : place to store the converted big endian numbers
+ * uint32_t * : place to get numbers to convert from
+ * size_t : the length of the input in bytes
+ * output: void
+ */
+
+static void
+Encode(uint8_t *_RESTRICT_KYWD output, const uint32_t *_RESTRICT_KYWD input,
+ size_t len)
+{
+ size_t i, j;
+
+ for (i = 0, j = 0; j < len; i++, j += 4) {
+ output[j] = (input[i] >> 24) & 0xff;
+ output[j + 1] = (input[i] >> 16) & 0xff;
+ output[j + 2] = (input[i] >> 8) & 0xff;
+ output[j + 3] = input[i] & 0xff;
+ }
+}