summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorBrian Behlendorf <[email protected]>2020-11-13 13:51:51 -0800
committerGitHub <[email protected]>2020-11-13 13:51:51 -0800
commitb2255edcc0099e62ad46a3dd9d64537663c6aee3 (patch)
tree6cfe0d0fd30fb451396551a991d50f4bdc0cf353
parenta724db03740133c46b9a577b41a6f7221acd3e1f (diff)
Distributed Spare (dRAID) Feature
This patch adds a new top-level vdev type called dRAID, which stands for Distributed parity RAID. This pool configuration allows all dRAID vdevs to participate when rebuilding to a distributed hot spare device. This can substantially reduce the total time required to restore full parity to pool with a failed device. A dRAID pool can be created using the new top-level `draid` type. Like `raidz`, the desired redundancy is specified after the type: `draid[1,2,3]`. No additional information is required to create the pool and reasonable default values will be chosen based on the number of child vdevs in the dRAID vdev. zpool create <pool> draid[1,2,3] <vdevs...> Unlike raidz, additional optional dRAID configuration values can be provided as part of the draid type as colon separated values. This allows administrators to fully specify a layout for either performance or capacity reasons. The supported options include: zpool create <pool> \ draid[<parity>][:<data>d][:<children>c][:<spares>s] \ <vdevs...> - draid[parity] - Parity level (default 1) - draid[:<data>d] - Data devices per group (default 8) - draid[:<children>c] - Expected number of child vdevs - draid[:<spares>s] - Distributed hot spares (default 0) Abbreviated example `zpool status` output for a 68 disk dRAID pool with two distributed spares using special allocation classes. ``` pool: tank state: ONLINE config: NAME STATE READ WRITE CKSUM slag7 ONLINE 0 0 0 draid2:8d:68c:2s-0 ONLINE 0 0 0 L0 ONLINE 0 0 0 L1 ONLINE 0 0 0 ... U25 ONLINE 0 0 0 U26 ONLINE 0 0 0 spare-53 ONLINE 0 0 0 U27 ONLINE 0 0 0 draid2-0-0 ONLINE 0 0 0 U28 ONLINE 0 0 0 U29 ONLINE 0 0 0 ... U42 ONLINE 0 0 0 U43 ONLINE 0 0 0 special mirror-1 ONLINE 0 0 0 L5 ONLINE 0 0 0 U5 ONLINE 0 0 0 mirror-2 ONLINE 0 0 0 L6 ONLINE 0 0 0 U6 ONLINE 0 0 0 spares draid2-0-0 INUSE currently in use draid2-0-1 AVAIL ``` When adding test coverage for the new dRAID vdev type the following options were added to the ztest command. These options are leverages by zloop.sh to test a wide range of dRAID configurations. -K draid|raidz|random - kind of RAID to test -D <value> - dRAID data drives per group -S <value> - dRAID distributed hot spares -R <value> - RAID parity (raidz or dRAID) The zpool_create, zpool_import, redundancy, replacement and fault test groups have all been updated provide test coverage for the dRAID feature. Co-authored-by: Isaac Huang <[email protected]> Co-authored-by: Mark Maybee <[email protected]> Co-authored-by: Don Brady <[email protected]> Co-authored-by: Matthew Ahrens <[email protected]> Co-authored-by: Brian Behlendorf <[email protected]> Reviewed-by: Mark Maybee <[email protected]> Reviewed-by: Matt Ahrens <[email protected]> Reviewed-by: Tony Hutter <[email protected]> Signed-off-by: Brian Behlendorf <[email protected]> Closes #10102
-rw-r--r--cmd/raidz_test/raidz_bench.c25
-rw-r--r--cmd/raidz_test/raidz_test.c330
-rw-r--r--cmd/raidz_test/raidz_test.h9
-rw-r--r--cmd/zdb/zdb.c10
-rw-r--r--cmd/zed/agents/zfs_mod.c10
-rw-r--r--cmd/zed/agents/zfs_retire.c11
-rw-r--r--cmd/zfs/zfs_main.c130
-rw-r--r--cmd/zpool/zpool_main.c5
-rw-r--r--cmd/zpool/zpool_vdev.c393
-rw-r--r--cmd/ztest/ztest.c281
-rw-r--r--configure.ac1
-rw-r--r--include/libzfs.h1
-rw-r--r--include/sys/Makefile.am1
-rw-r--r--include/sys/dsl_scan.h1
-rw-r--r--include/sys/fs/zfs.h14
-rw-r--r--include/sys/spa_impl.h5
-rw-r--r--include/sys/txg.h1
-rw-r--r--include/sys/vdev.h16
-rw-r--r--include/sys/vdev_draid.h110
-rw-r--r--include/sys/vdev_impl.h52
-rw-r--r--include/sys/vdev_raidz.h17
-rw-r--r--include/sys/vdev_raidz_impl.h61
-rw-r--r--include/sys/vdev_rebuild.h4
-rw-r--r--include/sys/zio.h1
-rw-r--r--include/zfeature_common.h1
-rw-r--r--lib/libzfs/libzfs_dataset.c93
-rw-r--r--lib/libzfs/libzfs_import.c1
-rw-r--r--lib/libzfs/libzfs_pool.c85
-rw-r--r--lib/libzpool/Makefile.am4
-rw-r--r--man/man1/raidz_test.19
-rw-r--r--man/man1/ztest.123
-rw-r--r--man/man5/zfs-module-parameters.525
-rw-r--r--man/man5/zpool-features.524
-rw-r--r--man/man8/zpool-create.82
-rw-r--r--man/man8/zpool-scrub.82
-rw-r--r--man/man8/zpoolconcepts.878
-rw-r--r--module/Makefile.bsd3
-rw-r--r--module/os/freebsd/zfs/vdev_file.c70
-rw-r--r--module/os/freebsd/zfs/vdev_geom.c35
-rw-r--r--module/os/linux/zfs/vdev_disk.c9
-rw-r--r--module/os/linux/zfs/vdev_file.c18
-rw-r--r--module/zcommon/zfeature_common.c6
-rw-r--r--module/zcommon/zfs_namecheck.c4
-rw-r--r--module/zfs/Makefile.in2
-rw-r--r--module/zfs/abd.c14
-rw-r--r--module/zfs/dsl_scan.c11
-rw-r--r--module/zfs/metaslab.c8
-rw-r--r--module/zfs/mmp.c11
-rw-r--r--module/zfs/spa.c126
-rw-r--r--module/zfs/spa_misc.c1
-rw-r--r--module/zfs/vdev.c353
-rw-r--r--module/zfs/vdev_draid.c2984
-rw-r--r--module/zfs/vdev_draid_rand.c40
-rw-r--r--module/zfs/vdev_indirect.c9
-rw-r--r--module/zfs/vdev_initialize.c141
-rw-r--r--module/zfs/vdev_label.c62
-rw-r--r--module/zfs/vdev_mirror.c137
-rw-r--r--module/zfs/vdev_missing.c18
-rw-r--r--module/zfs/vdev_queue.c7
-rw-r--r--module/zfs/vdev_raidz.c1864
-rw-r--r--module/zfs/vdev_raidz_math.c10
-rw-r--r--module/zfs/vdev_raidz_math_impl.h313
-rw-r--r--module/zfs/vdev_rebuild.c231
-rw-r--r--module/zfs/vdev_removal.c44
-rw-r--r--module/zfs/vdev_root.c9
-rw-r--r--module/zfs/vdev_trim.c153
-rw-r--r--module/zfs/zfs_fm.c4
-rw-r--r--module/zfs/zio.c42
-rw-r--r--module/zfs/zio_inject.c6
-rw-r--r--scripts/Makefile.am1
-rwxr-xr-xscripts/zfs-helpers.sh3
-rwxr-xr-xscripts/zloop.sh54
-rw-r--r--tests/runfiles/common.run12
-rwxr-xr-xtests/test-runner/bin/zts-report.py.in1
-rw-r--r--tests/zfs-tests/cmd/Makefile.am1
-rw-r--r--tests/zfs-tests/cmd/draid/.gitignore1
-rw-r--r--tests/zfs-tests/cmd/draid/Makefile.am15
-rw-r--r--tests/zfs-tests/cmd/draid/draid.c1414
-rw-r--r--tests/zfs-tests/include/commands.cfg1
-rw-r--r--tests/zfs-tests/include/libtest.shlib2
-rw-r--r--tests/zfs-tests/include/tunables.cfg1
-rw-r--r--tests/zfs-tests/tests/functional/cli_root/zfs_mount/zfs_mount.kshlib3
-rwxr-xr-xtests/zfs-tests/tests/functional/cli_root/zpool_add/zpool_add_001_pos.ksh20
-rw-r--r--tests/zfs-tests/tests/functional/cli_root/zpool_create/Makefile.am5
-rw-r--r--tests/zfs-tests/tests/functional/cli_root/zpool_create/draidcfg.gzbin0 -> 21672412 bytes
-rwxr-xr-xtests/zfs-tests/tests/functional/cli_root/zpool_create/zpool_create_001_pos.ksh4
-rwxr-xr-xtests/zfs-tests/tests/functional/cli_root/zpool_create/zpool_create_005_pos.ksh8
-rwxr-xr-xtests/zfs-tests/tests/functional/cli_root/zpool_create/zpool_create_006_pos.ksh22
-rwxr-xr-xtests/zfs-tests/tests/functional/cli_root/zpool_create/zpool_create_007_neg.ksh9
-rwxr-xr-xtests/zfs-tests/tests/functional/cli_root/zpool_create/zpool_create_009_neg.ksh2
-rwxr-xr-xtests/zfs-tests/tests/functional/cli_root/zpool_create/zpool_create_010_neg.ksh7
-rwxr-xr-xtests/zfs-tests/tests/functional/cli_root/zpool_create/zpool_create_011_neg.ksh14
-rwxr-xr-xtests/zfs-tests/tests/functional/cli_root/zpool_create/zpool_create_draid_001_pos.ksh75
-rwxr-xr-xtests/zfs-tests/tests/functional/cli_root/zpool_create/zpool_create_draid_002_pos.ksh82
-rwxr-xr-xtests/zfs-tests/tests/functional/cli_root/zpool_create/zpool_create_draid_003_pos.ksh112
-rwxr-xr-xtests/zfs-tests/tests/functional/cli_root/zpool_create/zpool_create_draid_004_pos.ksh43
-rwxr-xr-xtests/zfs-tests/tests/functional/cli_root/zpool_expand/zpool_expand_001_pos.ksh12
-rwxr-xr-xtests/zfs-tests/tests/functional/cli_root/zpool_expand/zpool_expand_002_pos.ksh27
-rwxr-xr-xtests/zfs-tests/tests/functional/cli_root/zpool_expand/zpool_expand_003_neg.ksh2
-rwxr-xr-xtests/zfs-tests/tests/functional/cli_root/zpool_expand/zpool_expand_004_pos.ksh2
-rw-r--r--tests/zfs-tests/tests/functional/cli_root/zpool_get/zpool_get.cfg1
-rw-r--r--tests/zfs-tests/tests/functional/cli_root/zpool_import/Makefile.am2
-rwxr-xr-xtests/zfs-tests/tests/functional/cli_root/zpool_import/import_cachefile_device_added.ksh2
-rwxr-xr-xtests/zfs-tests/tests/functional/cli_root/zpool_import/import_cachefile_device_replaced.ksh6
-rwxr-xr-xtests/zfs-tests/tests/functional/cli_root/zpool_import/import_cachefile_shared_device.ksh1
-rwxr-xr-xtests/zfs-tests/tests/functional/cli_root/zpool_import/import_paths_changed.ksh2
-rwxr-xr-xtests/zfs-tests/tests/functional/cli_root/zpool_import/import_rewind_config_changed.ksh1
-rwxr-xr-xtests/zfs-tests/tests/functional/cli_root/zpool_import/import_rewind_device_replaced.ksh5
-rwxr-xr-xtests/zfs-tests/tests/functional/cli_root/zpool_import/setup.ksh2
-rw-r--r--tests/zfs-tests/tests/functional/cli_root/zpool_import/zpool_import.cfg3
-rw-r--r--tests/zfs-tests/tests/functional/cli_root/zpool_import/zpool_import.kshlib16
-rwxr-xr-xtests/zfs-tests/tests/functional/cli_root/zpool_import/zpool_import_007_pos.ksh2
-rwxr-xr-xtests/zfs-tests/tests/functional/cli_root/zpool_import/zpool_import_008_pos.ksh2
-rwxr-xr-xtests/zfs-tests/tests/functional/cli_root/zpool_import/zpool_import_010_pos.ksh4
-rwxr-xr-xtests/zfs-tests/tests/functional/cli_root/zpool_import/zpool_import_016_pos.ksh91
-rwxr-xr-xtests/zfs-tests/tests/functional/cli_root/zpool_import/zpool_import_017_pos.ksh92
-rwxr-xr-xtests/zfs-tests/tests/functional/cli_root/zpool_import/zpool_import_missing_001_pos.ksh21
-rwxr-xr-xtests/zfs-tests/tests/functional/cli_root/zpool_import/zpool_import_missing_002_pos.ksh23
-rwxr-xr-xtests/zfs-tests/tests/functional/cli_root/zpool_import/zpool_import_missing_003_pos.ksh5
-rwxr-xr-xtests/zfs-tests/tests/functional/cli_root/zpool_wait/scan/zpool_wait_replace_cancel.ksh1
-rwxr-xr-xtests/zfs-tests/tests/functional/fault/auto_offline_001_pos.ksh10
-rwxr-xr-xtests/zfs-tests/tests/functional/fault/auto_spare_001_pos.ksh47
-rwxr-xr-xtests/zfs-tests/tests/functional/fault/auto_spare_002_pos.ksh7
-rwxr-xr-xtests/zfs-tests/tests/functional/fault/auto_spare_ashift.ksh4
-rwxr-xr-xtests/zfs-tests/tests/functional/fault/auto_spare_multiple.ksh102
-rwxr-xr-xtests/zfs-tests/tests/functional/fault/auto_spare_shared.ksh4
-rw-r--r--tests/zfs-tests/tests/functional/raidz/Makefile.am4
-rwxr-xr-xtests/zfs-tests/tests/functional/raidz/raidz_003_pos.ksh41
-rwxr-xr-xtests/zfs-tests/tests/functional/raidz/raidz_004_pos.ksh41
-rw-r--r--tests/zfs-tests/tests/functional/redundancy/Makefile.am15
-rw-r--r--tests/zfs-tests/tests/functional/redundancy/redundancy.kshlib49
-rwxr-xr-xtests/zfs-tests/tests/functional/redundancy/redundancy_draid1.ksh78
-rwxr-xr-xtests/zfs-tests/tests/functional/redundancy/redundancy_draid2.ksh85
-rwxr-xr-xtests/zfs-tests/tests/functional/redundancy/redundancy_draid3.ksh85
-rwxr-xr-xtests/zfs-tests/tests/functional/redundancy/redundancy_draid_spare1.ksh107
-rwxr-xr-xtests/zfs-tests/tests/functional/redundancy/redundancy_draid_spare2.ksh80
-rwxr-xr-xtests/zfs-tests/tests/functional/redundancy/redundancy_draid_spare3.ksh197
-rwxr-xr-xtests/zfs-tests/tests/functional/redundancy/redundancy_mirror.ksh (renamed from tests/zfs-tests/tests/functional/redundancy/redundancy_003_pos.ksh)0
-rwxr-xr-xtests/zfs-tests/tests/functional/redundancy/redundancy_raidz1.ksh (renamed from tests/zfs-tests/tests/functional/redundancy/redundancy_001_pos.ksh)4
-rwxr-xr-xtests/zfs-tests/tests/functional/redundancy/redundancy_raidz2.ksh (renamed from tests/zfs-tests/tests/functional/redundancy/redundancy_002_pos.ksh)4
-rwxr-xr-xtests/zfs-tests/tests/functional/redundancy/redundancy_raidz3.ksh84
-rwxr-xr-xtests/zfs-tests/tests/functional/redundancy/redundancy_stripe.ksh (renamed from tests/zfs-tests/tests/functional/redundancy/redundancy_004_neg.ksh)0
-rwxr-xr-xtests/zfs-tests/tests/functional/replacement/attach_rebuild.ksh4
-rwxr-xr-xtests/zfs-tests/tests/functional/replacement/attach_resilver.ksh4
-rwxr-xr-xtests/zfs-tests/tests/functional/replacement/detach.ksh4
-rwxr-xr-xtests/zfs-tests/tests/functional/replacement/rebuild_raidz.ksh7
-rwxr-xr-xtests/zfs-tests/tests/functional/replacement/replace_rebuild.ksh4
-rwxr-xr-xtests/zfs-tests/tests/functional/replacement/replace_resilver.ksh4
-rwxr-xr-xtests/zfs-tests/tests/functional/trim/autotrim_config.ksh10
-rwxr-xr-xtests/zfs-tests/tests/functional/trim/autotrim_integrity.ksh2
-rwxr-xr-xtests/zfs-tests/tests/functional/trim/autotrim_trim_integrity.ksh2
-rwxr-xr-xtests/zfs-tests/tests/functional/trim/trim_config.ksh10
-rwxr-xr-xtests/zfs-tests/tests/functional/trim/trim_integrity.ksh2
153 files changed, 10120 insertions, 1799 deletions
diff --git a/cmd/raidz_test/raidz_bench.c b/cmd/raidz_test/raidz_bench.c
index 8a2cec4ca..a3446c52c 100644
--- a/cmd/raidz_test/raidz_bench.c
+++ b/cmd/raidz_test/raidz_bench.c
@@ -83,8 +83,17 @@ run_gen_bench_impl(const char *impl)
/* create suitable raidz_map */
ncols = rto_opts.rto_dcols + fn + 1;
zio_bench.io_size = 1ULL << ds;
- rm_bench = vdev_raidz_map_alloc(&zio_bench,
- BENCH_ASHIFT, ncols, fn+1);
+
+ if (rto_opts.rto_expand) {
+ rm_bench = vdev_raidz_map_alloc_expanded(
+ zio_bench.io_abd,
+ zio_bench.io_size, zio_bench.io_offset,
+ rto_opts.rto_ashift, ncols+1, ncols,
+ fn+1, rto_opts.rto_expand_offset);
+ } else {
+ rm_bench = vdev_raidz_map_alloc(&zio_bench,
+ BENCH_ASHIFT, ncols, fn+1);
+ }
/* estimate iteration count */
iter_cnt = GEN_BENCH_MEMORY;
@@ -163,8 +172,16 @@ run_rec_bench_impl(const char *impl)
(1ULL << BENCH_ASHIFT))
continue;
- rm_bench = vdev_raidz_map_alloc(&zio_bench,
- BENCH_ASHIFT, ncols, PARITY_PQR);
+ if (rto_opts.rto_expand) {
+ rm_bench = vdev_raidz_map_alloc_expanded(
+ zio_bench.io_abd,
+ zio_bench.io_size, zio_bench.io_offset,
+ BENCH_ASHIFT, ncols+1, ncols,
+ PARITY_PQR, rto_opts.rto_expand_offset);
+ } else {
+ rm_bench = vdev_raidz_map_alloc(&zio_bench,
+ BENCH_ASHIFT, ncols, PARITY_PQR);
+ }
/* estimate iteration count */
iter_cnt = (REC_BENCH_MEMORY);
diff --git a/cmd/raidz_test/raidz_test.c b/cmd/raidz_test/raidz_test.c
index 66f36b0d5..4e2639f36 100644
--- a/cmd/raidz_test/raidz_test.c
+++ b/cmd/raidz_test/raidz_test.c
@@ -77,16 +77,20 @@ static void print_opts(raidz_test_opts_t *opts, boolean_t force)
(void) fprintf(stdout, DBLSEP "Running with options:\n"
" (-a) zio ashift : %zu\n"
" (-o) zio offset : 1 << %zu\n"
+ " (-e) expanded map : %s\n"
+ " (-r) reflow offset : %llx\n"
" (-d) number of raidz data columns : %zu\n"
" (-s) size of DATA : 1 << %zu\n"
" (-S) sweep parameters : %s \n"
" (-v) verbose : %s \n\n",
- opts->rto_ashift, /* -a */
- ilog2(opts->rto_offset), /* -o */
- opts->rto_dcols, /* -d */
- ilog2(opts->rto_dsize), /* -s */
- opts->rto_sweep ? "yes" : "no", /* -S */
- verbose); /* -v */
+ opts->rto_ashift, /* -a */
+ ilog2(opts->rto_offset), /* -o */
+ opts->rto_expand ? "yes" : "no", /* -e */
+ (u_longlong_t)opts->rto_expand_offset, /* -r */
+ opts->rto_dcols, /* -d */
+ ilog2(opts->rto_dsize), /* -s */
+ opts->rto_sweep ? "yes" : "no", /* -S */
+ verbose); /* -v */
}
}
@@ -104,6 +108,8 @@ static void usage(boolean_t requested)
"\t[-S parameter sweep (default: %s)]\n"
"\t[-t timeout for parameter sweep test]\n"
"\t[-B benchmark all raidz implementations]\n"
+ "\t[-e use expanded raidz map (default: %s)]\n"
+ "\t[-r expanded raidz map reflow offset (default: %llx)]\n"
"\t[-v increase verbosity (default: %zu)]\n"
"\t[-h (print help)]\n"
"\t[-T test the test, see if failure would be detected]\n"
@@ -114,6 +120,8 @@ static void usage(boolean_t requested)
o->rto_dcols, /* -d */
ilog2(o->rto_dsize), /* -s */
rto_opts.rto_sweep ? "yes" : "no", /* -S */
+ rto_opts.rto_expand ? "yes" : "no", /* -e */
+ (u_longlong_t)o->rto_expand_offset, /* -r */
o->rto_v); /* -d */
exit(requested ? 0 : 1);
@@ -128,7 +136,7 @@ static void process_options(int argc, char **argv)
bcopy(&rto_opts_defaults, o, sizeof (*o));
- while ((opt = getopt(argc, argv, "TDBSvha:o:d:s:t:")) != -1) {
+ while ((opt = getopt(argc, argv, "TDBSvha:er:o:d:s:t:")) != -1) {
value = 0;
switch (opt) {
@@ -136,6 +144,12 @@ static void process_options(int argc, char **argv)
value = strtoull(optarg, NULL, 0);
o->rto_ashift = MIN(13, MAX(9, value));
break;
+ case 'e':
+ o->rto_expand = 1;
+ break;
+ case 'r':
+ o->rto_expand_offset = strtoull(optarg, NULL, 0);
+ break;
case 'o':
value = strtoull(optarg, NULL, 0);
o->rto_offset = ((1ULL << MIN(12, value)) >> 9) << 9;
@@ -179,25 +193,34 @@ static void process_options(int argc, char **argv)
}
}
-#define DATA_COL(rm, i) ((rm)->rm_col[raidz_parity(rm) + (i)].rc_abd)
-#define DATA_COL_SIZE(rm, i) ((rm)->rm_col[raidz_parity(rm) + (i)].rc_size)
+#define DATA_COL(rr, i) ((rr)->rr_col[rr->rr_firstdatacol + (i)].rc_abd)
+#define DATA_COL_SIZE(rr, i) ((rr)->rr_col[rr->rr_firstdatacol + (i)].rc_size)
-#define CODE_COL(rm, i) ((rm)->rm_col[(i)].rc_abd)
-#define CODE_COL_SIZE(rm, i) ((rm)->rm_col[(i)].rc_size)
+#define CODE_COL(rr, i) ((rr)->rr_col[(i)].rc_abd)
+#define CODE_COL_SIZE(rr, i) ((rr)->rr_col[(i)].rc_size)
static int
cmp_code(raidz_test_opts_t *opts, const raidz_map_t *rm, const int parity)
{
- int i, ret = 0;
+ int r, i, ret = 0;
VERIFY(parity >= 1 && parity <= 3);
- for (i = 0; i < parity; i++) {
- if (abd_cmp(CODE_COL(rm, i), CODE_COL(opts->rm_golden, i))
- != 0) {
- ret++;
- LOG_OPT(D_DEBUG, opts,
- "\nParity block [%d] different!\n", i);
+ for (r = 0; r < rm->rm_nrows; r++) {
+ raidz_row_t * const rr = rm->rm_row[r];
+ raidz_row_t * const rrg = opts->rm_golden->rm_row[r];
+ for (i = 0; i < parity; i++) {
+ if (CODE_COL_SIZE(rrg, i) == 0) {
+ VERIFY0(CODE_COL_SIZE(rr, i));
+ continue;
+ }
+
+ if (abd_cmp(CODE_COL(rr, i),
+ CODE_COL(rrg, i)) != 0) {
+ ret++;
+ LOG_OPT(D_DEBUG, opts,
+ "\nParity block [%d] different!\n", i);
+ }
}
}
return (ret);
@@ -206,16 +229,26 @@ cmp_code(raidz_test_opts_t *opts, const raidz_map_t *rm, const int parity)
static int
cmp_data(raidz_test_opts_t *opts, raidz_map_t *rm)
{
- int i, ret = 0;
- int dcols = opts->rm_golden->rm_cols - raidz_parity(opts->rm_golden);
+ int r, i, dcols, ret = 0;
+
+ for (r = 0; r < rm->rm_nrows; r++) {
+ raidz_row_t *rr = rm->rm_row[r];
+ raidz_row_t *rrg = opts->rm_golden->rm_row[r];
+ dcols = opts->rm_golden->rm_row[0]->rr_cols -
+ raidz_parity(opts->rm_golden);
+ for (i = 0; i < dcols; i++) {
+ if (DATA_COL_SIZE(rrg, i) == 0) {
+ VERIFY0(DATA_COL_SIZE(rr, i));
+ continue;
+ }
- for (i = 0; i < dcols; i++) {
- if (abd_cmp(DATA_COL(opts->rm_golden, i), DATA_COL(rm, i))
- != 0) {
- ret++;
+ if (abd_cmp(DATA_COL(rrg, i),
+ DATA_COL(rr, i)) != 0) {
+ ret++;
- LOG_OPT(D_DEBUG, opts,
- "\nData block [%d] different!\n", i);
+ LOG_OPT(D_DEBUG, opts,
+ "\nData block [%d] different!\n", i);
+ }
}
}
return (ret);
@@ -236,12 +269,13 @@ init_rand(void *data, size_t size, void *private)
static void
corrupt_colums(raidz_map_t *rm, const int *tgts, const int cnt)
{
- int i;
- raidz_col_t *col;
-
- for (i = 0; i < cnt; i++) {
- col = &rm->rm_col[tgts[i]];
- abd_iterate_func(col->rc_abd, 0, col->rc_size, init_rand, NULL);
+ for (int r = 0; r < rm->rm_nrows; r++) {
+ raidz_row_t *rr = rm->rm_row[r];
+ for (int i = 0; i < cnt; i++) {
+ raidz_col_t *col = &rr->rr_col[tgts[i]];
+ abd_iterate_func(col->rc_abd, 0, col->rc_size,
+ init_rand, NULL);
+ }
}
}
@@ -288,10 +322,22 @@ init_raidz_golden_map(raidz_test_opts_t *opts, const int parity)
VERIFY0(vdev_raidz_impl_set("original"));
- opts->rm_golden = vdev_raidz_map_alloc(opts->zio_golden,
- opts->rto_ashift, total_ncols, parity);
- rm_test = vdev_raidz_map_alloc(zio_test,
- opts->rto_ashift, total_ncols, parity);
+ if (opts->rto_expand) {
+ opts->rm_golden =
+ vdev_raidz_map_alloc_expanded(opts->zio_golden->io_abd,
+ opts->zio_golden->io_size, opts->zio_golden->io_offset,
+ opts->rto_ashift, total_ncols+1, total_ncols,
+ parity, opts->rto_expand_offset);
+ rm_test = vdev_raidz_map_alloc_expanded(zio_test->io_abd,
+ zio_test->io_size, zio_test->io_offset,
+ opts->rto_ashift, total_ncols+1, total_ncols,
+ parity, opts->rto_expand_offset);
+ } else {
+ opts->rm_golden = vdev_raidz_map_alloc(opts->zio_golden,
+ opts->rto_ashift, total_ncols, parity);
+ rm_test = vdev_raidz_map_alloc(zio_test,
+ opts->rto_ashift, total_ncols, parity);
+ }
VERIFY(opts->zio_golden);
VERIFY(opts->rm_golden);
@@ -312,6 +358,188 @@ init_raidz_golden_map(raidz_test_opts_t *opts, const int parity)
return (err);
}
+/*
+ * If reflow is not in progress, reflow_offset should be UINT64_MAX.
+ * For each row, if the row is entirely before reflow_offset, it will
+ * come from the new location. Otherwise this row will come from the
+ * old location. Therefore, rows that straddle the reflow_offset will
+ * come from the old location.
+ *
+ * NOTE: Until raidz expansion is implemented this function is only
+ * needed by raidz_test.c to the multi-row raid_map_t functionality.
+ */
+raidz_map_t *
+vdev_raidz_map_alloc_expanded(abd_t *abd, uint64_t size, uint64_t offset,
+ uint64_t ashift, uint64_t physical_cols, uint64_t logical_cols,
+ uint64_t nparity, uint64_t reflow_offset)
+{
+ /* The zio's size in units of the vdev's minimum sector size. */
+ uint64_t s = size >> ashift;
+ uint64_t q, r, bc, devidx, asize = 0, tot;
+
+ /*
+ * "Quotient": The number of data sectors for this stripe on all but
+ * the "big column" child vdevs that also contain "remainder" data.
+ * AKA "full rows"
+ */
+ q = s / (logical_cols - nparity);
+
+ /*
+ * "Remainder": The number of partial stripe data sectors in this I/O.
+ * This will add a sector to some, but not all, child vdevs.
+ */
+ r = s - q * (logical_cols - nparity);
+
+ /* The number of "big columns" - those which contain remainder data. */
+ bc = (r == 0 ? 0 : r + nparity);
+
+ /*
+ * The total number of data and parity sectors associated with
+ * this I/O.
+ */
+ tot = s + nparity * (q + (r == 0 ? 0 : 1));
+
+ /* How many rows contain data (not skip) */
+ uint64_t rows = howmany(tot, logical_cols);
+ int cols = MIN(tot, logical_cols);
+
+ raidz_map_t *rm = kmem_zalloc(offsetof(raidz_map_t, rm_row[rows]),
+ KM_SLEEP);
+ rm->rm_nrows = rows;
+
+ for (uint64_t row = 0; row < rows; row++) {
+ raidz_row_t *rr = kmem_alloc(offsetof(raidz_row_t,
+ rr_col[cols]), KM_SLEEP);
+ rm->rm_row[row] = rr;
+
+ /* The starting RAIDZ (parent) vdev sector of the row. */
+ uint64_t b = (offset >> ashift) + row * logical_cols;
+
+ /*
+ * If we are in the middle of a reflow, and any part of this
+ * row has not been copied, then use the old location of
+ * this row.
+ */
+ int row_phys_cols = physical_cols;
+ if (b + (logical_cols - nparity) > reflow_offset >> ashift)
+ row_phys_cols--;
+
+ /* starting child of this row */
+ uint64_t child_id = b % row_phys_cols;
+ /* The starting byte offset on each child vdev. */
+ uint64_t child_offset = (b / row_phys_cols) << ashift;
+
+ /*
+ * We set cols to the entire width of the block, even
+ * if this row is shorter. This is needed because parity
+ * generation (for Q and R) needs to know the entire width,
+ * because it treats the short row as though it was
+ * full-width (and the "phantom" sectors were zero-filled).
+ *
+ * Another approach to this would be to set cols shorter
+ * (to just the number of columns that we might do i/o to)
+ * and have another mechanism to tell the parity generation
+ * about the "entire width". Reconstruction (at least
+ * vdev_raidz_reconstruct_general()) would also need to
+ * know about the "entire width".
+ */
+ rr->rr_cols = cols;
+ rr->rr_bigcols = bc;
+ rr->rr_missingdata = 0;
+ rr->rr_missingparity = 0;
+ rr->rr_firstdatacol = nparity;
+ rr->rr_abd_copy = NULL;
+ rr->rr_abd_empty = NULL;
+ rr->rr_nempty = 0;
+
+ for (int c = 0; c < rr->rr_cols; c++, child_id++) {
+ if (child_id >= row_phys_cols) {
+ child_id -= row_phys_cols;
+ child_offset += 1ULL << ashift;
+ }
+ rr->rr_col[c].rc_devidx = child_id;
+ rr->rr_col[c].rc_offset = child_offset;
+ rr->rr_col[c].rc_gdata = NULL;
+ rr->rr_col[c].rc_orig_data = NULL;
+ rr->rr_col[c].rc_error = 0;
+ rr->rr_col[c].rc_tried = 0;
+ rr->rr_col[c].rc_skipped = 0;
+ rr->rr_col[c].rc_need_orig_restore = B_FALSE;
+
+ uint64_t dc = c - rr->rr_firstdatacol;
+ if (c < rr->rr_firstdatacol) {
+ rr->rr_col[c].rc_size = 1ULL << ashift;
+ rr->rr_col[c].rc_abd =
+ abd_alloc_linear(rr->rr_col[c].rc_size,
+ B_TRUE);
+ } else if (row == rows - 1 && bc != 0 && c >= bc) {
+ /*
+ * Past the end, this for parity generation.
+ */
+ rr->rr_col[c].rc_size = 0;
+ rr->rr_col[c].rc_abd = NULL;
+ } else {
+ /*
+ * "data column" (col excluding parity)
+ * Add an ASCII art diagram here
+ */
+ uint64_t off;
+
+ if (c < bc || r == 0) {
+ off = dc * rows + row;
+ } else {
+ off = r * rows +
+ (dc - r) * (rows - 1) + row;
+ }
+ rr->rr_col[c].rc_size = 1ULL << ashift;
+ rr->rr_col[c].rc_abd =
+ abd_get_offset(abd, off << ashift);
+ }
+
+ asize += rr->rr_col[c].rc_size;
+ }
+ /*
+ * If all data stored spans all columns, there's a danger that
+ * parity will always be on the same device and, since parity
+ * isn't read during normal operation, that that device's I/O
+ * bandwidth won't be used effectively. We therefore switch
+ * the parity every 1MB.
+ *
+ * ...at least that was, ostensibly, the theory. As a practical
+ * matter unless we juggle the parity between all devices
+ * evenly, we won't see any benefit. Further, occasional writes
+ * that aren't a multiple of the LCM of the number of children
+ * and the minimum stripe width are sufficient to avoid pessimal
+ * behavior. Unfortunately, this decision created an implicit
+ * on-disk format requirement that we need to support for all
+ * eternity, but only for single-parity RAID-Z.
+ *
+ * If we intend to skip a sector in the zeroth column for
+ * padding we must make sure to note this swap. We will never
+ * intend to skip the first column since at least one data and
+ * one parity column must appear in each row.
+ */
+ if (rr->rr_firstdatacol == 1 && rr->rr_cols > 1 &&
+ (offset & (1ULL << 20))) {
+ ASSERT(rr->rr_cols >= 2);
+ ASSERT(rr->rr_col[0].rc_size == rr->rr_col[1].rc_size);
+ devidx = rr->rr_col[0].rc_devidx;
+ uint64_t o = rr->rr_col[0].rc_offset;
+ rr->rr_col[0].rc_devidx = rr->rr_col[1].rc_devidx;
+ rr->rr_col[0].rc_offset = rr->rr_col[1].rc_offset;
+ rr->rr_col[1].rc_devidx = devidx;
+ rr->rr_col[1].rc_offset = o;
+ }
+
+ }
+ ASSERT3U(asize, ==, tot << ashift);
+
+ /* init RAIDZ parity ops */
+ rm->rm_ops = vdev_raidz_math_get_ops();
+
+ return (rm);
+}
+
static raidz_map_t *
init_raidz_map(raidz_test_opts_t *opts, zio_t **zio, const int parity)
{
@@ -330,8 +558,15 @@ init_raidz_map(raidz_test_opts_t *opts, zio_t **zio, const int parity)
(*zio)->io_abd = raidz_alloc(alloc_dsize);
init_zio_abd(*zio);
- rm = vdev_raidz_map_alloc(*zio, opts->rto_ashift,
- total_ncols, parity);
+ if (opts->rto_expand) {
+ rm = vdev_raidz_map_alloc_expanded((*zio)->io_abd,
+ (*zio)->io_size, (*zio)->io_offset,
+ opts->rto_ashift, total_ncols+1, total_ncols,
+ parity, opts->rto_expand_offset);
+ } else {
+ rm = vdev_raidz_map_alloc(*zio, opts->rto_ashift,
+ total_ncols, parity);
+ }
VERIFY(rm);
/* Make sure code columns are destroyed */
@@ -420,7 +655,7 @@ run_rec_check_impl(raidz_test_opts_t *opts, raidz_map_t *rm, const int fn)
if (fn < RAIDZ_REC_PQ) {
/* can reconstruct 1 failed data disk */
for (x0 = 0; x0 < opts->rto_dcols; x0++) {
- if (x0 >= rm->rm_cols - raidz_parity(rm))
+ if (x0 >= rm->rm_row[0]->rr_cols - raidz_parity(rm))
continue;
/* Check if should stop */
@@ -445,10 +680,11 @@ run_rec_check_impl(raidz_test_opts_t *opts, raidz_map_t *rm, const int fn)
} else if (fn < RAIDZ_REC_PQR) {
/* can reconstruct 2 failed data disk */
for (x0 = 0; x0 < opts->rto_dcols; x0++) {
- if (x0 >= rm->rm_cols - raidz_parity(rm))
+ if (x0 >= rm->rm_row[0]->rr_cols - raidz_parity(rm))
continue;
for (x1 = x0 + 1; x1 < opts->rto_dcols; x1++) {
- if (x1 >= rm->rm_cols - raidz_parity(rm))
+ if (x1 >= rm->rm_row[0]->rr_cols -
+ raidz_parity(rm))
continue;
/* Check if should stop */
@@ -475,14 +711,15 @@ run_rec_check_impl(raidz_test_opts_t *opts, raidz_map_t *rm, const int fn)
} else {
/* can reconstruct 3 failed data disk */
for (x0 = 0; x0 < opts->rto_dcols; x0++) {
- if (x0 >= rm->rm_cols - raidz_parity(rm))
+ if (x0 >= rm->rm_row[0]->rr_cols - raidz_parity(rm))
continue;
for (x1 = x0 + 1; x1 < opts->rto_dcols; x1++) {
- if (x1 >= rm->rm_cols - raidz_parity(rm))
+ if (x1 >= rm->rm_row[0]->rr_cols -
+ raidz_parity(rm))
continue;
for (x2 = x1 + 1; x2 < opts->rto_dcols; x2++) {
- if (x2 >=
- rm->rm_cols - raidz_parity(rm))
+ if (x2 >= rm->rm_row[0]->rr_cols -
+ raidz_parity(rm))
continue;
/* Check if should stop */
@@ -700,6 +937,8 @@ run_sweep(void)
opts->rto_dcols = dcols_v[d];
opts->rto_offset = (1 << ashift_v[a]) * rand();
opts->rto_dsize = size_v[s];
+ opts->rto_expand = rto_opts.rto_expand;
+ opts->rto_expand_offset = rto_opts.rto_expand_offset;
opts->rto_v = 0; /* be quiet */
VERIFY3P(thread_create(NULL, 0, sweep_thread, (void *) opts,
@@ -732,6 +971,7 @@ exit:
return (sweep_state == SWEEP_ERROR ? SWEEP_ERROR : 0);
}
+
int
main(int argc, char **argv)
{
diff --git a/cmd/raidz_test/raidz_test.h b/cmd/raidz_test/raidz_test.h
index 09c825ae4..0f7f4cee3 100644
--- a/cmd/raidz_test/raidz_test.h
+++ b/cmd/raidz_test/raidz_test.h
@@ -44,13 +44,15 @@ static const char *raidz_impl_names[] = {
typedef struct raidz_test_opts {
size_t rto_ashift;
- size_t rto_offset;
+ uint64_t rto_offset;
size_t rto_dcols;
size_t rto_dsize;
size_t rto_v;
size_t rto_sweep;
size_t rto_sweep_timeout;
size_t rto_benchmark;
+ size_t rto_expand;
+ uint64_t rto_expand_offset;
size_t rto_sanity;
size_t rto_gdb;
@@ -69,6 +71,8 @@ static const raidz_test_opts_t rto_opts_defaults = {
.rto_v = 0,
.rto_sweep = 0,
.rto_benchmark = 0,
+ .rto_expand = 0,
+ .rto_expand_offset = -1ULL,
.rto_sanity = 0,
.rto_gdb = 0,
.rto_should_stop = B_FALSE
@@ -113,4 +117,7 @@ void init_zio_abd(zio_t *zio);
void run_raidz_benchmark(void);
+struct raidz_map *vdev_raidz_map_alloc_expanded(abd_t *, uint64_t, uint64_t,
+ uint64_t, uint64_t, uint64_t, uint64_t, uint64_t);
+
#endif /* RAIDZ_TEST_H */
diff --git a/cmd/zdb/zdb.c b/cmd/zdb/zdb.c
index dbf09a652..d4a37dee0 100644
--- a/cmd/zdb/zdb.c
+++ b/cmd/zdb/zdb.c
@@ -1642,7 +1642,11 @@ dump_metaslab(metaslab_t *msp)
SPACE_MAP_HISTOGRAM_SIZE, sm->sm_shift);
}
- ASSERT(msp->ms_size == (1ULL << vd->vdev_ms_shift));
+ if (vd->vdev_ops == &vdev_draid_ops)
+ ASSERT3U(msp->ms_size, <=, 1ULL << vd->vdev_ms_shift);
+ else
+ ASSERT3U(msp->ms_size, ==, 1ULL << vd->vdev_ms_shift);
+
dump_spacemap(spa->spa_meta_objset, msp->ms_sm);
if (spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
@@ -5203,8 +5207,6 @@ zdb_blkptr_done(zio_t *zio)
zdb_cb_t *zcb = zio->io_private;
zbookmark_phys_t *zb = &zio->io_bookmark;
- abd_free(zio->io_abd);
-
mutex_enter(&spa->spa_scrub_lock);
spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp);
cv_broadcast(&spa->spa_scrub_io_cv);
@@ -5231,6 +5233,8 @@ zdb_blkptr_done(zio_t *zio)
blkbuf);
}
mutex_exit(&spa->spa_scrub_lock);
+
+ abd_free(zio->io_abd);
}
static int
diff --git a/cmd/zed/agents/zfs_mod.c b/cmd/zed/agents/zfs_mod.c
index 8190beb0c..4a58e1f1d 100644
--- a/cmd/zed/agents/zfs_mod.c
+++ b/cmd/zed/agents/zfs_mod.c
@@ -435,7 +435,15 @@ zfs_process_add(zpool_handle_t *zhp, nvlist_t *vdev, boolean_t labeled)
return;
}
- ret = zpool_vdev_attach(zhp, fullpath, path, nvroot, B_TRUE, B_FALSE);
+ /*
+ * Prefer sequential resilvering when supported (mirrors and dRAID),
+ * otherwise fallback to a traditional healing resilver.
+ */
+ ret = zpool_vdev_attach(zhp, fullpath, path, nvroot, B_TRUE, B_TRUE);
+ if (ret != 0) {
+ ret = zpool_vdev_attach(zhp, fullpath, path, nvroot,
+ B_TRUE, B_FALSE);
+ }
zed_log_msg(LOG_INFO, " zpool_vdev_replace: %s with %s (%s)",
fullpath, path, (ret == 0) ? "no errors" :
diff --git a/cmd/zed/agents/zfs_retire.c b/cmd/zed/agents/zfs_retire.c
index ba8a6de3a..89bb84e48 100644
--- a/cmd/zed/agents/zfs_retire.c
+++ b/cmd/zed/agents/zfs_retire.c
@@ -219,12 +219,18 @@ replace_with_spare(fmd_hdl_t *hdl, zpool_handle_t *zhp, nvlist_t *vdev)
* replace it.
*/
for (s = 0; s < nspares; s++) {
- char *spare_name;
+ boolean_t rebuild = B_FALSE;
+ char *spare_name, *type;
if (nvlist_lookup_string(spares[s], ZPOOL_CONFIG_PATH,
&spare_name) != 0)
continue;
+ /* prefer sequential resilvering for distributed spares */
+ if ((nvlist_lookup_string(spares[s], ZPOOL_CONFIG_TYPE,
+ &type) == 0) && strcmp(type, VDEV_TYPE_DRAID_SPARE) == 0)
+ rebuild = B_TRUE;
+
/* if set, add the "ashift" pool property to the spare nvlist */
if (source != ZPROP_SRC_DEFAULT)
(void) nvlist_add_uint64(spares[s],
@@ -237,7 +243,7 @@ replace_with_spare(fmd_hdl_t *hdl, zpool_handle_t *zhp, nvlist_t *vdev)
dev_name, basename(spare_name));
if (zpool_vdev_attach(zhp, dev_name, spare_name,
- replacement, B_TRUE, B_FALSE) == 0) {
+ replacement, B_TRUE, rebuild) == 0) {
free(dev_name);
nvlist_free(replacement);
return (B_TRUE);
@@ -499,6 +505,7 @@ zfs_retire_recv(fmd_hdl_t *hdl, fmd_event_t *ep, nvlist_t *nvl,
* Attempt to substitute a hot spare.
*/
(void) replace_with_spare(hdl, zhp, vdev);
+
zpool_close(zhp);
}
diff --git a/cmd/zfs/zfs_main.c b/cmd/zfs/zfs_main.c
index f609a4e70..340a7db96 100644
--- a/cmd/zfs/zfs_main.c
+++ b/cmd/zfs/zfs_main.c
@@ -893,6 +893,107 @@ usage:
}
/*
+ * Return a default volblocksize for the pool which always uses more than
+ * half of the data sectors. This primarily applies to dRAID which always
+ * writes full stripe widths.
+ */
+static uint64_t
+default_volblocksize(zpool_handle_t *zhp, nvlist_t *props)
+{
+ uint64_t volblocksize, asize = SPA_MINBLOCKSIZE;
+ nvlist_t *tree, **vdevs;
+ uint_t nvdevs;
+
+ nvlist_t *config = zpool_get_config(zhp, NULL);
+
+ if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &tree) != 0 ||
+ nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN,
+ &vdevs, &nvdevs) != 0) {
+ return (ZVOL_DEFAULT_BLOCKSIZE);
+ }
+
+ for (int i = 0; i < nvdevs; i++) {
+ nvlist_t *nv = vdevs[i];
+ uint64_t ashift, ndata, nparity;
+
+ if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &ashift) != 0)
+ continue;
+
+ if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DRAID_NDATA,
+ &ndata) == 0) {
+ /* dRAID minimum allocation width */
+ asize = MAX(asize, ndata * (1ULL << ashift));
+ } else if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
+ &nparity) == 0) {
+ /* raidz minimum allocation width */
+ if (nparity == 1)
+ asize = MAX(asize, 2 * (1ULL << ashift));
+ else
+ asize = MAX(asize, 4 * (1ULL << ashift));
+ } else {
+ /* mirror or (non-redundant) leaf vdev */
+ asize = MAX(asize, 1ULL << ashift);
+ }
+ }
+
+ /*
+ * Calculate the target volblocksize such that more than half
+ * of the asize is used. The following table is for 4k sectors.
+ *
+ * n asize blksz used | n asize blksz used
+ * -------------------------+---------------------------------
+ * 1 4,096 8,192 100% | 9 36,864 32,768 88%
+ * 2 8,192 8,192 100% | 10 40,960 32,768 80%
+ * 3 12,288 8,192 66% | 11 45,056 32,768 72%
+ * 4 16,384 16,384 100% | 12 49,152 32,768 66%
+ * 5 20,480 16,384 80% | 13 53,248 32,768 61%
+ * 6 24,576 16,384 66% | 14 57,344 32,768 57%
+ * 7 28,672 16,384 57% | 15 61,440 32,768 53%
+ * 8 32,768 32,768 100% | 16 65,536 65,636 100%
+ *
+ * This is primarily a concern for dRAID which always allocates
+ * a full stripe width. For dRAID the default stripe width is
+ * n=8 in which case the volblocksize is set to 32k. Ignoring
+ * compression there are no unused sectors. This same reasoning
+ * applies to raidz[2,3] so target 4 sectors to minimize waste.
+ */
+ uint64_t tgt_volblocksize = ZVOL_DEFAULT_BLOCKSIZE;
+ while (tgt_volblocksize * 2 <= asize)
+ tgt_volblocksize *= 2;
+
+ const char *prop = zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE);
+ if (nvlist_lookup_uint64(props, prop, &volblocksize) == 0) {
+
+ /* Issue a warning when a non-optimal size is requested. */
+ if (volblocksize < ZVOL_DEFAULT_BLOCKSIZE) {
+ (void) fprintf(stderr, gettext("Warning: "
+ "volblocksize (%llu) is less than the default "
+ "minimum block size (%llu).\nTo reduce wasted "
+ "space a volblocksize of %llu is recommended.\n"),
+ (u_longlong_t)volblocksize,
+ (u_longlong_t)ZVOL_DEFAULT_BLOCKSIZE,
+ (u_longlong_t)tgt_volblocksize);
+ } else if (volblocksize < tgt_volblocksize) {
+ (void) fprintf(stderr, gettext("Warning: "
+ "volblocksize (%llu) is much less than the "
+ "minimum allocation\nunit (%llu), which wastes "
+ "at least %llu%% of space. To reduce wasted "
+ "space,\nuse a larger volblocksize (%llu is "
+ "recommended), fewer dRAID data disks\n"
+ "per group, or smaller sector size (ashift).\n"),
+ (u_longlong_t)volblocksize, (u_longlong_t)asize,
+ (u_longlong_t)((100 * (asize - volblocksize)) /
+ asize), (u_longlong_t)tgt_volblocksize);
+ }
+ } else {
+ volblocksize = tgt_volblocksize;
+ fnvlist_add_uint64(props, prop, volblocksize);
+ }
+
+ return (volblocksize);
+}
+
+/*
* zfs create [-Pnpv] [-o prop=value] ... fs
* zfs create [-Pnpsv] [-b blocksize] [-o prop=value] ... -V vol size
*
@@ -932,6 +1033,7 @@ zfs_do_create(int argc, char **argv)
int ret = 1;
nvlist_t *props;
uint64_t intval;
+ char *strval;
if (nvlist_alloc(&props, NV_UNIQUE_NAME, 0) != 0)
nomem();
@@ -1018,7 +1120,7 @@ zfs_do_create(int argc, char **argv)
goto badusage;
}
- if (dryrun || (type == ZFS_TYPE_VOLUME && !noreserve)) {
+ if (dryrun || type == ZFS_TYPE_VOLUME) {
char msg[ZFS_MAX_DATASET_NAME_LEN * 2];
char *p;
@@ -1040,18 +1142,24 @@ zfs_do_create(int argc, char **argv)
}
}
- /*
- * if volsize is not a multiple of volblocksize, round it up to the
- * nearest multiple of the volblocksize
- */
if (type == ZFS_TYPE_VOLUME) {
- uint64_t volblocksize;
+ const char *prop = zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE);
+ uint64_t volblocksize = default_volblocksize(zpool_handle,
+ real_props);
- if (nvlist_lookup_uint64(props,
- zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE),
- &volblocksize) != 0)
- volblocksize = ZVOL_DEFAULT_BLOCKSIZE;
+ if (volblocksize != ZVOL_DEFAULT_BLOCKSIZE &&
+ nvlist_lookup_string(props, prop, &strval) != 0) {
+ if (asprintf(&strval, "%llu",
+ (u_longlong_t)volblocksize) == -1)
+ nomem();
+ nvlist_add_string(props, prop, strval);
+ free(strval);
+ }
+ /*
+ * If volsize is not a multiple of volblocksize, round it
+ * up to the nearest multiple of the volblocksize.
+ */
if (volsize % volblocksize) {
volsize = P2ROUNDUP_TYPED(volsize, volblocksize,
uint64_t);
@@ -1064,11 +1172,9 @@ zfs_do_create(int argc, char **argv)
}
}
-
if (type == ZFS_TYPE_VOLUME && !noreserve) {
uint64_t spa_version;
zfs_prop_t resv_prop;
- char *strval;
spa_version = zpool_get_prop_int(zpool_handle,
ZPOOL_PROP_VERSION, NULL);
diff --git a/cmd/zpool/zpool_main.c b/cmd/zpool/zpool_main.c
index 83a9b5a5a..524cff335 100644
--- a/cmd/zpool/zpool_main.c
+++ b/cmd/zpool/zpool_main.c
@@ -2294,7 +2294,7 @@ print_status_config(zpool_handle_t *zhp, status_cbdata_t *cb, const char *name,
}
}
- /* Display vdev initialization and trim status for leaves */
+ /* Display vdev initialization and trim status for leaves. */
if (children == 0) {
print_status_initialize(vs, cb->cb_print_vdev_init);
print_status_trim(vs, cb->cb_print_vdev_trim);
@@ -9849,7 +9849,8 @@ vdev_any_spare_replacing(nvlist_t *nv)
(void) nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &vdev_type);
if (strcmp(vdev_type, VDEV_TYPE_REPLACING) == 0 ||
- strcmp(vdev_type, VDEV_TYPE_SPARE) == 0) {
+ strcmp(vdev_type, VDEV_TYPE_SPARE) == 0 ||
+ strcmp(vdev_type, VDEV_TYPE_DRAID_SPARE) == 0) {
return (B_TRUE);
}
diff --git a/cmd/zpool/zpool_vdev.c b/cmd/zpool/zpool_vdev.c
index 9aa09b18c..c86081a81 100644
--- a/cmd/zpool/zpool_vdev.c
+++ b/cmd/zpool/zpool_vdev.c
@@ -86,9 +86,6 @@
boolean_t error_seen;
boolean_t is_force;
-
-
-
/*PRINTFLIKE1*/
void
vdev_error(const char *fmt, ...)
@@ -222,6 +219,9 @@ is_spare(nvlist_t *config, const char *path)
uint_t i, nspares;
boolean_t inuse;
+ if (zpool_is_draid_spare(path))
+ return (B_TRUE);
+
if ((fd = open(path, O_RDONLY|O_DIRECT)) < 0)
return (B_FALSE);
@@ -267,9 +267,10 @@ is_spare(nvlist_t *config, const char *path)
* /dev/xxx Complete disk path
* /xxx Full path to file
* xxx Shorthand for <zfs_vdev_paths>/xxx
+ * draid* Virtual dRAID spare
*/
static nvlist_t *
-make_leaf_vdev(nvlist_t *props, const char *arg, uint64_t is_log)
+make_leaf_vdev(nvlist_t *props, const char *arg, boolean_t is_primary)
{
char path[MAXPATHLEN];
struct stat64 statbuf;
@@ -309,6 +310,17 @@ make_leaf_vdev(nvlist_t *props, const char *arg, uint64_t is_log)
/* After whole disk check restore original passed path */
strlcpy(path, arg, sizeof (path));
+ } else if (zpool_is_draid_spare(arg)) {
+ if (!is_primary) {
+ (void) fprintf(stderr,
+ gettext("cannot open '%s': dRAID spares can only "
+ "be used to replace primary vdevs\n"), arg);
+ return (NULL);
+ }
+
+ wholedisk = B_TRUE;
+ strlcpy(path, arg, sizeof (path));
+ type = VDEV_TYPE_DRAID_SPARE;
} else {
err = is_shorthand_path(arg, path, sizeof (path),
&statbuf, &wholedisk);
@@ -337,17 +349,19 @@ make_leaf_vdev(nvlist_t *props, const char *arg, uint64_t is_log)
}
}
- /*
- * Determine whether this is a device or a file.
- */
- if (wholedisk || S_ISBLK(statbuf.st_mode)) {
- type = VDEV_TYPE_DISK;
- } else if (S_ISREG(statbuf.st_mode)) {
- type = VDEV_TYPE_FILE;
- } else {
- (void) fprintf(stderr, gettext("cannot use '%s': must be a "
- "block device or regular file\n"), path);
- return (NULL);
+ if (type == NULL) {
+ /*
+ * Determine whether this is a device or a file.
+ */
+ if (wholedisk || S_ISBLK(statbuf.st_mode)) {
+ type = VDEV_TYPE_DISK;
+ } else if (S_ISREG(statbuf.st_mode)) {
+ type = VDEV_TYPE_FILE;
+ } else {
+ fprintf(stderr, gettext("cannot use '%s': must "
+ "be a block device or regular file\n"), path);
+ return (NULL);
+ }
}
/*
@@ -358,10 +372,7 @@ make_leaf_vdev(nvlist_t *props, const char *arg, uint64_t is_log)
verify(nvlist_alloc(&vdev, NV_UNIQUE_NAME, 0) == 0);
verify(nvlist_add_string(vdev, ZPOOL_CONFIG_PATH, path) == 0);
verify(nvlist_add_string(vdev, ZPOOL_CONFIG_TYPE, type) == 0);
- verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_IS_LOG, is_log) == 0);
- if (is_log)
- verify(nvlist_add_string(vdev, ZPOOL_CONFIG_ALLOCATION_BIAS,
- VDEV_ALLOC_BIAS_LOG) == 0);
+
if (strcmp(type, VDEV_TYPE_DISK) == 0)
verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_WHOLE_DISK,
(uint64_t)wholedisk) == 0);
@@ -432,11 +443,16 @@ typedef struct replication_level {
#define ZPOOL_FUZZ (16 * 1024 * 1024)
+/*
+ * N.B. For the purposes of comparing replication levels dRAID can be
+ * considered functionally equivilant to raidz.
+ */
static boolean_t
is_raidz_mirror(replication_level_t *a, replication_level_t *b,
replication_level_t **raidz, replication_level_t **mirror)
{
- if (strcmp(a->zprl_type, "raidz") == 0 &&
+ if ((strcmp(a->zprl_type, "raidz") == 0 ||
+ strcmp(a->zprl_type, "draid") == 0) &&
strcmp(b->zprl_type, "mirror") == 0) {
*raidz = a;
*mirror = b;
@@ -446,6 +462,22 @@ is_raidz_mirror(replication_level_t *a, replication_level_t *b,
}
/*
+ * Comparison for determining if dRAID and raidz where passed in either order.
+ */
+static boolean_t
+is_raidz_draid(replication_level_t *a, replication_level_t *b)
+{
+ if ((strcmp(a->zprl_type, "raidz") == 0 ||
+ strcmp(a->zprl_type, "draid") == 0) &&
+ (strcmp(b->zprl_type, "raidz") == 0 ||
+ strcmp(b->zprl_type, "draid") == 0)) {
+ return (B_TRUE);
+ }
+
+ return (B_FALSE);
+}
+
+/*
* Given a list of toplevel vdevs, return the current replication level. If
* the config is inconsistent, then NULL is returned. If 'fatal' is set, then
* an error message will be displayed for each self-inconsistent vdev.
@@ -511,7 +543,8 @@ get_replication(nvlist_t *nvroot, boolean_t fatal)
rep.zprl_type = type;
rep.zprl_children = 0;
- if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) {
+ if (strcmp(type, VDEV_TYPE_RAIDZ) == 0 ||
+ strcmp(type, VDEV_TYPE_DRAID) == 0) {
verify(nvlist_lookup_uint64(nv,
ZPOOL_CONFIG_NPARITY,
&rep.zprl_parity) == 0);
@@ -677,6 +710,29 @@ get_replication(nvlist_t *nvroot, boolean_t fatal)
else
return (NULL);
}
+ } else if (is_raidz_draid(&lastrep, &rep)) {
+ /*
+ * Accepted raidz and draid when they can
+ * handle the same number of disk failures.
+ */
+ if (lastrep.zprl_parity != rep.zprl_parity) {
+ if (ret != NULL)
+ free(ret);
+ ret = NULL;
+ if (fatal)
+ vdev_error(gettext(
+ "mismatched replication "
+ "level: %s and %s vdevs "
+ "with different "
+ "redundancy, %llu vs. "
+ "%llu are present\n"),
+ lastrep.zprl_type,
+ rep.zprl_type,
+ lastrep.zprl_parity,
+ rep.zprl_parity);
+ else
+ return (NULL);
+ }
} else if (strcmp(lastrep.zprl_type, rep.zprl_type) !=
0) {
if (ret != NULL)
@@ -1103,31 +1159,87 @@ is_device_in_use(nvlist_t *config, nvlist_t *nv, boolean_t force,
return (anyinuse);
}
-static const char *
-is_grouping(const char *type, int *mindev, int *maxdev)
+/*
+ * Returns the parity level extracted from a raidz or draid type.
+ * If the parity cannot be determined zero is returned.
+ */
+static int
+get_parity(const char *type)
{
- if (strncmp(type, "raidz", 5) == 0) {
- const char *p = type + 5;
- char *end;
- long nparity;
+ long parity = 0;
+ const char *p;
+
+ if (strncmp(type, VDEV_TYPE_RAIDZ, strlen(VDEV_TYPE_RAIDZ)) == 0) {
+ p = type + strlen(VDEV_TYPE_RAIDZ);
if (*p == '\0') {
- nparity = 1;
+ /* when unspecified default to single parity */
+ return (1);
} else if (*p == '0') {
- return (NULL); /* no zero prefixes allowed */
+ /* no zero prefixes allowed */
+ return (0);
} else {
+ /* 0-3, no suffixes allowed */
+ char *end;
errno = 0;
- nparity = strtol(p, &end, 10);
- if (errno != 0 || nparity < 1 || nparity >= 255 ||
- *end != '\0')
- return (NULL);
+ parity = strtol(p, &end, 10);
+ if (errno != 0 || *end != '\0' ||
+ parity < 1 || parity > VDEV_RAIDZ_MAXPARITY) {
+ return (0);
+ }
+ }
+ } else if (strncmp(type, VDEV_TYPE_DRAID,
+ strlen(VDEV_TYPE_DRAID)) == 0) {
+ p = type + strlen(VDEV_TYPE_DRAID);
+
+ if (*p == '\0' || *p == ':') {
+ /* when unspecified default to single parity */
+ return (1);
+ } else if (*p == '0') {
+ /* no zero prefixes allowed */
+ return (0);
+ } else {
+ /* 0-3, allowed suffixes: '\0' or ':' */
+ char *end;
+ errno = 0;
+ parity = strtol(p, &end, 10);
+ if (errno != 0 ||
+ parity < 1 || parity > VDEV_DRAID_MAXPARITY ||
+ (*end != '\0' && *end != ':')) {
+ return (0);
+ }
}
+ }
+
+ return ((int)parity);
+}
+
+/*
+ * Assign the minimum and maximum number of devices allowed for
+ * the specified type. On error NULL is returned, otherwise the
+ * type prefix is returned (raidz, mirror, etc).
+ */
+static const char *
+is_grouping(const char *type, int *mindev, int *maxdev)
+{
+ int nparity;
+ if (strncmp(type, VDEV_TYPE_RAIDZ, strlen(VDEV_TYPE_RAIDZ)) == 0 ||
+ strncmp(type, VDEV_TYPE_DRAID, strlen(VDEV_TYPE_DRAID)) == 0) {
+ nparity = get_parity(type);
+ if (nparity == 0)
+ return (NULL);
if (mindev != NULL)
*mindev = nparity + 1;
if (maxdev != NULL)
*maxdev = 255;
- return (VDEV_TYPE_RAIDZ);
+
+ if (strncmp(type, VDEV_TYPE_RAIDZ,
+ strlen(VDEV_TYPE_RAIDZ)) == 0) {
+ return (VDEV_TYPE_RAIDZ);
+ } else {
+ return (VDEV_TYPE_DRAID);
+ }
}
if (maxdev != NULL)
@@ -1168,6 +1280,163 @@ is_grouping(const char *type, int *mindev, int *maxdev)
}
/*
+ * Extract the configuration parameters encoded in the dRAID type and
+ * use them to generate a dRAID configuration. The expected format is:
+ *
+ * draid[<parity>][:<data><d|D>][:<children><c|C>][:<spares><s|S>]
+ *
+ * The intent is to be able to generate a good configuration when no
+ * additional information is provided. The only mandatory component
+ * of the 'type' is the 'draid' prefix. If a value is not provided
+ * then reasonable defaults are used. The optional components may
+ * appear in any order but the d/s/c suffix is required.
+ *
+ * Valid inputs:
+ * - data: number of data devices per group (1-255)
+ * - parity: number of parity blocks per group (1-3)
+ * - spares: number of distributed spare (0-100)
+ * - children: total number of devices (1-255)
+ *
+ * Examples:
+ * - zpool create tank draid <devices...>
+ * - zpool create tank draid2:8d:51c:2s <devices...>
+ */
+static int
+draid_config_by_type(nvlist_t *nv, const char *type, uint64_t children)
+{
+ uint64_t nparity = 1;
+ uint64_t nspares = 0;
+ uint64_t ndata = UINT64_MAX;
+ uint64_t ngroups = 1;
+ long value;
+
+ if (strncmp(type, VDEV_TYPE_DRAID, strlen(VDEV_TYPE_DRAID)) != 0)
+ return (EINVAL);
+
+ nparity = (uint64_t)get_parity(type);
+ if (nparity == 0)
+ return (EINVAL);
+
+ char *p = (char *)type;
+ while ((p = strchr(p, ':')) != NULL) {
+ char *end;
+
+ p = p + 1;
+ errno = 0;
+
+ if (!isdigit(p[0])) {
+ (void) fprintf(stderr, gettext("invalid dRAID "
+ "syntax; expected [:<number><c|d|s>] not '%s'\n"),
+ type);
+ return (EINVAL);
+ }
+
+ /* Expected non-zero value with c/d/s suffix */
+ value = strtol(p, &end, 10);
+ char suffix = tolower(*end);
+ if (errno != 0 ||
+ (suffix != 'c' && suffix != 'd' && suffix != 's')) {
+ (void) fprintf(stderr, gettext("invalid dRAID "
+ "syntax; expected [:<number><c|d|s>] not '%s'\n"),
+ type);
+ return (EINVAL);
+ }
+
+ if (suffix == 'c') {
+ if ((uint64_t)value != children) {
+ fprintf(stderr,
+ gettext("invalid number of dRAID children; "
+ "%llu required but %llu provided\n"),
+ (u_longlong_t)value,
+ (u_longlong_t)children);
+ return (EINVAL);
+ }
+ } else if (suffix == 'd') {
+ ndata = (uint64_t)value;
+ } else if (suffix == 's') {
+ nspares = (uint64_t)value;
+ } else {
+ verify(0); /* Unreachable */
+ }
+ }
+
+ /*
+ * When a specific number of data disks is not provided limit a
+ * redundancy group to 8 data disks. This value was selected to
+ * provide a reasonable tradeoff between capacity and performance.
+ */
+ if (ndata == UINT64_MAX) {
+ if (children > nspares + nparity) {
+ ndata = MIN(children - nspares - nparity, 8);
+ } else {
+ fprintf(stderr, gettext("request number of "
+ "distributed spares %llu and parity level %llu\n"
+ "leaves no disks available for data\n"),
+ (u_longlong_t)nspares, (u_longlong_t)nparity);
+ return (EINVAL);
+ }
+ }
+
+ /* Verify the maximum allowed group size is never exceeded. */
+ if (ndata == 0 || (ndata + nparity > children - nspares)) {
+ fprintf(stderr, gettext("requested number of dRAID data "
+ "disks per group %llu is too high,\nat most %llu disks "
+ "are available for data\n"), (u_longlong_t)ndata,
+ (u_longlong_t)(children - nspares - nparity));
+ return (EINVAL);
+ }
+
+ if (nparity == 0 || nparity > VDEV_DRAID_MAXPARITY) {
+ fprintf(stderr,
+ gettext("invalid dRAID parity level %llu; must be "
+ "between 1 and %d\n"), (u_longlong_t)nparity,
+ VDEV_DRAID_MAXPARITY);
+ return (EINVAL);
+ }
+
+ /*
+ * Verify the requested number of spares can be satisfied.
+ * An arbitrary limit of 100 distributed spares is applied.
+ */
+ if (nspares > 100 || nspares > (children - (ndata + nparity))) {
+ fprintf(stderr,
+ gettext("invalid number of dRAID spares %llu; additional "
+ "disks would be required\n"), (u_longlong_t)nspares);
+ return (EINVAL);
+ }
+
+ /* Verify the requested number children is sufficient. */
+ if (children < (ndata + nparity + nspares)) {
+ fprintf(stderr, gettext("%llu disks were provided, but at "
+ "least %llu disks are required for this config\n"),
+ (u_longlong_t)children,
+ (u_longlong_t)(ndata + nparity + nspares));
+ }
+
+ if (children > VDEV_DRAID_MAX_CHILDREN) {
+ fprintf(stderr, gettext("%llu disks were provided, but "
+ "dRAID only supports up to %u disks"),
+ (u_longlong_t)children, VDEV_DRAID_MAX_CHILDREN);
+ }
+
+ /*
+ * Calculate the minimum number of groups required to fill a slice.
+ * This is the LCM of the stripe width (ndata + nparity) and the
+ * number of data drives (children - nspares).
+ */
+ while (ngroups * (ndata + nparity) % (children - nspares) != 0)
+ ngroups++;
+
+ /* Store the basic dRAID configuration. */
+ fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, nparity);
+ fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NDATA, ndata);
+ fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NSPARES, nspares);
+ fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NGROUPS, ngroups);
+
+ return (0);
+}
+
+/*
* Construct a syntactically valid vdev specification,
* and ensure that all devices and files exist and can be opened.
* Note: we don't bother freeing anything in the error paths
@@ -1178,8 +1447,8 @@ construct_spec(nvlist_t *props, int argc, char **argv)
{
nvlist_t *nvroot, *nv, **top, **spares, **l2cache;
int t, toplevels, mindev, maxdev, nspares, nlogs, nl2cache;
- const char *type;
- uint64_t is_log, is_special, is_dedup;
+ const char *type, *fulltype;
+ boolean_t is_log, is_special, is_dedup, is_spare;
boolean_t seen_logs;
top = NULL;
@@ -1189,18 +1458,20 @@ construct_spec(nvlist_t *props, int argc, char **argv)
nspares = 0;
nlogs = 0;
nl2cache = 0;
- is_log = is_special = is_dedup = B_FALSE;
+ is_log = is_special = is_dedup = is_spare = B_FALSE;
seen_logs = B_FALSE;
nvroot = NULL;
while (argc > 0) {
+ fulltype = argv[0];
nv = NULL;
/*
- * If it's a mirror or raidz, the subsequent arguments are
- * its leaves -- until we encounter the next mirror or raidz.
+ * If it's a mirror, raidz, or draid the subsequent arguments
+ * are its leaves -- until we encounter the next mirror,
+ * raidz or draid.
*/
- if ((type = is_grouping(argv[0], &mindev, &maxdev)) != NULL) {
+ if ((type = is_grouping(fulltype, &mindev, &maxdev)) != NULL) {
nvlist_t **child = NULL;
int c, children = 0;
@@ -1212,6 +1483,7 @@ construct_spec(nvlist_t *props, int argc, char **argv)
"specified only once\n"));
goto spec_out;
}
+ is_spare = B_TRUE;
is_log = is_special = is_dedup = B_FALSE;
}
@@ -1225,8 +1497,7 @@ construct_spec(nvlist_t *props, int argc, char **argv)
}
seen_logs = B_TRUE;
is_log = B_TRUE;
- is_special = B_FALSE;
- is_dedup = B_FALSE;
+ is_special = is_dedup = is_spare = B_FALSE;
argc--;
argv++;
/*
@@ -1238,8 +1509,7 @@ construct_spec(nvlist_t *props, int argc, char **argv)
if (strcmp(type, VDEV_ALLOC_BIAS_SPECIAL) == 0) {
is_special = B_TRUE;
- is_log = B_FALSE;
- is_dedup = B_FALSE;
+ is_log = is_dedup = is_spare = B_FALSE;
argc--;
argv++;
continue;
@@ -1247,8 +1517,7 @@ construct_spec(nvlist_t *props, int argc, char **argv)
if (strcmp(type, VDEV_ALLOC_BIAS_DEDUP) == 0) {
is_dedup = B_TRUE;
- is_log = B_FALSE;
- is_special = B_FALSE;
+ is_log = is_special = is_spare = B_FALSE;
argc--;
argv++;
continue;
@@ -1262,7 +1531,8 @@ construct_spec(nvlist_t *props, int argc, char **argv)
"specified only once\n"));
goto spec_out;
}
- is_log = is_special = is_dedup = B_FALSE;
+ is_log = is_special = B_FALSE;
+ is_dedup = is_spare = B_FALSE;
}
if (is_log || is_special || is_dedup) {
@@ -1280,13 +1550,15 @@ construct_spec(nvlist_t *props, int argc, char **argv)
for (c = 1; c < argc; c++) {
if (is_grouping(argv[c], NULL, NULL) != NULL)
break;
+
children++;
child = realloc(child,
children * sizeof (nvlist_t *));
if (child == NULL)
zpool_no_memory();
if ((nv = make_leaf_vdev(props, argv[c],
- B_FALSE)) == NULL) {
+ !(is_log || is_special || is_dedup ||
+ is_spare))) == NULL) {
for (c = 0; c < children - 1; c++)
nvlist_free(child[c]);
free(child);
@@ -1335,10 +1607,11 @@ construct_spec(nvlist_t *props, int argc, char **argv)
type) == 0);
verify(nvlist_add_uint64(nv,
ZPOOL_CONFIG_IS_LOG, is_log) == 0);
- if (is_log)
+ if (is_log) {
verify(nvlist_add_string(nv,
ZPOOL_CONFIG_ALLOCATION_BIAS,
VDEV_ALLOC_BIAS_LOG) == 0);
+ }
if (is_special) {
verify(nvlist_add_string(nv,
ZPOOL_CONFIG_ALLOCATION_BIAS,
@@ -1354,6 +1627,15 @@ construct_spec(nvlist_t *props, int argc, char **argv)
ZPOOL_CONFIG_NPARITY,
mindev - 1) == 0);
}
+ if (strcmp(type, VDEV_TYPE_DRAID) == 0) {
+ if (draid_config_by_type(nv,
+ fulltype, children) != 0) {
+ for (c = 0; c < children; c++)
+ nvlist_free(child[c]);
+ free(child);
+ goto spec_out;
+ }
+ }
verify(nvlist_add_nvlist_array(nv,
ZPOOL_CONFIG_CHILDREN, child,
children) == 0);
@@ -1367,12 +1649,19 @@ construct_spec(nvlist_t *props, int argc, char **argv)
* We have a device. Pass off to make_leaf_vdev() to
* construct the appropriate nvlist describing the vdev.
*/
- if ((nv = make_leaf_vdev(props, argv[0],
- is_log)) == NULL)
+ if ((nv = make_leaf_vdev(props, argv[0], !(is_log ||
+ is_special || is_dedup || is_spare))) == NULL)
goto spec_out;
- if (is_log)
+ verify(nvlist_add_uint64(nv,
+ ZPOOL_CONFIG_IS_LOG, is_log) == 0);
+ if (is_log) {
+ verify(nvlist_add_string(nv,
+ ZPOOL_CONFIG_ALLOCATION_BIAS,
+ VDEV_ALLOC_BIAS_LOG) == 0);
nlogs++;
+ }
+
if (is_special) {
verify(nvlist_add_string(nv,
ZPOOL_CONFIG_ALLOCATION_BIAS,
diff --git a/cmd/ztest/ztest.c b/cmd/ztest/ztest.c
index 31205a5bf..1c4da20e4 100644
--- a/cmd/ztest/ztest.c
+++ b/cmd/ztest/ztest.c
@@ -104,6 +104,7 @@
#include <sys/zio.h>
#include <sys/zil.h>
#include <sys/zil_impl.h>
+#include <sys/vdev_draid.h>
#include <sys/vdev_impl.h>
#include <sys/vdev_file.h>
#include <sys/vdev_initialize.h>
@@ -167,8 +168,11 @@ typedef struct ztest_shared_opts {
size_t zo_vdev_size;
int zo_ashift;
int zo_mirrors;
- int zo_raidz;
- int zo_raidz_parity;
+ int zo_raid_children;
+ int zo_raid_parity;
+ char zo_raid_type[8];
+ int zo_draid_data;
+ int zo_draid_spares;
int zo_datasets;
int zo_threads;
uint64_t zo_passtime;
@@ -191,9 +195,12 @@ static const ztest_shared_opts_t ztest_opts_defaults = {
.zo_vdevs = 5,
.zo_ashift = SPA_MINBLOCKSHIFT,
.zo_mirrors = 2,
- .zo_raidz = 4,
- .zo_raidz_parity = 1,
+ .zo_raid_children = 4,
+ .zo_raid_parity = 1,
+ .zo_raid_type = VDEV_TYPE_RAIDZ,
.zo_vdev_size = SPA_MINDEVSIZE * 4, /* 256m default size */
+ .zo_draid_data = 4, /* data drives */
+ .zo_draid_spares = 1, /* distributed spares */
.zo_datasets = 7,
.zo_threads = 23,
.zo_passtime = 60, /* 60 seconds */
@@ -232,7 +239,7 @@ static ztest_shared_ds_t *ztest_shared_ds;
#define BT_MAGIC 0x123456789abcdefULL
#define MAXFAULTS(zs) \
- (MAX((zs)->zs_mirrors, 1) * (ztest_opts.zo_raidz_parity + 1) - 1)
+ (MAX((zs)->zs_mirrors, 1) * (ztest_opts.zo_raid_parity + 1) - 1)
enum ztest_io_type {
ZTEST_IO_WRITE_TAG,
@@ -689,8 +696,11 @@ usage(boolean_t requested)
"\t[-s size_of_each_vdev (default: %s)]\n"
"\t[-a alignment_shift (default: %d)] use 0 for random\n"
"\t[-m mirror_copies (default: %d)]\n"
- "\t[-r raidz_disks (default: %d)]\n"
- "\t[-R raidz_parity (default: %d)]\n"
+ "\t[-r raidz_disks / draid_disks (default: %d)]\n"
+ "\t[-R raid_parity (default: %d)]\n"
+ "\t[-K raid_kind (default: random)] raidz|draid|random\n"
+ "\t[-D draid_data (default: %d)] in config\n"
+ "\t[-S draid_spares (default: %d)]\n"
"\t[-d datasets (default: %d)]\n"
"\t[-t threads (default: %d)]\n"
"\t[-g gang_block_threshold (default: %s)]\n"
@@ -716,8 +726,10 @@ usage(boolean_t requested)
nice_vdev_size, /* -s */
zo->zo_ashift, /* -a */
zo->zo_mirrors, /* -m */
- zo->zo_raidz, /* -r */
- zo->zo_raidz_parity, /* -R */
+ zo->zo_raid_children, /* -r */
+ zo->zo_raid_parity, /* -R */
+ zo->zo_draid_data, /* -D */
+ zo->zo_draid_spares, /* -S */
zo->zo_datasets, /* -d */
zo->zo_threads, /* -t */
nice_force_ganging, /* -g */
@@ -731,6 +743,21 @@ usage(boolean_t requested)
exit(requested ? 0 : 1);
}
+static uint64_t
+ztest_random(uint64_t range)
+{
+ uint64_t r;
+
+ ASSERT3S(ztest_fd_rand, >=, 0);
+
+ if (range == 0)
+ return (0);
+
+ if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r))
+ fatal(1, "short read from /dev/urandom");
+
+ return (r % range);
+}
static void
ztest_parse_name_value(const char *input, ztest_shared_opts_t *zo)
@@ -780,11 +807,12 @@ process_options(int argc, char **argv)
int opt;
uint64_t value;
char altdir[MAXNAMELEN] = { 0 };
+ char raid_kind[8] = { "random" };
bcopy(&ztest_opts_defaults, zo, sizeof (*zo));
while ((opt = getopt(argc, argv,
- "v:s:a:m:r:R:d:t:g:i:k:p:f:MVET:P:hF:B:C:o:G")) != EOF) {
+ "v:s:a:m:r:R:K:D:S:d:t:g:i:k:p:f:MVET:P:hF:B:C:o:G")) != EOF) {
value = 0;
switch (opt) {
case 'v':
@@ -793,6 +821,8 @@ process_options(int argc, char **argv)
case 'm':
case 'r':
case 'R':
+ case 'D':
+ case 'S':
case 'd':
case 't':
case 'g':
@@ -817,10 +847,19 @@ process_options(int argc, char **argv)
zo->zo_mirrors = value;
break;
case 'r':
- zo->zo_raidz = MAX(1, value);
+ zo->zo_raid_children = MAX(1, value);
break;
case 'R':
- zo->zo_raidz_parity = MIN(MAX(value, 1), 3);
+ zo->zo_raid_parity = MIN(MAX(value, 1), 3);
+ break;
+ case 'K':
+ (void) strlcpy(raid_kind, optarg, sizeof (raid_kind));
+ break;
+ case 'D':
+ zo->zo_draid_data = MAX(1, value);
+ break;
+ case 'S':
+ zo->zo_draid_spares = MAX(1, value);
break;
case 'd':
zo->zo_datasets = MAX(1, value);
@@ -895,7 +934,54 @@ process_options(int argc, char **argv)
}
}
- zo->zo_raidz_parity = MIN(zo->zo_raidz_parity, zo->zo_raidz - 1);
+ /* When raid choice is 'random' add a draid pool 50% of the time */
+ if (strcmp(raid_kind, "random") == 0) {
+ (void) strlcpy(raid_kind, (ztest_random(2) == 0) ?
+ "draid" : "raidz", sizeof (raid_kind));
+
+ if (ztest_opts.zo_verbose >= 3)
+ (void) printf("choosing RAID type '%s'\n", raid_kind);
+ }
+
+ if (strcmp(raid_kind, "draid") == 0) {
+ uint64_t min_devsize;
+
+ /* With fewer disk use 256M, otherwise 128M is OK */
+ min_devsize = (ztest_opts.zo_raid_children < 16) ?
+ (256ULL << 20) : (128ULL << 20);
+
+ /* No top-level mirrors with dRAID for now */
+ zo->zo_mirrors = 0;
+
+ /* Use more appropriate defaults for dRAID */
+ if (zo->zo_vdevs == ztest_opts_defaults.zo_vdevs)
+ zo->zo_vdevs = 1;
+ if (zo->zo_raid_children ==
+ ztest_opts_defaults.zo_raid_children)
+ zo->zo_raid_children = 16;
+ if (zo->zo_ashift < 12)
+ zo->zo_ashift = 12;
+ if (zo->zo_vdev_size < min_devsize)
+ zo->zo_vdev_size = min_devsize;
+
+ if (zo->zo_draid_data + zo->zo_raid_parity >
+ zo->zo_raid_children - zo->zo_draid_spares) {
+ (void) fprintf(stderr, "error: too few draid "
+ "children (%d) for stripe width (%d)\n",
+ zo->zo_raid_children,
+ zo->zo_draid_data + zo->zo_raid_parity);
+ usage(B_FALSE);
+ }
+
+ (void) strlcpy(zo->zo_raid_type, VDEV_TYPE_DRAID,
+ sizeof (zo->zo_raid_type));
+
+ } else /* using raidz */ {
+ ASSERT0(strcmp(raid_kind, "raidz"));
+
+ zo->zo_raid_parity = MIN(zo->zo_raid_parity,
+ zo->zo_raid_children - 1);
+ }
zo->zo_vdevtime =
(zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs :
@@ -966,22 +1052,6 @@ ztest_kill(ztest_shared_t *zs)
(void) kill(getpid(), SIGKILL);
}
-static uint64_t
-ztest_random(uint64_t range)
-{
- uint64_t r;
-
- ASSERT3S(ztest_fd_rand, >=, 0);
-
- if (range == 0)
- return (0);
-
- if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r))
- fatal(1, "short read from /dev/urandom");
-
- return (r % range);
-}
-
/* ARGSUSED */
static void
ztest_record_enospc(const char *s)
@@ -997,12 +1067,27 @@ ztest_get_ashift(void)
return (ztest_opts.zo_ashift);
}
+static boolean_t
+ztest_is_draid_spare(const char *name)
+{
+ uint64_t spare_id = 0, parity = 0, vdev_id = 0;
+
+ if (sscanf(name, VDEV_TYPE_DRAID "%llu-%llu-%llu",
+ (u_longlong_t *)&parity, (u_longlong_t *)&vdev_id,
+ (u_longlong_t *)&spare_id) == 3) {
+ return (B_TRUE);
+ }
+
+ return (B_FALSE);
+}
+
static nvlist_t *
make_vdev_file(char *path, char *aux, char *pool, size_t size, uint64_t ashift)
{
char *pathbuf;
uint64_t vdev;
nvlist_t *file;
+ boolean_t draid_spare = B_FALSE;
pathbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
@@ -1024,9 +1109,11 @@ make_vdev_file(char *path, char *aux, char *pool, size_t size, uint64_t ashift)
ztest_dev_template, ztest_opts.zo_dir,
pool == NULL ? ztest_opts.zo_pool : pool, vdev);
}
+ } else {
+ draid_spare = ztest_is_draid_spare(path);
}
- if (size != 0) {
+ if (size != 0 && !draid_spare) {
int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666);
if (fd == -1)
fatal(1, "can't open %s", path);
@@ -1035,20 +1122,21 @@ make_vdev_file(char *path, char *aux, char *pool, size_t size, uint64_t ashift)
(void) close(fd);
}
- VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0);
- VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0);
- VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0);
- VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0);
+ VERIFY0(nvlist_alloc(&file, NV_UNIQUE_NAME, 0));
+ VERIFY0(nvlist_add_string(file, ZPOOL_CONFIG_TYPE,
+ draid_spare ? VDEV_TYPE_DRAID_SPARE : VDEV_TYPE_FILE));
+ VERIFY0(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path));
+ VERIFY0(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift));
umem_free(pathbuf, MAXPATHLEN);
return (file);
}
static nvlist_t *
-make_vdev_raidz(char *path, char *aux, char *pool, size_t size,
+make_vdev_raid(char *path, char *aux, char *pool, size_t size,
uint64_t ashift, int r)
{
- nvlist_t *raidz, **child;
+ nvlist_t *raid, **child;
int c;
if (r < 2)
@@ -1058,20 +1146,41 @@ make_vdev_raidz(char *path, char *aux, char *pool, size_t size,
for (c = 0; c < r; c++)
child[c] = make_vdev_file(path, aux, pool, size, ashift);
- VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0);
- VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE,
- VDEV_TYPE_RAIDZ) == 0);
- VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY,
- ztest_opts.zo_raidz_parity) == 0);
- VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN,
- child, r) == 0);
+ VERIFY0(nvlist_alloc(&raid, NV_UNIQUE_NAME, 0));
+ VERIFY0(nvlist_add_string(raid, ZPOOL_CONFIG_TYPE,
+ ztest_opts.zo_raid_type));
+ VERIFY0(nvlist_add_uint64(raid, ZPOOL_CONFIG_NPARITY,
+ ztest_opts.zo_raid_parity));
+ VERIFY0(nvlist_add_nvlist_array(raid, ZPOOL_CONFIG_CHILDREN,
+ child, r));
+
+ if (strcmp(ztest_opts.zo_raid_type, VDEV_TYPE_DRAID) == 0) {
+ uint64_t ndata = ztest_opts.zo_draid_data;
+ uint64_t nparity = ztest_opts.zo_raid_parity;
+ uint64_t nspares = ztest_opts.zo_draid_spares;
+ uint64_t children = ztest_opts.zo_raid_children;
+ uint64_t ngroups = 1;
+
+ /*
+ * Calculate the minimum number of groups required to fill a
+ * slice. This is the LCM of the stripe width (data + parity)
+ * and the number of data drives (children - spares).
+ */
+ while (ngroups * (ndata + nparity) % (children - nspares) != 0)
+ ngroups++;
+
+ /* Store the basic dRAID configuration. */
+ fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NDATA, ndata);
+ fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NSPARES, nspares);
+ fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NGROUPS, ngroups);
+ }
for (c = 0; c < r; c++)
nvlist_free(child[c]);
umem_free(child, r * sizeof (nvlist_t *));
- return (raidz);
+ return (raid);
}
static nvlist_t *
@@ -1082,12 +1191,12 @@ make_vdev_mirror(char *path, char *aux, char *pool, size_t size,
int c;
if (m < 1)
- return (make_vdev_raidz(path, aux, pool, size, ashift, r));
+ return (make_vdev_raid(path, aux, pool, size, ashift, r));
child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL);
for (c = 0; c < m; c++)
- child[c] = make_vdev_raidz(path, aux, pool, size, ashift, r);
+ child[c] = make_vdev_raid(path, aux, pool, size, ashift, r);
VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0);
VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE,
@@ -2809,6 +2918,10 @@ ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id)
if (ztest_opts.zo_mmp_test)
return;
+ /* dRAID added after feature flags, skip upgrade test. */
+ if (strcmp(ztest_opts.zo_raid_type, VDEV_TYPE_DRAID) == 0)
+ return;
+
mutex_enter(&ztest_vdev_lock);
name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool);
@@ -2818,13 +2931,13 @@ ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id)
(void) spa_destroy(name);
nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0,
- NULL, ztest_opts.zo_raidz, ztest_opts.zo_mirrors, 1);
+ NULL, ztest_opts.zo_raid_children, ztest_opts.zo_mirrors, 1);
/*
* If we're configuring a RAIDZ device then make sure that the
* initial version is capable of supporting that feature.
*/
- switch (ztest_opts.zo_raidz_parity) {
+ switch (ztest_opts.zo_raid_parity) {
case 0:
case 1:
initial_version = SPA_VERSION_INITIAL;
@@ -2970,7 +3083,8 @@ ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id)
return;
mutex_enter(&ztest_vdev_lock);
- leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raidz;
+ leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) *
+ ztest_opts.zo_raid_children;
spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
@@ -3024,7 +3138,8 @@ ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id)
*/
nvroot = make_vdev_root(NULL, NULL, NULL,
ztest_opts.zo_vdev_size, 0, (ztest_random(4) == 0) ?
- "log" : NULL, ztest_opts.zo_raidz, zs->zs_mirrors, 1);
+ "log" : NULL, ztest_opts.zo_raid_children, zs->zs_mirrors,
+ 1);
error = spa_vdev_add(spa, nvroot);
nvlist_free(nvroot);
@@ -3078,14 +3193,15 @@ ztest_vdev_class_add(ztest_ds_t *zd, uint64_t id)
return;
}
- leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raidz;
+ leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) *
+ ztest_opts.zo_raid_children;
spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
ztest_shared->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves;
spa_config_exit(spa, SCL_VDEV, FTAG);
nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
- class, ztest_opts.zo_raidz, zs->zs_mirrors, 1);
+ class, ztest_opts.zo_raid_children, zs->zs_mirrors, 1);
error = spa_vdev_add(spa, nvroot);
nvlist_free(nvroot);
@@ -3134,7 +3250,7 @@ ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id)
char *aux;
char *path;
uint64_t guid = 0;
- int error;
+ int error, ignore_err = 0;
if (ztest_opts.zo_mmp_test)
return;
@@ -3157,7 +3273,13 @@ ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id)
/*
* Pick a random device to remove.
*/
- guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid;
+ vdev_t *svd = sav->sav_vdevs[ztest_random(sav->sav_count)];
+
+ /* dRAID spares cannot be removed; try anyways to see ENOTSUP */
+ if (strstr(svd->vdev_path, VDEV_TYPE_DRAID) != NULL)
+ ignore_err = ENOTSUP;
+
+ guid = svd->vdev_guid;
} else {
/*
* Find an unused device we can add.
@@ -3214,7 +3336,9 @@ ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id)
case ZFS_ERR_DISCARDING_CHECKPOINT:
break;
default:
- fatal(0, "spa_vdev_remove(%llu) = %d", guid, error);
+ if (error != ignore_err)
+ fatal(0, "spa_vdev_remove(%llu) = %d", guid,
+ error);
}
}
@@ -3243,7 +3367,7 @@ ztest_split_pool(ztest_ds_t *zd, uint64_t id)
mutex_enter(&ztest_vdev_lock);
/* ensure we have a usable config; mirrors of raidz aren't supported */
- if (zs->zs_mirrors < 3 || ztest_opts.zo_raidz > 1) {
+ if (zs->zs_mirrors < 3 || ztest_opts.zo_raid_children > 1) {
mutex_exit(&ztest_vdev_lock);
return;
}
@@ -3343,6 +3467,7 @@ ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id)
int replacing;
int oldvd_has_siblings = B_FALSE;
int newvd_is_spare = B_FALSE;
+ int newvd_is_dspare = B_FALSE;
int oldvd_is_log;
int error, expected_error;
@@ -3353,7 +3478,7 @@ ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id)
newpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
mutex_enter(&ztest_vdev_lock);
- leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz;
+ leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raid_children;
spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
@@ -3393,14 +3518,17 @@ ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id)
if (zs->zs_mirrors >= 1) {
ASSERT(oldvd->vdev_ops == &vdev_mirror_ops);
ASSERT(oldvd->vdev_children >= zs->zs_mirrors);
- oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raidz];
+ oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raid_children];
}
/* pick a child out of the raidz group */
- if (ztest_opts.zo_raidz > 1) {
- ASSERT(oldvd->vdev_ops == &vdev_raidz_ops);
- ASSERT(oldvd->vdev_children == ztest_opts.zo_raidz);
- oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raidz];
+ if (ztest_opts.zo_raid_children > 1) {
+ if (strcmp(oldvd->vdev_ops->vdev_op_type, "raidz") == 0)
+ ASSERT(oldvd->vdev_ops == &vdev_raidz_ops);
+ else
+ ASSERT(oldvd->vdev_ops == &vdev_draid_ops);
+ ASSERT(oldvd->vdev_children == ztest_opts.zo_raid_children);
+ oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raid_children];
}
/*
@@ -3447,6 +3575,10 @@ ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id)
if (sav->sav_count != 0 && ztest_random(3) == 0) {
newvd = sav->sav_vdevs[ztest_random(sav->sav_count)];
newvd_is_spare = B_TRUE;
+
+ if (newvd->vdev_ops == &vdev_draid_spare_ops)
+ newvd_is_dspare = B_TRUE;
+
(void) strcpy(newpath, newvd->vdev_path);
} else {
(void) snprintf(newpath, MAXPATHLEN, ztest_dev_template,
@@ -3480,6 +3612,9 @@ ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id)
* If newvd is already part of the pool, it should fail with EBUSY.
*
* If newvd is too small, it should fail with EOVERFLOW.
+ *
+ * If newvd is a distributed spare and it's being attached to a
+ * dRAID which is not its parent it should fail with EINVAL.
*/
if (pvd->vdev_ops != &vdev_mirror_ops &&
pvd->vdev_ops != &vdev_root_ops && (!replacing ||
@@ -3492,10 +3627,12 @@ ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id)
expected_error = replacing ? 0 : EBUSY;
else if (vdev_lookup_by_path(rvd, newpath) != NULL)
expected_error = EBUSY;
- else if (newsize < oldsize)
+ else if (!newvd_is_dspare && newsize < oldsize)
expected_error = EOVERFLOW;
else if (ashift > oldvd->vdev_top->vdev_ashift)
expected_error = EDOM;
+ else if (newvd_is_dspare && pvd != vdev_draid_spare_get_parent(newvd))
+ expected_error = ENOTSUP;
else
expected_error = 0;
@@ -4880,13 +5017,13 @@ ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id)
void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
- VERIFY(0 == dmu_read(os, packobj, packoff,
+ VERIFY0(dmu_read(os, packobj, packoff,
packsize, packcheck, DMU_READ_PREFETCH));
- VERIFY(0 == dmu_read(os, bigobj, bigoff,
+ VERIFY0(dmu_read(os, bigobj, bigoff,
bigsize, bigcheck, DMU_READ_PREFETCH));
- ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
- ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
+ ASSERT0(bcmp(packbuf, packcheck, packsize));
+ ASSERT0(bcmp(bigbuf, bigcheck, bigsize));
umem_free(packcheck, packsize);
umem_free(bigcheck, bigsize);
@@ -5761,7 +5898,7 @@ ztest_fault_inject(ztest_ds_t *zd, uint64_t id)
}
maxfaults = MAXFAULTS(zs);
- leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz;
+ leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raid_children;
mirror_save = zs->zs_mirrors;
mutex_exit(&ztest_vdev_lock);
@@ -6011,7 +6148,7 @@ out:
/*
* By design ztest will never inject uncorrectable damage in to the pool.
* Issue a scrub, wait for it to complete, and verify there is never any
- * any persistent damage.
+ * persistent damage.
*
* Only after a full scrub has been completed is it safe to start injecting
* data corruption. See the comment in zfs_fault_inject().
@@ -7347,7 +7484,7 @@ ztest_init(ztest_shared_t *zs)
zs->zs_splits = 0;
zs->zs_mirrors = ztest_opts.zo_mirrors;
nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
- NULL, ztest_opts.zo_raidz, zs->zs_mirrors, 1);
+ NULL, ztest_opts.zo_raid_children, zs->zs_mirrors, 1);
props = make_random_props();
/*
@@ -7683,10 +7820,12 @@ main(int argc, char **argv)
if (ztest_opts.zo_verbose >= 1) {
(void) printf("%llu vdevs, %d datasets, %d threads,"
- " %llu seconds...\n",
+ "%d %s disks, %llu seconds...\n\n",
(u_longlong_t)ztest_opts.zo_vdevs,
ztest_opts.zo_datasets,
ztest_opts.zo_threads,
+ ztest_opts.zo_raid_children,
+ ztest_opts.zo_raid_type,
(u_longlong_t)ztest_opts.zo_time);
}
diff --git a/configure.ac b/configure.ac
index 47f0f2f50..9ba122e58 100644
--- a/configure.ac
+++ b/configure.ac
@@ -209,6 +209,7 @@ AC_CONFIG_FILES([
tests/zfs-tests/cmd/btree_test/Makefile
tests/zfs-tests/cmd/chg_usr_exec/Makefile
tests/zfs-tests/cmd/devname2devid/Makefile
+ tests/zfs-tests/cmd/draid/Makefile
tests/zfs-tests/cmd/dir_rd_update/Makefile
tests/zfs-tests/cmd/file_check/Makefile
tests/zfs-tests/cmd/file_trunc/Makefile
diff --git a/include/libzfs.h b/include/libzfs.h
index 337e4934a..cb232c291 100644
--- a/include/libzfs.h
+++ b/include/libzfs.h
@@ -455,6 +455,7 @@ extern void zpool_explain_recover(libzfs_handle_t *, const char *, int,
nvlist_t *);
extern int zpool_checkpoint(zpool_handle_t *);
extern int zpool_discard_checkpoint(zpool_handle_t *);
+extern boolean_t zpool_is_draid_spare(const char *);
/*
* Basic handle manipulations. These functions do not create or destroy the
diff --git a/include/sys/Makefile.am b/include/sys/Makefile.am
index cfc3d1018..c3ebf17b5 100644
--- a/include/sys/Makefile.am
+++ b/include/sys/Makefile.am
@@ -82,6 +82,7 @@ COMMON_H = \
vdev_disk.h \
vdev_file.h \
vdev.h \
+ vdev_draid.h \
vdev_impl.h \
vdev_indirect_births.h \
vdev_indirect_mapping.h \
diff --git a/include/sys/dsl_scan.h b/include/sys/dsl_scan.h
index 8f929207d..19c3dd599 100644
--- a/include/sys/dsl_scan.h
+++ b/include/sys/dsl_scan.h
@@ -163,6 +163,7 @@ typedef struct dsl_scan_io_queue dsl_scan_io_queue_t;
void scan_init(void);
void scan_fini(void);
int dsl_scan_init(struct dsl_pool *dp, uint64_t txg);
+void dsl_scan_setup_sync(void *, dmu_tx_t *);
void dsl_scan_fini(struct dsl_pool *dp);
void dsl_scan_sync(struct dsl_pool *, dmu_tx_t *);
int dsl_scan_cancel(struct dsl_pool *);
diff --git a/include/sys/fs/zfs.h b/include/sys/fs/zfs.h
index 211dd6d50..5bb7971d4 100644
--- a/include/sys/fs/zfs.h
+++ b/include/sys/fs/zfs.h
@@ -617,6 +617,7 @@ typedef struct zpool_load_policy {
#define ZPOOL_CONFIG_PREV_INDIRECT_VDEV "com.delphix:prev_indirect_vdev"
#define ZPOOL_CONFIG_PATH "path"
#define ZPOOL_CONFIG_DEVID "devid"
+#define ZPOOL_CONFIG_SPARE_ID "spareid"
#define ZPOOL_CONFIG_METASLAB_ARRAY "metaslab_array"
#define ZPOOL_CONFIG_METASLAB_SHIFT "metaslab_shift"
#define ZPOOL_CONFIG_ASHIFT "ashift"
@@ -757,10 +758,17 @@ typedef struct zpool_load_policy {
#define ZPOOL_CONFIG_LOAD_DATA_ERRORS "verify_data_errors"
#define ZPOOL_CONFIG_REWIND_TIME "seconds_of_rewind"
+/* dRAID configuration */
+#define ZPOOL_CONFIG_DRAID_NDATA "draid_ndata"
+#define ZPOOL_CONFIG_DRAID_NSPARES "draid_nspares"
+#define ZPOOL_CONFIG_DRAID_NGROUPS "draid_ngroups"
+
#define VDEV_TYPE_ROOT "root"
#define VDEV_TYPE_MIRROR "mirror"
#define VDEV_TYPE_REPLACING "replacing"
#define VDEV_TYPE_RAIDZ "raidz"
+#define VDEV_TYPE_DRAID "draid"
+#define VDEV_TYPE_DRAID_SPARE "dspare"
#define VDEV_TYPE_DISK "disk"
#define VDEV_TYPE_FILE "file"
#define VDEV_TYPE_MISSING "missing"
@@ -770,6 +778,12 @@ typedef struct zpool_load_policy {
#define VDEV_TYPE_L2CACHE "l2cache"
#define VDEV_TYPE_INDIRECT "indirect"
+#define VDEV_RAIDZ_MAXPARITY 3
+
+#define VDEV_DRAID_MAXPARITY 3
+#define VDEV_DRAID_MIN_CHILDREN 2
+#define VDEV_DRAID_MAX_CHILDREN UINT8_MAX
+
/* VDEV_TOP_ZAP_* are used in top-level vdev ZAP objects. */
#define VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM \
"com.delphix:indirect_obsolete_sm"
diff --git a/include/sys/spa_impl.h b/include/sys/spa_impl.h
index 69de75fb6..93f49a311 100644
--- a/include/sys/spa_impl.h
+++ b/include/sys/spa_impl.h
@@ -240,8 +240,9 @@ struct spa {
kcondvar_t spa_evicting_os_cv; /* Objset Eviction Completion */
txg_list_t spa_vdev_txg_list; /* per-txg dirty vdev list */
vdev_t *spa_root_vdev; /* top-level vdev container */
- int spa_min_ashift; /* of vdevs in normal class */
- int spa_max_ashift; /* of vdevs in normal class */
+ uint64_t spa_min_ashift; /* of vdevs in normal class */
+ uint64_t spa_max_ashift; /* of vdevs in normal class */
+ uint64_t spa_min_alloc; /* of vdevs in normal class */
uint64_t spa_config_guid; /* config pool guid */
uint64_t spa_load_guid; /* spa_load initialized guid */
uint64_t spa_last_synced_guid; /* last synced guid */
diff --git a/include/sys/txg.h b/include/sys/txg.h
index 260a3b43c..22158bd1a 100644
--- a/include/sys/txg.h
+++ b/include/sys/txg.h
@@ -41,6 +41,7 @@ extern "C" {
#define TXG_MASK (TXG_SIZE - 1) /* mask for size */
#define TXG_INITIAL TXG_SIZE /* initial txg */
#define TXG_IDX (txg & TXG_MASK)
+#define TXG_UNKNOWN 0
/* Number of txgs worth of frees we defer adding to in-core spacemaps */
#define TXG_DEFER_SIZE 2
diff --git a/include/sys/vdev.h b/include/sys/vdev.h
index 309ce33be..7bc72a03d 100644
--- a/include/sys/vdev.h
+++ b/include/sys/vdev.h
@@ -49,10 +49,13 @@ typedef enum vdev_dtl_type {
extern int zfs_nocacheflush;
+typedef boolean_t vdev_open_children_func_t(vdev_t *vd);
+
extern void vdev_dbgmsg(vdev_t *vd, const char *fmt, ...);
extern void vdev_dbgmsg_print_tree(vdev_t *, int);
extern int vdev_open(vdev_t *);
extern void vdev_open_children(vdev_t *);
+extern void vdev_open_children_subset(vdev_t *, vdev_open_children_func_t *);
extern int vdev_validate(vdev_t *);
extern int vdev_copy_path_strict(vdev_t *, vdev_t *);
extern void vdev_copy_path_relaxed(vdev_t *, vdev_t *);
@@ -71,7 +74,10 @@ extern void vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t d,
extern boolean_t vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t d,
uint64_t txg, uint64_t size);
extern boolean_t vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t d);
-extern boolean_t vdev_dtl_need_resilver(vdev_t *vd, uint64_t off, size_t size);
+extern boolean_t vdev_default_need_resilver(vdev_t *vd, const dva_t *dva,
+ size_t psize, uint64_t phys_birth);
+extern boolean_t vdev_dtl_need_resilver(vdev_t *vd, const dva_t *dva,
+ size_t psize, uint64_t phys_birth);
extern void vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg,
boolean_t scrub_done, boolean_t rebuild_done);
extern boolean_t vdev_dtl_required(vdev_t *vd);
@@ -97,8 +103,14 @@ extern void vdev_metaslab_set_size(vdev_t *);
extern void vdev_expand(vdev_t *vd, uint64_t txg);
extern void vdev_split(vdev_t *vd);
extern void vdev_deadman(vdev_t *vd, char *tag);
+
+typedef void vdev_xlate_func_t(void *arg, range_seg64_t *physical_rs);
+
+extern boolean_t vdev_xlate_is_empty(range_seg64_t *rs);
extern void vdev_xlate(vdev_t *vd, const range_seg64_t *logical_rs,
- range_seg64_t *physical_rs);
+ range_seg64_t *physical_rs, range_seg64_t *remain_rs);
+extern void vdev_xlate_walk(vdev_t *vd, const range_seg64_t *logical_rs,
+ vdev_xlate_func_t *func, void *arg);
extern void vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx);
extern void vdev_get_stats(vdev_t *vd, vdev_stat_t *vs);
diff --git a/include/sys/vdev_draid.h b/include/sys/vdev_draid.h
new file mode 100644
index 000000000..65417a93c
--- /dev/null
+++ b/include/sys/vdev_draid.h
@@ -0,0 +1,110 @@
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+/*
+ * Copyright (c) 2016, Intel Corporation.
+ * Copyright (c) 2020 by Lawrence Livermore National Security, LLC.
+ */
+
+#ifndef _SYS_VDEV_DRAID_H
+#define _SYS_VDEV_DRAID_H
+
+#include <sys/types.h>
+#include <sys/abd.h>
+#include <sys/nvpair.h>
+#include <sys/zio.h>
+#include <sys/vdev_impl.h>
+#include <sys/vdev_raidz_impl.h>
+#include <sys/vdev.h>
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/*
+ * Constants required to generate and use dRAID permutations.
+ */
+#define VDEV_DRAID_SEED 0xd7a1d5eed
+#define VDEV_DRAID_MAX_MAPS 254
+#define VDEV_DRAID_ROWSHIFT SPA_MAXBLOCKSHIFT
+#define VDEV_DRAID_ROWHEIGHT (1ULL << VDEV_DRAID_ROWSHIFT)
+#define VDEV_DRAID_REFLOW_RESERVE (2 * VDEV_DRAID_ROWHEIGHT)
+
+/*
+ * dRAID permutation map.
+ */
+typedef struct draid_map {
+ uint64_t dm_children; /* # of permuation columns */
+ uint64_t dm_nperms; /* # of permutation rows */
+ uint64_t dm_seed; /* dRAID map seed */
+ uint64_t dm_checksum; /* Checksum of generated map */
+ uint8_t *dm_perms; /* base permutation array */
+} draid_map_t;
+
+/*
+ * dRAID configuration.
+ */
+typedef struct vdev_draid_config {
+ /*
+ * Values read from the dRAID nvlist configuration.
+ */
+ uint64_t vdc_ndata; /* # of data devices in group */
+ uint64_t vdc_nparity; /* # of parity devices in group */
+ uint64_t vdc_nspares; /* # of distributed spares */
+ uint64_t vdc_children; /* # of children */
+ uint64_t vdc_ngroups; /* # groups per slice */
+
+ /*
+ * Immutable derived constants.
+ */
+ uint8_t *vdc_perms; /* permutation array */
+ uint64_t vdc_nperms; /* # of permutations */
+ uint64_t vdc_groupwidth; /* = data + parity */
+ uint64_t vdc_ndisks; /* = children - spares */
+ uint64_t vdc_groupsz; /* = groupwidth * DRAID_ROWSIZE */
+ uint64_t vdc_devslicesz; /* = (groupsz * groups) / ndisks */
+} vdev_draid_config_t;
+
+/*
+ * Functions for handling dRAID permutation maps.
+ */
+extern uint64_t vdev_draid_rand(uint64_t *);
+extern int vdev_draid_lookup_map(uint64_t, const draid_map_t **);
+extern int vdev_draid_generate_perms(const draid_map_t *, uint8_t **);
+
+/*
+ * General dRAID support functions.
+ */
+extern boolean_t vdev_draid_readable(vdev_t *, uint64_t);
+extern boolean_t vdev_draid_missing(vdev_t *, uint64_t, uint64_t, uint64_t);
+extern uint64_t vdev_draid_asize_to_psize(vdev_t *, uint64_t);
+extern void vdev_draid_map_alloc_empty(zio_t *, struct raidz_row *);
+extern nvlist_t *vdev_draid_read_config_spare(vdev_t *);
+
+/* Functions for dRAID distributed spares. */
+extern vdev_t *vdev_draid_spare_get_child(vdev_t *, uint64_t);
+extern vdev_t *vdev_draid_spare_get_parent(vdev_t *);
+extern int vdev_draid_spare_create(nvlist_t *, vdev_t *, uint64_t *, uint64_t);
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* _SYS_VDEV_DRAID_H */
diff --git a/include/sys/vdev_impl.h b/include/sys/vdev_impl.h
index 3c4c3fb5a..7d2b2743c 100644
--- a/include/sys/vdev_impl.h
+++ b/include/sys/vdev_impl.h
@@ -68,14 +68,19 @@ extern uint32_t zfs_vdev_async_write_max_active;
/*
* Virtual device operations
*/
+typedef int vdev_init_func_t(spa_t *spa, nvlist_t *nv, void **tsd);
+typedef void vdev_fini_func_t(vdev_t *vd);
typedef int vdev_open_func_t(vdev_t *vd, uint64_t *size, uint64_t *max_size,
uint64_t *ashift, uint64_t *pshift);
typedef void vdev_close_func_t(vdev_t *vd);
typedef uint64_t vdev_asize_func_t(vdev_t *vd, uint64_t psize);
+typedef uint64_t vdev_min_asize_func_t(vdev_t *vd);
+typedef uint64_t vdev_min_alloc_func_t(vdev_t *vd);
typedef void vdev_io_start_func_t(zio_t *zio);
typedef void vdev_io_done_func_t(zio_t *zio);
typedef void vdev_state_change_func_t(vdev_t *vd, int, int);
-typedef boolean_t vdev_need_resilver_func_t(vdev_t *vd, uint64_t, size_t);
+typedef boolean_t vdev_need_resilver_func_t(vdev_t *vd, const dva_t *dva,
+ size_t psize, uint64_t phys_birth);
typedef void vdev_hold_func_t(vdev_t *vd);
typedef void vdev_rele_func_t(vdev_t *vd);
@@ -87,13 +92,24 @@ typedef void vdev_remap_func_t(vdev_t *vd, uint64_t offset, uint64_t size,
* Given a target vdev, translates the logical range "in" to the physical
* range "res"
*/
-typedef void vdev_xlation_func_t(vdev_t *cvd, const range_seg64_t *in,
- range_seg64_t *res);
+typedef void vdev_xlation_func_t(vdev_t *cvd, const range_seg64_t *logical,
+ range_seg64_t *physical, range_seg64_t *remain);
+typedef uint64_t vdev_rebuild_asize_func_t(vdev_t *vd, uint64_t start,
+ uint64_t size, uint64_t max_segment);
+typedef void vdev_metaslab_init_func_t(vdev_t *vd, uint64_t *startp,
+ uint64_t *sizep);
+typedef void vdev_config_generate_func_t(vdev_t *vd, nvlist_t *nv);
+typedef uint64_t vdev_nparity_func_t(vdev_t *vd);
+typedef uint64_t vdev_ndisks_func_t(vdev_t *vd);
typedef const struct vdev_ops {
+ vdev_init_func_t *vdev_op_init;
+ vdev_fini_func_t *vdev_op_fini;
vdev_open_func_t *vdev_op_open;
vdev_close_func_t *vdev_op_close;
vdev_asize_func_t *vdev_op_asize;
+ vdev_min_asize_func_t *vdev_op_min_asize;
+ vdev_min_alloc_func_t *vdev_op_min_alloc;
vdev_io_start_func_t *vdev_op_io_start;
vdev_io_done_func_t *vdev_op_io_done;
vdev_state_change_func_t *vdev_op_state_change;
@@ -101,11 +117,12 @@ typedef const struct vdev_ops {
vdev_hold_func_t *vdev_op_hold;
vdev_rele_func_t *vdev_op_rele;
vdev_remap_func_t *vdev_op_remap;
- /*
- * For translating ranges from non-leaf vdevs (e.g. raidz) to leaves.
- * Used when initializing vdevs. Isn't used by leaf ops.
- */
vdev_xlation_func_t *vdev_op_xlate;
+ vdev_rebuild_asize_func_t *vdev_op_rebuild_asize;
+ vdev_metaslab_init_func_t *vdev_op_metaslab_init;
+ vdev_config_generate_func_t *vdev_op_config_generate;
+ vdev_nparity_func_t *vdev_op_nparity;
+ vdev_ndisks_func_t *vdev_op_ndisks;
char vdev_op_type[16];
boolean_t vdev_op_leaf;
} vdev_ops_t;
@@ -325,16 +342,13 @@ struct vdev {
kthread_t *vdev_rebuild_thread;
vdev_rebuild_t vdev_rebuild_config;
- /* For limiting outstanding I/Os (initialize, TRIM, rebuild) */
+ /* For limiting outstanding I/Os (initialize, TRIM) */
kmutex_t vdev_initialize_io_lock;
kcondvar_t vdev_initialize_io_cv;
uint64_t vdev_initialize_inflight;
kmutex_t vdev_trim_io_lock;
kcondvar_t vdev_trim_io_cv;
uint64_t vdev_trim_inflight[3];
- kmutex_t vdev_rebuild_io_lock;
- kcondvar_t vdev_rebuild_io_cv;
- uint64_t vdev_rebuild_inflight;
/*
* Values stored in the config for an indirect or removing vdev.
@@ -392,7 +406,6 @@ struct vdev {
uint64_t vdev_removed; /* persistent removed state */
uint64_t vdev_resilver_txg; /* persistent resilvering state */
uint64_t vdev_rebuild_txg; /* persistent rebuilding state */
- uint64_t vdev_nparity; /* number of parity devices for raidz */
char *vdev_path; /* vdev path (if any) */
char *vdev_devid; /* vdev devid (if any) */
char *vdev_physpath; /* vdev device path (if any) */
@@ -445,8 +458,6 @@ struct vdev {
zfs_ratelimit_t vdev_checksum_rl;
};
-#define VDEV_RAIDZ_MAXPARITY 3
-
#define VDEV_PAD_SIZE (8 << 10)
/* 2 padding areas (vl_pad1 and vl_be) to skip */
#define VDEV_SKIP_SIZE VDEV_PAD_SIZE * 2
@@ -532,6 +543,9 @@ typedef struct vdev_label {
#define VDEV_LABEL_END_SIZE (2 * sizeof (vdev_label_t))
#define VDEV_LABELS 4
#define VDEV_BEST_LABEL VDEV_LABELS
+#define VDEV_OFFSET_IS_LABEL(vd, off) \
+ (((off) < VDEV_LABEL_START_SIZE) || \
+ ((off) >= ((vd)->vdev_psize - VDEV_LABEL_END_SIZE)))
#define VDEV_ALLOC_LOAD 0
#define VDEV_ALLOC_ADD 1
@@ -577,6 +591,8 @@ extern vdev_ops_t vdev_root_ops;
extern vdev_ops_t vdev_mirror_ops;
extern vdev_ops_t vdev_replacing_ops;
extern vdev_ops_t vdev_raidz_ops;
+extern vdev_ops_t vdev_draid_ops;
+extern vdev_ops_t vdev_draid_spare_ops;
extern vdev_ops_t vdev_disk_ops;
extern vdev_ops_t vdev_file_ops;
extern vdev_ops_t vdev_missing_ops;
@@ -587,11 +603,15 @@ extern vdev_ops_t vdev_indirect_ops;
/*
* Common size functions
*/
-extern void vdev_default_xlate(vdev_t *vd, const range_seg64_t *in,
- range_seg64_t *out);
+extern void vdev_default_xlate(vdev_t *vd, const range_seg64_t *logical_rs,
+ range_seg64_t *physical_rs, range_seg64_t *remain_rs);
extern uint64_t vdev_default_asize(vdev_t *vd, uint64_t psize);
+extern uint64_t vdev_default_min_asize(vdev_t *vd);
extern uint64_t vdev_get_min_asize(vdev_t *vd);
extern void vdev_set_min_asize(vdev_t *vd);
+extern uint64_t vdev_get_min_alloc(vdev_t *vd);
+extern uint64_t vdev_get_nparity(vdev_t *vd);
+extern uint64_t vdev_get_ndisks(vdev_t *vd);
/*
* Global variables
diff --git a/include/sys/vdev_raidz.h b/include/sys/vdev_raidz.h
index 0ce2b5ea1..029fdef5f 100644
--- a/include/sys/vdev_raidz.h
+++ b/include/sys/vdev_raidz.h
@@ -32,6 +32,7 @@ extern "C" {
#endif
struct zio;
+struct raidz_row;
struct raidz_map;
#if !defined(_KERNEL)
struct kernel_param {};
@@ -43,8 +44,11 @@ struct kernel_param {};
struct raidz_map *vdev_raidz_map_alloc(struct zio *, uint64_t, uint64_t,
uint64_t);
void vdev_raidz_map_free(struct raidz_map *);
+void vdev_raidz_generate_parity_row(struct raidz_map *, struct raidz_row *);
void vdev_raidz_generate_parity(struct raidz_map *);
-int vdev_raidz_reconstruct(struct raidz_map *, const int *, int);
+void vdev_raidz_reconstruct(struct raidz_map *, const int *, int);
+void vdev_raidz_child_done(zio_t *);
+void vdev_raidz_io_done(zio_t *);
/*
* vdev_raidz_math interface
@@ -52,11 +56,16 @@ int vdev_raidz_reconstruct(struct raidz_map *, const int *, int);
void vdev_raidz_math_init(void);
void vdev_raidz_math_fini(void);
const struct raidz_impl_ops *vdev_raidz_math_get_ops(void);
-int vdev_raidz_math_generate(struct raidz_map *);
-int vdev_raidz_math_reconstruct(struct raidz_map *, const int *, const int *,
- const int);
+int vdev_raidz_math_generate(struct raidz_map *, struct raidz_row *);
+int vdev_raidz_math_reconstruct(struct raidz_map *, struct raidz_row *,
+ const int *, const int *, const int);
int vdev_raidz_impl_set(const char *);
+typedef struct vdev_raidz {
+ int vd_logical_width;
+ int vd_nparity;
+} vdev_raidz_t;
+
#ifdef __cplusplus
}
#endif
diff --git a/include/sys/vdev_raidz_impl.h b/include/sys/vdev_raidz_impl.h
index 8492daedb..38d4f9e0b 100644
--- a/include/sys/vdev_raidz_impl.h
+++ b/include/sys/vdev_raidz_impl.h
@@ -29,6 +29,7 @@
#include <sys/debug.h>
#include <sys/kstat.h>
#include <sys/abd.h>
+#include <sys/vdev_impl.h>
#ifdef __cplusplus
extern "C" {
@@ -106,30 +107,45 @@ typedef struct raidz_col {
uint64_t rc_offset; /* device offset */
uint64_t rc_size; /* I/O size */
abd_t *rc_abd; /* I/O data */
- void *rc_gdata; /* used to store the "good" version */
+ void *rc_orig_data; /* pre-reconstruction */
+ abd_t *rc_gdata; /* used to store the "good" version */
int rc_error; /* I/O error for this device */
uint8_t rc_tried; /* Did we attempt this I/O column? */
uint8_t rc_skipped; /* Did we skip this I/O column? */
+ uint8_t rc_need_orig_restore; /* need to restore from orig_data? */
+ uint8_t rc_repair; /* Write good data to this column */
} raidz_col_t;
+typedef struct raidz_row {
+ uint64_t rr_cols; /* Regular column count */
+ uint64_t rr_scols; /* Count including skipped columns */
+ uint64_t rr_bigcols; /* Remainder data column count */
+ uint64_t rr_missingdata; /* Count of missing data devices */
+ uint64_t rr_missingparity; /* Count of missing parity devices */
+ uint64_t rr_firstdatacol; /* First data column/parity count */
+ abd_t *rr_abd_copy; /* rm_asize-buffer of copied data */
+ abd_t *rr_abd_empty; /* dRAID empty sector buffer */
+ int rr_nempty; /* empty sectors included in parity */
+ int rr_code; /* reconstruction code (unused) */
+#ifdef ZFS_DEBUG
+ uint64_t rr_offset; /* Logical offset for *_io_verify() */
+ uint64_t rr_size; /* Physical size for *_io_verify() */
+#endif
+ raidz_col_t rr_col[0]; /* Flexible array of I/O columns */
+} raidz_row_t;
+
typedef struct raidz_map {
- uint64_t rm_cols; /* Regular column count */
- uint64_t rm_scols; /* Count including skipped columns */
- uint64_t rm_bigcols; /* Number of oversized columns */
- uint64_t rm_asize; /* Actual total I/O size */
- uint64_t rm_missingdata; /* Count of missing data devices */
- uint64_t rm_missingparity; /* Count of missing parity devices */
- uint64_t rm_firstdatacol; /* First data column/parity count */
- uint64_t rm_nskip; /* Skipped sectors for padding */
- uint64_t rm_skipstart; /* Column index of padding start */
- abd_t *rm_abd_copy; /* rm_asize-buffer of copied data */
uintptr_t rm_reports; /* # of referencing checksum reports */
- uint8_t rm_freed; /* map no longer has referencing ZIO */
- uint8_t rm_ecksuminjected; /* checksum error was injected */
+ boolean_t rm_freed; /* map no longer has referencing ZIO */
+ boolean_t rm_ecksuminjected; /* checksum error was injected */
+ int rm_nrows; /* Regular row count */
+ int rm_nskip; /* RAIDZ sectors skipped for padding */
+ int rm_skipstart; /* Column index of padding start */
const raidz_impl_ops_t *rm_ops; /* RAIDZ math operations */
- raidz_col_t rm_col[1]; /* Flexible array of I/O columns */
+ raidz_row_t *rm_row[0]; /* flexible array of rows */
} raidz_map_t;
+
#define RAIDZ_ORIGINAL_IMPL (INT_MAX)
extern const raidz_impl_ops_t vdev_raidz_scalar_impl;
@@ -163,14 +179,15 @@ extern const raidz_impl_ops_t vdev_raidz_powerpc_altivec_impl;
*
* raidz_parity Returns parity of the RAIDZ block
* raidz_ncols Returns number of columns the block spans
+ * Note, all rows have the same number of columns.
* raidz_nbigcols Returns number of big columns
* raidz_col_p Returns pointer to a column
* raidz_col_size Returns size of a column
* raidz_big_size Returns size of big columns
* raidz_short_size Returns size of short columns
*/
-#define raidz_parity(rm) ((rm)->rm_firstdatacol)
-#define raidz_ncols(rm) ((rm)->rm_cols)
+#define raidz_parity(rm) ((rm)->rm_row[0]->rr_firstdatacol)
+#define raidz_ncols(rm) ((rm)->rm_row[0]->rr_cols)
#define raidz_nbigcols(rm) ((rm)->rm_bigcols)
#define raidz_col_p(rm, c) ((rm)->rm_col + (c))
#define raidz_col_size(rm, c) ((rm)->rm_col[c].rc_size)
@@ -185,10 +202,10 @@ extern const raidz_impl_ops_t vdev_raidz_powerpc_altivec_impl;
*/
#define _RAIDZ_GEN_WRAP(code, impl) \
static void \
-impl ## _gen_ ## code(void *rmp) \
+impl ## _gen_ ## code(void *rrp) \
{ \
- raidz_map_t *rm = (raidz_map_t *)rmp; \
- raidz_generate_## code ## _impl(rm); \
+ raidz_row_t *rr = (raidz_row_t *)rrp; \
+ raidz_generate_## code ## _impl(rr); \
}
/*
@@ -199,10 +216,10 @@ impl ## _gen_ ## code(void *rmp) \
*/
#define _RAIDZ_REC_WRAP(code, impl) \
static int \
-impl ## _rec_ ## code(void *rmp, const int *tgtidx) \
+impl ## _rec_ ## code(void *rrp, const int *tgtidx) \
{ \
- raidz_map_t *rm = (raidz_map_t *)rmp; \
- return (raidz_reconstruct_## code ## _impl(rm, tgtidx)); \
+ raidz_row_t *rr = (raidz_row_t *)rrp; \
+ return (raidz_reconstruct_## code ## _impl(rr, tgtidx)); \
}
/*
diff --git a/include/sys/vdev_rebuild.h b/include/sys/vdev_rebuild.h
index 3d4b8cc46..61ae15c5d 100644
--- a/include/sys/vdev_rebuild.h
+++ b/include/sys/vdev_rebuild.h
@@ -66,10 +66,14 @@ typedef struct vdev_rebuild {
vdev_t *vr_top_vdev; /* top-level vdev to rebuild */
metaslab_t *vr_scan_msp; /* scanning disabled metaslab */
range_tree_t *vr_scan_tree; /* scan ranges (in metaslab) */
+ kmutex_t vr_io_lock; /* inflight IO lock */
+ kcondvar_t vr_io_cv; /* inflight IO cv */
/* In-core state and progress */
uint64_t vr_scan_offset[TXG_SIZE];
uint64_t vr_prev_scan_time_ms; /* any previous scan time */
+ uint64_t vr_bytes_inflight_max; /* maximum bytes inflight */
+ uint64_t vr_bytes_inflight; /* current bytes inflight */
/* Per-rebuild pass statistics for calculating bandwidth */
uint64_t vr_pass_start_time;
diff --git a/include/sys/zio.h b/include/sys/zio.h
index 495983171..334ca064b 100644
--- a/include/sys/zio.h
+++ b/include/sys/zio.h
@@ -372,6 +372,7 @@ struct zio_cksum_report {
nvlist_t *zcr_detector;
void *zcr_cbdata;
size_t zcr_cbinfo; /* passed to zcr_free() */
+ uint64_t zcr_sector;
uint64_t zcr_align;
uint64_t zcr_length;
zio_cksum_finish_f *zcr_finish;
diff --git a/include/zfeature_common.h b/include/zfeature_common.h
index db0138ae8..cf05bad76 100644
--- a/include/zfeature_common.h
+++ b/include/zfeature_common.h
@@ -76,6 +76,7 @@ typedef enum spa_feature {
SPA_FEATURE_LIVELIST,
SPA_FEATURE_DEVICE_REBUILD,
SPA_FEATURE_ZSTD_COMPRESS,
+ SPA_FEATURE_DRAID,
SPA_FEATURES
} spa_feature_t;
diff --git a/lib/libzfs/libzfs_dataset.c b/lib/libzfs/libzfs_dataset.c
index 1eaed435c..47418b323 100644
--- a/lib/libzfs/libzfs_dataset.c
+++ b/lib/libzfs/libzfs_dataset.c
@@ -5336,6 +5336,16 @@ zfs_get_holds(zfs_handle_t *zhp, nvlist_t **nvl)
* 160k. Again, 128k is from SPA_OLD_MAXBLOCKSIZE and 160k is as calculated in
* the 128k block example above.
*
+ * The situtation is slightly different for dRAID since the minimum allocation
+ * size is the full group width. The same 8K block above would be written as
+ * follows in a dRAID group:
+ *
+ * +-------+-------+-------+-------+-------+
+ * | disk1 | disk2 | disk3 | disk4 | disk5 |
+ * +-------+-------+-------+-------+-------+
+ * | P0 | D0 | D1 | S0 | S1 |
+ * +-------+-------+-------+-------+-------+
+ *
* Compression may lead to a variety of block sizes being written for the same
* volume or file. There is no clear way to reserve just the amount of space
* that will be required, so the worst case (no compression) is assumed.
@@ -5366,6 +5376,23 @@ vdev_raidz_asize(uint64_t ndisks, uint64_t nparity, uint64_t ashift,
}
/*
+ * Derived from function of same name in module/zfs/vdev_draid.c. Returns the
+ * amount of space (in bytes) that will be allocated for the specified block
+ * size.
+ */
+static uint64_t
+vdev_draid_asize(uint64_t ndisks, uint64_t nparity, uint64_t ashift,
+ uint64_t blksize)
+{
+ ASSERT3U(ndisks, >, nparity);
+ uint64_t ndata = ndisks - nparity;
+ uint64_t rows = ((blksize - 1) / (ndata << ashift)) + 1;
+ uint64_t asize = (rows * ndisks) << ashift;
+
+ return (asize);
+}
+
+/*
* Determine how much space will be allocated if it lands on the most space-
* inefficient top-level vdev. Returns the size in bytes required to store one
* copy of the volume data. See theory comment above.
@@ -5374,7 +5401,7 @@ static uint64_t
volsize_from_vdevs(zpool_handle_t *zhp, uint64_t nblocks, uint64_t blksize)
{
nvlist_t *config, *tree, **vdevs;
- uint_t nvdevs, v;
+ uint_t nvdevs;
uint64_t ret = 0;
config = zpool_get_config(zhp, NULL);
@@ -5384,33 +5411,61 @@ volsize_from_vdevs(zpool_handle_t *zhp, uint64_t nblocks, uint64_t blksize)
return (nblocks * blksize);
}
- for (v = 0; v < nvdevs; v++) {
+ for (int v = 0; v < nvdevs; v++) {
char *type;
uint64_t nparity, ashift, asize, tsize;
- nvlist_t **disks;
- uint_t ndisks;
uint64_t volsize;
if (nvlist_lookup_string(vdevs[v], ZPOOL_CONFIG_TYPE,
- &type) != 0 || strcmp(type, VDEV_TYPE_RAIDZ) != 0 ||
- nvlist_lookup_uint64(vdevs[v], ZPOOL_CONFIG_NPARITY,
- &nparity) != 0 ||
- nvlist_lookup_uint64(vdevs[v], ZPOOL_CONFIG_ASHIFT,
- &ashift) != 0 ||
- nvlist_lookup_nvlist_array(vdevs[v], ZPOOL_CONFIG_CHILDREN,
- &disks, &ndisks) != 0) {
+ &type) != 0)
+ continue;
+
+ if (strcmp(type, VDEV_TYPE_RAIDZ) != 0 &&
+ strcmp(type, VDEV_TYPE_DRAID) != 0)
+ continue;
+
+ if (nvlist_lookup_uint64(vdevs[v],
+ ZPOOL_CONFIG_NPARITY, &nparity) != 0)
+ continue;
+
+ if (nvlist_lookup_uint64(vdevs[v],
+ ZPOOL_CONFIG_ASHIFT, &ashift) != 0)
continue;
- }
- /* allocation size for the "typical" 128k block */
- tsize = vdev_raidz_asize(ndisks, nparity, ashift,
- SPA_OLD_MAXBLOCKSIZE);
- /* allocation size for the blksize block */
- asize = vdev_raidz_asize(ndisks, nparity, ashift, blksize);
+ if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) {
+ nvlist_t **disks;
+ uint_t ndisks;
+
+ if (nvlist_lookup_nvlist_array(vdevs[v],
+ ZPOOL_CONFIG_CHILDREN, &disks, &ndisks) != 0)
+ continue;
+
+ /* allocation size for the "typical" 128k block */
+ tsize = vdev_raidz_asize(ndisks, nparity, ashift,
+ SPA_OLD_MAXBLOCKSIZE);
+
+ /* allocation size for the blksize block */
+ asize = vdev_raidz_asize(ndisks, nparity, ashift,
+ blksize);
+ } else {
+ uint64_t ndata;
+
+ if (nvlist_lookup_uint64(vdevs[v],
+ ZPOOL_CONFIG_DRAID_NDATA, &ndata) != 0)
+ continue;
+
+ /* allocation size for the "typical" 128k block */
+ tsize = vdev_draid_asize(ndata + nparity, nparity,
+ ashift, SPA_OLD_MAXBLOCKSIZE);
+
+ /* allocation size for the blksize block */
+ asize = vdev_draid_asize(ndata + nparity, nparity,
+ ashift, blksize);
+ }
/*
- * Scale this size down as a ratio of 128k / tsize. See theory
- * statement above.
+ * Scale this size down as a ratio of 128k / tsize.
+ * See theory statement above.
*/
volsize = nblocks * asize * SPA_OLD_MAXBLOCKSIZE / tsize;
if (volsize > ret) {
diff --git a/lib/libzfs/libzfs_import.c b/lib/libzfs/libzfs_import.c
index 6c5f61836..44d3ade49 100644
--- a/lib/libzfs/libzfs_import.c
+++ b/lib/libzfs/libzfs_import.c
@@ -112,7 +112,6 @@ refresh_config_libzfs(void *handle, nvlist_t *tryconfig)
return (refresh_config((libzfs_handle_t *)handle, tryconfig));
}
-
static int
pool_active_libzfs(void *handle, const char *name, uint64_t guid,
boolean_t *isactive)
diff --git a/lib/libzfs/libzfs_pool.c b/lib/libzfs/libzfs_pool.c
index 00b0b6faf..16f8e3e7f 100644
--- a/lib/libzfs/libzfs_pool.c
+++ b/lib/libzfs/libzfs_pool.c
@@ -42,10 +42,10 @@
#include <sys/efi_partition.h>
#include <sys/systeminfo.h>
#include <sys/zfs_ioctl.h>
+#include <sys/zfs_sysfs.h>
#include <sys/vdev_disk.h>
#include <dlfcn.h>
#include <libzutil.h>
-
#include "zfs_namecheck.h"
#include "zfs_prop.h"
#include "libzfs_impl.h"
@@ -481,7 +481,8 @@ zpool_valid_proplist(libzfs_handle_t *hdl, const char *poolname,
if (err != 0) {
ASSERT3U(err, ==, ENOENT);
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
- "invalid feature '%s'"), fname);
+ "feature '%s' unsupported by kernel"),
+ fname);
(void) zfs_error(hdl, EZFS_BADPROP, errbuf);
goto error;
}
@@ -960,6 +961,7 @@ zpool_name_valid(libzfs_handle_t *hdl, boolean_t isopen, const char *pool)
if (ret == 0 && !isopen &&
(strncmp(pool, "mirror", 6) == 0 ||
strncmp(pool, "raidz", 5) == 0 ||
+ strncmp(pool, "draid", 5) == 0 ||
strncmp(pool, "spare", 5) == 0 ||
strcmp(pool, "log") == 0)) {
if (hdl != NULL)
@@ -1187,6 +1189,37 @@ zpool_has_special_vdev(nvlist_t *nvroot)
}
/*
+ * Output a dRAID top-level vdev name in to the provided buffer.
+ */
+static char *
+zpool_draid_name(char *name, int len, uint64_t data, uint64_t parity,
+ uint64_t spares, uint64_t children)
+{
+ snprintf(name, len, "%s%llu:%llud:%lluc:%llus",
+ VDEV_TYPE_DRAID, (u_longlong_t)parity, (u_longlong_t)data,
+ (u_longlong_t)children, (u_longlong_t)spares);
+
+ return (name);
+}
+
+/*
+ * Return B_TRUE if the provided name is a dRAID spare name.
+ */
+boolean_t
+zpool_is_draid_spare(const char *name)
+{
+ uint64_t spare_id, parity, vdev_id;
+
+ if (sscanf(name, VDEV_TYPE_DRAID "%llu-%llu-%llu",
+ (u_longlong_t *)&parity, (u_longlong_t *)&vdev_id,
+ (u_longlong_t *)&spare_id) == 3) {
+ return (B_TRUE);
+ }
+
+ return (B_FALSE);
+}
+
+/*
* Create the named pool, using the provided vdev list. It is assumed
* that the consumer has already validated the contents of the nvlist, so we
* don't have to worry about error semantics.
@@ -2668,6 +2701,11 @@ zpool_vdev_is_interior(const char *name)
VDEV_TYPE_REPLACING, strlen(VDEV_TYPE_REPLACING)) == 0 ||
strncmp(name, VDEV_TYPE_MIRROR, strlen(VDEV_TYPE_MIRROR)) == 0)
return (B_TRUE);
+
+ if (strncmp(name, VDEV_TYPE_DRAID, strlen(VDEV_TYPE_DRAID)) == 0 &&
+ !zpool_is_draid_spare(name))
+ return (B_TRUE);
+
return (B_FALSE);
}
@@ -3101,7 +3139,8 @@ is_replacing_spare(nvlist_t *search, nvlist_t *tgt, int which)
verify(nvlist_lookup_string(search, ZPOOL_CONFIG_TYPE,
&type) == 0);
- if (strcmp(type, VDEV_TYPE_SPARE) == 0 &&
+ if ((strcmp(type, VDEV_TYPE_SPARE) == 0 ||
+ strcmp(type, VDEV_TYPE_DRAID_SPARE) == 0) &&
children == 2 && child[which] == tgt)
return (B_TRUE);
@@ -3216,8 +3255,12 @@ zpool_vdev_attach(zpool_handle_t *zhp, const char *old_disk,
"cannot replace a log with a spare"));
} else if (rebuild) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
- "only mirror vdevs support sequential "
- "reconstruction"));
+ "only mirror and dRAID vdevs support "
+ "sequential reconstruction"));
+ } else if (zpool_is_draid_spare(new_disk)) {
+ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
+ "dRAID spares can only replace child "
+ "devices in their parent's dRAID vdev"));
} else if (version >= SPA_VERSION_MULTI_REPLACE) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"already in replacing/spare config; wait "
@@ -3618,6 +3661,12 @@ zpool_vdev_remove(zpool_handle_t *zhp, const char *path)
(void) snprintf(msg, sizeof (msg),
dgettext(TEXT_DOMAIN, "cannot remove %s"), path);
+ if (zpool_is_draid_spare(path)) {
+ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
+ "dRAID spares cannot be removed"));
+ return (zfs_error(hdl, EZFS_NODEVICE, msg));
+ }
+
(void) strlcpy(zc.zc_name, zhp->zpool_name, sizeof (zc.zc_name));
if ((tgt = zpool_find_vdev(zhp, path, &avail_spare, &l2cache,
&islog)) == NULL)
@@ -3955,9 +4004,10 @@ zpool_vdev_name(libzfs_handle_t *hdl, zpool_handle_t *zhp, nvlist_t *nv,
}
/*
- * Remove the partition from the path it this is a whole disk.
+ * Remove the partition from the path if this is a whole disk.
*/
- if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, &value)
+ if (strcmp(type, VDEV_TYPE_DRAID_SPARE) != 0 &&
+ nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, &value)
== 0 && value && !(name_flags & VDEV_NAME_PATH)) {
return (zfs_strip_partition(path));
}
@@ -3976,6 +4026,27 @@ zpool_vdev_name(libzfs_handle_t *hdl, zpool_handle_t *zhp, nvlist_t *nv,
}
/*
+ * If it's a dRAID device, we add parity, groups, and spares.
+ */
+ if (strcmp(path, VDEV_TYPE_DRAID) == 0) {
+ uint64_t ndata, nparity, nspares;
+ nvlist_t **child;
+ uint_t children;
+
+ verify(nvlist_lookup_nvlist_array(nv,
+ ZPOOL_CONFIG_CHILDREN, &child, &children) == 0);
+ verify(nvlist_lookup_uint64(nv,
+ ZPOOL_CONFIG_NPARITY, &nparity) == 0);
+ verify(nvlist_lookup_uint64(nv,
+ ZPOOL_CONFIG_DRAID_NDATA, &ndata) == 0);
+ verify(nvlist_lookup_uint64(nv,
+ ZPOOL_CONFIG_DRAID_NSPARES, &nspares) == 0);
+
+ path = zpool_draid_name(buf, sizeof (buf), ndata,
+ nparity, nspares, children);
+ }
+
+ /*
* We identify each top-level vdev by using a <type-id>
* naming convention.
*/
diff --git a/lib/libzpool/Makefile.am b/lib/libzpool/Makefile.am
index d427bda36..5b938bd4a 100644
--- a/lib/libzpool/Makefile.am
+++ b/lib/libzpool/Makefile.am
@@ -124,6 +124,8 @@ KERNEL_C = \
unique.c \
vdev.c \
vdev_cache.c \
+ vdev_draid.c \
+ vdev_draid_rand.c \
vdev_file.c \
vdev_indirect_births.c \
vdev_indirect.c \
@@ -216,7 +218,7 @@ libzpool_la_LIBADD = \
$(abs_top_builddir)/lib/libnvpair/libnvpair.la \
$(abs_top_builddir)/lib/libzstd/libzstd.la
-libzpool_la_LIBADD += $(LIBCLOCK_GETTIME) $(ZLIB_LIBS) -ldl
+libzpool_la_LIBADD += $(LIBCLOCK_GETTIME) $(ZLIB_LIBS) -ldl -lm
libzpool_la_LDFLAGS = -pthread
diff --git a/man/man1/raidz_test.1 b/man/man1/raidz_test.1
index 94e48bf49..26e6b24ad 100644
--- a/man/man1/raidz_test.1
+++ b/man/man1/raidz_test.1
@@ -61,6 +61,11 @@ during testing.
.IP
Size of data for raidz block. Size is 1 << (zio_size_shift).
.HP
+.BI "\-r" " reflow_offset" " (default: uint max)"
+.IP
+Set raidz expansion offset. The expanded raidz map allocation function will
+produce different map configurations depending on this value.
+.HP
.BI "\-S(weep)"
.IP
Sweep parameter space while verifying the raidz implementations. This option
@@ -77,6 +82,10 @@ This options starts the benchmark mode. All implementations are benchmarked
using increasing per disk data size. Results are given as throughput per disk,
measured in MiB/s.
.HP
+.BI "\-e(xpansion)"
+.IP
+Use expanded raidz map allocation function.
+.HP
.BI "\-v(erbose)"
.IP
Increase verbosity.
diff --git a/man/man1/ztest.1 b/man/man1/ztest.1
index 68c978ca0..3f30b3ed7 100644
--- a/man/man1/ztest.1
+++ b/man/man1/ztest.1
@@ -23,6 +23,7 @@
.\" Copyright (c) 2009 Oracle and/or its affiliates. All rights reserved.
.\" Copyright (c) 2009 Michael Gebetsroither <[email protected]>. All rights
.\" reserved.
+.\" Copyright (c) 2017, Intel Corporation.
.\"
.TH ZTEST 1 "Aug 24, 2020" OpenZFS
@@ -82,13 +83,29 @@ Used alignment in test.
.IP
Number of mirror copies.
.HP
-.BI "\-r" " raidz_disks" " (default: 4)"
+.BI "\-r" " raidz_disks / draid_disks" " (default: 4 / 16)"
.IP
Number of raidz disks.
.HP
-.BI "\-R" " raidz_parity" " (default: 1)"
+.BI "\-R" " raid_parity" " (default: 1)"
.IP
-Raidz parity.
+Raid parity (raidz & draid).
+.HP
+.BI "\-K" " raid_kind" " (default: 'random') raidz|draid|random"
+.IP
+The kind of RAID config to use. With 'random' the kind alternates between raidz and draid.
+.HP
+.BI "\-D" " draid_data" " (default: 4)"
+.IP
+Number of data disks in a dRAID redundancy group.
+.HP
+.BI "\-S" " draid_spares" " (default: 1)"
+.IP
+Number of dRAID distributed spare disks.
+.HP
+.BI "\-C" " vdev_class_state" " (default: random)"
+.IP
+The vdev allocation class state: special=on|off|random.
.HP
.BI "\-d" " datasets" " (default: 7)"
.IP
diff --git a/man/man5/zfs-module-parameters.5 b/man/man5/zfs-module-parameters.5
index 469963750..5b4dac42f 100644
--- a/man/man5/zfs-module-parameters.5
+++ b/man/man5/zfs-module-parameters.5
@@ -2905,6 +2905,31 @@ Default value: \fB1,048,576\fR.
.sp
.ne 2
.na
+\fBzfs_rebuild_scrub_enabled\fR (int)
+.ad
+.RS 12n
+Automatically start a pool scrub when the last active sequential resilver
+completes in order to verify the checksums of all blocks which have been
+resilvered. This option is enabled by default and is strongly recommended.
+.sp
+Default value: \fB1\fR.
+.RE
+
+.sp
+.ne 2
+.na
+\fBzfs_rebuild_vdev_limit\fR (ulong)
+.ad
+.RS 12n
+Maximum amount of i/o that can be concurrently issued for a sequential
+resilver per leaf device, given in bytes.
+.sp
+Default value: \fB33,554,432\fR.
+.RE
+
+.sp
+.ne 2
+.na
\fBzfs_reconstruct_indirect_combinations_max\fR (int)
.ad
.RS 12na
diff --git a/man/man5/zpool-features.5 b/man/man5/zpool-features.5
index 08a84ece2..2e5ab4c37 100644
--- a/man/man5/zpool-features.5
+++ b/man/man5/zpool-features.5
@@ -309,6 +309,30 @@ on a top-level vdev, and will never return to being \fBenabled\fR.
.sp
.ne 2
.na
+\fBdraid\fR
+.ad
+.RS 4n
+.TS
+l l .
+GUID org.openzfs:draid
+READ\-ONLY COMPATIBLE no
+DEPENDENCIES none
+.TE
+
+This feature enables use of the \fBdraid\fR vdev type. dRAID is a variant
+of raidz which provides integrated distributed hot spares that allow faster
+resilvering while retaining the benefits of raidz. Data, parity, and spare
+space are organized in redundancy groups and distributed evenly over all of
+the devices.
+
+This feature becomes \fBactive\fR when creating a pool which uses the
+\fBdraid\fR vdev type, or when adding a new \fBdraid\fR vdev to an
+existing pool.
+.RE
+
+.sp
+.ne 2
+.na
\fBedonr\fR
.ad
.RS 4n
diff --git a/man/man8/zpool-create.8 b/man/man8/zpool-create.8
index 7f3f27b9b..7406a493e 100644
--- a/man/man8/zpool-create.8
+++ b/man/man8/zpool-create.8
@@ -73,12 +73,14 @@ and period
The pool names
.Sy mirror ,
.Sy raidz ,
+.Sy draid ,
.Sy spare
and
.Sy log
are reserved, as are names beginning with
.Sy mirror ,
.Sy raidz ,
+.Sy draid ,
.Sy spare ,
and the pattern
.Sy c[0-9] .
diff --git a/man/man8/zpool-scrub.8 b/man/man8/zpool-scrub.8
index ede569978..6ff2eb261 100644
--- a/man/man8/zpool-scrub.8
+++ b/man/man8/zpool-scrub.8
@@ -52,7 +52,7 @@ Begins a scrub or resumes a paused scrub.
The scrub examines all data in the specified pools to verify that it checksums
correctly.
For replicated
-.Pq mirror or raidz
+.Pq mirror, raidz, or draid
devices, ZFS automatically repairs any damage discovered during the scrub.
The
.Nm zpool Cm status
diff --git a/man/man8/zpoolconcepts.8 b/man/man8/zpoolconcepts.8
index f9c262f4b..d999b0354 100644
--- a/man/man8/zpoolconcepts.8
+++ b/man/man8/zpoolconcepts.8
@@ -64,7 +64,7 @@ A file must be specified by a full path.
A mirror of two or more devices.
Data is replicated in an identical fashion across all components of a mirror.
A mirror with N disks of size X can hold X bytes and can withstand (N-1) devices
-failing before data integrity is compromised.
+failing without losing data.
.It Sy raidz , raidz1 , raidz2 , raidz3
A variation on RAID-5 that allows for better distribution of parity and
eliminates the RAID-5
@@ -88,11 +88,75 @@ vdev type is an alias for
.Sy raidz1 .
.Pp
A raidz group with N disks of size X with P parity disks can hold approximately
-(N-P)*X bytes and can withstand P device(s) failing before data integrity is
-compromised.
+(N-P)*X bytes and can withstand P device(s) failing without losing data.
The minimum number of devices in a raidz group is one more than the number of
parity disks.
The recommended number is between 3 and 9 to help increase performance.
+.It Sy draid , draid1 , draid2 , draid3
+A variant of raidz that provides integrated distributed hot spares which
+allows for faster resilvering while retaining the benefits of raidz.
+A dRAID vdev is constructed from multiple internal raidz groups, each with D
+data devices and P parity devices.
+These groups are distributed over all of the children in order to fully
+utilize the available disk performance.
+.Pp
+Unlike raidz, dRAID uses a fixed stripe width (padding as necessary with
+zeros) to allow fully sequential resilvering.
+This fixed stripe width significantly effects both usable capacity and IOPS.
+For example, with the default D=8 and 4k disk sectors the minimum allocation
+size is 32k.
+If using compression, this relatively large allocation size can reduce the
+effective compression ratio.
+When using ZFS volumes and dRAID the default volblocksize property is increased
+to account for the allocation size.
+If a dRAID pool will hold a significant amount of small blocks, it is
+recommended to also add a mirrored
+.Sy special
+vdev to store those blocks.
+.Pp
+In regards to IO/s, performance is similar to raidz since for any read all D
+data disks must be accessed.
+Delivered random IOPS can be reasonably approximated as
+floor((N-S)/(D+P))*<single-drive-IOPS>.
+.Pp
+Like raidz a dRAID can have single-, double-, or triple-parity. The
+.Sy draid1 ,
+.Sy draid2 ,
+and
+.Sy draid3
+types can be used to specify the parity level.
+The
+.Sy draid
+vdev type is an alias for
+.Sy draid1 .
+.Pp
+A dRAID with N disks of size X, D data disks per redundancy group, P parity
+level, and S distributed hot spares can hold approximately (N-S)*(D/(D+P))*X
+bytes and can withstand P device(s) failing without losing data.
+.It Sy draid[<parity>][:<data>d][:<children>c][:<spares>s]
+A non-default dRAID configuration can be specified by appending one or more
+of the following optional arguments to the
+.Sy draid
+keyword.
+.Pp
+.Em parity
+- The parity level (1-3).
+.Pp
+.Em data
+- The number of data devices per redundancy group.
+In general a smaller value of D will increase IOPS, improve the compression ratio, and speed up resilvering at the expense of total usable capacity.
+Defaults to 8, unless N-P-S is less than 8.
+.Pp
+.Em children
+- The expected number of children.
+Useful as a cross-check when listing a large number of devices.
+An error is returned when the provided number of children differs.
+.Pp
+.Em spares
+- The number of distributed hot spares.
+Defaults to zero.
+.Pp
+.Pp
.It Sy spare
A pseudo-vdev which keeps track of available hot spares for a pool.
For more information, see the
@@ -273,6 +337,14 @@ If the original faulted device is detached, then the hot spare assumes its
place in the configuration, and is removed from the spare list of all active
pools.
.Pp
+The
+.Sy draid
+vdev type provides distributed hot spares.
+These hot spares are named after the dRAID vdev they're a part of (
+.Qq draid1-2-3 specifies spare 3 of vdev 2, which is a single parity dRAID
+) and may only be used by that dRAID vdev.
+Otherwise, they behave the same as normal hot spares.
+.Pp
Spares cannot replace log devices.
.Ss Intent Log
The ZFS Intent Log (ZIL) satisfies POSIX requirements for synchronous
diff --git a/module/Makefile.bsd b/module/Makefile.bsd
index 4a2514fd4..1acf543ac 100644
--- a/module/Makefile.bsd
+++ b/module/Makefile.bsd
@@ -243,6 +243,8 @@ SRCS+= abd.c \
unique.c \
vdev.c \
vdev_cache.c \
+ vdev_draid.c \
+ vdev_draid_rand.c \
vdev_indirect.c \
vdev_indirect_births.c \
vdev_indirect_mapping.c \
@@ -341,6 +343,7 @@ CFLAGS.lz4.c= -Wno-cast-qual
CFLAGS.spa.c= -Wno-cast-qual
CFLAGS.spa_misc.c= -Wno-cast-qual
CFLAGS.sysctl_os.c= -include ../zfs_config.h
+CFLAGS.vdev_draid.c= -Wno-cast-qual
CFLAGS.vdev_raidz.c= -Wno-cast-qual
CFLAGS.vdev_raidz_math.c= -Wno-cast-qual
CFLAGS.vdev_raidz_math_scalar.c= -Wno-cast-qual
diff --git a/module/os/freebsd/zfs/vdev_file.c b/module/os/freebsd/zfs/vdev_file.c
index cf762c5fd..825bd706e 100644
--- a/module/os/freebsd/zfs/vdev_file.c
+++ b/module/os/freebsd/zfs/vdev_file.c
@@ -292,19 +292,28 @@ vdev_file_io_done(zio_t *zio)
}
vdev_ops_t vdev_file_ops = {
- vdev_file_open,
- vdev_file_close,
- vdev_default_asize,
- vdev_file_io_start,
- vdev_file_io_done,
- NULL,
- NULL,
- vdev_file_hold,
- vdev_file_rele,
- NULL,
- vdev_default_xlate,
- VDEV_TYPE_FILE, /* name of this vdev type */
- B_TRUE /* leaf vdev */
+ .vdev_op_init = NULL,
+ .vdev_op_fini = NULL,
+ .vdev_op_open = vdev_file_open,
+ .vdev_op_close = vdev_file_close,
+ .vdev_op_asize = vdev_default_asize,
+ .vdev_op_min_asize = vdev_default_min_asize,
+ .vdev_op_min_alloc = NULL,
+ .vdev_op_io_start = vdev_file_io_start,
+ .vdev_op_io_done = vdev_file_io_done,
+ .vdev_op_state_change = NULL,
+ .vdev_op_need_resilver = NULL,
+ .vdev_op_hold = vdev_file_hold,
+ .vdev_op_rele = vdev_file_rele,
+ .vdev_op_remap = NULL,
+ .vdev_op_xlate = vdev_default_xlate,
+ .vdev_op_rebuild_asize = NULL,
+ .vdev_op_metaslab_init = NULL,
+ .vdev_op_config_generate = NULL,
+ .vdev_op_nparity = NULL,
+ .vdev_op_ndisks = NULL,
+ .vdev_op_type = VDEV_TYPE_FILE, /* name of this vdev type */
+ .vdev_op_leaf = B_TRUE /* leaf vdev */
};
/*
@@ -313,19 +322,28 @@ vdev_ops_t vdev_file_ops = {
#ifndef _KERNEL
vdev_ops_t vdev_disk_ops = {
- vdev_file_open,
- vdev_file_close,
- vdev_default_asize,
- vdev_file_io_start,
- vdev_file_io_done,
- NULL,
- NULL,
- vdev_file_hold,
- vdev_file_rele,
- NULL,
- vdev_default_xlate,
- VDEV_TYPE_DISK, /* name of this vdev type */
- B_TRUE /* leaf vdev */
+ .vdev_op_init = NULL,
+ .vdev_op_fini = NULL,
+ .vdev_op_open = vdev_file_open,
+ .vdev_op_close = vdev_file_close,
+ .vdev_op_asize = vdev_default_asize,
+ .vdev_op_min_asize = vdev_default_min_asize,
+ .vdev_op_min_alloc = NULL,
+ .vdev_op_io_start = vdev_file_io_start,
+ .vdev_op_io_done = vdev_file_io_done,
+ .vdev_op_state_change = NULL,
+ .vdev_op_need_resilver = NULL,
+ .vdev_op_hold = vdev_file_hold,
+ .vdev_op_rele = vdev_file_rele,
+ .vdev_op_remap = NULL,
+ .vdev_op_xlate = vdev_default_xlate,
+ .vdev_op_rebuild_asize = NULL,
+ .vdev_op_metaslab_init = NULL,
+ .vdev_op_config_generate = NULL,
+ .vdev_op_nparity = NULL,
+ .vdev_op_ndisks = NULL,
+ .vdev_op_type = VDEV_TYPE_DISK, /* name of this vdev type */
+ .vdev_op_leaf = B_TRUE /* leaf vdev */
};
#endif
diff --git a/module/os/freebsd/zfs/vdev_geom.c b/module/os/freebsd/zfs/vdev_geom.c
index b888cfdf0..ae7cbe60a 100644
--- a/module/os/freebsd/zfs/vdev_geom.c
+++ b/module/os/freebsd/zfs/vdev_geom.c
@@ -1189,17 +1189,26 @@ vdev_geom_rele(vdev_t *vd)
}
vdev_ops_t vdev_disk_ops = {
- vdev_geom_open,
- vdev_geom_close,
- vdev_default_asize,
- vdev_geom_io_start,
- vdev_geom_io_done,
- NULL,
- NULL,
- vdev_geom_hold,
- vdev_geom_rele,
- NULL,
- vdev_default_xlate,
- VDEV_TYPE_DISK, /* name of this vdev type */
- B_TRUE /* leaf vdev */
+ .vdev_op_init = NULL,
+ .vdev_op_fini = NULL,
+ .vdev_op_open = vdev_geom_open,
+ .vdev_op_close = vdev_geom_close,
+ .vdev_op_asize = vdev_default_asize,
+ .vdev_op_min_asize = vdev_default_min_asize,
+ .vdev_op_min_alloc = NULL,
+ .vdev_op_io_start = vdev_geom_io_start,
+ .vdev_op_io_done = vdev_geom_io_done,
+ .vdev_op_state_change = NULL,
+ .vdev_op_need_resilver = NULL,
+ .vdev_op_hold = vdev_geom_hold,
+ .vdev_op_rele = vdev_geom_rele,
+ .vdev_op_remap = NULL,
+ .vdev_op_xlate = vdev_default_xlate,
+ .vdev_op_rebuild_asize = NULL,
+ .vdev_op_metaslab_init = NULL,
+ .vdev_op_config_generate = NULL,
+ .vdev_op_nparity = NULL,
+ .vdev_op_ndisks = NULL,
+ .vdev_op_type = VDEV_TYPE_DISK, /* name of this vdev type */
+ .vdev_op_leaf = B_TRUE /* leaf vdev */
};
diff --git a/module/os/linux/zfs/vdev_disk.c b/module/os/linux/zfs/vdev_disk.c
index 7de5c30f7..12117655b 100644
--- a/module/os/linux/zfs/vdev_disk.c
+++ b/module/os/linux/zfs/vdev_disk.c
@@ -826,9 +826,13 @@ vdev_disk_rele(vdev_t *vd)
}
vdev_ops_t vdev_disk_ops = {
+ .vdev_op_init = NULL,
+ .vdev_op_fini = NULL,
.vdev_op_open = vdev_disk_open,
.vdev_op_close = vdev_disk_close,
.vdev_op_asize = vdev_default_asize,
+ .vdev_op_min_asize = vdev_default_min_asize,
+ .vdev_op_min_alloc = NULL,
.vdev_op_io_start = vdev_disk_io_start,
.vdev_op_io_done = vdev_disk_io_done,
.vdev_op_state_change = NULL,
@@ -837,6 +841,11 @@ vdev_ops_t vdev_disk_ops = {
.vdev_op_rele = vdev_disk_rele,
.vdev_op_remap = NULL,
.vdev_op_xlate = vdev_default_xlate,
+ .vdev_op_rebuild_asize = NULL,
+ .vdev_op_metaslab_init = NULL,
+ .vdev_op_config_generate = NULL,
+ .vdev_op_nparity = NULL,
+ .vdev_op_ndisks = NULL,
.vdev_op_type = VDEV_TYPE_DISK, /* name of this vdev type */
.vdev_op_leaf = B_TRUE /* leaf vdev */
};
diff --git a/module/os/linux/zfs/vdev_file.c b/module/os/linux/zfs/vdev_file.c
index 423ce8581..bf8a13ae6 100644
--- a/module/os/linux/zfs/vdev_file.c
+++ b/module/os/linux/zfs/vdev_file.c
@@ -305,9 +305,13 @@ vdev_file_io_done(zio_t *zio)
}
vdev_ops_t vdev_file_ops = {
+ .vdev_op_init = NULL,
+ .vdev_op_fini = NULL,
.vdev_op_open = vdev_file_open,
.vdev_op_close = vdev_file_close,
.vdev_op_asize = vdev_default_asize,
+ .vdev_op_min_asize = vdev_default_min_asize,
+ .vdev_op_min_alloc = NULL,
.vdev_op_io_start = vdev_file_io_start,
.vdev_op_io_done = vdev_file_io_done,
.vdev_op_state_change = NULL,
@@ -316,6 +320,11 @@ vdev_ops_t vdev_file_ops = {
.vdev_op_rele = vdev_file_rele,
.vdev_op_remap = NULL,
.vdev_op_xlate = vdev_default_xlate,
+ .vdev_op_rebuild_asize = NULL,
+ .vdev_op_metaslab_init = NULL,
+ .vdev_op_config_generate = NULL,
+ .vdev_op_nparity = NULL,
+ .vdev_op_ndisks = NULL,
.vdev_op_type = VDEV_TYPE_FILE, /* name of this vdev type */
.vdev_op_leaf = B_TRUE /* leaf vdev */
};
@@ -341,9 +350,13 @@ vdev_file_fini(void)
#ifndef _KERNEL
vdev_ops_t vdev_disk_ops = {
+ .vdev_op_init = NULL,
+ .vdev_op_fini = NULL,
.vdev_op_open = vdev_file_open,
.vdev_op_close = vdev_file_close,
.vdev_op_asize = vdev_default_asize,
+ .vdev_op_min_asize = vdev_default_min_asize,
+ .vdev_op_min_alloc = NULL,
.vdev_op_io_start = vdev_file_io_start,
.vdev_op_io_done = vdev_file_io_done,
.vdev_op_state_change = NULL,
@@ -352,6 +365,11 @@ vdev_ops_t vdev_disk_ops = {
.vdev_op_rele = vdev_file_rele,
.vdev_op_remap = NULL,
.vdev_op_xlate = vdev_default_xlate,
+ .vdev_op_rebuild_asize = NULL,
+ .vdev_op_metaslab_init = NULL,
+ .vdev_op_config_generate = NULL,
+ .vdev_op_nparity = NULL,
+ .vdev_op_ndisks = NULL,
.vdev_op_type = VDEV_TYPE_DISK, /* name of this vdev type */
.vdev_op_leaf = B_TRUE /* leaf vdev */
};
diff --git a/module/zcommon/zfeature_common.c b/module/zcommon/zfeature_common.c
index 97ddacbab..599791d49 100644
--- a/module/zcommon/zfeature_common.c
+++ b/module/zcommon/zfeature_common.c
@@ -576,7 +576,7 @@ zpool_feature_init(void)
zfeature_register(SPA_FEATURE_DEVICE_REBUILD,
"org.openzfs:device_rebuild", "device_rebuild",
- "Support for sequential device rebuilds",
+ "Support for sequential mirror/dRAID device rebuilds",
ZFEATURE_FLAG_READONLY_COMPAT, ZFEATURE_TYPE_BOOLEAN, NULL);
{
@@ -589,6 +589,10 @@ zpool_feature_init(void)
"zstd compression algorithm support.",
ZFEATURE_FLAG_PER_DATASET, ZFEATURE_TYPE_BOOLEAN, zstd_deps);
}
+
+ zfeature_register(SPA_FEATURE_DRAID,
+ "org.openzfs:draid", "draid", "Support for distributed parity RAID",
+ ZFEATURE_FLAG_MOS, ZFEATURE_TYPE_BOOLEAN, NULL);
}
#if defined(_KERNEL)
diff --git a/module/zcommon/zfs_namecheck.c b/module/zcommon/zfs_namecheck.c
index f8625042a..0011a971c 100644
--- a/module/zcommon/zfs_namecheck.c
+++ b/module/zcommon/zfs_namecheck.c
@@ -442,7 +442,9 @@ pool_namecheck(const char *pool, namecheck_err_t *why, char *what)
return (-1);
}
- if (strcmp(pool, "mirror") == 0 || strcmp(pool, "raidz") == 0) {
+ if (strcmp(pool, "mirror") == 0 ||
+ strcmp(pool, "raidz") == 0 ||
+ strcmp(pool, "draid") == 0) {
if (why)
*why = NAME_ERR_RESERVED;
return (-1);
diff --git a/module/zfs/Makefile.in b/module/zfs/Makefile.in
index 8ee524fff..653ea0da9 100644
--- a/module/zfs/Makefile.in
+++ b/module/zfs/Makefile.in
@@ -84,6 +84,8 @@ $(MODULE)-objs += uberblock.o
$(MODULE)-objs += unique.o
$(MODULE)-objs += vdev.o
$(MODULE)-objs += vdev_cache.o
+$(MODULE)-objs += vdev_draid.o
+$(MODULE)-objs += vdev_draid_rand.o
$(MODULE)-objs += vdev_indirect.o
$(MODULE)-objs += vdev_indirect_births.o
$(MODULE)-objs += vdev_indirect_mapping.o
diff --git a/module/zfs/abd.c b/module/zfs/abd.c
index 6018a42ca..68d4aa5f5 100644
--- a/module/zfs/abd.c
+++ b/module/zfs/abd.c
@@ -781,16 +781,17 @@ int
abd_iterate_func(abd_t *abd, size_t off, size_t size,
abd_iter_func_t *func, void *private)
{
- int ret = 0;
struct abd_iter aiter;
- boolean_t abd_multi;
- abd_t *c_abd;
+ int ret = 0;
+
+ if (size == 0)
+ return (0);
abd_verify(abd);
ASSERT3U(off + size, <=, abd->abd_size);
- abd_multi = abd_is_gang(abd);
- c_abd = abd_init_abd_iter(abd, &aiter, off);
+ boolean_t abd_multi = abd_is_gang(abd);
+ abd_t *c_abd = abd_init_abd_iter(abd, &aiter, off);
while (size > 0) {
/* If we are at the end of the gang ABD we are done */
@@ -920,6 +921,9 @@ abd_iterate_func2(abd_t *dabd, abd_t *sabd, size_t doff, size_t soff,
boolean_t dabd_is_gang_abd, sabd_is_gang_abd;
abd_t *c_dabd, *c_sabd;
+ if (size == 0)
+ return (0);
+
abd_verify(dabd);
abd_verify(sabd);
diff --git a/module/zfs/dsl_scan.c b/module/zfs/dsl_scan.c
index f6a5ceca6..40adfbcee 100644
--- a/module/zfs/dsl_scan.c
+++ b/module/zfs/dsl_scan.c
@@ -713,7 +713,7 @@ dsl_scan_setup_check(void *arg, dmu_tx_t *tx)
return (0);
}
-static void
+void
dsl_scan_setup_sync(void *arg, dmu_tx_t *tx)
{
dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
@@ -3328,19 +3328,12 @@ dsl_scan_need_resilver(spa_t *spa, const dva_t *dva, size_t psize,
}
/*
- * Check if the txg falls within the range which must be
- * resilvered. DVAs outside this range can always be skipped.
- */
- if (!vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1))
- return (B_FALSE);
-
- /*
* Check if the top-level vdev must resilver this offset.
* When the offset does not intersect with a dirty leaf DTL
* then it may be possible to skip the resilver IO. The psize
* is provided instead of asize to simplify the check for RAIDZ.
*/
- if (!vdev_dtl_need_resilver(vd, DVA_GET_OFFSET(dva), psize))
+ if (!vdev_dtl_need_resilver(vd, dva, psize, phys_birth))
return (B_FALSE);
/*
diff --git a/module/zfs/metaslab.c b/module/zfs/metaslab.c
index 325f505b7..fcf1285f6 100644
--- a/module/zfs/metaslab.c
+++ b/module/zfs/metaslab.c
@@ -32,6 +32,7 @@
#include <sys/space_map.h>
#include <sys/metaslab_impl.h>
#include <sys/vdev_impl.h>
+#include <sys/vdev_draid.h>
#include <sys/zio.h>
#include <sys/spa_impl.h>
#include <sys/zfeature.h>
@@ -1563,6 +1564,7 @@ metaslab_block_find(zfs_btree_t *t, range_tree_t *rt, uint64_t start,
#if defined(WITH_DF_BLOCK_ALLOCATOR) || \
defined(WITH_CF_BLOCK_ALLOCATOR)
+
/*
* This is a helper function that can be used by the allocator to find a
* suitable block to allocate. This will search the specified B-tree looking
@@ -1654,6 +1656,7 @@ metaslab_df_alloc(metaslab_t *msp, uint64_t size)
range_seg_t *rs;
if (zfs_btree_numnodes(&msp->ms_allocatable_by_size) == 0)
metaslab_size_tree_full_load(msp->ms_allocatable);
+
if (metaslab_df_use_largest_segment) {
/* use largest free segment */
rs = zfs_btree_last(&msp->ms_allocatable_by_size, NULL);
@@ -2616,6 +2619,10 @@ metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object,
ms->ms_allocator = -1;
ms->ms_new = B_TRUE;
+ vdev_ops_t *ops = vd->vdev_ops;
+ if (ops->vdev_op_metaslab_init != NULL)
+ ops->vdev_op_metaslab_init(vd, &ms->ms_start, &ms->ms_size);
+
/*
* We only open space map objects that already exist. All others
* will be opened when we finally allocate an object for it.
@@ -5813,7 +5820,6 @@ metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
metaslab_group_alloc_increment(spa,
DVA_GET_VDEV(&dva[d]), zio, flags, allocator);
}
-
}
ASSERT(error == 0);
ASSERT(BP_GET_NDVAS(bp) == ndvas);
diff --git a/module/zfs/mmp.c b/module/zfs/mmp.c
index 99852521b..d05c9db24 100644
--- a/module/zfs/mmp.c
+++ b/module/zfs/mmp.c
@@ -307,8 +307,17 @@ mmp_next_leaf(spa_t *spa)
if (leaf == NULL)
leaf = list_head(&spa->spa_leaf_list);
- if (!vdev_writeable(leaf)) {
+ /*
+ * We skip unwritable, offline, detached, and dRAID spare
+ * devices as they are either not legal targets or the write
+ * may fail or not be seen by other hosts. Skipped dRAID
+ * spares can never be written so the fail mask is not set.
+ */
+ if (!vdev_writeable(leaf) || leaf->vdev_offline ||
+ leaf->vdev_detached) {
fail_mask |= MMP_FAIL_NOT_WRITABLE;
+ } else if (leaf->vdev_ops == &vdev_draid_spare_ops) {
+ continue;
} else if (leaf->vdev_mmp_pending != 0) {
fail_mask |= MMP_FAIL_WRITE_PENDING;
} else {
diff --git a/module/zfs/spa.c b/module/zfs/spa.c
index 9d1d4e0cc..ae8964e6f 100644
--- a/module/zfs/spa.c
+++ b/module/zfs/spa.c
@@ -60,6 +60,7 @@
#include <sys/vdev_rebuild.h>
#include <sys/vdev_trim.h>
#include <sys/vdev_disk.h>
+#include <sys/vdev_draid.h>
#include <sys/metaslab.h>
#include <sys/metaslab_impl.h>
#include <sys/mmp.h>
@@ -3681,7 +3682,14 @@ spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
/*
* Build a new vdev tree from the trusted config
*/
- VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
+ error = spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD);
+ if (error != 0) {
+ nvlist_free(mos_config);
+ spa_config_exit(spa, SCL_ALL, FTAG);
+ spa_load_failed(spa, "spa_config_parse failed [error=%d]",
+ error);
+ return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
+ }
/*
* Vdev paths in the MOS may be obsolete. If the untrusted config was
@@ -5631,7 +5639,7 @@ spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
uint64_t txg = TXG_INITIAL;
nvlist_t **spares, **l2cache;
uint_t nspares, nl2cache;
- uint64_t version, obj;
+ uint64_t version, obj, ndraid = 0;
boolean_t has_features;
boolean_t has_encryption;
boolean_t has_allocclass;
@@ -5753,8 +5761,8 @@ spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
if (error == 0 &&
(error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
- (error = spa_validate_aux(spa, nvroot, txg,
- VDEV_ALLOC_ADD)) == 0) {
+ (error = vdev_draid_spare_create(nvroot, rvd, &ndraid, 0)) == 0 &&
+ (error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) == 0) {
/*
* instantiate the metaslab groups (this will dirty the vdevs)
* we can no longer error exit past this point
@@ -5895,6 +5903,9 @@ spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
spa_sync_props(props, tx);
}
+ for (int i = 0; i < ndraid; i++)
+ spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
+
dmu_tx_commit(tx);
spa->spa_sync_on = B_TRUE;
@@ -6404,12 +6415,25 @@ spa_reset(const char *pool)
*/
/*
+ * This is called as a synctask to increment the draid feature flag
+ */
+static void
+spa_draid_feature_incr(void *arg, dmu_tx_t *tx)
+{
+ spa_t *spa = dmu_tx_pool(tx)->dp_spa;
+ int draid = (int)(uintptr_t)arg;
+
+ for (int c = 0; c < draid; c++)
+ spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
+}
+
+/*
* Add a device to a storage pool.
*/
int
spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
{
- uint64_t txg;
+ uint64_t txg, ndraid = 0;
int error;
vdev_t *rvd = spa->spa_root_vdev;
vdev_t *vd, *tvd;
@@ -6438,8 +6462,23 @@ spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
return (spa_vdev_exit(spa, vd, txg, EINVAL));
if (vd->vdev_children != 0 &&
- (error = vdev_create(vd, txg, B_FALSE)) != 0)
+ (error = vdev_create(vd, txg, B_FALSE)) != 0) {
return (spa_vdev_exit(spa, vd, txg, error));
+ }
+
+ /*
+ * The virtual dRAID spares must be added after vdev tree is created
+ * and the vdev guids are generated. The guid of their assoicated
+ * dRAID is stored in the config and used when opening the spare.
+ */
+ if ((error = vdev_draid_spare_create(nvroot, vd, &ndraid,
+ rvd->vdev_children)) == 0) {
+ if (ndraid > 0 && nvlist_lookup_nvlist_array(nvroot,
+ ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0)
+ nspares = 0;
+ } else {
+ return (spa_vdev_exit(spa, vd, txg, error));
+ }
/*
* We must validate the spares and l2cache devices after checking the
@@ -6452,7 +6491,7 @@ spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
* If we are in the middle of a device removal, we can only add
* devices which match the existing devices in the pool.
* If we are in the middle of a removal, or have some indirect
- * vdevs, we can not add raidz toplevels.
+ * vdevs, we can not add raidz or dRAID top levels.
*/
if (spa->spa_vdev_removal != NULL ||
spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
@@ -6462,10 +6501,10 @@ spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
tvd->vdev_ashift != spa->spa_max_ashift) {
return (spa_vdev_exit(spa, vd, txg, EINVAL));
}
- /* Fail if top level vdev is raidz */
- if (tvd->vdev_ops == &vdev_raidz_ops) {
+ /* Fail if top level vdev is raidz or a dRAID */
+ if (vdev_get_nparity(tvd) != 0)
return (spa_vdev_exit(spa, vd, txg, EINVAL));
- }
+
/*
* Need the top level mirror to be
* a mirror of leaf vdevs only
@@ -6506,6 +6545,19 @@ spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
}
/*
+ * We can't increment a feature while holding spa_vdev so we
+ * have to do it in a synctask.
+ */
+ if (ndraid != 0) {
+ dmu_tx_t *tx;
+
+ tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
+ dsl_sync_task_nowait(spa->spa_dsl_pool, spa_draid_feature_incr,
+ (void *)(uintptr_t)ndraid, tx);
+ dmu_tx_commit(tx);
+ }
+
+ /*
* We have to be careful when adding new vdevs to an existing pool.
* If other threads start allocating from these vdevs before we
* sync the config cache, and we lose power, then upon reboot we may
@@ -6615,14 +6667,27 @@ spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing,
if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
+ /*
+ * A dRAID spare can only replace a child of its parent dRAID vdev.
+ */
+ if (newvd->vdev_ops == &vdev_draid_spare_ops &&
+ oldvd->vdev_top != vdev_draid_spare_get_parent(newvd)) {
+ return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
+ }
+
if (rebuild) {
/*
- * For rebuilds, the parent vdev must support reconstruction
+ * For rebuilds, the top vdev must support reconstruction
* using only space maps. This means the only allowable
- * parents are the root vdev or a mirror vdev.
+ * vdevs types are the root vdev, a mirror, or dRAID.
*/
- if (pvd->vdev_ops != &vdev_mirror_ops &&
- pvd->vdev_ops != &vdev_root_ops) {
+ tvd = pvd;
+ if (pvd->vdev_top != NULL)
+ tvd = pvd->vdev_top;
+
+ if (tvd->vdev_ops != &vdev_mirror_ops &&
+ tvd->vdev_ops != &vdev_root_ops &&
+ tvd->vdev_ops != &vdev_draid_ops) {
return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
}
}
@@ -6915,14 +6980,20 @@ spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
}
/*
- * If we are detaching the original disk from a spare, then it implies
- * that the spare should become a real disk, and be removed from the
- * active spare list for the pool.
+ * If we are detaching the original disk from a normal spare, then it
+ * implies that the spare should become a real disk, and be removed
+ * from the active spare list for the pool. dRAID spares on the
+ * other hand are coupled to the pool and thus should never be removed
+ * from the spares list.
*/
- if (pvd->vdev_ops == &vdev_spare_ops &&
- vd->vdev_id == 0 &&
- pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
- unspare = B_TRUE;
+ if (pvd->vdev_ops == &vdev_spare_ops && vd->vdev_id == 0) {
+ vdev_t *last_cvd = pvd->vdev_child[pvd->vdev_children - 1];
+
+ if (last_cvd->vdev_isspare &&
+ last_cvd->vdev_ops != &vdev_draid_spare_ops) {
+ unspare = B_TRUE;
+ }
+ }
/*
* Erase the disk labels so the disk can be used for other things.
@@ -8013,18 +8084,9 @@ spa_async_thread(void *arg)
/*
* If any devices are done replacing, detach them.
*/
- if (tasks & SPA_ASYNC_RESILVER_DONE)
+ if (tasks & SPA_ASYNC_RESILVER_DONE ||
+ tasks & SPA_ASYNC_REBUILD_DONE) {
spa_vdev_resilver_done(spa);
-
- /*
- * If any devices are done replacing, detach them. Then if no
- * top-level vdevs are rebuilding attempt to kick off a scrub.
- */
- if (tasks & SPA_ASYNC_REBUILD_DONE) {
- spa_vdev_resilver_done(spa);
-
- if (!vdev_rebuild_active(spa->spa_root_vdev))
- (void) dsl_scan(spa->spa_dsl_pool, POOL_SCAN_SCRUB);
}
/*
diff --git a/module/zfs/spa_misc.c b/module/zfs/spa_misc.c
index 1640dcedd..c6b3e8c11 100644
--- a/module/zfs/spa_misc.c
+++ b/module/zfs/spa_misc.c
@@ -741,6 +741,7 @@ spa_add(const char *name, nvlist_t *config, const char *altroot)
spa->spa_min_ashift = INT_MAX;
spa->spa_max_ashift = 0;
+ spa->spa_min_alloc = INT_MAX;
/* Reset cached value */
spa->spa_dedup_dspace = ~0ULL;
diff --git a/module/zfs/vdev.c b/module/zfs/vdev.c
index e41e79ab8..38f36e52f 100644
--- a/module/zfs/vdev.c
+++ b/module/zfs/vdev.c
@@ -40,6 +40,7 @@
#include <sys/dsl_dir.h>
#include <sys/vdev_impl.h>
#include <sys/vdev_rebuild.h>
+#include <sys/vdev_draid.h>
#include <sys/uberblock_impl.h>
#include <sys/metaslab.h>
#include <sys/metaslab_impl.h>
@@ -51,6 +52,7 @@
#include <sys/arc.h>
#include <sys/zil.h>
#include <sys/dsl_scan.h>
+#include <sys/vdev_raidz.h>
#include <sys/abd.h>
#include <sys/vdev_initialize.h>
#include <sys/vdev_trim.h>
@@ -193,6 +195,8 @@ vdev_dbgmsg_print_tree(vdev_t *vd, int indent)
static vdev_ops_t *vdev_ops_table[] = {
&vdev_root_ops,
&vdev_raidz_ops,
+ &vdev_draid_ops,
+ &vdev_draid_spare_ops,
&vdev_mirror_ops,
&vdev_replacing_ops,
&vdev_spare_ops,
@@ -221,10 +225,11 @@ vdev_getops(const char *type)
/* ARGSUSED */
void
-vdev_default_xlate(vdev_t *vd, const range_seg64_t *in, range_seg64_t *res)
+vdev_default_xlate(vdev_t *vd, const range_seg64_t *logical_rs,
+ range_seg64_t *physical_rs, range_seg64_t *remain_rs)
{
- res->rs_start = in->rs_start;
- res->rs_end = in->rs_end;
+ physical_rs->rs_start = logical_rs->rs_start;
+ physical_rs->rs_end = logical_rs->rs_end;
}
/*
@@ -264,6 +269,12 @@ vdev_default_asize(vdev_t *vd, uint64_t psize)
return (asize);
}
+uint64_t
+vdev_default_min_asize(vdev_t *vd)
+{
+ return (vd->vdev_min_asize);
+}
+
/*
* Get the minimum allocatable size. We define the allocatable size as
* the vdev's asize rounded to the nearest metaslab. This allows us to
@@ -289,15 +300,7 @@ vdev_get_min_asize(vdev_t *vd)
if (vd == vd->vdev_top)
return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
- /*
- * The allocatable space for a raidz vdev is N * sizeof(smallest child),
- * so each child must provide at least 1/Nth of its asize.
- */
- if (pvd->vdev_ops == &vdev_raidz_ops)
- return ((pvd->vdev_min_asize + pvd->vdev_children - 1) /
- pvd->vdev_children);
-
- return (pvd->vdev_min_asize);
+ return (pvd->vdev_ops->vdev_op_min_asize(pvd));
}
void
@@ -309,6 +312,48 @@ vdev_set_min_asize(vdev_t *vd)
vdev_set_min_asize(vd->vdev_child[c]);
}
+/*
+ * Get the minimal allocation size for the top-level vdev.
+ */
+uint64_t
+vdev_get_min_alloc(vdev_t *vd)
+{
+ uint64_t min_alloc = 1ULL << vd->vdev_ashift;
+
+ if (vd->vdev_ops->vdev_op_min_alloc != NULL)
+ min_alloc = vd->vdev_ops->vdev_op_min_alloc(vd);
+
+ return (min_alloc);
+}
+
+/*
+ * Get the parity level for a top-level vdev.
+ */
+uint64_t
+vdev_get_nparity(vdev_t *vd)
+{
+ uint64_t nparity = 0;
+
+ if (vd->vdev_ops->vdev_op_nparity != NULL)
+ nparity = vd->vdev_ops->vdev_op_nparity(vd);
+
+ return (nparity);
+}
+
+/*
+ * Get the number of data disks for a top-level vdev.
+ */
+uint64_t
+vdev_get_ndisks(vdev_t *vd)
+{
+ uint64_t ndisks = 1;
+
+ if (vd->vdev_ops->vdev_op_ndisks != NULL)
+ ndisks = vd->vdev_ops->vdev_op_ndisks(vd);
+
+ return (ndisks);
+}
+
vdev_t *
vdev_lookup_top(spa_t *spa, uint64_t vdev)
{
@@ -551,6 +596,7 @@ vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
list_link_init(&vd->vdev_initialize_node);
list_link_init(&vd->vdev_leaf_node);
list_link_init(&vd->vdev_trim_node);
+
mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL);
mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
@@ -569,9 +615,7 @@ vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL);
mutex_init(&vd->vdev_rebuild_lock, NULL, MUTEX_DEFAULT, NULL);
- mutex_init(&vd->vdev_rebuild_io_lock, NULL, MUTEX_DEFAULT, NULL);
cv_init(&vd->vdev_rebuild_cv, NULL, CV_DEFAULT, NULL);
- cv_init(&vd->vdev_rebuild_io_cv, NULL, CV_DEFAULT, NULL);
for (int t = 0; t < DTL_TYPES; t++) {
vd->vdev_dtl[t] = range_tree_create(NULL, RANGE_SEG64, NULL, 0,
@@ -600,7 +644,7 @@ vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
{
vdev_ops_t *ops;
char *type;
- uint64_t guid = 0, islog, nparity;
+ uint64_t guid = 0, islog;
vdev_t *vd;
vdev_indirect_config_t *vic;
char *tmp = NULL;
@@ -657,48 +701,13 @@ vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
return (SET_ERROR(ENOTSUP));
- /*
- * Set the nparity property for RAID-Z vdevs.
- */
- nparity = -1ULL;
- if (ops == &vdev_raidz_ops) {
- if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
- &nparity) == 0) {
- if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
- return (SET_ERROR(EINVAL));
- /*
- * Previous versions could only support 1 or 2 parity
- * device.
- */
- if (nparity > 1 &&
- spa_version(spa) < SPA_VERSION_RAIDZ2)
- return (SET_ERROR(ENOTSUP));
- if (nparity > 2 &&
- spa_version(spa) < SPA_VERSION_RAIDZ3)
- return (SET_ERROR(ENOTSUP));
- } else {
- /*
- * We require the parity to be specified for SPAs that
- * support multiple parity levels.
- */
- if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
- return (SET_ERROR(EINVAL));
- /*
- * Otherwise, we default to 1 parity device for RAID-Z.
- */
- nparity = 1;
- }
- } else {
- nparity = 0;
- }
- ASSERT(nparity != -1ULL);
-
- /*
- * If creating a top-level vdev, check for allocation classes input
- */
if (top_level && alloctype == VDEV_ALLOC_ADD) {
char *bias;
+ /*
+ * If creating a top-level vdev, check for allocation
+ * classes input.
+ */
if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
&bias) == 0) {
alloc_bias = vdev_derive_alloc_bias(bias);
@@ -710,13 +719,32 @@ vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
return (SET_ERROR(ENOTSUP));
}
}
+
+ /* spa_vdev_add() expects feature to be enabled */
+ if (ops == &vdev_draid_ops &&
+ spa->spa_load_state != SPA_LOAD_CREATE &&
+ !spa_feature_is_enabled(spa, SPA_FEATURE_DRAID)) {
+ return (SET_ERROR(ENOTSUP));
+ }
}
- vd = vdev_alloc_common(spa, id, guid, ops);
- vic = &vd->vdev_indirect_config;
+ /*
+ * Initialize the vdev specific data. This is done before calling
+ * vdev_alloc_common() since it may fail and this simplifies the
+ * error reporting and cleanup code paths.
+ */
+ void *tsd = NULL;
+ if (ops->vdev_op_init != NULL) {
+ rc = ops->vdev_op_init(spa, nv, &tsd);
+ if (rc != 0) {
+ return (rc);
+ }
+ }
+ vd = vdev_alloc_common(spa, id, guid, ops);
+ vd->vdev_tsd = tsd;
vd->vdev_islog = islog;
- vd->vdev_nparity = nparity;
+
if (top_level && alloc_bias != VDEV_BIAS_NONE)
vd->vdev_alloc_bias = alloc_bias;
@@ -756,6 +784,8 @@ vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
&vd->vdev_wholedisk) != 0)
vd->vdev_wholedisk = -1ULL;
+ vic = &vd->vdev_indirect_config;
+
ASSERT0(vic->vic_mapping_object);
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
&vic->vic_mapping_object);
@@ -937,6 +967,9 @@ vdev_free(vdev_t *vd)
ASSERT(vd->vdev_child == NULL);
ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
+ if (vd->vdev_ops->vdev_op_fini != NULL)
+ vd->vdev_ops->vdev_op_fini(vd);
+
/*
* Discard allocation state.
*/
@@ -1028,9 +1061,7 @@ vdev_free(vdev_t *vd)
cv_destroy(&vd->vdev_trim_io_cv);
mutex_destroy(&vd->vdev_rebuild_lock);
- mutex_destroy(&vd->vdev_rebuild_io_lock);
cv_destroy(&vd->vdev_rebuild_cv);
- cv_destroy(&vd->vdev_rebuild_io_cv);
zfs_ratelimit_fini(&vd->vdev_delay_rl);
zfs_ratelimit_fini(&vd->vdev_checksum_rl);
@@ -1161,7 +1192,8 @@ vdev_top_update(vdev_t *tvd, vdev_t *vd)
}
/*
- * Add a mirror/replacing vdev above an existing vdev.
+ * Add a mirror/replacing vdev above an existing vdev. There is no need to
+ * call .vdev_op_init() since mirror/replacing vdevs do not have private state.
*/
vdev_t *
vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
@@ -1296,6 +1328,10 @@ vdev_metaslab_group_create(vdev_t *vd)
spa->spa_max_ashift = vd->vdev_ashift;
if (vd->vdev_ashift < spa->spa_min_ashift)
spa->spa_min_ashift = vd->vdev_ashift;
+
+ uint64_t min_alloc = vdev_get_min_alloc(vd);
+ if (min_alloc < spa->spa_min_alloc)
+ spa->spa_min_alloc = min_alloc;
}
}
}
@@ -1622,39 +1658,67 @@ vdev_uses_zvols(vdev_t *vd)
return (B_FALSE);
}
-void
-vdev_open_children(vdev_t *vd)
+/*
+ * Returns B_TRUE if the passed child should be opened.
+ */
+static boolean_t
+vdev_default_open_children_func(vdev_t *vd)
+{
+ return (B_TRUE);
+}
+
+/*
+ * Open the requested child vdevs. If any of the leaf vdevs are using
+ * a ZFS volume then do the opens in a single thread. This avoids a
+ * deadlock when the current thread is holding the spa_namespace_lock.
+ */
+static void
+vdev_open_children_impl(vdev_t *vd, vdev_open_children_func_t *open_func)
{
- taskq_t *tq;
int children = vd->vdev_children;
- /*
- * in order to handle pools on top of zvols, do the opens
- * in a single thread so that the same thread holds the
- * spa_namespace_lock
- */
- if (vdev_uses_zvols(vd)) {
-retry_sync:
- for (int c = 0; c < children; c++)
- vd->vdev_child[c]->vdev_open_error =
- vdev_open(vd->vdev_child[c]);
- } else {
- tq = taskq_create("vdev_open", children, minclsyspri,
- children, children, TASKQ_PREPOPULATE);
- if (tq == NULL)
- goto retry_sync;
+ taskq_t *tq = taskq_create("vdev_open", children, minclsyspri,
+ children, children, TASKQ_PREPOPULATE);
+ vd->vdev_nonrot = B_TRUE;
- for (int c = 0; c < children; c++)
+ for (int c = 0; c < children; c++) {
+ vdev_t *cvd = vd->vdev_child[c];
+
+ if (open_func(cvd) == B_FALSE)
+ continue;
+
+ if (tq == NULL || vdev_uses_zvols(vd)) {
+ cvd->vdev_open_error = vdev_open(cvd);
+ } else {
VERIFY(taskq_dispatch(tq, vdev_open_child,
- vd->vdev_child[c], TQ_SLEEP) != TASKQID_INVALID);
+ cvd, TQ_SLEEP) != TASKQID_INVALID);
+ }
+ vd->vdev_nonrot &= cvd->vdev_nonrot;
+ }
+
+ if (tq != NULL) {
+ taskq_wait(tq);
taskq_destroy(tq);
}
+}
- vd->vdev_nonrot = B_TRUE;
+/*
+ * Open all child vdevs.
+ */
+void
+vdev_open_children(vdev_t *vd)
+{
+ vdev_open_children_impl(vd, vdev_default_open_children_func);
+}
- for (int c = 0; c < children; c++)
- vd->vdev_nonrot &= vd->vdev_child[c]->vdev_nonrot;
+/*
+ * Conditionally open a subset of child vdevs.
+ */
+void
+vdev_open_children_subset(vdev_t *vd, vdev_open_children_func_t *open_func)
+{
+ vdev_open_children_impl(vd, open_func);
}
/*
@@ -1953,6 +2017,16 @@ vdev_open(vdev_t *vd)
}
/*
+ * Track the the minimum allocation size.
+ */
+ if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
+ vd->vdev_islog == 0 && vd->vdev_aux == NULL) {
+ uint64_t min_alloc = vdev_get_min_alloc(vd);
+ if (min_alloc < spa->spa_min_alloc)
+ spa->spa_min_alloc = min_alloc;
+ }
+
+ /*
* If this is a leaf vdev, assess whether a resilver is needed.
* But don't do this if we are doing a reopen for a scrub, since
* this would just restart the scrub we are already doing.
@@ -2278,7 +2352,9 @@ vdev_close(vdev_t *vd)
vdev_t *pvd = vd->vdev_parent;
spa_t *spa __maybe_unused = vd->vdev_spa;
- ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
+ ASSERT(vd != NULL);
+ ASSERT(vd->vdev_open_thread == curthread ||
+ spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
/*
* If our parent is reopening, then we are as well, unless we are
@@ -2606,10 +2682,26 @@ vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
}
/*
- * Returns B_TRUE if vdev determines offset needs to be resilvered.
+ * Check if the txg falls within the range which must be
+ * resilvered. DVAs outside this range can always be skipped.
+ */
+boolean_t
+vdev_default_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
+ uint64_t phys_birth)
+{
+ /* Set by sequential resilver. */
+ if (phys_birth == TXG_UNKNOWN)
+ return (B_TRUE);
+
+ return (vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1));
+}
+
+/*
+ * Returns B_TRUE if the vdev determines the DVA needs to be resilvered.
*/
boolean_t
-vdev_dtl_need_resilver(vdev_t *vd, uint64_t offset, size_t psize)
+vdev_dtl_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
+ uint64_t phys_birth)
{
ASSERT(vd != vd->vdev_spa->spa_root_vdev);
@@ -2617,7 +2709,8 @@ vdev_dtl_need_resilver(vdev_t *vd, uint64_t offset, size_t psize)
vd->vdev_ops->vdev_op_leaf)
return (B_TRUE);
- return (vd->vdev_ops->vdev_op_need_resilver(vd, offset, psize));
+ return (vd->vdev_ops->vdev_op_need_resilver(vd, dva, psize,
+ phys_birth));
}
/*
@@ -2862,8 +2955,8 @@ vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg,
continue; /* leaf vdevs only */
if (t == DTL_PARTIAL)
minref = 1; /* i.e. non-zero */
- else if (vd->vdev_nparity != 0)
- minref = vd->vdev_nparity + 1; /* RAID-Z */
+ else if (vdev_get_nparity(vd) != 0)
+ minref = vdev_get_nparity(vd) + 1; /* RAID-Z, dRAID */
else
minref = vd->vdev_children; /* any kind of mirror */
space_reftree_create(&reftree);
@@ -3727,6 +3820,9 @@ top:
if (!vd->vdev_ops->vdev_op_leaf)
return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
+ if (vd->vdev_ops == &vdev_draid_spare_ops)
+ return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
+
tvd = vd->vdev_top;
mg = tvd->vdev_mg;
generation = spa->spa_config_generation + 1;
@@ -3971,6 +4067,13 @@ vdev_accessible(vdev_t *vd, zio_t *zio)
static void
vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs)
{
+ /*
+ * Exclude the dRAID spare when aggregating to avoid double counting
+ * the ops and bytes. These IOs are counted by the physical leaves.
+ */
+ if (cvd->vdev_ops == &vdev_draid_spare_ops)
+ return;
+
for (int t = 0; t < VS_ZIO_TYPES; t++) {
vs->vs_ops[t] += cvs->vs_ops[t];
vs->vs_bytes[t] += cvs->vs_bytes[t];
@@ -4063,7 +4166,6 @@ vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
vdev_get_child_stat(cvd, vs, cvs);
if (vsx)
vdev_get_child_stat_ex(cvd, vsx, cvsx);
-
}
} else {
/*
@@ -4248,7 +4350,9 @@ vdev_stat_update(zio_t *zio, uint64_t psize)
/*
* Repair is the result of a rebuild issued by the
- * rebuild thread (vdev_rebuild_thread).
+ * rebuild thread (vdev_rebuild_thread). To avoid
+ * double counting repaired bytes the virtual dRAID
+ * spare vdev is excluded from the processed bytes.
*/
if (zio->io_priority == ZIO_PRIORITY_REBUILD) {
vdev_t *tvd = vd->vdev_top;
@@ -4256,8 +4360,10 @@ vdev_stat_update(zio_t *zio, uint64_t psize)
vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
uint64_t *rebuilt = &vrp->vrp_bytes_rebuilt;
- if (vd->vdev_ops->vdev_op_leaf)
+ if (vd->vdev_ops->vdev_op_leaf &&
+ vd->vdev_ops != &vdev_draid_spare_ops) {
atomic_add_64(rebuilt, psize);
+ }
vs->vs_rebuild_processed += psize;
}
@@ -4981,31 +5087,42 @@ vdev_clear_resilver_deferred(vdev_t *vd, dmu_tx_t *tx)
vdev_resilver_needed(vd, NULL, NULL));
}
+boolean_t
+vdev_xlate_is_empty(range_seg64_t *rs)
+{
+ return (rs->rs_start == rs->rs_end);
+}
+
/*
- * Translate a logical range to the physical range for the specified vdev_t.
- * This function is initially called with a leaf vdev and will walk each
- * parent vdev until it reaches a top-level vdev. Once the top-level is
- * reached the physical range is initialized and the recursive function
- * begins to unwind. As it unwinds it calls the parent's vdev specific
- * translation function to do the real conversion.
+ * Translate a logical range to the first contiguous physical range for the
+ * specified vdev_t. This function is initially called with a leaf vdev and
+ * will walk each parent vdev until it reaches a top-level vdev. Once the
+ * top-level is reached the physical range is initialized and the recursive
+ * function begins to unwind. As it unwinds it calls the parent's vdev
+ * specific translation function to do the real conversion.
*/
void
vdev_xlate(vdev_t *vd, const range_seg64_t *logical_rs,
- range_seg64_t *physical_rs)
+ range_seg64_t *physical_rs, range_seg64_t *remain_rs)
{
/*
* Walk up the vdev tree
*/
if (vd != vd->vdev_top) {
- vdev_xlate(vd->vdev_parent, logical_rs, physical_rs);
+ vdev_xlate(vd->vdev_parent, logical_rs, physical_rs,
+ remain_rs);
} else {
/*
- * We've reached the top-level vdev, initialize the
- * physical range to the logical range and start to
- * unwind.
+ * We've reached the top-level vdev, initialize the physical
+ * range to the logical range and set an empty remaining
+ * range then start to unwind.
*/
physical_rs->rs_start = logical_rs->rs_start;
physical_rs->rs_end = logical_rs->rs_end;
+
+ remain_rs->rs_start = logical_rs->rs_start;
+ remain_rs->rs_end = logical_rs->rs_start;
+
return;
}
@@ -5015,16 +5132,40 @@ vdev_xlate(vdev_t *vd, const range_seg64_t *logical_rs,
/*
* As this recursive function unwinds, translate the logical
- * range into its physical components by calling the
- * vdev specific translate function.
+ * range into its physical and any remaining components by calling
+ * the vdev specific translate function.
*/
range_seg64_t intermediate = { 0 };
- pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate);
+ pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate, remain_rs);
physical_rs->rs_start = intermediate.rs_start;
physical_rs->rs_end = intermediate.rs_end;
}
+void
+vdev_xlate_walk(vdev_t *vd, const range_seg64_t *logical_rs,
+ vdev_xlate_func_t *func, void *arg)
+{
+ range_seg64_t iter_rs = *logical_rs;
+ range_seg64_t physical_rs;
+ range_seg64_t remain_rs;
+
+ while (!vdev_xlate_is_empty(&iter_rs)) {
+
+ vdev_xlate(vd, &iter_rs, &physical_rs, &remain_rs);
+
+ /*
+ * With raidz and dRAID, it's possible that the logical range
+ * does not live on this leaf vdev. Only when there is a non-
+ * zero physical size call the provided function.
+ */
+ if (!vdev_xlate_is_empty(&physical_rs))
+ func(arg, &physical_rs);
+
+ iter_rs = remain_rs;
+ }
+}
+
/*
* Look at the vdev tree and determine whether any devices are currently being
* replaced.
diff --git a/module/zfs/vdev_draid.c b/module/zfs/vdev_draid.c
new file mode 100644
index 000000000..6b7ad7021
--- /dev/null
+++ b/module/zfs/vdev_draid.c
@@ -0,0 +1,2984 @@
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+/*
+ * Copyright (c) 2018 Intel Corporation.
+ * Copyright (c) 2020 by Lawrence Livermore National Security, LLC.
+ */
+
+#include <sys/zfs_context.h>
+#include <sys/spa.h>
+#include <sys/spa_impl.h>
+#include <sys/vdev_impl.h>
+#include <sys/vdev_draid.h>
+#include <sys/vdev_raidz.h>
+#include <sys/vdev_rebuild.h>
+#include <sys/abd.h>
+#include <sys/zio.h>
+#include <sys/nvpair.h>
+#include <sys/zio_checksum.h>
+#include <sys/fs/zfs.h>
+#include <sys/fm/fs/zfs.h>
+#include <zfs_fletcher.h>
+
+#ifdef ZFS_DEBUG
+#include <sys/vdev.h> /* For vdev_xlate() in vdev_draid_io_verify() */
+#endif
+
+/*
+ * dRAID is a distributed spare implementation for ZFS. A dRAID vdev is
+ * comprised of multiple raidz redundancy groups which are spread over the
+ * dRAID children. To ensure an even distribution, and avoid hot spots, a
+ * permutation mapping is applied to the order of the dRAID children.
+ * This mixing effectively distributes the parity columns evenly over all
+ * of the disks in the dRAID.
+ *
+ * This is beneficial because it means when resilvering all of the disks
+ * can participate thereby increasing the available IOPs and bandwidth.
+ * Furthermore, by reserving a small fraction of each child's total capacity
+ * virtual distributed spare disks can be created. These spares similarly
+ * benefit from the performance gains of spanning all of the children. The
+ * consequence of which is that resilvering to a distributed spare can
+ * substantially reduce the time required to restore full parity to pool
+ * with a failed disks.
+ *
+ * === dRAID group layout ===
+ *
+ * First, let's define a "row" in the configuration to be a 16M chunk from
+ * each physical drive at the same offset. This is the minimum allowable
+ * size since it must be possible to store a full 16M block when there is
+ * only a single data column. Next, we define a "group" to be a set of
+ * sequential disks containing both the parity and data columns. We allow
+ * groups to span multiple rows in order to align any group size to any
+ * number of physical drives. Finally, a "slice" is comprised of the rows
+ * which contain the target number of groups. The permutation mappings
+ * are applied in a round robin fashion to each slice.
+ *
+ * Given D+P drives in a group (including parity drives) and C-S physical
+ * drives (not including the spare drives), we can distribute the groups
+ * across R rows without remainder by selecting the least common multiple
+ * of D+P and C-S as the number of groups; i.e. ngroups = LCM(D+P, C-S).
+ *
+ * In the example below, there are C=14 physical drives in the configuration
+ * with S=2 drives worth of spare capacity. Each group has a width of 9
+ * which includes D=8 data and P=1 parity drive. There are 4 groups and
+ * 3 rows per slice. Each group has a size of 144M (16M * 9) and a slice
+ * size is 576M (144M * 4). When allocating from a dRAID each group is
+ * filled before moving on to the next as show in slice0 below.
+ *
+ * data disks (8 data + 1 parity) spares (2)
+ * +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
+ * ^ | 2 | 6 | 1 | 11| 4 | 0 | 7 | 10| 8 | 9 | 13| 5 | 12| 3 | device map 0
+ * | +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
+ * | | group 0 | group 1..| |
+ * | +-----------------------------------+-----------+-------|
+ * | | 0 1 2 3 4 5 6 7 8 | 36 37 38| | r
+ * | | 9 10 11 12 13 14 15 16 17| 45 46 47| | o
+ * | | 18 19 20 21 22 23 24 25 26| 54 55 56| | w
+ * | 27 28 29 30 31 32 33 34 35| 63 64 65| | 0
+ * s +-----------------------+-----------------------+-------+
+ * l | ..group 1 | group 2.. | |
+ * i +-----------------------+-----------------------+-------+
+ * c | 39 40 41 42 43 44| 72 73 74 75 76 77| | r
+ * e | 48 49 50 51 52 53| 81 82 83 84 85 86| | o
+ * 0 | 57 58 59 60 61 62| 90 91 92 93 94 95| | w
+ * | 66 67 68 69 70 71| 99 100 101 102 103 104| | 1
+ * | +-----------+-----------+-----------------------+-------+
+ * | |..group 2 | group 3 | |
+ * | +-----------+-----------+-----------------------+-------+
+ * | | 78 79 80|108 109 110 111 112 113 114 115 116| | r
+ * | | 87 88 89|117 118 119 120 121 122 123 124 125| | o
+ * | | 96 97 98|126 127 128 129 130 131 132 133 134| | w
+ * v |105 106 107|135 136 137 138 139 140 141 142 143| | 2
+ * +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
+ * | 9 | 11| 12| 2 | 4 | 1 | 3 | 0 | 10| 13| 8 | 5 | 6 | 7 | device map 1
+ * s +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
+ * l | group 4 | group 5..| | row 3
+ * i +-----------------------+-----------+-----------+-------|
+ * c | ..group 5 | group 6.. | | row 4
+ * e +-----------+-----------+-----------------------+-------+
+ * 1 |..group 6 | group 7 | | row 5
+ * +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
+ * | 3 | 5 | 10| 8 | 6 | 11| 12| 0 | 2 | 4 | 7 | 1 | 9 | 13| device map 2
+ * s +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
+ * l | group 8 | group 9..| | row 6
+ * i +-----------------------------------------------+-------|
+ * c | ..group 9 | group 10.. | | row 7
+ * e +-----------------------+-----------------------+-------+
+ * 2 |..group 10 | group 11 | | row 8
+ * +-----------+-----------------------------------+-------+
+ *
+ * This layout has several advantages over requiring that each row contain
+ * a whole number of groups.
+ *
+ * 1. The group count is not a relevant parameter when defining a dRAID
+ * layout. Only the group width is needed, and *all* groups will have
+ * the desired size.
+ *
+ * 2. All possible group widths (<= physical disk count) can be supported.
+ *
+ * 3. The logic within vdev_draid.c is simplified when the group width is
+ * the same for all groups (although some of the logic around computing
+ * permutation numbers and drive offsets is more complicated).
+ *
+ * N.B. The following array describes all valid dRAID permutation maps.
+ * Each row is used to generate a permutation map for a different number
+ * of children from a unique seed. The seeds were generated and carefully
+ * evaluated by the 'draid' utility in order to provide balanced mappings.
+ * In addition to the seed a checksum of the in-memory mapping is stored
+ * for verification.
+ *
+ * The imbalance ratio of a given failure (e.g. 5 disks wide, child 3 failed,
+ * with a given permutation map) is the ratio of the amounts of I/O that will
+ * be sent to the least and most busy disks when resilvering. The average
+ * imbalance ratio (of a given number of disks and permutation map) is the
+ * average of the ratios of all possible single and double disk failures.
+ *
+ * In order to achieve a low imbalance ratio the number of permutations in
+ * the mapping must be significantly larger than the number of children.
+ * For dRAID the number of permutations has been limited to 512 to minimize
+ * the map size. This does result in a gradually increasing imbalance ratio
+ * as seen in the table below. Increasing the number of permutations for
+ * larger child counts would reduce the imbalance ratio. However, in practice
+ * when there are a large number of children each child is responsible for
+ * fewer total IOs so it's less of a concern.
+ *
+ * Note these values are hard coded and must never be changed. Existing
+ * pools depend on the same mapping always being generated in order to
+ * read and write from the correct locations. Any change would make
+ * existing pools completely inaccessible.
+ */
+static const draid_map_t draid_maps[VDEV_DRAID_MAX_MAPS] = {
+ { 2, 256, 0x89ef3dabbcc7de37, 0x00000000433d433d }, /* 1.000 */
+ { 3, 256, 0x89a57f3de98121b4, 0x00000000bcd8b7b5 }, /* 1.000 */
+ { 4, 256, 0xc9ea9ec82340c885, 0x00000001819d7c69 }, /* 1.000 */
+ { 5, 256, 0xf46733b7f4d47dfd, 0x00000002a1648d74 }, /* 1.010 */
+ { 6, 256, 0x88c3c62d8585b362, 0x00000003d3b0c2c4 }, /* 1.031 */
+ { 7, 256, 0x3a65d809b4d1b9d5, 0x000000055c4183ee }, /* 1.043 */
+ { 8, 256, 0xe98930e3c5d2e90a, 0x00000006edfb0329 }, /* 1.059 */
+ { 9, 256, 0x5a5430036b982ccb, 0x00000008ceaf6934 }, /* 1.056 */
+ { 10, 256, 0x92bf389e9eadac74, 0x0000000b26668c09 }, /* 1.072 */
+ { 11, 256, 0x74ccebf1dcf3ae80, 0x0000000dd691358c }, /* 1.083 */
+ { 12, 256, 0x8847e41a1a9f5671, 0x00000010a0c63c8e }, /* 1.097 */
+ { 13, 256, 0x7481b56debf0e637, 0x0000001424121fe4 }, /* 1.100 */
+ { 14, 256, 0x559b8c44065f8967, 0x00000016ab2ff079 }, /* 1.121 */
+ { 15, 256, 0x34c49545a2ee7f01, 0x0000001a6028efd6 }, /* 1.103 */
+ { 16, 256, 0xb85f4fa81a7698f7, 0x0000001e95ff5e66 }, /* 1.111 */
+ { 17, 256, 0x6353e47b7e47aba0, 0x00000021a81fa0fe }, /* 1.133 */
+ { 18, 256, 0xaa549746b1cbb81c, 0x00000026f02494c9 }, /* 1.131 */
+ { 19, 256, 0x892e343f2f31d690, 0x00000029eb392835 }, /* 1.130 */
+ { 20, 256, 0x76914824db98cc3f, 0x0000003004f31a7c }, /* 1.141 */
+ { 21, 256, 0x4b3cbabf9cfb1d0f, 0x00000036363a2408 }, /* 1.139 */
+ { 22, 256, 0xf45c77abb4f035d4, 0x00000038dd0f3e84 }, /* 1.150 */
+ { 23, 256, 0x5e18bd7f3fd4baf4, 0x0000003f0660391f }, /* 1.174 */
+ { 24, 256, 0xa7b3a4d285d6503b, 0x000000443dfc9ff6 }, /* 1.168 */
+ { 25, 256, 0x56ac7dd967521f5a, 0x0000004b03a87eb7 }, /* 1.180 */
+ { 26, 256, 0x3a42dfda4eb880f7, 0x000000522c719bba }, /* 1.226 */
+ { 27, 256, 0xd200d2fc6b54bf60, 0x0000005760b4fdf5 }, /* 1.228 */
+ { 28, 256, 0xc52605bbd486c546, 0x0000005e00d8f74c }, /* 1.217 */
+ { 29, 256, 0xc761779e63cd762f, 0x00000067be3cd85c }, /* 1.239 */
+ { 30, 256, 0xca577b1e07f85ca5, 0x0000006f5517f3e4 }, /* 1.238 */
+ { 31, 256, 0xfd50a593c518b3d4, 0x0000007370e7778f }, /* 1.273 */
+ { 32, 512, 0xc6c87ba5b042650b, 0x000000f7eb08a156 }, /* 1.191 */
+ { 33, 512, 0xc3880d0c9d458304, 0x0000010734b5d160 }, /* 1.199 */
+ { 34, 512, 0xe920927e4d8b2c97, 0x00000118c1edbce0 }, /* 1.195 */
+ { 35, 512, 0x8da7fcda87bde316, 0x0000012a3e9f9110 }, /* 1.201 */
+ { 36, 512, 0xcf09937491514a29, 0x0000013bd6a24bef }, /* 1.194 */
+ { 37, 512, 0x9b5abbf345cbd7cc, 0x0000014b9d90fac3 }, /* 1.237 */
+ { 38, 512, 0x506312a44668d6a9, 0x0000015e1b5f6148 }, /* 1.242 */
+ { 39, 512, 0x71659ede62b4755f, 0x00000173ef029bcd }, /* 1.231 */
+ { 40, 512, 0xa7fde73fb74cf2d7, 0x000001866fb72748 }, /* 1.233 */
+ { 41, 512, 0x19e8b461a1dea1d3, 0x000001a046f76b23 }, /* 1.271 */
+ { 42, 512, 0x031c9b868cc3e976, 0x000001afa64c49d3 }, /* 1.263 */
+ { 43, 512, 0xbaa5125faa781854, 0x000001c76789e278 }, /* 1.270 */
+ { 44, 512, 0x4ed55052550d721b, 0x000001d800ccd8eb }, /* 1.281 */
+ { 45, 512, 0x0fd63ddbdff90677, 0x000001f08ad59ed2 }, /* 1.282 */
+ { 46, 512, 0x36d66546de7fdd6f, 0x000002016f09574b }, /* 1.286 */
+ { 47, 512, 0x99f997e7eafb69d7, 0x0000021e42e47cb6 }, /* 1.329 */
+ { 48, 512, 0xbecd9c2571312c5d, 0x000002320fe2872b }, /* 1.286 */
+ { 49, 512, 0xd97371329e488a32, 0x0000024cd73f2ca7 }, /* 1.322 */
+ { 50, 512, 0x30e9b136670749ee, 0x000002681c83b0e0 }, /* 1.335 */
+ { 51, 512, 0x11ad6bc8f47aaeb4, 0x0000027e9261b5d5 }, /* 1.305 */
+ { 52, 512, 0x68e445300af432c1, 0x0000029aa0eb7dbf }, /* 1.330 */
+ { 53, 512, 0x910fb561657ea98c, 0x000002b3dca04853 }, /* 1.365 */
+ { 54, 512, 0xd619693d8ce5e7a5, 0x000002cc280e9c97 }, /* 1.334 */
+ { 55, 512, 0x24e281f564dbb60a, 0x000002e9fa842713 }, /* 1.364 */
+ { 56, 512, 0x947a7d3bdaab44c5, 0x000003046680f72e }, /* 1.374 */
+ { 57, 512, 0x2d44fec9c093e0de, 0x00000324198ba810 }, /* 1.363 */
+ { 58, 512, 0x87743c272d29bb4c, 0x0000033ec48c9ac9 }, /* 1.401 */
+ { 59, 512, 0x96aa3b6f67f5d923, 0x0000034faead902c }, /* 1.392 */
+ { 60, 512, 0x94a4f1faf520b0d3, 0x0000037d713ab005 }, /* 1.360 */
+ { 61, 512, 0xb13ed3a272f711a2, 0x00000397368f3cbd }, /* 1.396 */
+ { 62, 512, 0x3b1b11805fa4a64a, 0x000003b8a5e2840c }, /* 1.453 */
+ { 63, 512, 0x4c74caad9172ba71, 0x000003d4be280290 }, /* 1.437 */
+ { 64, 512, 0x035ff643923dd29e, 0x000003fad6c355e1 }, /* 1.402 */
+ { 65, 512, 0x768e9171b11abd3c, 0x0000040eb07fed20 }, /* 1.459 */
+ { 66, 512, 0x75880e6f78a13ddd, 0x000004433d6acf14 }, /* 1.423 */
+ { 67, 512, 0x910b9714f698a877, 0x00000451ea65d5db }, /* 1.447 */
+ { 68, 512, 0x87f5db6f9fdcf5c7, 0x000004732169e3f7 }, /* 1.450 */
+ { 69, 512, 0x836d4968fbaa3706, 0x000004954068a380 }, /* 1.455 */
+ { 70, 512, 0xc567d73a036421ab, 0x000004bd7cb7bd3d }, /* 1.463 */
+ { 71, 512, 0x619df40f240b8fed, 0x000004e376c2e972 }, /* 1.463 */
+ { 72, 512, 0x42763a680d5bed8e, 0x000005084275c680 }, /* 1.452 */
+ { 73, 512, 0x5866f064b3230431, 0x0000052906f2c9ab }, /* 1.498 */
+ { 74, 512, 0x9fa08548b1621a44, 0x0000054708019247 }, /* 1.526 */
+ { 75, 512, 0xb6053078ce0fc303, 0x00000572cc5c72b0 }, /* 1.491 */
+ { 76, 512, 0x4a7aad7bf3890923, 0x0000058e987bc8e9 }, /* 1.470 */
+ { 77, 512, 0xe165613fd75b5a53, 0x000005c20473a211 }, /* 1.527 */
+ { 78, 512, 0x3ff154ac878163a6, 0x000005d659194bf3 }, /* 1.509 */
+ { 79, 512, 0x24b93ade0aa8a532, 0x0000060a201c4f8e }, /* 1.569 */
+ { 80, 512, 0xc18e2d14cd9bb554, 0x0000062c55cfe48c }, /* 1.555 */
+ { 81, 512, 0x98cc78302feb58b6, 0x0000066656a07194 }, /* 1.509 */
+ { 82, 512, 0xc6c5fd5a2abc0543, 0x0000067cff94fbf8 }, /* 1.596 */
+ { 83, 512, 0xa7962f514acbba21, 0x000006ab7b5afa2e }, /* 1.568 */
+ { 84, 512, 0xba02545069ddc6dc, 0x000006d19861364f }, /* 1.541 */
+ { 85, 512, 0x447c73192c35073e, 0x000006fce315ce35 }, /* 1.623 */
+ { 86, 512, 0x48beef9e2d42b0c2, 0x00000720a8e38b6b }, /* 1.620 */
+ { 87, 512, 0x4874cf98541a35e0, 0x00000758382a2273 }, /* 1.597 */
+ { 88, 512, 0xad4cf8333a31127a, 0x00000781e1651b1b }, /* 1.575 */
+ { 89, 512, 0x47ae4859d57888c1, 0x000007b27edbe5bc }, /* 1.627 */
+ { 90, 512, 0x06f7723cfe5d1891, 0x000007dc2a96d8eb }, /* 1.596 */
+ { 91, 512, 0xd4e44218d660576d, 0x0000080ac46f02d5 }, /* 1.622 */
+ { 92, 512, 0x7066702b0d5be1f2, 0x00000832c96d154e }, /* 1.695 */
+ { 93, 512, 0x011209b4f9e11fb9, 0x0000085eefda104c }, /* 1.605 */
+ { 94, 512, 0x47ffba30a0b35708, 0x00000899badc32dc }, /* 1.625 */
+ { 95, 512, 0x1a95a6ac4538aaa8, 0x000008b6b69a42b2 }, /* 1.687 */
+ { 96, 512, 0xbda2b239bb2008eb, 0x000008f22d2de38a }, /* 1.621 */
+ { 97, 512, 0x7ffa0bea90355c6c, 0x0000092e5b23b816 }, /* 1.699 */
+ { 98, 512, 0x1d56ba34be426795, 0x0000094f482e5d1b }, /* 1.688 */
+ { 99, 512, 0x0aa89d45c502e93d, 0x00000977d94a98ce }, /* 1.642 */
+ { 100, 512, 0x54369449f6857774, 0x000009c06c9b34cc }, /* 1.683 */
+ { 101, 512, 0xf7d4dd8445b46765, 0x000009e5dc542259 }, /* 1.755 */
+ { 102, 512, 0xfa8866312f169469, 0x00000a16b54eae93 }, /* 1.692 */
+ { 103, 512, 0xd8a5aea08aef3ff9, 0x00000a381d2cbfe7 }, /* 1.747 */
+ { 104, 512, 0x66bcd2c3d5f9ef0e, 0x00000a8191817be7 }, /* 1.751 */
+ { 105, 512, 0x3fb13a47a012ec81, 0x00000ab562b9a254 }, /* 1.751 */
+ { 106, 512, 0x43100f01c9e5e3ca, 0x00000aeee84c185f }, /* 1.726 */
+ { 107, 512, 0xca09c50ccee2d054, 0x00000b1c359c047d }, /* 1.788 */
+ { 108, 512, 0xd7176732ac503f9b, 0x00000b578bc52a73 }, /* 1.740 */
+ { 109, 512, 0xed206e51f8d9422d, 0x00000b8083e0d960 }, /* 1.780 */
+ { 110, 512, 0x17ead5dc6ba0dcd6, 0x00000bcfb1a32ca8 }, /* 1.836 */
+ { 111, 512, 0x5f1dc21e38a969eb, 0x00000c0171becdd6 }, /* 1.778 */
+ { 112, 512, 0xddaa973de33ec528, 0x00000c3edaba4b95 }, /* 1.831 */
+ { 113, 512, 0x2a5eccd7735a3630, 0x00000c630664e7df }, /* 1.825 */
+ { 114, 512, 0xafcccee5c0b71446, 0x00000cb65392f6e4 }, /* 1.826 */
+ { 115, 512, 0x8fa30c5e7b147e27, 0x00000cd4db391e55 }, /* 1.843 */
+ { 116, 512, 0x5afe0711fdfafd82, 0x00000d08cb4ec35d }, /* 1.826 */
+ { 117, 512, 0x533a6090238afd4c, 0x00000d336f115d1b }, /* 1.803 */
+ { 118, 512, 0x90cf11b595e39a84, 0x00000d8e041c2048 }, /* 1.857 */
+ { 119, 512, 0x0d61a3b809444009, 0x00000dcb798afe35 }, /* 1.877 */
+ { 120, 512, 0x7f34da0f54b0d114, 0x00000df3922664e1 }, /* 1.849 */
+ { 121, 512, 0xa52258d5b72f6551, 0x00000e4d37a9872d }, /* 1.867 */
+ { 122, 512, 0xc1de54d7672878db, 0x00000e6583a94cf6 }, /* 1.978 */
+ { 123, 512, 0x1d03354316a414ab, 0x00000ebffc50308d }, /* 1.947 */
+ { 124, 512, 0xcebdcc377665412c, 0x00000edee1997cea }, /* 1.865 */
+ { 125, 512, 0x4ddd4c04b1a12344, 0x00000f21d64b373f }, /* 1.881 */
+ { 126, 512, 0x64fc8f94e3973658, 0x00000f8f87a8896b }, /* 1.882 */
+ { 127, 512, 0x68765f78034a334e, 0x00000fb8fe62197e }, /* 1.867 */
+ { 128, 512, 0xaf36b871a303e816, 0x00000fec6f3afb1e }, /* 1.972 */
+ { 129, 512, 0x2a4cbf73866c3a28, 0x00001027febfe4e5 }, /* 1.896 */
+ { 130, 512, 0x9cb128aacdcd3b2f, 0x0000106aa8ac569d }, /* 1.965 */
+ { 131, 512, 0x5511d41c55869124, 0x000010bbd755ddf1 }, /* 1.963 */
+ { 132, 512, 0x42f92461937f284a, 0x000010fb8bceb3b5 }, /* 1.925 */
+ { 133, 512, 0xe2d89a1cf6f1f287, 0x0000114cf5331e34 }, /* 1.862 */
+ { 134, 512, 0xdc631a038956200e, 0x0000116428d2adc5 }, /* 2.042 */
+ { 135, 512, 0xb2e5ac222cd236be, 0x000011ca88e4d4d2 }, /* 1.935 */
+ { 136, 512, 0xbc7d8236655d88e7, 0x000011e39cb94e66 }, /* 2.005 */
+ { 137, 512, 0x073e02d88d2d8e75, 0x0000123136c7933c }, /* 2.041 */
+ { 138, 512, 0x3ddb9c3873166be0, 0x00001280e4ec6d52 }, /* 1.997 */
+ { 139, 512, 0x7d3b1a845420e1b5, 0x000012c2e7cd6a44 }, /* 1.996 */
+ { 140, 512, 0x60102308aa7b2a6c, 0x000012fc490e6c7d }, /* 2.053 */
+ { 141, 512, 0xdb22bb2f9eb894aa, 0x00001343f5a85a1a }, /* 1.971 */
+ { 142, 512, 0xd853f879a13b1606, 0x000013bb7d5f9048 }, /* 2.018 */
+ { 143, 512, 0x001620a03f804b1d, 0x000013e74cc794fd }, /* 1.961 */
+ { 144, 512, 0xfdb52dda76fbf667, 0x00001442d2f22480 }, /* 2.046 */
+ { 145, 512, 0xa9160110f66e24ff, 0x0000144b899f9dbb }, /* 1.968 */
+ { 146, 512, 0x77306a30379ae03b, 0x000014cb98eb1f81 }, /* 2.143 */
+ { 147, 512, 0x14f5985d2752319d, 0x000014feab821fc9 }, /* 2.064 */
+ { 148, 512, 0xa4b8ff11de7863f8, 0x0000154a0e60b9c9 }, /* 2.023 */
+ { 149, 512, 0x44b345426455c1b3, 0x000015999c3c569c }, /* 2.136 */
+ { 150, 512, 0x272677826049b46c, 0x000015c9697f4b92 }, /* 2.063 */
+ { 151, 512, 0x2f9216e2cd74fe40, 0x0000162b1f7bbd39 }, /* 1.974 */
+ { 152, 512, 0x706ae3e763ad8771, 0x00001661371c55e1 }, /* 2.210 */
+ { 153, 512, 0xf7fd345307c2480e, 0x000016e251f28b6a }, /* 2.006 */
+ { 154, 512, 0x6e94e3d26b3139eb, 0x000016f2429bb8c6 }, /* 2.193 */
+ { 155, 512, 0x5458bbfbb781fcba, 0x0000173efdeca1b9 }, /* 2.163 */
+ { 156, 512, 0xa80e2afeccd93b33, 0x000017bfdcb78adc }, /* 2.046 */
+ { 157, 512, 0x1e4ccbb22796cf9d, 0x00001826fdcc39c9 }, /* 2.084 */
+ { 158, 512, 0x8fba4b676aaa3663, 0x00001841a1379480 }, /* 2.264 */
+ { 159, 512, 0xf82b843814b315fa, 0x000018886e19b8a3 }, /* 2.074 */
+ { 160, 512, 0x7f21e920ecf753a3, 0x0000191812ca0ea7 }, /* 2.282 */
+ { 161, 512, 0x48bb8ea2c4caa620, 0x0000192f310faccf }, /* 2.148 */
+ { 162, 512, 0x5cdb652b4952c91b, 0x0000199e1d7437c7 }, /* 2.355 */
+ { 163, 512, 0x6ac1ba6f78c06cd4, 0x000019cd11f82c70 }, /* 2.164 */
+ { 164, 512, 0x9faf5f9ca2669a56, 0x00001a18d5431f6a }, /* 2.393 */
+ { 165, 512, 0xaa57e9383eb01194, 0x00001a9e7d253d85 }, /* 2.178 */
+ { 166, 512, 0x896967bf495c34d2, 0x00001afb8319b9fc }, /* 2.334 */
+ { 167, 512, 0xdfad5f05de225f1b, 0x00001b3a59c3093b }, /* 2.266 */
+ { 168, 512, 0xfd299a99f9f2abdd, 0x00001bb6f1a10799 }, /* 2.304 */
+ { 169, 512, 0xdda239e798fe9fd4, 0x00001bfae0c9692d }, /* 2.218 */
+ { 170, 512, 0x5fca670414a32c3e, 0x00001c22129dbcff }, /* 2.377 */
+ { 171, 512, 0x1bb8934314b087de, 0x00001c955db36cd0 }, /* 2.155 */
+ { 172, 512, 0xd96394b4b082200d, 0x00001cfc8619b7e6 }, /* 2.404 */
+ { 173, 512, 0xb612a7735b1c8cbc, 0x00001d303acdd585 }, /* 2.205 */
+ { 174, 512, 0x28e7430fe5875fe1, 0x00001d7ed5b3697d }, /* 2.359 */
+ { 175, 512, 0x5038e89efdd981b9, 0x00001dc40ec35c59 }, /* 2.158 */
+ { 176, 512, 0x075fd78f1d14db7c, 0x00001e31c83b4a2b }, /* 2.614 */
+ { 177, 512, 0xc50fafdb5021be15, 0x00001e7cdac82fbc }, /* 2.239 */
+ { 178, 512, 0xe6dc7572ce7b91c7, 0x00001edd8bb454fc }, /* 2.493 */
+ { 179, 512, 0x21f7843e7beda537, 0x00001f3a8e019d6c }, /* 2.327 */
+ { 180, 512, 0xc83385e20b43ec82, 0x00001f70735ec137 }, /* 2.231 */
+ { 181, 512, 0xca818217dddb21fd, 0x0000201ca44c5a3c }, /* 2.237 */
+ { 182, 512, 0xe6035defea48f933, 0x00002038e3346658 }, /* 2.691 */
+ { 183, 512, 0x47262a4f953dac5a, 0x000020c2e554314e }, /* 2.170 */
+ { 184, 512, 0xe24c7246260873ea, 0x000021197e618d64 }, /* 2.600 */
+ { 185, 512, 0xeef6b57c9b58e9e1, 0x0000217ea48ecddc }, /* 2.391 */
+ { 186, 512, 0x2becd3346e386142, 0x000021c496d4a5f9 }, /* 2.677 */
+ { 187, 512, 0x63c6207bdf3b40a3, 0x0000220e0f2eec0c }, /* 2.410 */
+ { 188, 512, 0x3056ce8989767d4b, 0x0000228eb76cd137 }, /* 2.776 */
+ { 189, 512, 0x91af61c307cee780, 0x000022e17e2ea501 }, /* 2.266 */
+ { 190, 512, 0xda359da225f6d54f, 0x00002358a2debc19 }, /* 2.717 */
+ { 191, 512, 0x0a5f7a2a55607ba0, 0x0000238a79dac18c }, /* 2.474 */
+ { 192, 512, 0x27bb75bf5224638a, 0x00002403a58e2351 }, /* 2.673 */
+ { 193, 512, 0x1ebfdb94630f5d0f, 0x00002492a10cb339 }, /* 2.420 */
+ { 194, 512, 0x6eae5e51d9c5f6fb, 0x000024ce4bf98715 }, /* 2.898 */
+ { 195, 512, 0x08d903b4daedc2e0, 0x0000250d1e15886c }, /* 2.363 */
+ { 196, 512, 0xc722a2f7fa7cd686, 0x0000258a99ed0c9e }, /* 2.747 */
+ { 197, 512, 0x8f71faf0e54e361d, 0x000025dee11976f5 }, /* 2.531 */
+ { 198, 512, 0x87f64695c91a54e7, 0x0000264e00a43da0 }, /* 2.707 */
+ { 199, 512, 0xc719cbac2c336b92, 0x000026d327277ac1 }, /* 2.315 */
+ { 200, 512, 0xe7e647afaf771ade, 0x000027523a5c44bf }, /* 3.012 */
+ { 201, 512, 0x12d4b5c38ce8c946, 0x0000273898432545 }, /* 2.378 */
+ { 202, 512, 0xf2e0cd4067bdc94a, 0x000027e47bb2c935 }, /* 2.969 */
+ { 203, 512, 0x21b79f14d6d947d3, 0x0000281e64977f0d }, /* 2.594 */
+ { 204, 512, 0x515093f952f18cd6, 0x0000289691a473fd }, /* 2.763 */
+ { 205, 512, 0xd47b160a1b1022c8, 0x00002903e8b52411 }, /* 2.457 */
+ { 206, 512, 0xc02fc96684715a16, 0x0000297515608601 }, /* 3.057 */
+ { 207, 512, 0xef51e68efba72ed0, 0x000029ef73604804 }, /* 2.590 */
+ { 208, 512, 0x9e3be6e5448b4f33, 0x00002a2846ed074b }, /* 3.047 */
+ { 209, 512, 0x81d446c6d5fec063, 0x00002a92ca693455 }, /* 2.676 */
+ { 210, 512, 0xff215de8224e57d5, 0x00002b2271fe3729 }, /* 2.993 */
+ { 211, 512, 0xe2524d9ba8f69796, 0x00002b64b99c3ba2 }, /* 2.457 */
+ { 212, 512, 0xf6b28e26097b7e4b, 0x00002bd768b6e068 }, /* 3.182 */
+ { 213, 512, 0x893a487f30ce1644, 0x00002c67f722b4b2 }, /* 2.563 */
+ { 214, 512, 0x386566c3fc9871df, 0x00002cc1cf8b4037 }, /* 3.025 */
+ { 215, 512, 0x1e0ed78edf1f558a, 0x00002d3948d36c7f }, /* 2.730 */
+ { 216, 512, 0xe3bc20c31e61f113, 0x00002d6d6b12e025 }, /* 3.036 */
+ { 217, 512, 0xd6c3ad2e23021882, 0x00002deff7572241 }, /* 2.722 */
+ { 218, 512, 0xb4a9f95cf0f69c5a, 0x00002e67d537aa36 }, /* 3.356 */
+ { 219, 512, 0x6e98ed6f6c38e82f, 0x00002e9720626789 }, /* 2.697 */
+ { 220, 512, 0x2e01edba33fddac7, 0x00002f407c6b0198 }, /* 2.979 */
+ { 221, 512, 0x559d02e1f5f57ccc, 0x00002fb6a5ab4f24 }, /* 2.858 */
+ { 222, 512, 0xac18f5a916adcd8e, 0x0000304ae1c5c57e }, /* 3.258 */
+ { 223, 512, 0x15789fbaddb86f4b, 0x0000306f6e019c78 }, /* 2.693 */
+ { 224, 512, 0xf4a9c36d5bc4c408, 0x000030da40434213 }, /* 3.259 */
+ { 225, 512, 0xf640f90fd2727f44, 0x00003189ed37b90c }, /* 2.733 */
+ { 226, 512, 0xb5313d390d61884a, 0x000031e152616b37 }, /* 3.235 */
+ { 227, 512, 0x4bae6b3ce9160939, 0x0000321f40aeac42 }, /* 2.983 */
+ { 228, 512, 0x838c34480f1a66a1, 0x000032f389c0f78e }, /* 3.308 */
+ { 229, 512, 0xb1c4a52c8e3d6060, 0x0000330062a40284 }, /* 2.715 */
+ { 230, 512, 0xe0f1110c6d0ed822, 0x0000338be435644f }, /* 3.540 */
+ { 231, 512, 0x9f1a8ccdcea68d4b, 0x000034045a4e97e1 }, /* 2.779 */
+ { 232, 512, 0x3261ed62223f3099, 0x000034702cfc401c }, /* 3.084 */
+ { 233, 512, 0xf2191e2311022d65, 0x00003509dd19c9fc }, /* 2.987 */
+ { 234, 512, 0xf102a395c2033abc, 0x000035654dc96fae }, /* 3.341 */
+ { 235, 512, 0x11fe378f027906b6, 0x000035b5193b0264 }, /* 2.793 */
+ { 236, 512, 0xf777f2c026b337aa, 0x000036704f5d9297 }, /* 3.518 */
+ { 237, 512, 0x1b04e9c2ee143f32, 0x000036dfbb7af218 }, /* 2.962 */
+ { 238, 512, 0x2fcec95266f9352c, 0x00003785c8df24a9 }, /* 3.196 */
+ { 239, 512, 0xfe2b0e47e427dd85, 0x000037cbdf5da729 }, /* 2.914 */
+ { 240, 512, 0x72b49bf2225f6c6d, 0x0000382227c15855 }, /* 3.408 */
+ { 241, 512, 0x50486b43df7df9c7, 0x0000389b88be6453 }, /* 2.903 */
+ { 242, 512, 0x5192a3e53181c8ab, 0x000038ddf3d67263 }, /* 3.778 */
+ { 243, 512, 0xe9f5d8365296fd5e, 0x0000399f1c6c9e9c }, /* 3.026 */
+ { 244, 512, 0xc740263f0301efa8, 0x00003a147146512d }, /* 3.347 */
+ { 245, 512, 0x23cd0f2b5671e67d, 0x00003ab10bcc0d9d }, /* 3.212 */
+ { 246, 512, 0x002ccc7e5cd41390, 0x00003ad6cd14a6c0 }, /* 3.482 */
+ { 247, 512, 0x9aafb3c02544b31b, 0x00003b8cb8779fb0 }, /* 3.146 */
+ { 248, 512, 0x72ba07a78b121999, 0x00003c24142a5a3f }, /* 3.626 */
+ { 249, 512, 0x3d784aa58edfc7b4, 0x00003cd084817d99 }, /* 2.952 */
+ { 250, 512, 0xaab750424d8004af, 0x00003d506a8e098e }, /* 3.463 */
+ { 251, 512, 0x84403fcf8e6b5ca2, 0x00003d4c54c2aec4 }, /* 3.131 */
+ { 252, 512, 0x71eb7455ec98e207, 0x00003e655715cf2c }, /* 3.538 */
+ { 253, 512, 0xd752b4f19301595b, 0x00003ecd7b2ca5ac }, /* 2.974 */
+ { 254, 512, 0xc4674129750499de, 0x00003e99e86d3e95 }, /* 3.843 */
+ { 255, 512, 0x9772baff5cd12ef5, 0x00003f895c019841 }, /* 3.088 */
+};
+
+/*
+ * Verify the map is valid. Each device index must appear exactly
+ * once in every row, and the permutation array checksum must match.
+ */
+static int
+verify_perms(uint8_t *perms, uint64_t children, uint64_t nperms,
+ uint64_t checksum)
+{
+ int countssz = sizeof (uint16_t) * children;
+ uint16_t *counts = kmem_zalloc(countssz, KM_SLEEP);
+
+ for (int i = 0; i < nperms; i++) {
+ for (int j = 0; j < children; j++) {
+ uint8_t val = perms[(i * children) + j];
+
+ if (val >= children || counts[val] != i) {
+ kmem_free(counts, countssz);
+ return (EINVAL);
+ }
+
+ counts[val]++;
+ }
+ }
+
+ if (checksum != 0) {
+ int permssz = sizeof (uint8_t) * children * nperms;
+ zio_cksum_t cksum;
+
+ fletcher_4_native_varsize(perms, permssz, &cksum);
+
+ if (checksum != cksum.zc_word[0]) {
+ kmem_free(counts, countssz);
+ return (ECKSUM);
+ }
+ }
+
+ kmem_free(counts, countssz);
+
+ return (0);
+}
+
+/*
+ * Generate the permutation array for the draid_map_t. These maps control
+ * the placement of all data in a dRAID. Therefore it's critical that the
+ * seed always generates the same mapping. We provide our own pseudo-random
+ * number generator for this purpose.
+ */
+int
+vdev_draid_generate_perms(const draid_map_t *map, uint8_t **permsp)
+{
+ VERIFY3U(map->dm_children, >=, VDEV_DRAID_MIN_CHILDREN);
+ VERIFY3U(map->dm_children, <=, VDEV_DRAID_MAX_CHILDREN);
+ VERIFY3U(map->dm_seed, !=, 0);
+ VERIFY3U(map->dm_nperms, !=, 0);
+ VERIFY3P(map->dm_perms, ==, NULL);
+
+#ifdef _KERNEL
+ /*
+ * The kernel code always provides both a map_seed and checksum.
+ * Only the tests/zfs-tests/cmd/draid/draid.c utility will provide
+ * a zero checksum when generating new candidate maps.
+ */
+ VERIFY3U(map->dm_checksum, !=, 0);
+#endif
+ uint64_t children = map->dm_children;
+ uint64_t nperms = map->dm_nperms;
+ int rowsz = sizeof (uint8_t) * children;
+ int permssz = rowsz * nperms;
+ uint8_t *perms;
+
+ /* Allocate the permutation array */
+ perms = vmem_alloc(permssz, KM_SLEEP);
+
+ /* Setup an initial row with a known pattern */
+ uint8_t *initial_row = kmem_alloc(rowsz, KM_SLEEP);
+ for (int i = 0; i < children; i++)
+ initial_row[i] = i;
+
+ uint64_t draid_seed[2] = { VDEV_DRAID_SEED, map->dm_seed };
+ uint8_t *current_row, *previous_row = initial_row;
+
+ /*
+ * Perform a Fisher-Yates shuffle of each row using the previous
+ * row as the starting point. An initial_row with known pattern
+ * is used as the input for the first row.
+ */
+ for (int i = 0; i < nperms; i++) {
+ current_row = &perms[i * children];
+ memcpy(current_row, previous_row, rowsz);
+
+ for (int j = children - 1; j > 0; j--) {
+ uint64_t k = vdev_draid_rand(draid_seed) % (j + 1);
+ uint8_t val = current_row[j];
+ current_row[j] = current_row[k];
+ current_row[k] = val;
+ }
+
+ previous_row = current_row;
+ }
+
+ kmem_free(initial_row, rowsz);
+
+ int error = verify_perms(perms, children, nperms, map->dm_checksum);
+ if (error) {
+ vmem_free(perms, permssz);
+ return (error);
+ }
+
+ *permsp = perms;
+
+ return (0);
+}
+
+/*
+ * Lookup the fixed draid_map_t for the requested number of children.
+ */
+int
+vdev_draid_lookup_map(uint64_t children, const draid_map_t **mapp)
+{
+ for (int i = 0; i <= VDEV_DRAID_MAX_MAPS; i++) {
+ if (draid_maps[i].dm_children == children) {
+ *mapp = &draid_maps[i];
+ return (0);
+ }
+ }
+
+ return (ENOENT);
+}
+
+/*
+ * Lookup the permutation array and iteration id for the provided offset.
+ */
+static void
+vdev_draid_get_perm(vdev_draid_config_t *vdc, uint64_t pindex,
+ uint8_t **base, uint64_t *iter)
+{
+ uint64_t ncols = vdc->vdc_children;
+ uint64_t poff = pindex % (vdc->vdc_nperms * ncols);
+
+ *base = vdc->vdc_perms + (poff / ncols) * ncols;
+ *iter = poff % ncols;
+}
+
+static inline uint64_t
+vdev_draid_permute_id(vdev_draid_config_t *vdc,
+ uint8_t *base, uint64_t iter, uint64_t index)
+{
+ return ((base[index] + iter) % vdc->vdc_children);
+}
+
+/*
+ * Return the asize which is the psize rounded up to a full group width.
+ * i.e. vdev_draid_psize_to_asize().
+ */
+static uint64_t
+vdev_draid_asize(vdev_t *vd, uint64_t psize)
+{
+ vdev_draid_config_t *vdc = vd->vdev_tsd;
+ uint64_t ashift = vd->vdev_ashift;
+
+ ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
+
+ uint64_t rows = ((psize - 1) / (vdc->vdc_ndata << ashift)) + 1;
+ uint64_t asize = (rows * vdc->vdc_groupwidth) << ashift;
+
+ ASSERT3U(asize, !=, 0);
+ ASSERT3U(asize % (vdc->vdc_groupwidth), ==, 0);
+
+ return (asize);
+}
+
+/*
+ * Deflate the asize to the psize, this includes stripping parity.
+ */
+uint64_t
+vdev_draid_asize_to_psize(vdev_t *vd, uint64_t asize)
+{
+ vdev_draid_config_t *vdc = vd->vdev_tsd;
+
+ ASSERT0(asize % vdc->vdc_groupwidth);
+
+ return ((asize / vdc->vdc_groupwidth) * vdc->vdc_ndata);
+}
+
+/*
+ * Convert a logical offset to the corresponding group number.
+ */
+static uint64_t
+vdev_draid_offset_to_group(vdev_t *vd, uint64_t offset)
+{
+ vdev_draid_config_t *vdc = vd->vdev_tsd;
+
+ ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
+
+ return (offset / vdc->vdc_groupsz);
+}
+
+/*
+ * Convert a group number to the logical starting offset for that group.
+ */
+static uint64_t
+vdev_draid_group_to_offset(vdev_t *vd, uint64_t group)
+{
+ vdev_draid_config_t *vdc = vd->vdev_tsd;
+
+ ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
+
+ return (group * vdc->vdc_groupsz);
+}
+
+
+static void
+vdev_draid_map_free_vsd(zio_t *zio)
+{
+ raidz_map_t *rm = zio->io_vsd;
+
+ ASSERT0(rm->rm_freed);
+ rm->rm_freed = B_TRUE;
+
+ if (rm->rm_reports == 0) {
+ vdev_raidz_map_free(rm);
+ }
+}
+
+/*ARGSUSED*/
+static void
+vdev_draid_cksum_free(void *arg, size_t ignored)
+{
+ raidz_map_t *rm = arg;
+
+ ASSERT3U(rm->rm_reports, >, 0);
+
+ if (--rm->rm_reports == 0 && rm->rm_freed)
+ vdev_raidz_map_free(rm);
+}
+
+static void
+vdev_draid_cksum_finish(zio_cksum_report_t *zcr, const abd_t *good_data)
+{
+ raidz_map_t *rm = zcr->zcr_cbdata;
+ const size_t c = zcr->zcr_cbinfo;
+ uint64_t skip_size = zcr->zcr_sector;
+ uint64_t parity_size;
+ size_t x, offset, size;
+
+ if (good_data == NULL) {
+ zfs_ereport_finish_checksum(zcr, NULL, NULL, B_FALSE);
+ return;
+ }
+
+ /*
+ * Detailed cksum reporting is currently only supported for single
+ * row draid mappings, this covers the vast majority of zios. Only
+ * a dRAID zio which spans groups will have multiple rows.
+ */
+ if (rm->rm_nrows != 1) {
+ zfs_ereport_finish_checksum(zcr, NULL, NULL, B_FALSE);
+ return;
+ }
+
+ raidz_row_t *rr = rm->rm_row[0];
+ const abd_t *good = NULL;
+ const abd_t *bad = rr->rr_col[c].rc_abd;
+
+ if (c < rr->rr_firstdatacol) {
+ /*
+ * The first time through, calculate the parity blocks for
+ * the good data (this relies on the fact that the good
+ * data never changes for a given logical zio)
+ */
+ if (rr->rr_col[0].rc_gdata == NULL) {
+ abd_t *bad_parity[VDEV_DRAID_MAXPARITY];
+
+ /*
+ * Set up the rr_col[]s to generate the parity for
+ * good_data, first saving the parity bufs and
+ * replacing them with buffers to hold the result.
+ */
+ for (x = 0; x < rr->rr_firstdatacol; x++) {
+ bad_parity[x] = rr->rr_col[x].rc_abd;
+ rr->rr_col[x].rc_abd = rr->rr_col[x].rc_gdata =
+ abd_alloc_sametype(rr->rr_col[x].rc_abd,
+ rr->rr_col[x].rc_size);
+ }
+
+ /*
+ * Fill in the data columns from good_data being
+ * careful to pad short columns and empty columns
+ * with a skip sector.
+ */
+ uint64_t good_size = abd_get_size((abd_t *)good_data);
+
+ offset = 0;
+ for (; x < rr->rr_cols; x++) {
+ abd_put(rr->rr_col[x].rc_abd);
+
+ if (offset == good_size) {
+ /* empty data column (small write) */
+ rr->rr_col[x].rc_abd =
+ abd_get_zeros(skip_size);
+ } else if (x < rr->rr_bigcols) {
+ /* this is a "big column" */
+ size = rr->rr_col[x].rc_size;
+ rr->rr_col[x].rc_abd =
+ abd_get_offset_size(
+ (abd_t *)good_data, offset, size);
+ offset += size;
+ } else {
+ /* short data column, add skip sector */
+ size = rr->rr_col[x].rc_size -skip_size;
+ rr->rr_col[x].rc_abd = abd_alloc(
+ rr->rr_col[x].rc_size, B_TRUE);
+ abd_copy_off(rr->rr_col[x].rc_abd,
+ (abd_t *)good_data, 0, offset,
+ size);
+ abd_zero_off(rr->rr_col[x].rc_abd,
+ size, skip_size);
+ offset += size;
+ }
+ }
+
+ /*
+ * Construct the parity from the good data.
+ */
+ vdev_raidz_generate_parity_row(rm, rr);
+
+ /* restore everything back to its original state */
+ for (x = 0; x < rr->rr_firstdatacol; x++)
+ rr->rr_col[x].rc_abd = bad_parity[x];
+
+ offset = 0;
+ for (x = rr->rr_firstdatacol; x < rr->rr_cols; x++) {
+ if (offset == good_size || x < rr->rr_bigcols)
+ abd_put(rr->rr_col[x].rc_abd);
+ else
+ abd_free(rr->rr_col[x].rc_abd);
+
+ rr->rr_col[x].rc_abd = abd_get_offset_size(
+ rr->rr_abd_copy, offset,
+ rr->rr_col[x].rc_size);
+ offset += rr->rr_col[x].rc_size;
+ }
+ }
+
+ ASSERT3P(rr->rr_col[c].rc_gdata, !=, NULL);
+ good = abd_get_offset_size(rr->rr_col[c].rc_gdata, 0,
+ rr->rr_col[c].rc_size);
+ } else {
+ /* adjust good_data to point at the start of our column */
+ parity_size = size = rr->rr_col[0].rc_size;
+ if (c >= rr->rr_bigcols) {
+ size -= skip_size;
+ zcr->zcr_length = size;
+ }
+
+ /* empty column */
+ if (size == 0) {
+ zfs_ereport_finish_checksum(zcr, NULL, NULL, B_TRUE);
+ return;
+ }
+
+ offset = 0;
+ for (x = rr->rr_firstdatacol; x < c; x++) {
+ if (x < rr->rr_bigcols) {
+ offset += parity_size;
+ } else {
+ offset += parity_size - skip_size;
+ }
+ }
+
+ good = abd_get_offset_size((abd_t *)good_data, offset, size);
+ }
+
+ /* we drop the ereport if it ends up that the data was good */
+ zfs_ereport_finish_checksum(zcr, good, bad, B_TRUE);
+ abd_put((abd_t *)good);
+}
+
+/*
+ * Invoked indirectly by zfs_ereport_start_checksum(), called
+ * below when our read operation fails completely. The main point
+ * is to keep a copy of everything we read from disk, so that at
+ * vdev_draid_cksum_finish() time we can compare it with the good data.
+ */
+static void
+vdev_draid_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *arg)
+{
+ size_t c = (size_t)(uintptr_t)arg;
+ raidz_map_t *rm = zio->io_vsd;
+
+ /* set up the report and bump the refcount */
+ zcr->zcr_cbdata = rm;
+ zcr->zcr_cbinfo = c;
+ zcr->zcr_finish = vdev_draid_cksum_finish;
+ zcr->zcr_free = vdev_draid_cksum_free;
+
+ rm->rm_reports++;
+ ASSERT3U(rm->rm_reports, >, 0);
+
+ if (rm->rm_row[0]->rr_abd_copy != NULL)
+ return;
+
+ /*
+ * It's the first time we're called for this raidz_map_t, so we need
+ * to copy the data aside; there's no guarantee that our zio's buffer
+ * won't be re-used for something else.
+ *
+ * Our parity data is already in separate buffers, so there's no need
+ * to copy them. Furthermore, all columns should have been expanded
+ * by vdev_draid_map_alloc_empty() when attempting reconstruction.
+ */
+ for (int i = 0; i < rm->rm_nrows; i++) {
+ raidz_row_t *rr = rm->rm_row[i];
+ size_t offset = 0;
+ size_t size = 0;
+
+ for (c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
+ ASSERT3U(rr->rr_col[c].rc_size, ==,
+ rr->rr_col[0].rc_size);
+ size += rr->rr_col[c].rc_size;
+ }
+
+ rr->rr_abd_copy = abd_alloc_for_io(size, B_FALSE);
+
+ for (c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
+ raidz_col_t *col = &rr->rr_col[c];
+ abd_t *tmp = abd_get_offset_size(rr->rr_abd_copy,
+ offset, col->rc_size);
+
+ abd_copy(tmp, col->rc_abd, col->rc_size);
+
+ if (abd_is_gang(col->rc_abd))
+ abd_free(col->rc_abd);
+ else
+ abd_put(col->rc_abd);
+
+ col->rc_abd = tmp;
+ offset += col->rc_size;
+ }
+ ASSERT3U(offset, ==, size);
+ }
+}
+
+const zio_vsd_ops_t vdev_draid_vsd_ops = {
+ .vsd_free = vdev_draid_map_free_vsd,
+ .vsd_cksum_report = vdev_draid_cksum_report
+};
+
+/*
+ * Full stripe writes. When writing, all columns (D+P) are required. Parity
+ * is calculated over all the columns, including empty zero filled sectors,
+ * and each is written to disk. While only the data columns are needed for
+ * a normal read, all of the columns are required for reconstruction when
+ * performing a sequential resilver.
+ *
+ * For "big columns" it's sufficient to map the correct range of the zio ABD.
+ * Partial columns require allocating a gang ABD in order to zero fill the
+ * empty sectors. When the column is empty a zero filled sector must be
+ * mapped. In all cases the data ABDs must be the same size as the parity
+ * ABDs (e.g. rc->rc_size == parity_size).
+ */
+static void
+vdev_draid_map_alloc_write(zio_t *zio, uint64_t abd_offset, raidz_row_t *rr)
+{
+ uint64_t skip_size = 1ULL << zio->io_vd->vdev_top->vdev_ashift;
+ uint64_t parity_size = rr->rr_col[0].rc_size;
+ uint64_t abd_off = abd_offset;
+
+ ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
+ ASSERT3U(parity_size, ==, abd_get_size(rr->rr_col[0].rc_abd));
+
+ for (uint64_t c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
+ raidz_col_t *rc = &rr->rr_col[c];
+
+ if (rc->rc_size == 0) {
+ /* empty data column (small write), add a skip sector */
+ ASSERT3U(skip_size, ==, parity_size);
+ rc->rc_abd = abd_get_zeros(skip_size);
+ } else if (rc->rc_size == parity_size) {
+ /* this is a "big column" */
+ rc->rc_abd = abd_get_offset_size(zio->io_abd,
+ abd_off, rc->rc_size);
+ } else {
+ /* short data column, add a skip sector */
+ ASSERT3U(rc->rc_size + skip_size, ==, parity_size);
+ rc->rc_abd = abd_alloc_gang_abd();
+ abd_gang_add(rc->rc_abd, abd_get_offset_size(
+ zio->io_abd, abd_off, rc->rc_size), B_TRUE);
+ abd_gang_add(rc->rc_abd, abd_get_zeros(skip_size),
+ B_TRUE);
+ }
+
+ ASSERT3U(abd_get_size(rc->rc_abd), ==, parity_size);
+
+ abd_off += rc->rc_size;
+ rc->rc_size = parity_size;
+ }
+
+ IMPLY(abd_offset != 0, abd_off == zio->io_size);
+}
+
+/*
+ * Scrub/resilver reads. In order to store the contents of the skip sectors
+ * an additional ABD is allocated. The columns are handled in the same way
+ * as a full stripe write except instead of using the zero ABD the newly
+ * allocated skip ABD is used to back the skip sectors. In all cases the
+ * data ABD must be the same size as the parity ABDs.
+ */
+static void
+vdev_draid_map_alloc_scrub(zio_t *zio, uint64_t abd_offset, raidz_row_t *rr)
+{
+ uint64_t skip_size = 1ULL << zio->io_vd->vdev_top->vdev_ashift;
+ uint64_t parity_size = rr->rr_col[0].rc_size;
+ uint64_t abd_off = abd_offset;
+ uint64_t skip_off = 0;
+
+ ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
+ ASSERT3P(rr->rr_abd_empty, ==, NULL);
+
+ if (rr->rr_nempty > 0) {
+ rr->rr_abd_empty = abd_alloc_linear(rr->rr_nempty * skip_size,
+ B_FALSE);
+ }
+
+ for (uint64_t c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
+ raidz_col_t *rc = &rr->rr_col[c];
+
+ if (rc->rc_size == 0) {
+ /* empty data column (small read), add a skip sector */
+ ASSERT3U(skip_size, ==, parity_size);
+ ASSERT3U(rr->rr_nempty, !=, 0);
+ rc->rc_abd = abd_get_offset_size(rr->rr_abd_empty,
+ skip_off, skip_size);
+ skip_off += skip_size;
+ } else if (rc->rc_size == parity_size) {
+ /* this is a "big column" */
+ rc->rc_abd = abd_get_offset_size(zio->io_abd,
+ abd_off, rc->rc_size);
+ } else {
+ /* short data column, add a skip sector */
+ ASSERT3U(rc->rc_size + skip_size, ==, parity_size);
+ ASSERT3U(rr->rr_nempty, !=, 0);
+ rc->rc_abd = abd_alloc_gang_abd();
+ abd_gang_add(rc->rc_abd, abd_get_offset_size(
+ zio->io_abd, abd_off, rc->rc_size), B_TRUE);
+ abd_gang_add(rc->rc_abd, abd_get_offset_size(
+ rr->rr_abd_empty, skip_off, skip_size), B_TRUE);
+ skip_off += skip_size;
+ }
+
+ uint64_t abd_size = abd_get_size(rc->rc_abd);
+ ASSERT3U(abd_size, ==, abd_get_size(rr->rr_col[0].rc_abd));
+
+ /*
+ * Increase rc_size so the skip ABD is included in subsequent
+ * parity calculations.
+ */
+ abd_off += rc->rc_size;
+ rc->rc_size = abd_size;
+ }
+
+ IMPLY(abd_offset != 0, abd_off == zio->io_size);
+ ASSERT3U(skip_off, ==, rr->rr_nempty * skip_size);
+}
+
+/*
+ * Normal reads. In this common case only the columns containing data
+ * are read in to the zio ABDs. Neither the parity columns or empty skip
+ * sectors are read unless the checksum fails verification. In which case
+ * vdev_raidz_read_all() will call vdev_draid_map_alloc_empty() to expand
+ * the raid map in order to allow reconstruction using the parity data and
+ * skip sectors.
+ */
+static void
+vdev_draid_map_alloc_read(zio_t *zio, uint64_t abd_offset, raidz_row_t *rr)
+{
+ uint64_t abd_off = abd_offset;
+
+ ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
+
+ for (uint64_t c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
+ raidz_col_t *rc = &rr->rr_col[c];
+
+ if (rc->rc_size > 0) {
+ rc->rc_abd = abd_get_offset_size(zio->io_abd,
+ abd_off, rc->rc_size);
+ abd_off += rc->rc_size;
+ }
+ }
+
+ IMPLY(abd_offset != 0, abd_off == zio->io_size);
+}
+
+/*
+ * Converts a normal "read" raidz_row_t to a "scrub" raidz_row_t. The key
+ * difference is that an ABD is allocated to back skip sectors so they may
+ * be read in to memory, verified, and repaired if needed.
+ */
+void
+vdev_draid_map_alloc_empty(zio_t *zio, raidz_row_t *rr)
+{
+ uint64_t skip_size = 1ULL << zio->io_vd->vdev_top->vdev_ashift;
+ uint64_t parity_size = rr->rr_col[0].rc_size;
+ uint64_t skip_off = 0;
+
+ ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
+ ASSERT3P(rr->rr_abd_empty, ==, NULL);
+
+ if (rr->rr_nempty > 0) {
+ rr->rr_abd_empty = abd_alloc_linear(rr->rr_nempty * skip_size,
+ B_FALSE);
+ }
+
+ for (uint64_t c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
+ raidz_col_t *rc = &rr->rr_col[c];
+
+ if (rc->rc_size == 0) {
+ /* empty data column (small read), add a skip sector */
+ ASSERT3U(skip_size, ==, parity_size);
+ ASSERT3U(rr->rr_nempty, !=, 0);
+ ASSERT3P(rc->rc_abd, ==, NULL);
+ rc->rc_abd = abd_get_offset_size(rr->rr_abd_empty,
+ skip_off, skip_size);
+ skip_off += skip_size;
+ } else if (rc->rc_size == parity_size) {
+ /* this is a "big column", nothing to add */
+ ASSERT3P(rc->rc_abd, !=, NULL);
+ } else {
+ /* short data column, add a skip sector */
+ ASSERT3U(rc->rc_size + skip_size, ==, parity_size);
+ ASSERT3U(rr->rr_nempty, !=, 0);
+ ASSERT3P(rc->rc_abd, !=, NULL);
+ ASSERT(!abd_is_gang(rc->rc_abd));
+ abd_t *read_abd = rc->rc_abd;
+ rc->rc_abd = abd_alloc_gang_abd();
+ abd_gang_add(rc->rc_abd, read_abd, B_TRUE);
+ abd_gang_add(rc->rc_abd, abd_get_offset_size(
+ rr->rr_abd_empty, skip_off, skip_size), B_TRUE);
+ skip_off += skip_size;
+ }
+
+ /*
+ * Increase rc_size so the empty ABD is included in subsequent
+ * parity calculations.
+ */
+ rc->rc_size = parity_size;
+ }
+
+ ASSERT3U(skip_off, ==, rr->rr_nempty * skip_size);
+}
+
+/*
+ * Given a logical address within a dRAID configuration, return the physical
+ * address on the first drive in the group that this address maps to
+ * (at position 'start' in permutation number 'perm').
+ */
+static uint64_t
+vdev_draid_logical_to_physical(vdev_t *vd, uint64_t logical_offset,
+ uint64_t *perm, uint64_t *start)
+{
+ vdev_draid_config_t *vdc = vd->vdev_tsd;
+
+ /* b is the dRAID (parent) sector offset. */
+ uint64_t ashift = vd->vdev_top->vdev_ashift;
+ uint64_t b_offset = logical_offset >> ashift;
+
+ /*
+ * The height of a row in units of the vdev's minimum sector size.
+ * This is the amount of data written to each disk of each group
+ * in a given permutation.
+ */
+ uint64_t rowheight_sectors = VDEV_DRAID_ROWHEIGHT >> ashift;
+
+ /*
+ * We cycle through a disk permutation every groupsz * ngroups chunk
+ * of address space. Note that ngroups * groupsz must be a multiple
+ * of the number of data drives (ndisks) in order to guarantee
+ * alignment. So, for example, if our row height is 16MB, our group
+ * size is 10, and there are 13 data drives in the draid, then ngroups
+ * will be 13, we will change permutation every 2.08GB and each
+ * disk will have 160MB of data per chunk.
+ */
+ uint64_t groupwidth = vdc->vdc_groupwidth;
+ uint64_t ngroups = vdc->vdc_ngroups;
+ uint64_t ndisks = vdc->vdc_ndisks;
+
+ /*
+ * groupstart is where the group this IO will land in "starts" in
+ * the permutation array.
+ */
+ uint64_t group = logical_offset / vdc->vdc_groupsz;
+ uint64_t groupstart = (group * groupwidth) % ndisks;
+ ASSERT3U(groupstart + groupwidth, <=, ndisks + groupstart);
+ *start = groupstart;
+
+ /* b_offset is the sector offset within a group chunk */
+ b_offset = b_offset % (rowheight_sectors * groupwidth);
+ ASSERT0(b_offset % groupwidth);
+
+ /*
+ * Find the starting byte offset on each child vdev:
+ * - within a permutation there are ngroups groups spread over the
+ * rows, where each row covers a slice portion of the disk
+ * - each permutation has (groupwidth * ngroups) / ndisks rows
+ * - so each permutation covers rows * slice portion of the disk
+ * - so we need to find the row where this IO group target begins
+ */
+ *perm = group / ngroups;
+ uint64_t row = (*perm * ((groupwidth * ngroups) / ndisks)) +
+ (((group % ngroups) * groupwidth) / ndisks);
+
+ return (((rowheight_sectors * row) +
+ (b_offset / groupwidth)) << ashift);
+}
+
+static uint64_t
+vdev_draid_map_alloc_row(zio_t *zio, raidz_row_t **rrp, uint64_t io_offset,
+ uint64_t abd_offset, uint64_t abd_size)
+{
+ vdev_t *vd = zio->io_vd;
+ vdev_draid_config_t *vdc = vd->vdev_tsd;
+ uint64_t ashift = vd->vdev_top->vdev_ashift;
+ uint64_t io_size = abd_size;
+ uint64_t io_asize = vdev_draid_asize(vd, io_size);
+ uint64_t group = vdev_draid_offset_to_group(vd, io_offset);
+ uint64_t start_offset = vdev_draid_group_to_offset(vd, group + 1);
+
+ /*
+ * Limit the io_size to the space remaining in the group. A second
+ * row in the raidz_map_t is created for the remainder.
+ */
+ if (io_offset + io_asize > start_offset) {
+ io_size = vdev_draid_asize_to_psize(vd,
+ start_offset - io_offset);
+ }
+
+ /*
+ * At most a block may span the logical end of one group and the start
+ * of the next group. Therefore, at the end of a group the io_size must
+ * span the group width evenly and the remainder must be aligned to the
+ * start of the next group.
+ */
+ IMPLY(abd_offset == 0 && io_size < zio->io_size,
+ (io_asize >> ashift) % vdc->vdc_groupwidth == 0);
+ IMPLY(abd_offset != 0,
+ vdev_draid_group_to_offset(vd, group) == io_offset);
+
+ /* Lookup starting byte offset on each child vdev */
+ uint64_t groupstart, perm;
+ uint64_t physical_offset = vdev_draid_logical_to_physical(vd,
+ io_offset, &perm, &groupstart);
+
+ /*
+ * If there is less than groupwidth drives available after the group
+ * start, the group is going to wrap onto the next row. 'wrap' is the
+ * group disk number that starts on the next row.
+ */
+ uint64_t ndisks = vdc->vdc_ndisks;
+ uint64_t groupwidth = vdc->vdc_groupwidth;
+ uint64_t wrap = groupwidth;
+
+ if (groupstart + groupwidth > ndisks)
+ wrap = ndisks - groupstart;
+
+ /* The io size in units of the vdev's minimum sector size. */
+ const uint64_t psize = io_size >> ashift;
+
+ /*
+ * "Quotient": The number of data sectors for this stripe on all but
+ * the "big column" child vdevs that also contain "remainder" data.
+ */
+ uint64_t q = psize / vdc->vdc_ndata;
+
+ /*
+ * "Remainder": The number of partial stripe data sectors in this I/O.
+ * This will add a sector to some, but not all, child vdevs.
+ */
+ uint64_t r = psize - q * vdc->vdc_ndata;
+
+ /* The number of "big columns" - those which contain remainder data. */
+ uint64_t bc = (r == 0 ? 0 : r + vdc->vdc_nparity);
+ ASSERT3U(bc, <, groupwidth);
+
+ /* The total number of data and parity sectors for this I/O. */
+ uint64_t tot = psize + (vdc->vdc_nparity * (q + (r == 0 ? 0 : 1)));
+
+ raidz_row_t *rr;
+ rr = kmem_alloc(offsetof(raidz_row_t, rr_col[groupwidth]), KM_SLEEP);
+ rr->rr_cols = groupwidth;
+ rr->rr_scols = groupwidth;
+ rr->rr_bigcols = bc;
+ rr->rr_missingdata = 0;
+ rr->rr_missingparity = 0;
+ rr->rr_firstdatacol = vdc->vdc_nparity;
+ rr->rr_abd_copy = NULL;
+ rr->rr_abd_empty = NULL;
+#ifdef ZFS_DEBUG
+ rr->rr_offset = io_offset;
+ rr->rr_size = io_size;
+#endif
+ *rrp = rr;
+
+ uint8_t *base;
+ uint64_t iter, asize = 0;
+ vdev_draid_get_perm(vdc, perm, &base, &iter);
+ for (uint64_t i = 0; i < groupwidth; i++) {
+ raidz_col_t *rc = &rr->rr_col[i];
+ uint64_t c = (groupstart + i) % ndisks;
+
+ /* increment the offset if we wrap to the next row */
+ if (i == wrap)
+ physical_offset += VDEV_DRAID_ROWHEIGHT;
+
+ rc->rc_devidx = vdev_draid_permute_id(vdc, base, iter, c);
+ rc->rc_offset = physical_offset;
+ rc->rc_abd = NULL;
+ rc->rc_gdata = NULL;
+ rc->rc_orig_data = NULL;
+ rc->rc_error = 0;
+ rc->rc_tried = 0;
+ rc->rc_skipped = 0;
+ rc->rc_repair = 0;
+ rc->rc_need_orig_restore = B_FALSE;
+
+ if (q == 0 && i >= bc)
+ rc->rc_size = 0;
+ else if (i < bc)
+ rc->rc_size = (q + 1) << ashift;
+ else
+ rc->rc_size = q << ashift;
+
+ asize += rc->rc_size;
+ }
+
+ ASSERT3U(asize, ==, tot << ashift);
+ rr->rr_nempty = roundup(tot, groupwidth) - tot;
+ IMPLY(bc > 0, rr->rr_nempty == groupwidth - bc);
+
+ /* Allocate buffers for the parity columns */
+ for (uint64_t c = 0; c < rr->rr_firstdatacol; c++) {
+ raidz_col_t *rc = &rr->rr_col[c];
+ rc->rc_abd = abd_alloc_linear(rc->rc_size, B_FALSE);
+ }
+
+ /*
+ * Map buffers for data columns and allocate/map buffers for skip
+ * sectors. There are three distinct cases for dRAID which are
+ * required to support sequential rebuild.
+ */
+ if (zio->io_type == ZIO_TYPE_WRITE) {
+ vdev_draid_map_alloc_write(zio, abd_offset, rr);
+ } else if ((rr->rr_nempty > 0) &&
+ (zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER))) {
+ vdev_draid_map_alloc_scrub(zio, abd_offset, rr);
+ } else {
+ ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
+ vdev_draid_map_alloc_read(zio, abd_offset, rr);
+ }
+
+ return (io_size);
+}
+
+/*
+ * Allocate the raidz mapping to be applied to the dRAID I/O. The parity
+ * calculations for dRAID are identical to raidz however there are a few
+ * differences in the layout.
+ *
+ * - dRAID always allocates a full stripe width. Any extra sectors due
+ * this padding are zero filled and written to disk. They will be read
+ * back during a scrub or repair operation since they are included in
+ * the parity calculation. This property enables sequential resilvering.
+ *
+ * - When the block at the logical offset spans redundancy groups then two
+ * rows are allocated in the raidz_map_t. One row resides at the end of
+ * the first group and the other at the start of the following group.
+ */
+static raidz_map_t *
+vdev_draid_map_alloc(zio_t *zio)
+{
+ raidz_row_t *rr[2];
+ uint64_t abd_offset = 0;
+ uint64_t abd_size = zio->io_size;
+ uint64_t io_offset = zio->io_offset;
+ uint64_t size;
+ int nrows = 1;
+
+ size = vdev_draid_map_alloc_row(zio, &rr[0], io_offset,
+ abd_offset, abd_size);
+ if (size < abd_size) {
+ vdev_t *vd = zio->io_vd;
+
+ io_offset += vdev_draid_asize(vd, size);
+ abd_offset += size;
+ abd_size -= size;
+ nrows++;
+
+ ASSERT3U(io_offset, ==, vdev_draid_group_to_offset(
+ vd, vdev_draid_offset_to_group(vd, io_offset)));
+ ASSERT3U(abd_offset, <, zio->io_size);
+ ASSERT3U(abd_size, !=, 0);
+
+ size = vdev_draid_map_alloc_row(zio, &rr[1],
+ io_offset, abd_offset, abd_size);
+ VERIFY3U(size, ==, abd_size);
+ }
+
+ raidz_map_t *rm;
+ rm = kmem_zalloc(offsetof(raidz_map_t, rm_row[nrows]), KM_SLEEP);
+ rm->rm_ops = vdev_raidz_math_get_ops();
+ rm->rm_nrows = nrows;
+ rm->rm_row[0] = rr[0];
+ if (nrows == 2)
+ rm->rm_row[1] = rr[1];
+
+ zio->io_vsd = rm;
+ zio->io_vsd_ops = &vdev_draid_vsd_ops;
+
+ return (rm);
+}
+
+/*
+ * Given an offset into a dRAID return the next group width aligned offset
+ * which can be used to start an allocation.
+ */
+static uint64_t
+vdev_draid_get_astart(vdev_t *vd, const uint64_t start)
+{
+ vdev_draid_config_t *vdc = vd->vdev_tsd;
+
+ ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
+
+ return (roundup(start, vdc->vdc_groupwidth << vd->vdev_ashift));
+}
+
+/*
+ * Allocatable space for dRAID is (children - nspares) * sizeof(smallest child)
+ * rounded down to the last full slice. So each child must provide at least
+ * 1 / (children - nspares) of its asize.
+ */
+static uint64_t
+vdev_draid_min_asize(vdev_t *vd)
+{
+ vdev_draid_config_t *vdc = vd->vdev_tsd;
+
+ ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
+
+ return ((vd->vdev_min_asize + vdc->vdc_ndisks - 1) / (vdc->vdc_ndisks));
+}
+
+/*
+ * When using dRAID the minimum allocation size is determined by the number
+ * of data disks in the redundancy group. Full stripes are always used.
+ */
+static uint64_t
+vdev_draid_min_alloc(vdev_t *vd)
+{
+ vdev_draid_config_t *vdc = vd->vdev_tsd;
+
+ ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
+
+ return (vdc->vdc_ndata << vd->vdev_ashift);
+}
+
+/*
+ * Returns true if the txg range does not exist on any leaf vdev.
+ *
+ * A dRAID spare does not fit into the DTL model. While it has child vdevs
+ * there is no redundancy among them, and the effective child vdev is
+ * determined by offset. Essentially we do a vdev_dtl_reassess() on the
+ * fly by replacing a dRAID spare with the child vdev under the offset.
+ * Note that it is a recursive process because the child vdev can be
+ * another dRAID spare and so on.
+ */
+boolean_t
+vdev_draid_missing(vdev_t *vd, uint64_t physical_offset, uint64_t txg,
+ uint64_t size)
+{
+ if (vd->vdev_ops == &vdev_spare_ops ||
+ vd->vdev_ops == &vdev_replacing_ops) {
+ /*
+ * Check all of the readable children, if any child
+ * contains the txg range the data it is not missing.
+ */
+ for (int c = 0; c < vd->vdev_children; c++) {
+ vdev_t *cvd = vd->vdev_child[c];
+
+ if (!vdev_readable(cvd))
+ continue;
+
+ if (!vdev_draid_missing(cvd, physical_offset,
+ txg, size))
+ return (B_FALSE);
+ }
+
+ return (B_TRUE);
+ }
+
+ if (vd->vdev_ops == &vdev_draid_spare_ops) {
+ /*
+ * When sequentially resilvering we don't have a proper
+ * txg range so instead we must presume all txgs are
+ * missing on this vdev until the resilver completes.
+ */
+ if (vd->vdev_rebuild_txg != 0)
+ return (B_TRUE);
+
+ /*
+ * DTL_MISSING is set for all prior txgs when a resilver
+ * is started in spa_vdev_attach().
+ */
+ if (vdev_dtl_contains(vd, DTL_MISSING, txg, size))
+ return (B_TRUE);
+
+ /*
+ * Consult the DTL on the relevant vdev. Either a vdev
+ * leaf or spare/replace mirror child may be returned so
+ * we must recursively call vdev_draid_missing_impl().
+ */
+ vd = vdev_draid_spare_get_child(vd, physical_offset);
+ if (vd == NULL)
+ return (B_TRUE);
+
+ return (vdev_draid_missing(vd, physical_offset,
+ txg, size));
+ }
+
+ return (vdev_dtl_contains(vd, DTL_MISSING, txg, size));
+}
+
+/*
+ * Returns true if the txg is only partially replicated on the leaf vdevs.
+ */
+static boolean_t
+vdev_draid_partial(vdev_t *vd, uint64_t physical_offset, uint64_t txg,
+ uint64_t size)
+{
+ if (vd->vdev_ops == &vdev_spare_ops ||
+ vd->vdev_ops == &vdev_replacing_ops) {
+ /*
+ * Check all of the readable children, if any child is
+ * missing the txg range then it is partially replicated.
+ */
+ for (int c = 0; c < vd->vdev_children; c++) {
+ vdev_t *cvd = vd->vdev_child[c];
+
+ if (!vdev_readable(cvd))
+ continue;
+
+ if (vdev_draid_partial(cvd, physical_offset, txg, size))
+ return (B_TRUE);
+ }
+
+ return (B_FALSE);
+ }
+
+ if (vd->vdev_ops == &vdev_draid_spare_ops) {
+ /*
+ * When sequentially resilvering we don't have a proper
+ * txg range so instead we must presume all txgs are
+ * missing on this vdev until the resilver completes.
+ */
+ if (vd->vdev_rebuild_txg != 0)
+ return (B_TRUE);
+
+ /*
+ * DTL_MISSING is set for all prior txgs when a resilver
+ * is started in spa_vdev_attach().
+ */
+ if (vdev_dtl_contains(vd, DTL_MISSING, txg, size))
+ return (B_TRUE);
+
+ /*
+ * Consult the DTL on the relevant vdev. Either a vdev
+ * leaf or spare/replace mirror child may be returned so
+ * we must recursively call vdev_draid_missing_impl().
+ */
+ vd = vdev_draid_spare_get_child(vd, physical_offset);
+ if (vd == NULL)
+ return (B_TRUE);
+
+ return (vdev_draid_partial(vd, physical_offset, txg, size));
+ }
+
+ return (vdev_dtl_contains(vd, DTL_MISSING, txg, size));
+}
+
+/*
+ * Determine if the vdev is readable at the given offset.
+ */
+boolean_t
+vdev_draid_readable(vdev_t *vd, uint64_t physical_offset)
+{
+ if (vd->vdev_ops == &vdev_draid_spare_ops) {
+ vd = vdev_draid_spare_get_child(vd, physical_offset);
+ if (vd == NULL)
+ return (B_FALSE);
+ }
+
+ if (vd->vdev_ops == &vdev_spare_ops ||
+ vd->vdev_ops == &vdev_replacing_ops) {
+
+ for (int c = 0; c < vd->vdev_children; c++) {
+ vdev_t *cvd = vd->vdev_child[c];
+
+ if (!vdev_readable(cvd))
+ continue;
+
+ if (vdev_draid_readable(cvd, physical_offset))
+ return (B_TRUE);
+ }
+
+ return (B_FALSE);
+ }
+
+ return (vdev_readable(vd));
+}
+
+/*
+ * Returns the first distributed spare found under the provided vdev tree.
+ */
+static vdev_t *
+vdev_draid_find_spare(vdev_t *vd)
+{
+ if (vd->vdev_ops == &vdev_draid_spare_ops)
+ return (vd);
+
+ for (int c = 0; c < vd->vdev_children; c++) {
+ vdev_t *svd = vdev_draid_find_spare(vd->vdev_child[c]);
+ if (svd != NULL)
+ return (svd);
+ }
+
+ return (NULL);
+}
+
+/*
+ * Returns B_TRUE if the passed in vdev is currently "faulted".
+ * Faulted, in this context, means that the vdev represents a
+ * replacing or sparing vdev tree.
+ */
+static boolean_t
+vdev_draid_faulted(vdev_t *vd, uint64_t physical_offset)
+{
+ if (vd->vdev_ops == &vdev_draid_spare_ops) {
+ vd = vdev_draid_spare_get_child(vd, physical_offset);
+ if (vd == NULL)
+ return (B_FALSE);
+
+ /*
+ * After resolving the distributed spare to a leaf vdev
+ * check the parent to determine if it's "faulted".
+ */
+ vd = vd->vdev_parent;
+ }
+
+ return (vd->vdev_ops == &vdev_replacing_ops ||
+ vd->vdev_ops == &vdev_spare_ops);
+}
+
+/*
+ * Determine if the dRAID block at the logical offset is degraded.
+ * Used by sequential resilver.
+ */
+static boolean_t
+vdev_draid_group_degraded(vdev_t *vd, uint64_t offset)
+{
+ vdev_draid_config_t *vdc = vd->vdev_tsd;
+
+ ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
+ ASSERT3U(vdev_draid_get_astart(vd, offset), ==, offset);
+
+ uint64_t groupstart, perm;
+ uint64_t physical_offset = vdev_draid_logical_to_physical(vd,
+ offset, &perm, &groupstart);
+
+ uint8_t *base;
+ uint64_t iter;
+ vdev_draid_get_perm(vdc, perm, &base, &iter);
+
+ for (uint64_t i = 0; i < vdc->vdc_groupwidth; i++) {
+ uint64_t c = (groupstart + i) % vdc->vdc_ndisks;
+ uint64_t cid = vdev_draid_permute_id(vdc, base, iter, c);
+ vdev_t *cvd = vd->vdev_child[cid];
+
+ /* Group contains a faulted vdev. */
+ if (vdev_draid_faulted(cvd, physical_offset))
+ return (B_TRUE);
+
+ /*
+ * Always check groups with active distributed spares
+ * because any vdev failure in the pool will affect them.
+ */
+ if (vdev_draid_find_spare(cvd) != NULL)
+ return (B_TRUE);
+ }
+
+ return (B_FALSE);
+}
+
+/*
+ * Determine if the txg is missing. Used by healing resilver.
+ */
+static boolean_t
+vdev_draid_group_missing(vdev_t *vd, uint64_t offset, uint64_t txg,
+ uint64_t size)
+{
+ vdev_draid_config_t *vdc = vd->vdev_tsd;
+
+ ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
+ ASSERT3U(vdev_draid_get_astart(vd, offset), ==, offset);
+
+ uint64_t groupstart, perm;
+ uint64_t physical_offset = vdev_draid_logical_to_physical(vd,
+ offset, &perm, &groupstart);
+
+ uint8_t *base;
+ uint64_t iter;
+ vdev_draid_get_perm(vdc, perm, &base, &iter);
+
+ for (uint64_t i = 0; i < vdc->vdc_groupwidth; i++) {
+ uint64_t c = (groupstart + i) % vdc->vdc_ndisks;
+ uint64_t cid = vdev_draid_permute_id(vdc, base, iter, c);
+ vdev_t *cvd = vd->vdev_child[cid];
+
+ /* Transaction group is known to be partially replicated. */
+ if (vdev_draid_partial(cvd, physical_offset, txg, size))
+ return (B_TRUE);
+
+ /*
+ * Always check groups with active distributed spares
+ * because any vdev failure in the pool will affect them.
+ */
+ if (vdev_draid_find_spare(cvd) != NULL)
+ return (B_TRUE);
+ }
+
+ return (B_FALSE);
+}
+
+/*
+ * Find the smallest child asize and largest sector size to calculate the
+ * available capacity. Distributed spares are ignored since their capacity
+ * is also based of the minimum child size in the top-level dRAID.
+ */
+static void
+vdev_draid_calculate_asize(vdev_t *vd, uint64_t *asizep, uint64_t *max_asizep,
+ uint64_t *logical_ashiftp, uint64_t *physical_ashiftp)
+{
+ uint64_t logical_ashift = 0, physical_ashift = 0;
+ uint64_t asize = 0, max_asize = 0;
+
+ ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
+
+ for (int c = 0; c < vd->vdev_children; c++) {
+ vdev_t *cvd = vd->vdev_child[c];
+
+ if (cvd->vdev_ops == &vdev_draid_spare_ops)
+ continue;
+
+ asize = MIN(asize - 1, cvd->vdev_asize - 1) + 1;
+ max_asize = MIN(max_asize - 1, cvd->vdev_max_asize - 1) + 1;
+ logical_ashift = MAX(logical_ashift, cvd->vdev_ashift);
+ physical_ashift = MAX(physical_ashift,
+ cvd->vdev_physical_ashift);
+ }
+
+ *asizep = asize;
+ *max_asizep = max_asize;
+ *logical_ashiftp = logical_ashift;
+ *physical_ashiftp = physical_ashift;
+}
+
+/*
+ * Open spare vdevs.
+ */
+static boolean_t
+vdev_draid_open_spares(vdev_t *vd)
+{
+ return (vd->vdev_ops == &vdev_draid_spare_ops ||
+ vd->vdev_ops == &vdev_replacing_ops ||
+ vd->vdev_ops == &vdev_spare_ops);
+}
+
+/*
+ * Open all children, excluding spares.
+ */
+static boolean_t
+vdev_draid_open_children(vdev_t *vd)
+{
+ return (!vdev_draid_open_spares(vd));
+}
+
+/*
+ * Open a top-level dRAID vdev.
+ */
+static int
+vdev_draid_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize,
+ uint64_t *logical_ashift, uint64_t *physical_ashift)
+{
+ vdev_draid_config_t *vdc = vd->vdev_tsd;
+ uint64_t nparity = vdc->vdc_nparity;
+ int open_errors = 0;
+
+ if (nparity > VDEV_DRAID_MAXPARITY ||
+ vd->vdev_children < nparity + 1) {
+ vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
+ return (SET_ERROR(EINVAL));
+ }
+
+ /*
+ * First open the normal children then the distributed spares. This
+ * ordering is important to ensure the distributed spares calculate
+ * the correct psize in the event that the dRAID vdevs were expanded.
+ */
+ vdev_open_children_subset(vd, vdev_draid_open_children);
+ vdev_open_children_subset(vd, vdev_draid_open_spares);
+
+ /* Verify enough of the children are available to continue. */
+ for (int c = 0; c < vd->vdev_children; c++) {
+ if (vd->vdev_child[c]->vdev_open_error != 0) {
+ if ((++open_errors) > nparity) {
+ vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS;
+ return (SET_ERROR(ENXIO));
+ }
+ }
+ }
+
+ /*
+ * Allocatable capacity is the sum of the space on all children less
+ * the number of distributed spares rounded down to last full row
+ * and then to the last full group. An additional 32MB of scratch
+ * space is reserved at the end of each child for use by the dRAID
+ * expansion feature.
+ */
+ uint64_t child_asize, child_max_asize;
+ vdev_draid_calculate_asize(vd, &child_asize, &child_max_asize,
+ logical_ashift, physical_ashift);
+
+ /*
+ * Should be unreachable since the minimum child size is 64MB, but
+ * we want to make sure an underflow absolutely cannot occur here.
+ */
+ if (child_asize < VDEV_DRAID_REFLOW_RESERVE ||
+ child_max_asize < VDEV_DRAID_REFLOW_RESERVE) {
+ return (SET_ERROR(ENXIO));
+ }
+
+ child_asize = ((child_asize - VDEV_DRAID_REFLOW_RESERVE) /
+ VDEV_DRAID_ROWHEIGHT) * VDEV_DRAID_ROWHEIGHT;
+ child_max_asize = ((child_max_asize - VDEV_DRAID_REFLOW_RESERVE) /
+ VDEV_DRAID_ROWHEIGHT) * VDEV_DRAID_ROWHEIGHT;
+
+ *asize = (((child_asize * vdc->vdc_ndisks) / vdc->vdc_groupsz) *
+ vdc->vdc_groupsz);
+ *max_asize = (((child_max_asize * vdc->vdc_ndisks) / vdc->vdc_groupsz) *
+ vdc->vdc_groupsz);
+
+ return (0);
+}
+
+/*
+ * Close a top-level dRAID vdev.
+ */
+static void
+vdev_draid_close(vdev_t *vd)
+{
+ for (int c = 0; c < vd->vdev_children; c++) {
+ if (vd->vdev_child[c] != NULL)
+ vdev_close(vd->vdev_child[c]);
+ }
+}
+
+/*
+ * Return the maximum asize for a rebuild zio in the provided range
+ * given the following constraints. A dRAID chunks may not:
+ *
+ * - Exceed the maximum allowed block size (SPA_MAXBLOCKSIZE), or
+ * - Span dRAID redundancy groups.
+ */
+static uint64_t
+vdev_draid_rebuild_asize(vdev_t *vd, uint64_t start, uint64_t asize,
+ uint64_t max_segment)
+{
+ vdev_draid_config_t *vdc = vd->vdev_tsd;
+
+ ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
+
+ uint64_t ashift = vd->vdev_ashift;
+ uint64_t ndata = vdc->vdc_ndata;
+ uint64_t psize = MIN(P2ROUNDUP(max_segment * ndata, 1 << ashift),
+ SPA_MAXBLOCKSIZE);
+
+ ASSERT3U(vdev_draid_get_astart(vd, start), ==, start);
+ ASSERT3U(asize % (vdc->vdc_groupwidth << ashift), ==, 0);
+
+ /* Chunks must evenly span all data columns in the group. */
+ psize = (((psize >> ashift) / ndata) * ndata) << ashift;
+ uint64_t chunk_size = MIN(asize, vdev_psize_to_asize(vd, psize));
+
+ /* Reduce the chunk size to the group space remaining. */
+ uint64_t group = vdev_draid_offset_to_group(vd, start);
+ uint64_t left = vdev_draid_group_to_offset(vd, group + 1) - start;
+ chunk_size = MIN(chunk_size, left);
+
+ ASSERT3U(chunk_size % (vdc->vdc_groupwidth << ashift), ==, 0);
+ ASSERT3U(vdev_draid_offset_to_group(vd, start), ==,
+ vdev_draid_offset_to_group(vd, start + chunk_size - 1));
+
+ return (chunk_size);
+}
+
+/*
+ * Align the start of the metaslab to the group width and slightly reduce
+ * its size to a multiple of the group width. Since full stripe writes are
+ * required by dRAID this space is unallocable. Furthermore, aligning the
+ * metaslab start is important for vdev initialize and TRIM which both operate
+ * on metaslab boundaries which vdev_xlate() expects to be aligned.
+ */
+static void
+vdev_draid_metaslab_init(vdev_t *vd, uint64_t *ms_start, uint64_t *ms_size)
+{
+ vdev_draid_config_t *vdc = vd->vdev_tsd;
+
+ ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
+
+ uint64_t sz = vdc->vdc_groupwidth << vd->vdev_ashift;
+ uint64_t astart = vdev_draid_get_astart(vd, *ms_start);
+ uint64_t asize = ((*ms_size - (astart - *ms_start)) / sz) * sz;
+
+ *ms_start = astart;
+ *ms_size = asize;
+
+ ASSERT0(*ms_start % sz);
+ ASSERT0(*ms_size % sz);
+}
+
+/*
+ * Add virtual dRAID spares to the list of valid spares. In order to accomplish
+ * this the existing array must be freed and reallocated with the additional
+ * entries.
+ */
+int
+vdev_draid_spare_create(nvlist_t *nvroot, vdev_t *vd, uint64_t *ndraidp,
+ uint64_t next_vdev_id)
+{
+ uint64_t draid_nspares = 0;
+ uint64_t ndraid = 0;
+ int error;
+
+ for (uint64_t i = 0; i < vd->vdev_children; i++) {
+ vdev_t *cvd = vd->vdev_child[i];
+
+ if (cvd->vdev_ops == &vdev_draid_ops) {
+ vdev_draid_config_t *vdc = cvd->vdev_tsd;
+ draid_nspares += vdc->vdc_nspares;
+ ndraid++;
+ }
+ }
+
+ if (draid_nspares == 0) {
+ *ndraidp = ndraid;
+ return (0);
+ }
+
+ nvlist_t **old_spares, **new_spares;
+ uint_t old_nspares;
+ error = nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
+ &old_spares, &old_nspares);
+ if (error)
+ old_nspares = 0;
+
+ /* Allocate memory and copy of the existing spares. */
+ new_spares = kmem_alloc(sizeof (nvlist_t *) *
+ (draid_nspares + old_nspares), KM_SLEEP);
+ for (uint_t i = 0; i < old_nspares; i++)
+ new_spares[i] = fnvlist_dup(old_spares[i]);
+
+ /* Add new distributed spares to ZPOOL_CONFIG_SPARES. */
+ uint64_t n = old_nspares;
+ for (uint64_t vdev_id = 0; vdev_id < vd->vdev_children; vdev_id++) {
+ vdev_t *cvd = vd->vdev_child[vdev_id];
+ char path[64];
+
+ if (cvd->vdev_ops != &vdev_draid_ops)
+ continue;
+
+ vdev_draid_config_t *vdc = cvd->vdev_tsd;
+ uint64_t nspares = vdc->vdc_nspares;
+ uint64_t nparity = vdc->vdc_nparity;
+
+ for (uint64_t spare_id = 0; spare_id < nspares; spare_id++) {
+ bzero(path, sizeof (path));
+ (void) snprintf(path, sizeof (path) - 1,
+ "%s%llu-%llu-%llu", VDEV_TYPE_DRAID,
+ (u_longlong_t)nparity,
+ (u_longlong_t)next_vdev_id + vdev_id,
+ (u_longlong_t)spare_id);
+
+ nvlist_t *spare = fnvlist_alloc();
+ fnvlist_add_string(spare, ZPOOL_CONFIG_PATH, path);
+ fnvlist_add_string(spare, ZPOOL_CONFIG_TYPE,
+ VDEV_TYPE_DRAID_SPARE);
+ fnvlist_add_uint64(spare, ZPOOL_CONFIG_TOP_GUID,
+ cvd->vdev_guid);
+ fnvlist_add_uint64(spare, ZPOOL_CONFIG_SPARE_ID,
+ spare_id);
+ fnvlist_add_uint64(spare, ZPOOL_CONFIG_IS_LOG, 0);
+ fnvlist_add_uint64(spare, ZPOOL_CONFIG_IS_SPARE, 1);
+ fnvlist_add_uint64(spare, ZPOOL_CONFIG_WHOLE_DISK, 1);
+ fnvlist_add_uint64(spare, ZPOOL_CONFIG_ASHIFT,
+ cvd->vdev_ashift);
+
+ new_spares[n] = spare;
+ n++;
+ }
+ }
+
+ if (n > 0) {
+ (void) nvlist_remove_all(nvroot, ZPOOL_CONFIG_SPARES);
+ fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
+ new_spares, n);
+ }
+
+ for (int i = 0; i < n; i++)
+ nvlist_free(new_spares[i]);
+
+ kmem_free(new_spares, sizeof (*new_spares) * n);
+ *ndraidp = ndraid;
+
+ return (0);
+}
+
+/*
+ * Determine if any portion of the provided block resides on a child vdev
+ * with a dirty DTL and therefore needs to be resilvered.
+ */
+static boolean_t
+vdev_draid_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
+ uint64_t phys_birth)
+{
+ uint64_t offset = DVA_GET_OFFSET(dva);
+ uint64_t asize = vdev_draid_asize(vd, psize);
+
+ if (phys_birth == TXG_UNKNOWN) {
+ /*
+ * Sequential resilver. There is no meaningful phys_birth
+ * for this block, we can only determine if block resides
+ * in a degraded group in which case it must be resilvered.
+ */
+ ASSERT3U(vdev_draid_offset_to_group(vd, offset), ==,
+ vdev_draid_offset_to_group(vd, offset + asize - 1));
+
+ return (vdev_draid_group_degraded(vd, offset));
+ } else {
+ /*
+ * Healing resilver. TXGs not in DTL_PARTIAL are intact,
+ * as are blocks in non-degraded groups.
+ */
+ if (!vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1))
+ return (B_FALSE);
+
+ if (vdev_draid_group_missing(vd, offset, phys_birth, 1))
+ return (B_TRUE);
+
+ /* The block may span groups in which case check both. */
+ if (vdev_draid_offset_to_group(vd, offset) !=
+ vdev_draid_offset_to_group(vd, offset + asize - 1)) {
+ if (vdev_draid_group_missing(vd,
+ offset + asize, phys_birth, 1))
+ return (B_TRUE);
+ }
+
+ return (B_FALSE);
+ }
+}
+
+static boolean_t
+vdev_draid_rebuilding(vdev_t *vd)
+{
+ if (vd->vdev_ops->vdev_op_leaf && vd->vdev_rebuild_txg)
+ return (B_TRUE);
+
+ for (int i = 0; i < vd->vdev_children; i++) {
+ if (vdev_draid_rebuilding(vd->vdev_child[i])) {
+ return (B_TRUE);
+ }
+ }
+
+ return (B_FALSE);
+}
+
+static void
+vdev_draid_io_verify(vdev_t *vd, raidz_row_t *rr, int col)
+{
+#ifdef ZFS_DEBUG
+ range_seg64_t logical_rs, physical_rs, remain_rs;
+ logical_rs.rs_start = rr->rr_offset;
+ logical_rs.rs_end = logical_rs.rs_start +
+ vdev_draid_asize(vd, rr->rr_size);
+
+ raidz_col_t *rc = &rr->rr_col[col];
+ vdev_t *cvd = vd->vdev_child[rc->rc_devidx];
+
+ vdev_xlate(cvd, &logical_rs, &physical_rs, &remain_rs);
+ ASSERT(vdev_xlate_is_empty(&remain_rs));
+ ASSERT3U(rc->rc_offset, ==, physical_rs.rs_start);
+ ASSERT3U(rc->rc_offset, <, physical_rs.rs_end);
+ ASSERT3U(rc->rc_offset + rc->rc_size, ==, physical_rs.rs_end);
+#endif
+}
+
+/*
+ * For write operations:
+ * 1. Generate the parity data
+ * 2. Create child zio write operations to each column's vdev, for both
+ * data and parity. A gang ABD is allocated by vdev_draid_map_alloc()
+ * if a skip sector needs to be added to a column.
+ */
+static void
+vdev_draid_io_start_write(zio_t *zio, raidz_row_t *rr)
+{
+ vdev_t *vd = zio->io_vd;
+ raidz_map_t *rm = zio->io_vsd;
+
+ vdev_raidz_generate_parity_row(rm, rr);
+
+ for (int c = 0; c < rr->rr_cols; c++) {
+ raidz_col_t *rc = &rr->rr_col[c];
+
+ /*
+ * Empty columns are zero filled and included in the parity
+ * calculation and therefore must be written.
+ */
+ ASSERT3U(rc->rc_size, !=, 0);
+
+ /* Verify physical to logical translation */
+ vdev_draid_io_verify(vd, rr, c);
+
+ zio_nowait(zio_vdev_child_io(zio, NULL,
+ vd->vdev_child[rc->rc_devidx], rc->rc_offset,
+ rc->rc_abd, rc->rc_size, zio->io_type, zio->io_priority,
+ 0, vdev_raidz_child_done, rc));
+ }
+}
+
+/*
+ * For read operations:
+ * 1. The vdev_draid_map_alloc() function will create a minimal raidz
+ * mapping for the read based on the zio->io_flags. There are two
+ * possible mappings either 1) a normal read, or 2) a scrub/resilver.
+ * 2. Create the zio read operations. This will include all parity
+ * columns and skip sectors for a scrub/resilver.
+ */
+static void
+vdev_draid_io_start_read(zio_t *zio, raidz_row_t *rr)
+{
+ vdev_t *vd = zio->io_vd;
+
+ /* Sequential rebuild must do IO at redundancy group boundary. */
+ IMPLY(zio->io_priority == ZIO_PRIORITY_REBUILD, rr->rr_nempty == 0);
+
+ /*
+ * Iterate over the columns in reverse order so that we hit the parity
+ * last. Any errors along the way will force us to read the parity.
+ * For scrub/resilver IOs which verify skip sectors, a gang ABD will
+ * have been allocated to store them and rc->rc_size is increased.
+ */
+ for (int c = rr->rr_cols - 1; c >= 0; c--) {
+ raidz_col_t *rc = &rr->rr_col[c];
+ vdev_t *cvd = vd->vdev_child[rc->rc_devidx];
+
+ if (!vdev_draid_readable(cvd, rc->rc_offset)) {
+ if (c >= rr->rr_firstdatacol)
+ rr->rr_missingdata++;
+ else
+ rr->rr_missingparity++;
+ rc->rc_error = SET_ERROR(ENXIO);
+ rc->rc_tried = 1;
+ rc->rc_skipped = 1;
+ continue;
+ }
+
+ if (vdev_draid_missing(cvd, rc->rc_offset, zio->io_txg, 1)) {
+ if (c >= rr->rr_firstdatacol)
+ rr->rr_missingdata++;
+ else
+ rr->rr_missingparity++;
+ rc->rc_error = SET_ERROR(ESTALE);
+ rc->rc_skipped = 1;
+ continue;
+ }
+
+ /*
+ * Empty columns may be read during vdev_draid_io_done().
+ * Only skip them after the readable and missing checks
+ * verify they are available.
+ */
+ if (rc->rc_size == 0) {
+ rc->rc_skipped = 1;
+ continue;
+ }
+
+ if (zio->io_flags & ZIO_FLAG_RESILVER) {
+ vdev_t *svd;
+
+ /*
+ * If this child is a distributed spare then the
+ * offset might reside on the vdev being replaced.
+ * In which case this data must be written to the
+ * new device. Failure to do so would result in
+ * checksum errors when the old device is detached
+ * and the pool is scrubbed.
+ */
+ if ((svd = vdev_draid_find_spare(cvd)) != NULL) {
+ svd = vdev_draid_spare_get_child(svd,
+ rc->rc_offset);
+ if (svd && (svd->vdev_ops == &vdev_spare_ops ||
+ svd->vdev_ops == &vdev_replacing_ops)) {
+ rc->rc_repair = 1;
+ }
+ }
+
+ /*
+ * Always issue a repair IO to this child when its
+ * a spare or replacing vdev with an active rebuild.
+ */
+ if ((cvd->vdev_ops == &vdev_spare_ops ||
+ cvd->vdev_ops == &vdev_replacing_ops) &&
+ vdev_draid_rebuilding(cvd)) {
+ rc->rc_repair = 1;
+ }
+ }
+ }
+
+ /*
+ * Either a parity or data column is missing this means a repair
+ * may be attempted by vdev_draid_io_done(). Expand the raid map
+ * to read in empty columns which are needed along with the parity
+ * during reconstruction.
+ */
+ if ((rr->rr_missingdata > 0 || rr->rr_missingparity > 0) &&
+ rr->rr_nempty > 0 && rr->rr_abd_empty == NULL) {
+ vdev_draid_map_alloc_empty(zio, rr);
+ }
+
+ for (int c = rr->rr_cols - 1; c >= 0; c--) {
+ raidz_col_t *rc = &rr->rr_col[c];
+ vdev_t *cvd = vd->vdev_child[rc->rc_devidx];
+
+ if (rc->rc_error || rc->rc_size == 0)
+ continue;
+
+ if (c >= rr->rr_firstdatacol || rr->rr_missingdata > 0 ||
+ (zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER))) {
+ zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
+ rc->rc_offset, rc->rc_abd, rc->rc_size,
+ zio->io_type, zio->io_priority, 0,
+ vdev_raidz_child_done, rc));
+ }
+ }
+}
+
+/*
+ * Start an IO operation to a dRAID vdev.
+ */
+static void
+vdev_draid_io_start(zio_t *zio)
+{
+ vdev_t *vd __maybe_unused = zio->io_vd;
+ raidz_map_t *rm;
+
+ ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
+ ASSERT3U(zio->io_offset, ==, vdev_draid_get_astart(vd, zio->io_offset));
+
+ rm = vdev_draid_map_alloc(zio);
+
+ if (zio->io_type == ZIO_TYPE_WRITE) {
+ for (int i = 0; i < rm->rm_nrows; i++) {
+ vdev_draid_io_start_write(zio, rm->rm_row[i]);
+ }
+ } else {
+ ASSERT(zio->io_type == ZIO_TYPE_READ);
+
+ for (int i = 0; i < rm->rm_nrows; i++) {
+ vdev_draid_io_start_read(zio, rm->rm_row[i]);
+ }
+ }
+
+ zio_execute(zio);
+}
+
+/*
+ * Complete an IO operation on a dRAID vdev. The raidz logic can be applied
+ * to dRAID since the layout is fully described by the raidz_map_t.
+ */
+static void
+vdev_draid_io_done(zio_t *zio)
+{
+ vdev_raidz_io_done(zio);
+}
+
+static void
+vdev_draid_state_change(vdev_t *vd, int faulted, int degraded)
+{
+ vdev_draid_config_t *vdc = vd->vdev_tsd;
+ ASSERT(vd->vdev_ops == &vdev_draid_ops);
+
+ if (faulted > vdc->vdc_nparity)
+ vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
+ VDEV_AUX_NO_REPLICAS);
+ else if (degraded + faulted != 0)
+ vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE);
+ else
+ vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE);
+}
+
+static void
+vdev_draid_xlate(vdev_t *cvd, const range_seg64_t *logical_rs,
+ range_seg64_t *physical_rs, range_seg64_t *remain_rs)
+{
+ vdev_t *raidvd = cvd->vdev_parent;
+ ASSERT(raidvd->vdev_ops == &vdev_draid_ops);
+
+ vdev_draid_config_t *vdc = raidvd->vdev_tsd;
+ uint64_t ashift = raidvd->vdev_top->vdev_ashift;
+
+ /* Make sure the offsets are block-aligned */
+ ASSERT0(logical_rs->rs_start % (1 << ashift));
+ ASSERT0(logical_rs->rs_end % (1 << ashift));
+
+ uint64_t logical_start = logical_rs->rs_start;
+ uint64_t logical_end = logical_rs->rs_end;
+
+ /*
+ * Unaligned ranges must be skipped. All metaslabs are correctly
+ * aligned so this should not happen, but this case is handled in
+ * case it's needed by future callers.
+ */
+ uint64_t astart = vdev_draid_get_astart(raidvd, logical_start);
+ if (astart != logical_start) {
+ physical_rs->rs_start = logical_start;
+ physical_rs->rs_end = logical_start;
+ remain_rs->rs_start = MIN(astart, logical_end);
+ remain_rs->rs_end = logical_end;
+ return;
+ }
+
+ /*
+ * Unlike with mirrors and raidz a dRAID logical range can map
+ * to multiple non-contiguous physical ranges. This is handled by
+ * limiting the size of the logical range to a single group and
+ * setting the remain argument such that it describes the remaining
+ * unmapped logical range. This is stricter than absolutely
+ * necessary but helps simplify the logic below.
+ */
+ uint64_t group = vdev_draid_offset_to_group(raidvd, logical_start);
+ uint64_t nextstart = vdev_draid_group_to_offset(raidvd, group + 1);
+ if (logical_end > nextstart)
+ logical_end = nextstart;
+
+ /* Find the starting offset for each vdev in the group */
+ uint64_t perm, groupstart;
+ uint64_t start = vdev_draid_logical_to_physical(raidvd,
+ logical_start, &perm, &groupstart);
+ uint64_t end = start;
+
+ uint8_t *base;
+ uint64_t iter, id;
+ vdev_draid_get_perm(vdc, perm, &base, &iter);
+
+ /*
+ * Check if the passed child falls within the group. If it does
+ * update the start and end to reflect the physical range.
+ * Otherwise, leave them unmodified which will result in an empty
+ * (zero-length) physical range being returned.
+ */
+ for (uint64_t i = 0; i < vdc->vdc_groupwidth; i++) {
+ uint64_t c = (groupstart + i) % vdc->vdc_ndisks;
+
+ if (c == 0 && i != 0) {
+ /* the group wrapped, increment the start */
+ start += VDEV_DRAID_ROWHEIGHT;
+ end = start;
+ }
+
+ id = vdev_draid_permute_id(vdc, base, iter, c);
+ if (id == cvd->vdev_id) {
+ uint64_t b_size = (logical_end >> ashift) -
+ (logical_start >> ashift);
+ ASSERT3U(b_size, >, 0);
+ end = start + ((((b_size - 1) /
+ vdc->vdc_groupwidth) + 1) << ashift);
+ break;
+ }
+ }
+ physical_rs->rs_start = start;
+ physical_rs->rs_end = end;
+
+ /*
+ * Only top-level vdevs are allowed to set remain_rs because
+ * when .vdev_op_xlate() is called for their children the full
+ * logical range is not provided by vdev_xlate().
+ */
+ remain_rs->rs_start = logical_end;
+ remain_rs->rs_end = logical_rs->rs_end;
+
+ ASSERT3U(physical_rs->rs_start, <=, logical_start);
+ ASSERT3U(physical_rs->rs_end - physical_rs->rs_start, <=,
+ logical_end - logical_start);
+}
+
+/*
+ * Add dRAID specific fields to the config nvlist.
+ */
+static void
+vdev_draid_config_generate(vdev_t *vd, nvlist_t *nv)
+{
+ ASSERT3P(vd->vdev_ops, ==, &vdev_draid_ops);
+ vdev_draid_config_t *vdc = vd->vdev_tsd;
+
+ fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vdc->vdc_nparity);
+ fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NDATA, vdc->vdc_ndata);
+ fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NSPARES, vdc->vdc_nspares);
+ fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NGROUPS, vdc->vdc_ngroups);
+}
+
+/*
+ * Initialize private dRAID specific fields from the nvlist.
+ */
+static int
+vdev_draid_init(spa_t *spa, nvlist_t *nv, void **tsd)
+{
+ uint64_t ndata, nparity, nspares, ngroups;
+ int error;
+
+ if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DRAID_NDATA, &ndata))
+ return (SET_ERROR(EINVAL));
+
+ if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, &nparity) ||
+ nparity == 0 || nparity > VDEV_DRAID_MAXPARITY) {
+ return (SET_ERROR(EINVAL));
+ }
+
+ uint_t children;
+ nvlist_t **child;
+ if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
+ &child, &children) != 0 || children == 0 ||
+ children > VDEV_DRAID_MAX_CHILDREN) {
+ return (SET_ERROR(EINVAL));
+ }
+
+ if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DRAID_NSPARES, &nspares) ||
+ nspares > 100 || nspares > (children - (ndata + nparity))) {
+ return (SET_ERROR(EINVAL));
+ }
+
+ if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DRAID_NGROUPS, &ngroups) ||
+ ngroups == 0 || ngroups > VDEV_DRAID_MAX_CHILDREN) {
+ return (SET_ERROR(EINVAL));
+ }
+
+ /*
+ * Validate the minimum number of children exist per group for the
+ * specified parity level (draid1 >= 2, draid2 >= 3, draid3 >= 4).
+ */
+ if (children < (ndata + nparity + nspares))
+ return (SET_ERROR(EINVAL));
+
+ /*
+ * Create the dRAID configuration using the pool nvlist configuration
+ * and the fixed mapping for the correct number of children.
+ */
+ vdev_draid_config_t *vdc;
+ const draid_map_t *map;
+
+ error = vdev_draid_lookup_map(children, &map);
+ if (error)
+ return (SET_ERROR(EINVAL));
+
+ vdc = kmem_zalloc(sizeof (*vdc), KM_SLEEP);
+ vdc->vdc_ndata = ndata;
+ vdc->vdc_nparity = nparity;
+ vdc->vdc_nspares = nspares;
+ vdc->vdc_children = children;
+ vdc->vdc_ngroups = ngroups;
+ vdc->vdc_nperms = map->dm_nperms;
+
+ error = vdev_draid_generate_perms(map, &vdc->vdc_perms);
+ if (error) {
+ kmem_free(vdc, sizeof (*vdc));
+ return (SET_ERROR(EINVAL));
+ }
+
+ /*
+ * Derived constants.
+ */
+ vdc->vdc_groupwidth = vdc->vdc_ndata + vdc->vdc_nparity;
+ vdc->vdc_ndisks = vdc->vdc_children - vdc->vdc_nspares;
+ vdc->vdc_groupsz = vdc->vdc_groupwidth * VDEV_DRAID_ROWHEIGHT;
+ vdc->vdc_devslicesz = (vdc->vdc_groupsz * vdc->vdc_ngroups) /
+ vdc->vdc_ndisks;
+
+ ASSERT3U(vdc->vdc_groupwidth, >=, 2);
+ ASSERT3U(vdc->vdc_groupwidth, <=, vdc->vdc_ndisks);
+ ASSERT3U(vdc->vdc_groupsz, >=, 2 * VDEV_DRAID_ROWHEIGHT);
+ ASSERT3U(vdc->vdc_devslicesz, >=, VDEV_DRAID_ROWHEIGHT);
+ ASSERT3U(vdc->vdc_devslicesz % VDEV_DRAID_ROWHEIGHT, ==, 0);
+ ASSERT3U((vdc->vdc_groupwidth * vdc->vdc_ngroups) %
+ vdc->vdc_ndisks, ==, 0);
+
+ *tsd = vdc;
+
+ return (0);
+}
+
+static void
+vdev_draid_fini(vdev_t *vd)
+{
+ vdev_draid_config_t *vdc = vd->vdev_tsd;
+
+ vmem_free(vdc->vdc_perms, sizeof (uint8_t) *
+ vdc->vdc_children * vdc->vdc_nperms);
+ kmem_free(vdc, sizeof (*vdc));
+}
+
+static uint64_t
+vdev_draid_nparity(vdev_t *vd)
+{
+ vdev_draid_config_t *vdc = vd->vdev_tsd;
+
+ return (vdc->vdc_nparity);
+}
+
+static uint64_t
+vdev_draid_ndisks(vdev_t *vd)
+{
+ vdev_draid_config_t *vdc = vd->vdev_tsd;
+
+ return (vdc->vdc_ndisks);
+}
+
+vdev_ops_t vdev_draid_ops = {
+ .vdev_op_init = vdev_draid_init,
+ .vdev_op_fini = vdev_draid_fini,
+ .vdev_op_open = vdev_draid_open,
+ .vdev_op_close = vdev_draid_close,
+ .vdev_op_asize = vdev_draid_asize,
+ .vdev_op_min_asize = vdev_draid_min_asize,
+ .vdev_op_min_alloc = vdev_draid_min_alloc,
+ .vdev_op_io_start = vdev_draid_io_start,
+ .vdev_op_io_done = vdev_draid_io_done,
+ .vdev_op_state_change = vdev_draid_state_change,
+ .vdev_op_need_resilver = vdev_draid_need_resilver,
+ .vdev_op_hold = NULL,
+ .vdev_op_rele = NULL,
+ .vdev_op_remap = NULL,
+ .vdev_op_xlate = vdev_draid_xlate,
+ .vdev_op_rebuild_asize = vdev_draid_rebuild_asize,
+ .vdev_op_metaslab_init = vdev_draid_metaslab_init,
+ .vdev_op_config_generate = vdev_draid_config_generate,
+ .vdev_op_nparity = vdev_draid_nparity,
+ .vdev_op_ndisks = vdev_draid_ndisks,
+ .vdev_op_type = VDEV_TYPE_DRAID,
+ .vdev_op_leaf = B_FALSE,
+};
+
+
+/*
+ * A dRAID distributed spare is a virtual leaf vdev which is included in the
+ * parent dRAID configuration. The last N columns of the dRAID permutation
+ * table are used to determine on which dRAID children a specific offset
+ * should be written. These spare leaf vdevs can only be used to replace
+ * faulted children in the same dRAID configuration.
+ */
+
+/*
+ * Distributed spare state. All fields are set when the distributed spare is
+ * first opened and are immutable.
+ */
+typedef struct {
+ vdev_t *vds_draid_vdev; /* top-level parent dRAID vdev */
+ uint64_t vds_top_guid; /* top-level parent dRAID guid */
+ uint64_t vds_spare_id; /* spare id (0 - vdc->vdc_nspares-1) */
+} vdev_draid_spare_t;
+
+/*
+ * Returns the parent dRAID vdev to which the distributed spare belongs.
+ * This may be safely called even when the vdev is not open.
+ */
+vdev_t *
+vdev_draid_spare_get_parent(vdev_t *vd)
+{
+ vdev_draid_spare_t *vds = vd->vdev_tsd;
+
+ ASSERT3P(vd->vdev_ops, ==, &vdev_draid_spare_ops);
+
+ if (vds->vds_draid_vdev != NULL)
+ return (vds->vds_draid_vdev);
+
+ return (vdev_lookup_by_guid(vd->vdev_spa->spa_root_vdev,
+ vds->vds_top_guid));
+}
+
+/*
+ * A dRAID space is active when it's the child of a vdev using the
+ * vdev_spare_ops, vdev_replacing_ops or vdev_draid_ops.
+ */
+static boolean_t
+vdev_draid_spare_is_active(vdev_t *vd)
+{
+ vdev_t *pvd = vd->vdev_parent;
+
+ if (pvd != NULL && (pvd->vdev_ops == &vdev_spare_ops ||
+ pvd->vdev_ops == &vdev_replacing_ops ||
+ pvd->vdev_ops == &vdev_draid_ops)) {
+ return (B_TRUE);
+ } else {
+ return (B_FALSE);
+ }
+}
+
+/*
+ * Given a dRAID distribute spare vdev, returns the physical child vdev
+ * on which the provided offset resides. This may involve recursing through
+ * multiple layers of distributed spares. Note that offset is relative to
+ * this vdev.
+ */
+vdev_t *
+vdev_draid_spare_get_child(vdev_t *vd, uint64_t physical_offset)
+{
+ vdev_draid_spare_t *vds = vd->vdev_tsd;
+
+ ASSERT3P(vd->vdev_ops, ==, &vdev_draid_spare_ops);
+
+ /* The vdev is closed */
+ if (vds->vds_draid_vdev == NULL)
+ return (NULL);
+
+ vdev_t *tvd = vds->vds_draid_vdev;
+ vdev_draid_config_t *vdc = tvd->vdev_tsd;
+
+ ASSERT3P(tvd->vdev_ops, ==, &vdev_draid_ops);
+ ASSERT3U(vds->vds_spare_id, <, vdc->vdc_nspares);
+
+ uint8_t *base;
+ uint64_t iter;
+ uint64_t perm = physical_offset / vdc->vdc_devslicesz;
+
+ vdev_draid_get_perm(vdc, perm, &base, &iter);
+
+ uint64_t cid = vdev_draid_permute_id(vdc, base, iter,
+ (tvd->vdev_children - 1) - vds->vds_spare_id);
+ vdev_t *cvd = tvd->vdev_child[cid];
+
+ if (cvd->vdev_ops == &vdev_draid_spare_ops)
+ return (vdev_draid_spare_get_child(cvd, physical_offset));
+
+ return (cvd);
+}
+
+/* ARGSUSED */
+static void
+vdev_draid_spare_close(vdev_t *vd)
+{
+ vdev_draid_spare_t *vds = vd->vdev_tsd;
+ vds->vds_draid_vdev = NULL;
+}
+
+/*
+ * Opening a dRAID spare device is done by looking up the associated dRAID
+ * top-level vdev guid from the spare configuration.
+ */
+static int
+vdev_draid_spare_open(vdev_t *vd, uint64_t *psize, uint64_t *max_psize,
+ uint64_t *logical_ashift, uint64_t *physical_ashift)
+{
+ vdev_draid_spare_t *vds = vd->vdev_tsd;
+ vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
+ uint64_t asize, max_asize;
+
+ vdev_t *tvd = vdev_lookup_by_guid(rvd, vds->vds_top_guid);
+ if (tvd == NULL) {
+ /*
+ * When spa_vdev_add() is labeling new spares the
+ * associated dRAID is not attached to the root vdev
+ * nor does this spare have a parent. Simulate a valid
+ * device in order to allow the label to be initialized
+ * and the distributed spare added to the configuration.
+ */
+ if (vd->vdev_parent == NULL) {
+ *psize = *max_psize = SPA_MINDEVSIZE;
+ *logical_ashift = *physical_ashift = ASHIFT_MIN;
+ return (0);
+ }
+
+ return (SET_ERROR(EINVAL));
+ }
+
+ vdev_draid_config_t *vdc = tvd->vdev_tsd;
+ if (tvd->vdev_ops != &vdev_draid_ops || vdc == NULL)
+ return (SET_ERROR(EINVAL));
+
+ if (vds->vds_spare_id >= vdc->vdc_nspares)
+ return (SET_ERROR(EINVAL));
+
+ /*
+ * Neither tvd->vdev_asize or tvd->vdev_max_asize can be used here
+ * because the caller may be vdev_draid_open() in which case the
+ * values are stale as they haven't yet been updated by vdev_open().
+ * To avoid this always recalculate the dRAID asize and max_asize.
+ */
+ vdev_draid_calculate_asize(tvd, &asize, &max_asize,
+ logical_ashift, physical_ashift);
+
+ *psize = asize + VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
+ *max_psize = max_asize + VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
+
+ vds->vds_draid_vdev = tvd;
+
+ return (0);
+}
+
+/*
+ * Completed distributed spare IO. Store the result in the parent zio
+ * as if it had performed the operation itself. Only the first error is
+ * preserved if there are multiple errors.
+ */
+static void
+vdev_draid_spare_child_done(zio_t *zio)
+{
+ zio_t *pio = zio->io_private;
+
+ /*
+ * IOs are issued to non-writable vdevs in order to keep their
+ * DTLs accurate. However, we don't want to propagate the
+ * error in to the distributed spare's DTL. When resilvering
+ * vdev_draid_need_resilver() will consult the relevant DTL
+ * to determine if the data is missing and must be repaired.
+ */
+ if (!vdev_writeable(zio->io_vd))
+ return;
+
+ if (pio->io_error == 0)
+ pio->io_error = zio->io_error;
+}
+
+/*
+ * Returns a valid label nvlist for the distributed spare vdev. This is
+ * used to bypass the IO pipeline to avoid the complexity of constructing
+ * a complete label with valid checksum to return when read.
+ */
+nvlist_t *
+vdev_draid_read_config_spare(vdev_t *vd)
+{
+ spa_t *spa = vd->vdev_spa;
+ spa_aux_vdev_t *sav = &spa->spa_spares;
+ uint64_t guid = vd->vdev_guid;
+
+ nvlist_t *nv = fnvlist_alloc();
+ fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1);
+ fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg);
+ fnvlist_add_uint64(nv, ZPOOL_CONFIG_VERSION, spa_version(spa));
+ fnvlist_add_string(nv, ZPOOL_CONFIG_POOL_NAME, spa_name(spa));
+ fnvlist_add_uint64(nv, ZPOOL_CONFIG_POOL_GUID, spa_guid(spa));
+ fnvlist_add_uint64(nv, ZPOOL_CONFIG_POOL_TXG, spa->spa_config_txg);
+ fnvlist_add_uint64(nv, ZPOOL_CONFIG_TOP_GUID, vd->vdev_top->vdev_guid);
+ fnvlist_add_uint64(nv, ZPOOL_CONFIG_POOL_STATE,
+ vdev_draid_spare_is_active(vd) ?
+ POOL_STATE_ACTIVE : POOL_STATE_SPARE);
+
+ /* Set the vdev guid based on the vdev list in sav_count. */
+ for (int i = 0; i < sav->sav_count; i++) {
+ if (sav->sav_vdevs[i]->vdev_ops == &vdev_draid_spare_ops &&
+ strcmp(sav->sav_vdevs[i]->vdev_path, vd->vdev_path) == 0) {
+ guid = sav->sav_vdevs[i]->vdev_guid;
+ break;
+ }
+ }
+
+ fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, guid);
+
+ return (nv);
+}
+
+/*
+ * Handle any ioctl requested of the distributed spare. Only flushes
+ * are supported in which case all children must be flushed.
+ */
+static int
+vdev_draid_spare_ioctl(zio_t *zio)
+{
+ vdev_t *vd = zio->io_vd;
+ int error = 0;
+
+ if (zio->io_cmd == DKIOCFLUSHWRITECACHE) {
+ for (int c = 0; c < vd->vdev_children; c++) {
+ zio_nowait(zio_vdev_child_io(zio, NULL,
+ vd->vdev_child[c], zio->io_offset, zio->io_abd,
+ zio->io_size, zio->io_type, zio->io_priority, 0,
+ vdev_draid_spare_child_done, zio));
+ }
+ } else {
+ error = SET_ERROR(ENOTSUP);
+ }
+
+ return (error);
+}
+
+/*
+ * Initiate an IO to the distributed spare. For normal IOs this entails using
+ * the zio->io_offset and permutation table to calculate which child dRAID vdev
+ * is responsible for the data. Then passing along the zio to that child to
+ * perform the actual IO. The label ranges are not stored on disk and require
+ * some special handling which is described below.
+ */
+static void
+vdev_draid_spare_io_start(zio_t *zio)
+{
+ vdev_t *cvd = NULL, *vd = zio->io_vd;
+ vdev_draid_spare_t *vds = vd->vdev_tsd;
+ uint64_t offset = zio->io_offset - VDEV_LABEL_START_SIZE;
+
+ /*
+ * If the vdev is closed, it's likely in the REMOVED or FAULTED state.
+ * Nothing to be done here but return failure.
+ */
+ if (vds == NULL) {
+ zio->io_error = ENXIO;
+ zio_interrupt(zio);
+ return;
+ }
+
+ switch (zio->io_type) {
+ case ZIO_TYPE_IOCTL:
+ zio->io_error = vdev_draid_spare_ioctl(zio);
+ break;
+
+ case ZIO_TYPE_WRITE:
+ if (VDEV_OFFSET_IS_LABEL(vd, zio->io_offset)) {
+ /*
+ * Accept probe IOs and config writers to simulate the
+ * existence of an on disk label. vdev_label_sync(),
+ * vdev_uberblock_sync() and vdev_copy_uberblocks()
+ * skip the distributed spares. This only leaves
+ * vdev_label_init() which is allowed to succeed to
+ * avoid adding special cases the function.
+ */
+ if (zio->io_flags & ZIO_FLAG_PROBE ||
+ zio->io_flags & ZIO_FLAG_CONFIG_WRITER) {
+ zio->io_error = 0;
+ } else {
+ zio->io_error = SET_ERROR(EIO);
+ }
+ } else {
+ cvd = vdev_draid_spare_get_child(vd, offset);
+
+ if (cvd == NULL) {
+ zio->io_error = SET_ERROR(ENXIO);
+ } else {
+ zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
+ offset, zio->io_abd, zio->io_size,
+ zio->io_type, zio->io_priority, 0,
+ vdev_draid_spare_child_done, zio));
+ }
+ }
+ break;
+
+ case ZIO_TYPE_READ:
+ if (VDEV_OFFSET_IS_LABEL(vd, zio->io_offset)) {
+ /*
+ * Accept probe IOs to simulate the existence of a
+ * label. vdev_label_read_config() bypasses the
+ * pipeline to read the label configuration and
+ * vdev_uberblock_load() skips distributed spares
+ * when attempting to locate the best uberblock.
+ */
+ if (zio->io_flags & ZIO_FLAG_PROBE) {
+ zio->io_error = 0;
+ } else {
+ zio->io_error = SET_ERROR(EIO);
+ }
+ } else {
+ cvd = vdev_draid_spare_get_child(vd, offset);
+
+ if (cvd == NULL || !vdev_readable(cvd)) {
+ zio->io_error = SET_ERROR(ENXIO);
+ } else {
+ zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
+ offset, zio->io_abd, zio->io_size,
+ zio->io_type, zio->io_priority, 0,
+ vdev_draid_spare_child_done, zio));
+ }
+ }
+ break;
+
+ case ZIO_TYPE_TRIM:
+ /* The vdev label ranges are never trimmed */
+ ASSERT0(VDEV_OFFSET_IS_LABEL(vd, zio->io_offset));
+
+ cvd = vdev_draid_spare_get_child(vd, offset);
+
+ if (cvd == NULL || !cvd->vdev_has_trim) {
+ zio->io_error = SET_ERROR(ENXIO);
+ } else {
+ zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
+ offset, zio->io_abd, zio->io_size,
+ zio->io_type, zio->io_priority, 0,
+ vdev_draid_spare_child_done, zio));
+ }
+ break;
+
+ default:
+ zio->io_error = SET_ERROR(ENOTSUP);
+ break;
+ }
+
+ zio_execute(zio);
+}
+
+/* ARGSUSED */
+static void
+vdev_draid_spare_io_done(zio_t *zio)
+{
+}
+
+/*
+ * Lookup the full spare config in spa->spa_spares.sav_config and
+ * return the top_guid and spare_id for the named spare.
+ */
+static int
+vdev_draid_spare_lookup(spa_t *spa, nvlist_t *nv, uint64_t *top_guidp,
+ uint64_t *spare_idp)
+{
+ nvlist_t **spares;
+ uint_t nspares;
+ int error;
+
+ if ((spa->spa_spares.sav_config == NULL) ||
+ (nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
+ ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0)) {
+ return (SET_ERROR(ENOENT));
+ }
+
+ char *spare_name;
+ error = nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &spare_name);
+ if (error != 0)
+ return (SET_ERROR(EINVAL));
+
+ for (int i = 0; i < nspares; i++) {
+ nvlist_t *spare = spares[i];
+ uint64_t top_guid, spare_id;
+ char *type, *path;
+
+ /* Skip non-distributed spares */
+ error = nvlist_lookup_string(spare, ZPOOL_CONFIG_TYPE, &type);
+ if (error != 0 || strcmp(type, VDEV_TYPE_DRAID_SPARE) != 0)
+ continue;
+
+ /* Skip spares with the wrong name */
+ error = nvlist_lookup_string(spare, ZPOOL_CONFIG_PATH, &path);
+ if (error != 0 || strcmp(path, spare_name) != 0)
+ continue;
+
+ /* Found the matching spare */
+ error = nvlist_lookup_uint64(spare,
+ ZPOOL_CONFIG_TOP_GUID, &top_guid);
+ if (error == 0) {
+ error = nvlist_lookup_uint64(spare,
+ ZPOOL_CONFIG_SPARE_ID, &spare_id);
+ }
+
+ if (error != 0) {
+ return (SET_ERROR(EINVAL));
+ } else {
+ *top_guidp = top_guid;
+ *spare_idp = spare_id;
+ return (0);
+ }
+ }
+
+ return (SET_ERROR(ENOENT));
+}
+
+/*
+ * Initialize private dRAID spare specific fields from the nvlist.
+ */
+static int
+vdev_draid_spare_init(spa_t *spa, nvlist_t *nv, void **tsd)
+{
+ vdev_draid_spare_t *vds;
+ uint64_t top_guid = 0;
+ uint64_t spare_id;
+
+ /*
+ * In the normal case check the list of spares stored in the spa
+ * to lookup the top_guid and spare_id for provided spare config.
+ * When creating a new pool or adding vdevs the spare list is not
+ * yet populated and the values are provided in the passed config.
+ */
+ if (vdev_draid_spare_lookup(spa, nv, &top_guid, &spare_id) != 0) {
+ if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_TOP_GUID,
+ &top_guid) != 0)
+ return (SET_ERROR(EINVAL));
+
+ if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_SPARE_ID,
+ &spare_id) != 0)
+ return (SET_ERROR(EINVAL));
+ }
+
+ vds = kmem_alloc(sizeof (vdev_draid_spare_t), KM_SLEEP);
+ vds->vds_draid_vdev = NULL;
+ vds->vds_top_guid = top_guid;
+ vds->vds_spare_id = spare_id;
+
+ *tsd = vds;
+
+ return (0);
+}
+
+static void
+vdev_draid_spare_fini(vdev_t *vd)
+{
+ kmem_free(vd->vdev_tsd, sizeof (vdev_draid_spare_t));
+}
+
+static void
+vdev_draid_spare_config_generate(vdev_t *vd, nvlist_t *nv)
+{
+ vdev_draid_spare_t *vds = vd->vdev_tsd;
+
+ ASSERT3P(vd->vdev_ops, ==, &vdev_draid_spare_ops);
+
+ fnvlist_add_uint64(nv, ZPOOL_CONFIG_TOP_GUID, vds->vds_top_guid);
+ fnvlist_add_uint64(nv, ZPOOL_CONFIG_SPARE_ID, vds->vds_spare_id);
+}
+
+vdev_ops_t vdev_draid_spare_ops = {
+ .vdev_op_init = vdev_draid_spare_init,
+ .vdev_op_fini = vdev_draid_spare_fini,
+ .vdev_op_open = vdev_draid_spare_open,
+ .vdev_op_close = vdev_draid_spare_close,
+ .vdev_op_asize = vdev_default_asize,
+ .vdev_op_min_asize = vdev_default_min_asize,
+ .vdev_op_min_alloc = NULL,
+ .vdev_op_io_start = vdev_draid_spare_io_start,
+ .vdev_op_io_done = vdev_draid_spare_io_done,
+ .vdev_op_state_change = NULL,
+ .vdev_op_need_resilver = NULL,
+ .vdev_op_hold = NULL,
+ .vdev_op_rele = NULL,
+ .vdev_op_remap = NULL,
+ .vdev_op_xlate = vdev_default_xlate,
+ .vdev_op_rebuild_asize = NULL,
+ .vdev_op_metaslab_init = NULL,
+ .vdev_op_config_generate = vdev_draid_spare_config_generate,
+ .vdev_op_nparity = NULL,
+ .vdev_op_ndisks = NULL,
+ .vdev_op_type = VDEV_TYPE_DRAID_SPARE,
+ .vdev_op_leaf = B_TRUE,
+};
diff --git a/module/zfs/vdev_draid_rand.c b/module/zfs/vdev_draid_rand.c
new file mode 100644
index 000000000..fe1a75c11
--- /dev/null
+++ b/module/zfs/vdev_draid_rand.c
@@ -0,0 +1,40 @@
+/*
+ * Xorshift Pseudo Random Number Generator based on work by David Blackman
+ * and Sebastiano Vigna ([email protected]).
+ *
+ * "Further scramblings of Marsaglia's xorshift generators"
+ * http://vigna.di.unimi.it/ftp/papers/xorshiftplus.pdf
+ * http://prng.di.unimi.it/xoroshiro128plusplus.c
+ *
+ * To the extent possible under law, the author has dedicated all copyright
+ * and related and neighboring rights to this software to the public domain
+ * worldwide. This software is distributed without any warranty.
+ *
+ * See <http://creativecommons.org/publicdomain/zero/1.0/>.
+ *
+ * This is xoroshiro128++ 1.0, one of our all-purpose, rock-solid,
+ * small-state generators. It is extremely (sub-ns) fast and it passes all
+ * tests we are aware of, but its state space is large enough only for
+ * mild parallelism.
+ */
+
+#include <sys/vdev_draid.h>
+
+static inline uint64_t rotl(const uint64_t x, int k)
+{
+ return (x << k) | (x >> (64 - k));
+}
+
+uint64_t
+vdev_draid_rand(uint64_t *s)
+{
+ const uint64_t s0 = s[0];
+ uint64_t s1 = s[1];
+ const uint64_t result = rotl(s0 + s1, 17) + s0;
+
+ s1 ^= s0;
+ s[0] = rotl(s0, 49) ^ s1 ^ (s1 << 21); // a, b
+ s[1] = rotl(s1, 28); // c
+
+ return (result);
+}
diff --git a/module/zfs/vdev_indirect.c b/module/zfs/vdev_indirect.c
index 12ee393bd..009394bfe 100644
--- a/module/zfs/vdev_indirect.c
+++ b/module/zfs/vdev_indirect.c
@@ -1844,9 +1844,13 @@ vdev_indirect_io_done(zio_t *zio)
}
vdev_ops_t vdev_indirect_ops = {
+ .vdev_op_init = NULL,
+ .vdev_op_fini = NULL,
.vdev_op_open = vdev_indirect_open,
.vdev_op_close = vdev_indirect_close,
.vdev_op_asize = vdev_default_asize,
+ .vdev_op_min_asize = vdev_default_min_asize,
+ .vdev_op_min_alloc = NULL,
.vdev_op_io_start = vdev_indirect_io_start,
.vdev_op_io_done = vdev_indirect_io_done,
.vdev_op_state_change = NULL,
@@ -1855,6 +1859,11 @@ vdev_ops_t vdev_indirect_ops = {
.vdev_op_rele = NULL,
.vdev_op_remap = vdev_indirect_remap,
.vdev_op_xlate = NULL,
+ .vdev_op_rebuild_asize = NULL,
+ .vdev_op_metaslab_init = NULL,
+ .vdev_op_config_generate = NULL,
+ .vdev_op_nparity = NULL,
+ .vdev_op_ndisks = NULL,
.vdev_op_type = VDEV_TYPE_INDIRECT, /* name of this vdev type */
.vdev_op_leaf = B_FALSE /* leaf vdev */
};
diff --git a/module/zfs/vdev_initialize.c b/module/zfs/vdev_initialize.c
index 7ff7fffcc..083ad2861 100644
--- a/module/zfs/vdev_initialize.c
+++ b/module/zfs/vdev_initialize.c
@@ -121,6 +121,8 @@ vdev_initialize_change_state(vdev_t *vd, vdev_initializing_state_t new_state)
if (vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED) {
vd->vdev_initialize_action_time = gethrestime_sec();
}
+
+ vdev_initializing_state_t old_state = vd->vdev_initialize_state;
vd->vdev_initialize_state = new_state;
dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
@@ -138,8 +140,10 @@ vdev_initialize_change_state(vdev_t *vd, vdev_initializing_state_t new_state)
"vdev=%s suspended", vd->vdev_path);
break;
case VDEV_INITIALIZE_CANCELED:
- spa_history_log_internal(spa, "initialize", tx,
- "vdev=%s canceled", vd->vdev_path);
+ if (old_state == VDEV_INITIALIZE_ACTIVE ||
+ old_state == VDEV_INITIALIZE_SUSPENDED)
+ spa_history_log_internal(spa, "initialize", tx,
+ "vdev=%s canceled", vd->vdev_path);
break;
case VDEV_INITIALIZE_COMPLETE:
spa_history_log_internal(spa, "initialize", tx,
@@ -318,6 +322,32 @@ vdev_initialize_ranges(vdev_t *vd, abd_t *data)
}
static void
+vdev_initialize_xlate_last_rs_end(void *arg, range_seg64_t *physical_rs)
+{
+ uint64_t *last_rs_end = (uint64_t *)arg;
+
+ if (physical_rs->rs_end > *last_rs_end)
+ *last_rs_end = physical_rs->rs_end;
+}
+
+static void
+vdev_initialize_xlate_progress(void *arg, range_seg64_t *physical_rs)
+{
+ vdev_t *vd = (vdev_t *)arg;
+
+ uint64_t size = physical_rs->rs_end - physical_rs->rs_start;
+ vd->vdev_initialize_bytes_est += size;
+
+ if (vd->vdev_initialize_last_offset > physical_rs->rs_end) {
+ vd->vdev_initialize_bytes_done += size;
+ } else if (vd->vdev_initialize_last_offset > physical_rs->rs_start &&
+ vd->vdev_initialize_last_offset < physical_rs->rs_end) {
+ vd->vdev_initialize_bytes_done +=
+ vd->vdev_initialize_last_offset - physical_rs->rs_start;
+ }
+}
+
+static void
vdev_initialize_calculate_progress(vdev_t *vd)
{
ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
@@ -331,28 +361,35 @@ vdev_initialize_calculate_progress(vdev_t *vd)
metaslab_t *msp = vd->vdev_top->vdev_ms[i];
mutex_enter(&msp->ms_lock);
- uint64_t ms_free = msp->ms_size -
- metaslab_allocated_space(msp);
-
- if (vd->vdev_top->vdev_ops == &vdev_raidz_ops)
- ms_free /= vd->vdev_top->vdev_children;
+ uint64_t ms_free = (msp->ms_size -
+ metaslab_allocated_space(msp)) /
+ vdev_get_ndisks(vd->vdev_top);
/*
* Convert the metaslab range to a physical range
* on our vdev. We use this to determine if we are
* in the middle of this metaslab range.
*/
- range_seg64_t logical_rs, physical_rs;
+ range_seg64_t logical_rs, physical_rs, remain_rs;
logical_rs.rs_start = msp->ms_start;
logical_rs.rs_end = msp->ms_start + msp->ms_size;
- vdev_xlate(vd, &logical_rs, &physical_rs);
+ /* Metaslab space after this offset has not been initialized */
+ vdev_xlate(vd, &logical_rs, &physical_rs, &remain_rs);
if (vd->vdev_initialize_last_offset <= physical_rs.rs_start) {
vd->vdev_initialize_bytes_est += ms_free;
mutex_exit(&msp->ms_lock);
continue;
- } else if (vd->vdev_initialize_last_offset >
- physical_rs.rs_end) {
+ }
+
+ /* Metaslab space before this offset has been initialized */
+ uint64_t last_rs_end = physical_rs.rs_end;
+ if (!vdev_xlate_is_empty(&remain_rs)) {
+ vdev_xlate_walk(vd, &remain_rs,
+ vdev_initialize_xlate_last_rs_end, &last_rs_end);
+ }
+
+ if (vd->vdev_initialize_last_offset > last_rs_end) {
vd->vdev_initialize_bytes_done += ms_free;
vd->vdev_initialize_bytes_est += ms_free;
mutex_exit(&msp->ms_lock);
@@ -374,22 +411,9 @@ vdev_initialize_calculate_progress(vdev_t *vd)
&where)) {
logical_rs.rs_start = rs_get_start(rs, rt);
logical_rs.rs_end = rs_get_end(rs, rt);
- vdev_xlate(vd, &logical_rs, &physical_rs);
-
- uint64_t size = physical_rs.rs_end -
- physical_rs.rs_start;
- vd->vdev_initialize_bytes_est += size;
- if (vd->vdev_initialize_last_offset >
- physical_rs.rs_end) {
- vd->vdev_initialize_bytes_done += size;
- } else if (vd->vdev_initialize_last_offset >
- physical_rs.rs_start &&
- vd->vdev_initialize_last_offset <
- physical_rs.rs_end) {
- vd->vdev_initialize_bytes_done +=
- vd->vdev_initialize_last_offset -
- physical_rs.rs_start;
- }
+
+ vdev_xlate_walk(vd, &logical_rs,
+ vdev_initialize_xlate_progress, vd);
}
mutex_exit(&msp->ms_lock);
}
@@ -419,55 +443,48 @@ vdev_initialize_load(vdev_t *vd)
return (err);
}
-/*
- * Convert the logical range into a physical range and add it to our
- * avl tree.
- */
static void
-vdev_initialize_range_add(void *arg, uint64_t start, uint64_t size)
+vdev_initialize_xlate_range_add(void *arg, range_seg64_t *physical_rs)
{
vdev_t *vd = arg;
- range_seg64_t logical_rs, physical_rs;
- logical_rs.rs_start = start;
- logical_rs.rs_end = start + size;
-
- ASSERT(vd->vdev_ops->vdev_op_leaf);
- vdev_xlate(vd, &logical_rs, &physical_rs);
-
- IMPLY(vd->vdev_top == vd,
- logical_rs.rs_start == physical_rs.rs_start);
- IMPLY(vd->vdev_top == vd,
- logical_rs.rs_end == physical_rs.rs_end);
/* Only add segments that we have not visited yet */
- if (physical_rs.rs_end <= vd->vdev_initialize_last_offset)
+ if (physical_rs->rs_end <= vd->vdev_initialize_last_offset)
return;
/* Pick up where we left off mid-range. */
- if (vd->vdev_initialize_last_offset > physical_rs.rs_start) {
+ if (vd->vdev_initialize_last_offset > physical_rs->rs_start) {
zfs_dbgmsg("range write: vd %s changed (%llu, %llu) to "
"(%llu, %llu)", vd->vdev_path,
- (u_longlong_t)physical_rs.rs_start,
- (u_longlong_t)physical_rs.rs_end,
+ (u_longlong_t)physical_rs->rs_start,
+ (u_longlong_t)physical_rs->rs_end,
(u_longlong_t)vd->vdev_initialize_last_offset,
- (u_longlong_t)physical_rs.rs_end);
- ASSERT3U(physical_rs.rs_end, >,
+ (u_longlong_t)physical_rs->rs_end);
+ ASSERT3U(physical_rs->rs_end, >,
vd->vdev_initialize_last_offset);
- physical_rs.rs_start = vd->vdev_initialize_last_offset;
+ physical_rs->rs_start = vd->vdev_initialize_last_offset;
}
- ASSERT3U(physical_rs.rs_end, >=, physical_rs.rs_start);
- /*
- * With raidz, it's possible that the logical range does not live on
- * this leaf vdev. We only add the physical range to this vdev's if it
- * has a length greater than 0.
- */
- if (physical_rs.rs_end > physical_rs.rs_start) {
- range_tree_add(vd->vdev_initialize_tree, physical_rs.rs_start,
- physical_rs.rs_end - physical_rs.rs_start);
- } else {
- ASSERT3U(physical_rs.rs_end, ==, physical_rs.rs_start);
- }
+ ASSERT3U(physical_rs->rs_end, >, physical_rs->rs_start);
+
+ range_tree_add(vd->vdev_initialize_tree, physical_rs->rs_start,
+ physical_rs->rs_end - physical_rs->rs_start);
+}
+
+/*
+ * Convert the logical range into a physical range and add it to our
+ * avl tree.
+ */
+static void
+vdev_initialize_range_add(void *arg, uint64_t start, uint64_t size)
+{
+ vdev_t *vd = arg;
+ range_seg64_t logical_rs;
+ logical_rs.rs_start = start;
+ logical_rs.rs_end = start + size;
+
+ ASSERT(vd->vdev_ops->vdev_op_leaf);
+ vdev_xlate_walk(vd, &logical_rs, vdev_initialize_xlate_range_add, arg);
}
static void
diff --git a/module/zfs/vdev_label.c b/module/zfs/vdev_label.c
index d063b77ea..fbd117d2d 100644
--- a/module/zfs/vdev_label.c
+++ b/module/zfs/vdev_label.c
@@ -142,6 +142,7 @@
#include <sys/zap.h>
#include <sys/vdev.h>
#include <sys/vdev_impl.h>
+#include <sys/vdev_draid.h>
#include <sys/uberblock_impl.h>
#include <sys/metaslab.h>
#include <sys/metaslab_impl.h>
@@ -453,31 +454,13 @@ vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
if (vd->vdev_fru != NULL)
fnvlist_add_string(nv, ZPOOL_CONFIG_FRU, vd->vdev_fru);
- if (vd->vdev_nparity != 0) {
- ASSERT(strcmp(vd->vdev_ops->vdev_op_type,
- VDEV_TYPE_RAIDZ) == 0);
+ if (vd->vdev_ops->vdev_op_config_generate != NULL)
+ vd->vdev_ops->vdev_op_config_generate(vd, nv);
- /*
- * Make sure someone hasn't managed to sneak a fancy new vdev
- * into a crufty old storage pool.
- */
- ASSERT(vd->vdev_nparity == 1 ||
- (vd->vdev_nparity <= 2 &&
- spa_version(spa) >= SPA_VERSION_RAIDZ2) ||
- (vd->vdev_nparity <= 3 &&
- spa_version(spa) >= SPA_VERSION_RAIDZ3));
-
- /*
- * Note that we'll add the nparity tag even on storage pools
- * that only support a single parity device -- older software
- * will just ignore it.
- */
- fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vd->vdev_nparity);
- }
-
- if (vd->vdev_wholedisk != -1ULL)
+ if (vd->vdev_wholedisk != -1ULL) {
fnvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
vd->vdev_wholedisk);
+ }
if (vd->vdev_not_present && !(flags & VDEV_CONFIG_MISSING))
fnvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1);
@@ -785,6 +768,14 @@ vdev_label_read_config(vdev_t *vd, uint64_t txg)
if (!vdev_readable(vd))
return (NULL);
+ /*
+ * The label for a dRAID distributed spare is not stored on disk.
+ * Instead it is generated when needed which allows us to bypass
+ * the pipeline when reading the config from the label.
+ */
+ if (vd->vdev_ops == &vdev_draid_spare_ops)
+ return (vdev_draid_read_config_spare(vd));
+
vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
vp = abd_to_buf(vp_abd);
@@ -1497,7 +1488,8 @@ vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags,
for (int c = 0; c < vd->vdev_children; c++)
vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp);
- if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
+ if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd) &&
+ vd->vdev_ops != &vdev_draid_spare_ops) {
for (int l = 0; l < VDEV_LABELS; l++) {
for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
vdev_label_read(zio, vd, l,
@@ -1586,6 +1578,13 @@ vdev_copy_uberblocks(vdev_t *vd)
SCL_STATE);
ASSERT(vd->vdev_ops->vdev_op_leaf);
+ /*
+ * No uberblocks are stored on distributed spares, they may be
+ * safely skipped when expanding a leaf vdev.
+ */
+ if (vd->vdev_ops == &vdev_draid_spare_ops)
+ return;
+
spa_config_enter(vd->vdev_spa, locks, FTAG, RW_READER);
ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd), B_TRUE);
@@ -1647,6 +1646,15 @@ vdev_uberblock_sync(zio_t *zio, uint64_t *good_writes,
if (!vdev_writeable(vd))
return;
+ /*
+ * There's no need to write uberblocks to a distributed spare, they
+ * are already stored on all the leaves of the parent dRAID. For
+ * this same reason vdev_uberblock_load_impl() skips distributed
+ * spares when reading uberblocks.
+ */
+ if (vd->vdev_ops == &vdev_draid_spare_ops)
+ return;
+
/* If the vdev was expanded, need to copy uberblock rings. */
if (vd->vdev_state == VDEV_STATE_HEALTHY &&
vd->vdev_copy_uberblocks == B_TRUE) {
@@ -1764,6 +1772,14 @@ vdev_label_sync(zio_t *zio, uint64_t *good_writes,
return;
/*
+ * The top-level config never needs to be written to a distributed
+ * spare. When read vdev_dspare_label_read_config() will generate
+ * the config for the vdev_label_read_config().
+ */
+ if (vd->vdev_ops == &vdev_draid_spare_ops)
+ return;
+
+ /*
* Generate a label describing the top-level config to which we belong.
*/
label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);
diff --git a/module/zfs/vdev_mirror.c b/module/zfs/vdev_mirror.c
index 71b5adbbd..71ca43cae 100644
--- a/module/zfs/vdev_mirror.c
+++ b/module/zfs/vdev_mirror.c
@@ -33,6 +33,7 @@
#include <sys/dsl_pool.h>
#include <sys/dsl_scan.h>
#include <sys/vdev_impl.h>
+#include <sys/vdev_draid.h>
#include <sys/zio.h>
#include <sys/abd.h>
#include <sys/fs/zfs.h>
@@ -99,7 +100,6 @@ vdev_mirror_stat_fini(void)
/*
* Virtual device vector for mirroring.
*/
-
typedef struct mirror_child {
vdev_t *mc_vd;
uint64_t mc_offset;
@@ -108,6 +108,7 @@ typedef struct mirror_child {
uint8_t mc_tried;
uint8_t mc_skipped;
uint8_t mc_speculative;
+ uint8_t mc_rebuilding;
} mirror_child_t;
typedef struct mirror_map {
@@ -115,6 +116,7 @@ typedef struct mirror_map {
int mm_preferred_cnt;
int mm_children;
boolean_t mm_resilvering;
+ boolean_t mm_rebuilding;
boolean_t mm_root;
mirror_child_t mm_child[];
} mirror_map_t;
@@ -239,6 +241,21 @@ vdev_mirror_load(mirror_map_t *mm, vdev_t *vd, uint64_t zio_offset)
return (load + zfs_vdev_mirror_rotating_seek_inc);
}
+static boolean_t
+vdev_mirror_rebuilding(vdev_t *vd)
+{
+ if (vd->vdev_ops->vdev_op_leaf && vd->vdev_rebuild_txg)
+ return (B_TRUE);
+
+ for (int i = 0; i < vd->vdev_children; i++) {
+ if (vdev_mirror_rebuilding(vd->vdev_child[i])) {
+ return (B_TRUE);
+ }
+ }
+
+ return (B_FALSE);
+}
+
/*
* Avoid inlining the function to keep vdev_mirror_io_start(), which
* is this functions only caller, as small as possible on the stack.
@@ -356,6 +373,9 @@ vdev_mirror_map_init(zio_t *zio)
mc = &mm->mm_child[c];
mc->mc_vd = vd->vdev_child[c];
mc->mc_offset = zio->io_offset;
+
+ if (vdev_mirror_rebuilding(mc->mc_vd))
+ mm->mm_rebuilding = mc->mc_rebuilding = B_TRUE;
}
}
@@ -493,12 +513,37 @@ vdev_mirror_preferred_child_randomize(zio_t *zio)
return (mm->mm_preferred[p]);
}
+static boolean_t
+vdev_mirror_child_readable(mirror_child_t *mc)
+{
+ vdev_t *vd = mc->mc_vd;
+
+ if (vd->vdev_top != NULL && vd->vdev_top->vdev_ops == &vdev_draid_ops)
+ return (vdev_draid_readable(vd, mc->mc_offset));
+ else
+ return (vdev_readable(vd));
+}
+
+static boolean_t
+vdev_mirror_child_missing(mirror_child_t *mc, uint64_t txg, uint64_t size)
+{
+ vdev_t *vd = mc->mc_vd;
+
+ if (vd->vdev_top != NULL && vd->vdev_top->vdev_ops == &vdev_draid_ops)
+ return (vdev_draid_missing(vd, mc->mc_offset, txg, size));
+ else
+ return (vdev_dtl_contains(vd, DTL_MISSING, txg, size));
+}
+
/*
* Try to find a vdev whose DTL doesn't contain the block we want to read
- * preferring vdevs based on determined load.
+ * preferring vdevs based on determined load. If we can't, try the read on
+ * any vdev we haven't already tried.
*
- * Try to find a child whose DTL doesn't contain the block we want to read.
- * If we can't, try the read on any vdev we haven't already tried.
+ * Distributed spares are an exception to the above load rule. They are
+ * always preferred in order to detect gaps in the distributed spare which
+ * are created when another disk in the dRAID fails. In order to restore
+ * redundancy those gaps must be read to trigger the required repair IO.
*/
static int
vdev_mirror_child_select(zio_t *zio)
@@ -518,20 +563,27 @@ vdev_mirror_child_select(zio_t *zio)
if (mc->mc_tried || mc->mc_skipped)
continue;
- if (mc->mc_vd == NULL || !vdev_readable(mc->mc_vd)) {
+ if (mc->mc_vd == NULL ||
+ !vdev_mirror_child_readable(mc)) {
mc->mc_error = SET_ERROR(ENXIO);
mc->mc_tried = 1; /* don't even try */
mc->mc_skipped = 1;
continue;
}
- if (vdev_dtl_contains(mc->mc_vd, DTL_MISSING, txg, 1)) {
+ if (vdev_mirror_child_missing(mc, txg, 1)) {
mc->mc_error = SET_ERROR(ESTALE);
mc->mc_skipped = 1;
mc->mc_speculative = 1;
continue;
}
+ if (mc->mc_vd->vdev_ops == &vdev_draid_spare_ops) {
+ mm->mm_preferred[0] = c;
+ mm->mm_preferred_cnt = 1;
+ break;
+ }
+
mc->mc_load = vdev_mirror_load(mm, mc->mc_vd, mc->mc_offset);
if (mc->mc_load > lowest_load)
continue;
@@ -625,11 +677,25 @@ vdev_mirror_io_start(zio_t *zio)
while (children--) {
mc = &mm->mm_child[c];
+ c++;
+
+ /*
+ * When sequentially resilvering only issue write repair
+ * IOs to the vdev which is being rebuilt since performance
+ * is limited by the slowest child. This is an issue for
+ * faster replacement devices such as distributed spares.
+ */
+ if ((zio->io_priority == ZIO_PRIORITY_REBUILD) &&
+ (zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
+ !(zio->io_flags & ZIO_FLAG_SCRUB) &&
+ mm->mm_rebuilding && !mc->mc_rebuilding) {
+ continue;
+ }
+
zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
mc->mc_vd, mc->mc_offset, zio->io_abd, zio->io_size,
zio->io_type, zio->io_priority, 0,
vdev_mirror_child_done, mc));
- c++;
}
zio_execute(zio);
@@ -744,6 +810,8 @@ vdev_mirror_io_done(zio_t *zio)
mc = &mm->mm_child[c];
if (mc->mc_error == 0) {
+ vdev_ops_t *ops = mc->mc_vd->vdev_ops;
+
if (mc->mc_tried)
continue;
/*
@@ -752,15 +820,16 @@ vdev_mirror_io_done(zio_t *zio)
* 1. it's a scrub (in which case we have
* tried everything that was healthy)
* - or -
- * 2. it's an indirect vdev (in which case
- * it could point to any other vdev, which
- * might have a bad DTL)
+ * 2. it's an indirect or distributed spare
+ * vdev (in which case it could point to any
+ * other vdev, which might have a bad DTL)
* - or -
* 3. the DTL indicates that this data is
* missing from this vdev
*/
if (!(zio->io_flags & ZIO_FLAG_SCRUB) &&
- mc->mc_vd->vdev_ops != &vdev_indirect_ops &&
+ ops != &vdev_indirect_ops &&
+ ops != &vdev_draid_spare_ops &&
!vdev_dtl_contains(mc->mc_vd, DTL_PARTIAL,
zio->io_txg, 1))
continue;
@@ -796,50 +865,90 @@ vdev_mirror_state_change(vdev_t *vd, int faulted, int degraded)
}
}
+/*
+ * Return the maximum asize for a rebuild zio in the provided range.
+ */
+static uint64_t
+vdev_mirror_rebuild_asize(vdev_t *vd, uint64_t start, uint64_t asize,
+ uint64_t max_segment)
+{
+ uint64_t psize = MIN(P2ROUNDUP(max_segment, 1 << vd->vdev_ashift),
+ SPA_MAXBLOCKSIZE);
+
+ return (MIN(asize, vdev_psize_to_asize(vd, psize)));
+}
+
vdev_ops_t vdev_mirror_ops = {
+ .vdev_op_init = NULL,
+ .vdev_op_fini = NULL,
.vdev_op_open = vdev_mirror_open,
.vdev_op_close = vdev_mirror_close,
.vdev_op_asize = vdev_default_asize,
+ .vdev_op_min_asize = vdev_default_min_asize,
+ .vdev_op_min_alloc = NULL,
.vdev_op_io_start = vdev_mirror_io_start,
.vdev_op_io_done = vdev_mirror_io_done,
.vdev_op_state_change = vdev_mirror_state_change,
- .vdev_op_need_resilver = NULL,
+ .vdev_op_need_resilver = vdev_default_need_resilver,
.vdev_op_hold = NULL,
.vdev_op_rele = NULL,
.vdev_op_remap = NULL,
.vdev_op_xlate = vdev_default_xlate,
+ .vdev_op_rebuild_asize = vdev_mirror_rebuild_asize,
+ .vdev_op_metaslab_init = NULL,
+ .vdev_op_config_generate = NULL,
+ .vdev_op_nparity = NULL,
+ .vdev_op_ndisks = NULL,
.vdev_op_type = VDEV_TYPE_MIRROR, /* name of this vdev type */
.vdev_op_leaf = B_FALSE /* not a leaf vdev */
};
vdev_ops_t vdev_replacing_ops = {
+ .vdev_op_init = NULL,
+ .vdev_op_fini = NULL,
.vdev_op_open = vdev_mirror_open,
.vdev_op_close = vdev_mirror_close,
.vdev_op_asize = vdev_default_asize,
+ .vdev_op_min_asize = vdev_default_min_asize,
+ .vdev_op_min_alloc = NULL,
.vdev_op_io_start = vdev_mirror_io_start,
.vdev_op_io_done = vdev_mirror_io_done,
.vdev_op_state_change = vdev_mirror_state_change,
- .vdev_op_need_resilver = NULL,
+ .vdev_op_need_resilver = vdev_default_need_resilver,
.vdev_op_hold = NULL,
.vdev_op_rele = NULL,
.vdev_op_remap = NULL,
.vdev_op_xlate = vdev_default_xlate,
+ .vdev_op_rebuild_asize = vdev_mirror_rebuild_asize,
+ .vdev_op_metaslab_init = NULL,
+ .vdev_op_config_generate = NULL,
+ .vdev_op_nparity = NULL,
+ .vdev_op_ndisks = NULL,
.vdev_op_type = VDEV_TYPE_REPLACING, /* name of this vdev type */
.vdev_op_leaf = B_FALSE /* not a leaf vdev */
};
vdev_ops_t vdev_spare_ops = {
+ .vdev_op_init = NULL,
+ .vdev_op_fini = NULL,
.vdev_op_open = vdev_mirror_open,
.vdev_op_close = vdev_mirror_close,
.vdev_op_asize = vdev_default_asize,
+ .vdev_op_min_asize = vdev_default_min_asize,
+ .vdev_op_min_alloc = NULL,
.vdev_op_io_start = vdev_mirror_io_start,
.vdev_op_io_done = vdev_mirror_io_done,
.vdev_op_state_change = vdev_mirror_state_change,
- .vdev_op_need_resilver = NULL,
+ .vdev_op_need_resilver = vdev_default_need_resilver,
.vdev_op_hold = NULL,
.vdev_op_rele = NULL,
.vdev_op_remap = NULL,
.vdev_op_xlate = vdev_default_xlate,
+ .vdev_op_rebuild_asize = vdev_mirror_rebuild_asize,
+ .vdev_op_metaslab_init = NULL,
+ .vdev_op_config_generate = NULL,
+ .vdev_op_nparity = NULL,
+ .vdev_op_ndisks = NULL,
.vdev_op_type = VDEV_TYPE_SPARE, /* name of this vdev type */
.vdev_op_leaf = B_FALSE /* not a leaf vdev */
};
diff --git a/module/zfs/vdev_missing.c b/module/zfs/vdev_missing.c
index ce90df6e8..e9145fd01 100644
--- a/module/zfs/vdev_missing.c
+++ b/module/zfs/vdev_missing.c
@@ -81,9 +81,13 @@ vdev_missing_io_done(zio_t *zio)
}
vdev_ops_t vdev_missing_ops = {
+ .vdev_op_init = NULL,
+ .vdev_op_fini = NULL,
.vdev_op_open = vdev_missing_open,
.vdev_op_close = vdev_missing_close,
.vdev_op_asize = vdev_default_asize,
+ .vdev_op_min_asize = vdev_default_min_asize,
+ .vdev_op_min_alloc = NULL,
.vdev_op_io_start = vdev_missing_io_start,
.vdev_op_io_done = vdev_missing_io_done,
.vdev_op_state_change = NULL,
@@ -92,14 +96,23 @@ vdev_ops_t vdev_missing_ops = {
.vdev_op_rele = NULL,
.vdev_op_remap = NULL,
.vdev_op_xlate = NULL,
+ .vdev_op_rebuild_asize = NULL,
+ .vdev_op_metaslab_init = NULL,
+ .vdev_op_config_generate = NULL,
+ .vdev_op_nparity = NULL,
+ .vdev_op_ndisks = NULL,
.vdev_op_type = VDEV_TYPE_MISSING, /* name of this vdev type */
.vdev_op_leaf = B_TRUE /* leaf vdev */
};
vdev_ops_t vdev_hole_ops = {
+ .vdev_op_init = NULL,
+ .vdev_op_fini = NULL,
.vdev_op_open = vdev_missing_open,
.vdev_op_close = vdev_missing_close,
.vdev_op_asize = vdev_default_asize,
+ .vdev_op_min_asize = vdev_default_min_asize,
+ .vdev_op_min_alloc = NULL,
.vdev_op_io_start = vdev_missing_io_start,
.vdev_op_io_done = vdev_missing_io_done,
.vdev_op_state_change = NULL,
@@ -108,6 +121,11 @@ vdev_ops_t vdev_hole_ops = {
.vdev_op_rele = NULL,
.vdev_op_remap = NULL,
.vdev_op_xlate = NULL,
+ .vdev_op_rebuild_asize = NULL,
+ .vdev_op_metaslab_init = NULL,
+ .vdev_op_config_generate = NULL,
+ .vdev_op_nparity = NULL,
+ .vdev_op_ndisks = NULL,
.vdev_op_type = VDEV_TYPE_HOLE, /* name of this vdev type */
.vdev_op_leaf = B_TRUE /* leaf vdev */
};
diff --git a/module/zfs/vdev_queue.c b/module/zfs/vdev_queue.c
index a8ef3d747..45d92819d 100644
--- a/module/zfs/vdev_queue.c
+++ b/module/zfs/vdev_queue.c
@@ -593,6 +593,13 @@ vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio)
if (zio->io_type == ZIO_TYPE_TRIM && !zfs_vdev_aggregate_trim)
return (NULL);
+ /*
+ * I/Os to distributed spares are directly dispatched to the dRAID
+ * leaf vdevs for aggregation. See the comment at the end of the
+ * zio_vdev_io_start() function.
+ */
+ ASSERT(vq->vq_vdev->vdev_ops != &vdev_draid_spare_ops);
+
first = last = zio;
if (zio->io_type == ZIO_TYPE_READ)
diff --git a/module/zfs/vdev_raidz.c b/module/zfs/vdev_raidz.c
index 47312e02f..989b90dc2 100644
--- a/module/zfs/vdev_raidz.c
+++ b/module/zfs/vdev_raidz.c
@@ -35,6 +35,7 @@
#include <sys/fm/fs/zfs.h>
#include <sys/vdev_raidz.h>
#include <sys/vdev_raidz_impl.h>
+#include <sys/vdev_draid.h>
#ifdef ZFS_DEBUG
#include <sys/vdev.h> /* For vdev_xlate() in vdev_raidz_io_verify() */
@@ -134,25 +135,51 @@
VDEV_RAIDZ_64MUL_2((x), mask); \
}
-void
-vdev_raidz_map_free(raidz_map_t *rm)
+static void
+vdev_raidz_row_free(raidz_row_t *rr)
{
int c;
- for (c = 0; c < rm->rm_firstdatacol; c++) {
- abd_free(rm->rm_col[c].rc_abd);
+ for (c = 0; c < rr->rr_firstdatacol && c < rr->rr_cols; c++) {
+ abd_free(rr->rr_col[c].rc_abd);
- if (rm->rm_col[c].rc_gdata != NULL)
- abd_free(rm->rm_col[c].rc_gdata);
+ if (rr->rr_col[c].rc_gdata != NULL) {
+ abd_free(rr->rr_col[c].rc_gdata);
+ }
+ if (rr->rr_col[c].rc_orig_data != NULL) {
+ zio_buf_free(rr->rr_col[c].rc_orig_data,
+ rr->rr_col[c].rc_size);
+ }
}
+ for (c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
+ if (rr->rr_col[c].rc_size != 0) {
+ if (abd_is_gang(rr->rr_col[c].rc_abd))
+ abd_free(rr->rr_col[c].rc_abd);
+ else
+ abd_put(rr->rr_col[c].rc_abd);
+ }
+ if (rr->rr_col[c].rc_orig_data != NULL) {
+ zio_buf_free(rr->rr_col[c].rc_orig_data,
+ rr->rr_col[c].rc_size);
+ }
+ }
+
+ if (rr->rr_abd_copy != NULL)
+ abd_free(rr->rr_abd_copy);
- for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++)
- abd_put(rm->rm_col[c].rc_abd);
+ if (rr->rr_abd_empty != NULL)
+ abd_free(rr->rr_abd_empty);
+
+ kmem_free(rr, offsetof(raidz_row_t, rr_col[rr->rr_scols]));
+}
- if (rm->rm_abd_copy != NULL)
- abd_free(rm->rm_abd_copy);
+void
+vdev_raidz_map_free(raidz_map_t *rm)
+{
+ for (int i = 0; i < rm->rm_nrows; i++)
+ vdev_raidz_row_free(rm->rm_row[i]);
- kmem_free(rm, offsetof(raidz_map_t, rm_col[rm->rm_scols]));
+ kmem_free(rm, offsetof(raidz_map_t, rm_row[rm->rm_nrows]));
}
static void
@@ -161,10 +188,11 @@ vdev_raidz_map_free_vsd(zio_t *zio)
raidz_map_t *rm = zio->io_vsd;
ASSERT0(rm->rm_freed);
- rm->rm_freed = 1;
+ rm->rm_freed = B_TRUE;
- if (rm->rm_reports == 0)
+ if (rm->rm_reports == 0) {
vdev_raidz_map_free(rm);
+ }
}
/*ARGSUSED*/
@@ -175,7 +203,7 @@ vdev_raidz_cksum_free(void *arg, size_t ignored)
ASSERT3U(rm->rm_reports, >, 0);
- if (--rm->rm_reports == 0 && rm->rm_freed != 0)
+ if (--rm->rm_reports == 0 && rm->rm_freed)
vdev_raidz_map_free(rm);
}
@@ -186,77 +214,79 @@ vdev_raidz_cksum_finish(zio_cksum_report_t *zcr, const abd_t *good_data)
const size_t c = zcr->zcr_cbinfo;
size_t x, offset;
- const abd_t *good = NULL;
- const abd_t *bad = rm->rm_col[c].rc_abd;
-
if (good_data == NULL) {
zfs_ereport_finish_checksum(zcr, NULL, NULL, B_FALSE);
return;
}
- if (c < rm->rm_firstdatacol) {
+ ASSERT3U(rm->rm_nrows, ==, 1);
+ raidz_row_t *rr = rm->rm_row[0];
+
+ const abd_t *good = NULL;
+ const abd_t *bad = rr->rr_col[c].rc_abd;
+
+ if (c < rr->rr_firstdatacol) {
/*
* The first time through, calculate the parity blocks for
* the good data (this relies on the fact that the good
* data never changes for a given logical ZIO)
*/
- if (rm->rm_col[0].rc_gdata == NULL) {
+ if (rr->rr_col[0].rc_gdata == NULL) {
abd_t *bad_parity[VDEV_RAIDZ_MAXPARITY];
/*
- * Set up the rm_col[]s to generate the parity for
+ * Set up the rr_col[]s to generate the parity for
* good_data, first saving the parity bufs and
* replacing them with buffers to hold the result.
*/
- for (x = 0; x < rm->rm_firstdatacol; x++) {
- bad_parity[x] = rm->rm_col[x].rc_abd;
- rm->rm_col[x].rc_abd =
- rm->rm_col[x].rc_gdata =
- abd_alloc_sametype(rm->rm_col[x].rc_abd,
- rm->rm_col[x].rc_size);
+ for (x = 0; x < rr->rr_firstdatacol; x++) {
+ bad_parity[x] = rr->rr_col[x].rc_abd;
+ rr->rr_col[x].rc_abd = rr->rr_col[x].rc_gdata =
+ abd_alloc_sametype(rr->rr_col[x].rc_abd,
+ rr->rr_col[x].rc_size);
}
/* fill in the data columns from good_data */
offset = 0;
- for (; x < rm->rm_cols; x++) {
- abd_put(rm->rm_col[x].rc_abd);
+ for (; x < rr->rr_cols; x++) {
+ abd_put(rr->rr_col[x].rc_abd);
- rm->rm_col[x].rc_abd =
+ rr->rr_col[x].rc_abd =
abd_get_offset_size((abd_t *)good_data,
- offset, rm->rm_col[x].rc_size);
- offset += rm->rm_col[x].rc_size;
+ offset, rr->rr_col[x].rc_size);
+ offset += rr->rr_col[x].rc_size;
}
/*
* Construct the parity from the good data.
*/
- vdev_raidz_generate_parity(rm);
+ vdev_raidz_generate_parity_row(rm, rr);
/* restore everything back to its original state */
- for (x = 0; x < rm->rm_firstdatacol; x++)
- rm->rm_col[x].rc_abd = bad_parity[x];
+ for (x = 0; x < rr->rr_firstdatacol; x++)
+ rr->rr_col[x].rc_abd = bad_parity[x];
offset = 0;
- for (x = rm->rm_firstdatacol; x < rm->rm_cols; x++) {
- abd_put(rm->rm_col[x].rc_abd);
- rm->rm_col[x].rc_abd = abd_get_offset_size(
- rm->rm_abd_copy, offset,
- rm->rm_col[x].rc_size);
- offset += rm->rm_col[x].rc_size;
+ for (x = rr->rr_firstdatacol; x < rr->rr_cols; x++) {
+ abd_put(rr->rr_col[x].rc_abd);
+ rr->rr_col[x].rc_abd = abd_get_offset_size(
+ rr->rr_abd_copy, offset,
+ rr->rr_col[x].rc_size);
+ offset += rr->rr_col[x].rc_size;
}
}
- ASSERT3P(rm->rm_col[c].rc_gdata, !=, NULL);
- good = abd_get_offset_size(rm->rm_col[c].rc_gdata, 0,
- rm->rm_col[c].rc_size);
+ ASSERT3P(rr->rr_col[c].rc_gdata, !=, NULL);
+ good = abd_get_offset_size(rr->rr_col[c].rc_gdata, 0,
+ rr->rr_col[c].rc_size);
} else {
/* adjust good_data to point at the start of our column */
offset = 0;
- for (x = rm->rm_firstdatacol; x < c; x++)
- offset += rm->rm_col[x].rc_size;
+ for (x = rr->rr_firstdatacol; x < c; x++)
+ offset += rr->rr_col[x].rc_size;
good = abd_get_offset_size((abd_t *)good_data, offset,
- rm->rm_col[c].rc_size);
+ rr->rr_col[c].rc_size);
}
/* we drop the ereport if it ends up that the data was good */
@@ -274,10 +304,7 @@ static void
vdev_raidz_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *arg)
{
size_t c = (size_t)(uintptr_t)arg;
- size_t offset;
-
raidz_map_t *rm = zio->io_vsd;
- size_t size;
/* set up the report and bump the refcount */
zcr->zcr_cbdata = rm;
@@ -287,8 +314,9 @@ vdev_raidz_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *arg)
rm->rm_reports++;
ASSERT3U(rm->rm_reports, >, 0);
+ ASSERT3U(rm->rm_nrows, ==, 1);
- if (rm->rm_abd_copy != NULL)
+ if (rm->rm_row[0]->rr_abd_copy != NULL)
return;
/*
@@ -299,26 +327,30 @@ vdev_raidz_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *arg)
* Our parity data is already in separate buffers, so there's no need
* to copy them.
*/
+ for (int i = 0; i < rm->rm_nrows; i++) {
+ raidz_row_t *rr = rm->rm_row[i];
+ size_t offset = 0;
+ size_t size = 0;
- size = 0;
- for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++)
- size += rm->rm_col[c].rc_size;
+ for (c = rr->rr_firstdatacol; c < rr->rr_cols; c++)
+ size += rr->rr_col[c].rc_size;
- rm->rm_abd_copy = abd_alloc_for_io(size, B_FALSE);
+ rr->rr_abd_copy = abd_alloc_for_io(size, B_FALSE);
- for (offset = 0, c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
- raidz_col_t *col = &rm->rm_col[c];
- abd_t *tmp = abd_get_offset_size(rm->rm_abd_copy, offset,
- col->rc_size);
+ for (c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
+ raidz_col_t *col = &rr->rr_col[c];
+ abd_t *tmp = abd_get_offset_size(rr->rr_abd_copy,
+ offset, col->rc_size);
- abd_copy(tmp, col->rc_abd, col->rc_size);
+ abd_copy(tmp, col->rc_abd, col->rc_size);
- abd_put(col->rc_abd);
- col->rc_abd = tmp;
+ abd_put(col->rc_abd);
+ col->rc_abd = tmp;
- offset += col->rc_size;
+ offset += col->rc_size;
+ }
+ ASSERT3U(offset, ==, size);
}
- ASSERT3U(offset, ==, size);
}
static const zio_vsd_ops_t vdev_raidz_vsd_ops = {
@@ -337,7 +369,7 @@ noinline raidz_map_t *
vdev_raidz_map_alloc(zio_t *zio, uint64_t ashift, uint64_t dcols,
uint64_t nparity)
{
- raidz_map_t *rm;
+ raidz_row_t *rr;
/* The starting RAIDZ (parent) vdev sector of the block. */
uint64_t b = zio->io_offset >> ashift;
/* The zio's size in units of the vdev's minimum sector size. */
@@ -349,6 +381,10 @@ vdev_raidz_map_alloc(zio_t *zio, uint64_t ashift, uint64_t dcols,
uint64_t q, r, c, bc, col, acols, scols, coff, devidx, asize, tot;
uint64_t off = 0;
+ raidz_map_t *rm =
+ kmem_zalloc(offsetof(raidz_map_t, rm_row[1]), KM_SLEEP);
+ rm->rm_nrows = 1;
+
/*
* "Quotient": The number of data sectors for this stripe on all but
* the "big column" child vdevs that also contain "remainder" data.
@@ -370,8 +406,10 @@ vdev_raidz_map_alloc(zio_t *zio, uint64_t ashift, uint64_t dcols,
*/
tot = s + nparity * (q + (r == 0 ? 0 : 1));
- /* acols: The columns that will be accessed. */
- /* scols: The columns that will be accessed or skipped. */
+ /*
+ * acols: The columns that will be accessed.
+ * scols: The columns that will be accessed or skipped.
+ */
if (q == 0) {
/* Our I/O request doesn't span all child vdevs. */
acols = bc;
@@ -383,65 +421,70 @@ vdev_raidz_map_alloc(zio_t *zio, uint64_t ashift, uint64_t dcols,
ASSERT3U(acols, <=, scols);
- rm = kmem_alloc(offsetof(raidz_map_t, rm_col[scols]), KM_SLEEP);
-
- rm->rm_cols = acols;
- rm->rm_scols = scols;
- rm->rm_bigcols = bc;
- rm->rm_skipstart = bc;
- rm->rm_missingdata = 0;
- rm->rm_missingparity = 0;
- rm->rm_firstdatacol = nparity;
- rm->rm_abd_copy = NULL;
- rm->rm_reports = 0;
- rm->rm_freed = 0;
- rm->rm_ecksuminjected = 0;
+ rr = kmem_alloc(offsetof(raidz_row_t, rr_col[scols]), KM_SLEEP);
+ rm->rm_row[0] = rr;
+
+ rr->rr_cols = acols;
+ rr->rr_scols = scols;
+ rr->rr_bigcols = bc;
+ rr->rr_missingdata = 0;
+ rr->rr_missingparity = 0;
+ rr->rr_firstdatacol = nparity;
+ rr->rr_abd_copy = NULL;
+ rr->rr_abd_empty = NULL;
+ rr->rr_nempty = 0;
+#ifdef ZFS_DEBUG
+ rr->rr_offset = zio->io_offset;
+ rr->rr_size = zio->io_size;
+#endif
asize = 0;
for (c = 0; c < scols; c++) {
+ raidz_col_t *rc = &rr->rr_col[c];
col = f + c;
coff = o;
if (col >= dcols) {
col -= dcols;
coff += 1ULL << ashift;
}
- rm->rm_col[c].rc_devidx = col;
- rm->rm_col[c].rc_offset = coff;
- rm->rm_col[c].rc_abd = NULL;
- rm->rm_col[c].rc_gdata = NULL;
- rm->rm_col[c].rc_error = 0;
- rm->rm_col[c].rc_tried = 0;
- rm->rm_col[c].rc_skipped = 0;
+ rc->rc_devidx = col;
+ rc->rc_offset = coff;
+ rc->rc_abd = NULL;
+ rc->rc_gdata = NULL;
+ rc->rc_orig_data = NULL;
+ rc->rc_error = 0;
+ rc->rc_tried = 0;
+ rc->rc_skipped = 0;
+ rc->rc_repair = 0;
+ rc->rc_need_orig_restore = B_FALSE;
if (c >= acols)
- rm->rm_col[c].rc_size = 0;
+ rc->rc_size = 0;
else if (c < bc)
- rm->rm_col[c].rc_size = (q + 1) << ashift;
+ rc->rc_size = (q + 1) << ashift;
else
- rm->rm_col[c].rc_size = q << ashift;
+ rc->rc_size = q << ashift;
- asize += rm->rm_col[c].rc_size;
+ asize += rc->rc_size;
}
ASSERT3U(asize, ==, tot << ashift);
- rm->rm_asize = roundup(asize, (nparity + 1) << ashift);
rm->rm_nskip = roundup(tot, nparity + 1) - tot;
- ASSERT3U(rm->rm_asize - asize, ==, rm->rm_nskip << ashift);
- ASSERT3U(rm->rm_nskip, <=, nparity);
+ rm->rm_skipstart = bc;
- for (c = 0; c < rm->rm_firstdatacol; c++)
- rm->rm_col[c].rc_abd =
- abd_alloc_linear(rm->rm_col[c].rc_size, B_FALSE);
+ for (c = 0; c < rr->rr_firstdatacol; c++)
+ rr->rr_col[c].rc_abd =
+ abd_alloc_linear(rr->rr_col[c].rc_size, B_FALSE);
- rm->rm_col[c].rc_abd = abd_get_offset_size(zio->io_abd, 0,
- rm->rm_col[c].rc_size);
- off = rm->rm_col[c].rc_size;
+ rr->rr_col[c].rc_abd = abd_get_offset_size(zio->io_abd, 0,
+ rr->rr_col[c].rc_size);
+ off = rr->rr_col[c].rc_size;
for (c = c + 1; c < acols; c++) {
- rm->rm_col[c].rc_abd = abd_get_offset_size(zio->io_abd, off,
- rm->rm_col[c].rc_size);
- off += rm->rm_col[c].rc_size;
+ raidz_col_t *rc = &rr->rr_col[c];
+ rc->rc_abd = abd_get_offset_size(zio->io_abd, off, rc->rc_size);
+ off += rc->rc_size;
}
/*
@@ -464,24 +507,21 @@ vdev_raidz_map_alloc(zio_t *zio, uint64_t ashift, uint64_t dcols,
* skip the first column since at least one data and one parity
* column must appear in each row.
*/
- ASSERT(rm->rm_cols >= 2);
- ASSERT(rm->rm_col[0].rc_size == rm->rm_col[1].rc_size);
+ ASSERT(rr->rr_cols >= 2);
+ ASSERT(rr->rr_col[0].rc_size == rr->rr_col[1].rc_size);
- if (rm->rm_firstdatacol == 1 && (zio->io_offset & (1ULL << 20))) {
- devidx = rm->rm_col[0].rc_devidx;
- o = rm->rm_col[0].rc_offset;
- rm->rm_col[0].rc_devidx = rm->rm_col[1].rc_devidx;
- rm->rm_col[0].rc_offset = rm->rm_col[1].rc_offset;
- rm->rm_col[1].rc_devidx = devidx;
- rm->rm_col[1].rc_offset = o;
+ if (rr->rr_firstdatacol == 1 && (zio->io_offset & (1ULL << 20))) {
+ devidx = rr->rr_col[0].rc_devidx;
+ o = rr->rr_col[0].rc_offset;
+ rr->rr_col[0].rc_devidx = rr->rr_col[1].rc_devidx;
+ rr->rr_col[0].rc_offset = rr->rr_col[1].rc_offset;
+ rr->rr_col[1].rc_devidx = devidx;
+ rr->rr_col[1].rc_offset = o;
if (rm->rm_skipstart == 0)
rm->rm_skipstart = 1;
}
- zio->io_vsd = rm;
- zio->io_vsd_ops = &vdev_raidz_vsd_ops;
-
/* init RAIDZ parity ops */
rm->rm_ops = vdev_raidz_math_get_ops();
@@ -550,50 +590,43 @@ vdev_raidz_pqr_func(void *buf, size_t size, void *private)
}
static void
-vdev_raidz_generate_parity_p(raidz_map_t *rm)
+vdev_raidz_generate_parity_p(raidz_row_t *rr)
{
- uint64_t *p;
- int c;
- abd_t *src;
+ uint64_t *p = abd_to_buf(rr->rr_col[VDEV_RAIDZ_P].rc_abd);
- for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
- src = rm->rm_col[c].rc_abd;
- p = abd_to_buf(rm->rm_col[VDEV_RAIDZ_P].rc_abd);
+ for (int c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
+ abd_t *src = rr->rr_col[c].rc_abd;
- if (c == rm->rm_firstdatacol) {
- abd_copy_to_buf(p, src, rm->rm_col[c].rc_size);
+ if (c == rr->rr_firstdatacol) {
+ abd_copy_to_buf(p, src, rr->rr_col[c].rc_size);
} else {
struct pqr_struct pqr = { p, NULL, NULL };
- (void) abd_iterate_func(src, 0, rm->rm_col[c].rc_size,
+ (void) abd_iterate_func(src, 0, rr->rr_col[c].rc_size,
vdev_raidz_p_func, &pqr);
}
}
}
static void
-vdev_raidz_generate_parity_pq(raidz_map_t *rm)
+vdev_raidz_generate_parity_pq(raidz_row_t *rr)
{
- uint64_t *p, *q, pcnt, ccnt, mask, i;
- int c;
- abd_t *src;
-
- pcnt = rm->rm_col[VDEV_RAIDZ_P].rc_size / sizeof (p[0]);
- ASSERT(rm->rm_col[VDEV_RAIDZ_P].rc_size ==
- rm->rm_col[VDEV_RAIDZ_Q].rc_size);
+ uint64_t *p = abd_to_buf(rr->rr_col[VDEV_RAIDZ_P].rc_abd);
+ uint64_t *q = abd_to_buf(rr->rr_col[VDEV_RAIDZ_Q].rc_abd);
+ uint64_t pcnt = rr->rr_col[VDEV_RAIDZ_P].rc_size / sizeof (p[0]);
+ ASSERT(rr->rr_col[VDEV_RAIDZ_P].rc_size ==
+ rr->rr_col[VDEV_RAIDZ_Q].rc_size);
- for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
- src = rm->rm_col[c].rc_abd;
- p = abd_to_buf(rm->rm_col[VDEV_RAIDZ_P].rc_abd);
- q = abd_to_buf(rm->rm_col[VDEV_RAIDZ_Q].rc_abd);
+ for (int c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
+ abd_t *src = rr->rr_col[c].rc_abd;
- ccnt = rm->rm_col[c].rc_size / sizeof (p[0]);
+ uint64_t ccnt = rr->rr_col[c].rc_size / sizeof (p[0]);
- if (c == rm->rm_firstdatacol) {
+ if (c == rr->rr_firstdatacol) {
ASSERT(ccnt == pcnt || ccnt == 0);
- abd_copy_to_buf(p, src, rm->rm_col[c].rc_size);
- (void) memcpy(q, p, rm->rm_col[c].rc_size);
+ abd_copy_to_buf(p, src, rr->rr_col[c].rc_size);
+ (void) memcpy(q, p, rr->rr_col[c].rc_size);
- for (i = ccnt; i < pcnt; i++) {
+ for (uint64_t i = ccnt; i < pcnt; i++) {
p[i] = 0;
q[i] = 0;
}
@@ -601,14 +634,15 @@ vdev_raidz_generate_parity_pq(raidz_map_t *rm)
struct pqr_struct pqr = { p, q, NULL };
ASSERT(ccnt <= pcnt);
- (void) abd_iterate_func(src, 0, rm->rm_col[c].rc_size,
+ (void) abd_iterate_func(src, 0, rr->rr_col[c].rc_size,
vdev_raidz_pq_func, &pqr);
/*
* Treat short columns as though they are full of 0s.
* Note that there's therefore nothing needed for P.
*/
- for (i = ccnt; i < pcnt; i++) {
+ uint64_t mask;
+ for (uint64_t i = ccnt; i < pcnt; i++) {
VDEV_RAIDZ_64MUL_2(q[i], mask);
}
}
@@ -616,33 +650,29 @@ vdev_raidz_generate_parity_pq(raidz_map_t *rm)
}
static void
-vdev_raidz_generate_parity_pqr(raidz_map_t *rm)
+vdev_raidz_generate_parity_pqr(raidz_row_t *rr)
{
- uint64_t *p, *q, *r, pcnt, ccnt, mask, i;
- int c;
- abd_t *src;
-
- pcnt = rm->rm_col[VDEV_RAIDZ_P].rc_size / sizeof (p[0]);
- ASSERT(rm->rm_col[VDEV_RAIDZ_P].rc_size ==
- rm->rm_col[VDEV_RAIDZ_Q].rc_size);
- ASSERT(rm->rm_col[VDEV_RAIDZ_P].rc_size ==
- rm->rm_col[VDEV_RAIDZ_R].rc_size);
+ uint64_t *p = abd_to_buf(rr->rr_col[VDEV_RAIDZ_P].rc_abd);
+ uint64_t *q = abd_to_buf(rr->rr_col[VDEV_RAIDZ_Q].rc_abd);
+ uint64_t *r = abd_to_buf(rr->rr_col[VDEV_RAIDZ_R].rc_abd);
+ uint64_t pcnt = rr->rr_col[VDEV_RAIDZ_P].rc_size / sizeof (p[0]);
+ ASSERT(rr->rr_col[VDEV_RAIDZ_P].rc_size ==
+ rr->rr_col[VDEV_RAIDZ_Q].rc_size);
+ ASSERT(rr->rr_col[VDEV_RAIDZ_P].rc_size ==
+ rr->rr_col[VDEV_RAIDZ_R].rc_size);
- for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
- src = rm->rm_col[c].rc_abd;
- p = abd_to_buf(rm->rm_col[VDEV_RAIDZ_P].rc_abd);
- q = abd_to_buf(rm->rm_col[VDEV_RAIDZ_Q].rc_abd);
- r = abd_to_buf(rm->rm_col[VDEV_RAIDZ_R].rc_abd);
+ for (int c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
+ abd_t *src = rr->rr_col[c].rc_abd;
- ccnt = rm->rm_col[c].rc_size / sizeof (p[0]);
+ uint64_t ccnt = rr->rr_col[c].rc_size / sizeof (p[0]);
- if (c == rm->rm_firstdatacol) {
+ if (c == rr->rr_firstdatacol) {
ASSERT(ccnt == pcnt || ccnt == 0);
- abd_copy_to_buf(p, src, rm->rm_col[c].rc_size);
- (void) memcpy(q, p, rm->rm_col[c].rc_size);
- (void) memcpy(r, p, rm->rm_col[c].rc_size);
+ abd_copy_to_buf(p, src, rr->rr_col[c].rc_size);
+ (void) memcpy(q, p, rr->rr_col[c].rc_size);
+ (void) memcpy(r, p, rr->rr_col[c].rc_size);
- for (i = ccnt; i < pcnt; i++) {
+ for (uint64_t i = ccnt; i < pcnt; i++) {
p[i] = 0;
q[i] = 0;
r[i] = 0;
@@ -651,14 +681,15 @@ vdev_raidz_generate_parity_pqr(raidz_map_t *rm)
struct pqr_struct pqr = { p, q, r };
ASSERT(ccnt <= pcnt);
- (void) abd_iterate_func(src, 0, rm->rm_col[c].rc_size,
+ (void) abd_iterate_func(src, 0, rr->rr_col[c].rc_size,
vdev_raidz_pqr_func, &pqr);
/*
* Treat short columns as though they are full of 0s.
* Note that there's therefore nothing needed for P.
*/
- for (i = ccnt; i < pcnt; i++) {
+ uint64_t mask;
+ for (uint64_t i = ccnt; i < pcnt; i++) {
VDEV_RAIDZ_64MUL_2(q[i], mask);
VDEV_RAIDZ_64MUL_4(r[i], mask);
}
@@ -671,27 +702,38 @@ vdev_raidz_generate_parity_pqr(raidz_map_t *rm)
* parity columns available.
*/
void
-vdev_raidz_generate_parity(raidz_map_t *rm)
+vdev_raidz_generate_parity_row(raidz_map_t *rm, raidz_row_t *rr)
{
+ ASSERT3U(rr->rr_cols, !=, 0);
+
/* Generate using the new math implementation */
- if (vdev_raidz_math_generate(rm) != RAIDZ_ORIGINAL_IMPL)
+ if (vdev_raidz_math_generate(rm, rr) != RAIDZ_ORIGINAL_IMPL)
return;
- switch (rm->rm_firstdatacol) {
+ switch (rr->rr_firstdatacol) {
case 1:
- vdev_raidz_generate_parity_p(rm);
+ vdev_raidz_generate_parity_p(rr);
break;
case 2:
- vdev_raidz_generate_parity_pq(rm);
+ vdev_raidz_generate_parity_pq(rr);
break;
case 3:
- vdev_raidz_generate_parity_pqr(rm);
+ vdev_raidz_generate_parity_pqr(rr);
break;
default:
cmn_err(CE_PANIC, "invalid RAID-Z configuration");
}
}
+void
+vdev_raidz_generate_parity(raidz_map_t *rm)
+{
+ for (int i = 0; i < rm->rm_nrows; i++) {
+ raidz_row_t *rr = rm->rm_row[i];
+ vdev_raidz_generate_parity_row(rm, rr);
+ }
+}
+
/* ARGSUSED */
static int
vdev_raidz_reconst_p_func(void *dbuf, void *sbuf, size_t size, void *private)
@@ -809,30 +851,27 @@ vdev_raidz_reconst_pq_tail_func(void *xbuf, size_t size, void *private)
}
static int
-vdev_raidz_reconstruct_p(raidz_map_t *rm, int *tgts, int ntgts)
+vdev_raidz_reconstruct_p(raidz_row_t *rr, int *tgts, int ntgts)
{
int x = tgts[0];
- int c;
abd_t *dst, *src;
- ASSERT(ntgts == 1);
- ASSERT(x >= rm->rm_firstdatacol);
- ASSERT(x < rm->rm_cols);
+ ASSERT3U(ntgts, ==, 1);
+ ASSERT3U(x, >=, rr->rr_firstdatacol);
+ ASSERT3U(x, <, rr->rr_cols);
- ASSERT(rm->rm_col[x].rc_size <= rm->rm_col[VDEV_RAIDZ_P].rc_size);
- ASSERT(rm->rm_col[x].rc_size > 0);
+ ASSERT3U(rr->rr_col[x].rc_size, <=, rr->rr_col[VDEV_RAIDZ_P].rc_size);
- src = rm->rm_col[VDEV_RAIDZ_P].rc_abd;
- dst = rm->rm_col[x].rc_abd;
+ src = rr->rr_col[VDEV_RAIDZ_P].rc_abd;
+ dst = rr->rr_col[x].rc_abd;
- abd_copy_from_buf(dst, abd_to_buf(src), rm->rm_col[x].rc_size);
+ abd_copy_from_buf(dst, abd_to_buf(src), rr->rr_col[x].rc_size);
- for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
- uint64_t size = MIN(rm->rm_col[x].rc_size,
- rm->rm_col[c].rc_size);
+ for (int c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
+ uint64_t size = MIN(rr->rr_col[x].rc_size,
+ rr->rr_col[c].rc_size);
- src = rm->rm_col[c].rc_abd;
- dst = rm->rm_col[x].rc_abd;
+ src = rr->rr_col[c].rc_abd;
if (c == x)
continue;
@@ -845,7 +884,7 @@ vdev_raidz_reconstruct_p(raidz_map_t *rm, int *tgts, int ntgts)
}
static int
-vdev_raidz_reconstruct_q(raidz_map_t *rm, int *tgts, int ntgts)
+vdev_raidz_reconstruct_q(raidz_row_t *rr, int *tgts, int ntgts)
{
int x = tgts[0];
int c, exp;
@@ -853,44 +892,44 @@ vdev_raidz_reconstruct_q(raidz_map_t *rm, int *tgts, int ntgts)
ASSERT(ntgts == 1);
- ASSERT(rm->rm_col[x].rc_size <= rm->rm_col[VDEV_RAIDZ_Q].rc_size);
+ ASSERT(rr->rr_col[x].rc_size <= rr->rr_col[VDEV_RAIDZ_Q].rc_size);
- for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
- uint64_t size = (c == x) ? 0 : MIN(rm->rm_col[x].rc_size,
- rm->rm_col[c].rc_size);
+ for (c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
+ uint64_t size = (c == x) ? 0 : MIN(rr->rr_col[x].rc_size,
+ rr->rr_col[c].rc_size);
- src = rm->rm_col[c].rc_abd;
- dst = rm->rm_col[x].rc_abd;
+ src = rr->rr_col[c].rc_abd;
+ dst = rr->rr_col[x].rc_abd;
- if (c == rm->rm_firstdatacol) {
+ if (c == rr->rr_firstdatacol) {
abd_copy(dst, src, size);
- if (rm->rm_col[x].rc_size > size)
+ if (rr->rr_col[x].rc_size > size) {
abd_zero_off(dst, size,
- rm->rm_col[x].rc_size - size);
-
+ rr->rr_col[x].rc_size - size);
+ }
} else {
- ASSERT3U(size, <=, rm->rm_col[x].rc_size);
+ ASSERT3U(size, <=, rr->rr_col[x].rc_size);
(void) abd_iterate_func2(dst, src, 0, 0, size,
vdev_raidz_reconst_q_pre_func, NULL);
(void) abd_iterate_func(dst,
- size, rm->rm_col[x].rc_size - size,
+ size, rr->rr_col[x].rc_size - size,
vdev_raidz_reconst_q_pre_tail_func, NULL);
}
}
- src = rm->rm_col[VDEV_RAIDZ_Q].rc_abd;
- dst = rm->rm_col[x].rc_abd;
- exp = 255 - (rm->rm_cols - 1 - x);
+ src = rr->rr_col[VDEV_RAIDZ_Q].rc_abd;
+ dst = rr->rr_col[x].rc_abd;
+ exp = 255 - (rr->rr_cols - 1 - x);
struct reconst_q_struct rq = { abd_to_buf(src), exp };
- (void) abd_iterate_func(dst, 0, rm->rm_col[x].rc_size,
+ (void) abd_iterate_func(dst, 0, rr->rr_col[x].rc_size,
vdev_raidz_reconst_q_post_func, &rq);
return (1 << VDEV_RAIDZ_Q);
}
static int
-vdev_raidz_reconstruct_pq(raidz_map_t *rm, int *tgts, int ntgts)
+vdev_raidz_reconstruct_pq(raidz_row_t *rr, int *tgts, int ntgts)
{
uint8_t *p, *q, *pxy, *qxy, tmp, a, b, aexp, bexp;
abd_t *pdata, *qdata;
@@ -901,10 +940,10 @@ vdev_raidz_reconstruct_pq(raidz_map_t *rm, int *tgts, int ntgts)
ASSERT(ntgts == 2);
ASSERT(x < y);
- ASSERT(x >= rm->rm_firstdatacol);
- ASSERT(y < rm->rm_cols);
+ ASSERT(x >= rr->rr_firstdatacol);
+ ASSERT(y < rr->rr_cols);
- ASSERT(rm->rm_col[x].rc_size >= rm->rm_col[y].rc_size);
+ ASSERT(rr->rr_col[x].rc_size >= rr->rr_col[y].rc_size);
/*
* Move the parity data aside -- we're going to compute parity as
@@ -913,29 +952,29 @@ vdev_raidz_reconstruct_pq(raidz_map_t *rm, int *tgts, int ntgts)
* parity so we make those columns appear to be full of zeros by
* setting their lengths to zero.
*/
- pdata = rm->rm_col[VDEV_RAIDZ_P].rc_abd;
- qdata = rm->rm_col[VDEV_RAIDZ_Q].rc_abd;
- xsize = rm->rm_col[x].rc_size;
- ysize = rm->rm_col[y].rc_size;
+ pdata = rr->rr_col[VDEV_RAIDZ_P].rc_abd;
+ qdata = rr->rr_col[VDEV_RAIDZ_Q].rc_abd;
+ xsize = rr->rr_col[x].rc_size;
+ ysize = rr->rr_col[y].rc_size;
- rm->rm_col[VDEV_RAIDZ_P].rc_abd =
- abd_alloc_linear(rm->rm_col[VDEV_RAIDZ_P].rc_size, B_TRUE);
- rm->rm_col[VDEV_RAIDZ_Q].rc_abd =
- abd_alloc_linear(rm->rm_col[VDEV_RAIDZ_Q].rc_size, B_TRUE);
- rm->rm_col[x].rc_size = 0;
- rm->rm_col[y].rc_size = 0;
+ rr->rr_col[VDEV_RAIDZ_P].rc_abd =
+ abd_alloc_linear(rr->rr_col[VDEV_RAIDZ_P].rc_size, B_TRUE);
+ rr->rr_col[VDEV_RAIDZ_Q].rc_abd =
+ abd_alloc_linear(rr->rr_col[VDEV_RAIDZ_Q].rc_size, B_TRUE);
+ rr->rr_col[x].rc_size = 0;
+ rr->rr_col[y].rc_size = 0;
- vdev_raidz_generate_parity_pq(rm);
+ vdev_raidz_generate_parity_pq(rr);
- rm->rm_col[x].rc_size = xsize;
- rm->rm_col[y].rc_size = ysize;
+ rr->rr_col[x].rc_size = xsize;
+ rr->rr_col[y].rc_size = ysize;
p = abd_to_buf(pdata);
q = abd_to_buf(qdata);
- pxy = abd_to_buf(rm->rm_col[VDEV_RAIDZ_P].rc_abd);
- qxy = abd_to_buf(rm->rm_col[VDEV_RAIDZ_Q].rc_abd);
- xd = rm->rm_col[x].rc_abd;
- yd = rm->rm_col[y].rc_abd;
+ pxy = abd_to_buf(rr->rr_col[VDEV_RAIDZ_P].rc_abd);
+ qxy = abd_to_buf(rr->rr_col[VDEV_RAIDZ_Q].rc_abd);
+ xd = rr->rr_col[x].rc_abd;
+ yd = rr->rr_col[y].rc_abd;
/*
* We now have:
@@ -953,7 +992,7 @@ vdev_raidz_reconstruct_pq(raidz_map_t *rm, int *tgts, int ntgts)
*/
a = vdev_raidz_pow2[255 + x - y];
- b = vdev_raidz_pow2[255 - (rm->rm_cols - 1 - x)];
+ b = vdev_raidz_pow2[255 - (rr->rr_cols - 1 - x)];
tmp = 255 - vdev_raidz_log2[a ^ 1];
aexp = vdev_raidz_log2[vdev_raidz_exp2(a, tmp)];
@@ -967,14 +1006,14 @@ vdev_raidz_reconstruct_pq(raidz_map_t *rm, int *tgts, int ntgts)
(void) abd_iterate_func(xd, ysize, xsize - ysize,
vdev_raidz_reconst_pq_tail_func, &rpq);
- abd_free(rm->rm_col[VDEV_RAIDZ_P].rc_abd);
- abd_free(rm->rm_col[VDEV_RAIDZ_Q].rc_abd);
+ abd_free(rr->rr_col[VDEV_RAIDZ_P].rc_abd);
+ abd_free(rr->rr_col[VDEV_RAIDZ_Q].rc_abd);
/*
* Restore the saved parity data.
*/
- rm->rm_col[VDEV_RAIDZ_P].rc_abd = pdata;
- rm->rm_col[VDEV_RAIDZ_Q].rc_abd = qdata;
+ rr->rr_col[VDEV_RAIDZ_P].rc_abd = pdata;
+ rr->rr_col[VDEV_RAIDZ_Q].rc_abd = qdata;
return ((1 << VDEV_RAIDZ_P) | (1 << VDEV_RAIDZ_Q));
}
@@ -1134,13 +1173,13 @@ vdev_raidz_reconstruct_pq(raidz_map_t *rm, int *tgts, int ntgts)
/* END CSTYLED */
static void
-vdev_raidz_matrix_init(raidz_map_t *rm, int n, int nmap, int *map,
+vdev_raidz_matrix_init(raidz_row_t *rr, int n, int nmap, int *map,
uint8_t **rows)
{
int i, j;
int pow;
- ASSERT(n == rm->rm_cols - rm->rm_firstdatacol);
+ ASSERT(n == rr->rr_cols - rr->rr_firstdatacol);
/*
* Fill in the missing rows of interest.
@@ -1164,7 +1203,7 @@ vdev_raidz_matrix_init(raidz_map_t *rm, int n, int nmap, int *map,
}
static void
-vdev_raidz_matrix_invert(raidz_map_t *rm, int n, int nmissing, int *missing,
+vdev_raidz_matrix_invert(raidz_row_t *rr, int n, int nmissing, int *missing,
uint8_t **rows, uint8_t **invrows, const uint8_t *used)
{
int i, j, ii, jj;
@@ -1176,10 +1215,10 @@ vdev_raidz_matrix_invert(raidz_map_t *rm, int n, int nmissing, int *missing,
* correspond to data columns.
*/
for (i = 0; i < nmissing; i++) {
- ASSERT3S(used[i], <, rm->rm_firstdatacol);
+ ASSERT3S(used[i], <, rr->rr_firstdatacol);
}
for (; i < n; i++) {
- ASSERT3S(used[i], >=, rm->rm_firstdatacol);
+ ASSERT3S(used[i], >=, rr->rr_firstdatacol);
}
/*
@@ -1196,8 +1235,8 @@ vdev_raidz_matrix_invert(raidz_map_t *rm, int n, int nmissing, int *missing,
*/
for (i = 0; i < nmissing; i++) {
for (j = nmissing; j < n; j++) {
- ASSERT3U(used[j], >=, rm->rm_firstdatacol);
- jj = used[j] - rm->rm_firstdatacol;
+ ASSERT3U(used[j], >=, rr->rr_firstdatacol);
+ jj = used[j] - rr->rr_firstdatacol;
ASSERT3S(jj, <, n);
invrows[i][j] = rows[i][jj];
rows[i][jj] = 0;
@@ -1258,7 +1297,7 @@ vdev_raidz_matrix_invert(raidz_map_t *rm, int n, int nmissing, int *missing,
}
static void
-vdev_raidz_matrix_reconstruct(raidz_map_t *rm, int n, int nmissing,
+vdev_raidz_matrix_reconstruct(raidz_row_t *rr, int n, int nmissing,
int *missing, uint8_t **invrows, const uint8_t *used)
{
int i, j, x, cc, c;
@@ -1290,22 +1329,24 @@ vdev_raidz_matrix_reconstruct(raidz_map_t *rm, int n, int nmissing,
for (i = 0; i < n; i++) {
c = used[i];
- ASSERT3U(c, <, rm->rm_cols);
+ ASSERT3U(c, <, rr->rr_cols);
- src = abd_to_buf(rm->rm_col[c].rc_abd);
- ccount = rm->rm_col[c].rc_size;
+ ccount = rr->rr_col[c].rc_size;
+ ASSERT(ccount >= rr->rr_col[missing[0]].rc_size || i > 0);
+ if (ccount == 0)
+ continue;
+ src = abd_to_buf(rr->rr_col[c].rc_abd);
for (j = 0; j < nmissing; j++) {
- cc = missing[j] + rm->rm_firstdatacol;
- ASSERT3U(cc, >=, rm->rm_firstdatacol);
- ASSERT3U(cc, <, rm->rm_cols);
+ cc = missing[j] + rr->rr_firstdatacol;
+ ASSERT3U(cc, >=, rr->rr_firstdatacol);
+ ASSERT3U(cc, <, rr->rr_cols);
ASSERT3U(cc, !=, c);
- dst[j] = abd_to_buf(rm->rm_col[cc].rc_abd);
- dcount[j] = rm->rm_col[cc].rc_size;
+ dcount[j] = rr->rr_col[cc].rc_size;
+ if (dcount[j] != 0)
+ dst[j] = abd_to_buf(rr->rr_col[cc].rc_abd);
}
- ASSERT(ccount >= rm->rm_col[missing[0]].rc_size || i > 0);
-
for (x = 0; x < ccount; x++, src++) {
if (*src != 0)
log = vdev_raidz_log2[*src];
@@ -1334,16 +1375,14 @@ vdev_raidz_matrix_reconstruct(raidz_map_t *rm, int n, int nmissing,
}
static int
-vdev_raidz_reconstruct_general(raidz_map_t *rm, int *tgts, int ntgts)
+vdev_raidz_reconstruct_general(raidz_row_t *rr, int *tgts, int ntgts)
{
int n, i, c, t, tt;
int nmissing_rows;
int missing_rows[VDEV_RAIDZ_MAXPARITY];
int parity_map[VDEV_RAIDZ_MAXPARITY];
-
uint8_t *p, *pp;
size_t psize;
-
uint8_t *rows[VDEV_RAIDZ_MAXPARITY];
uint8_t *invrows[VDEV_RAIDZ_MAXPARITY];
uint8_t *used;
@@ -1354,30 +1393,39 @@ vdev_raidz_reconstruct_general(raidz_map_t *rm, int *tgts, int ntgts)
/*
* Matrix reconstruction can't use scatter ABDs yet, so we allocate
- * temporary linear ABDs.
+ * temporary linear ABDs if any non-linear ABDs are found.
*/
- if (!abd_is_linear(rm->rm_col[rm->rm_firstdatacol].rc_abd)) {
- bufs = kmem_alloc(rm->rm_cols * sizeof (abd_t *), KM_PUSHPAGE);
-
- for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
- raidz_col_t *col = &rm->rm_col[c];
+ for (i = rr->rr_firstdatacol; i < rr->rr_cols; i++) {
+ if (!abd_is_linear(rr->rr_col[i].rc_abd)) {
+ bufs = kmem_alloc(rr->rr_cols * sizeof (abd_t *),
+ KM_PUSHPAGE);
+
+ for (c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
+ raidz_col_t *col = &rr->rr_col[c];
+
+ bufs[c] = col->rc_abd;
+ if (bufs[c] != NULL) {
+ col->rc_abd = abd_alloc_linear(
+ col->rc_size, B_TRUE);
+ abd_copy(col->rc_abd, bufs[c],
+ col->rc_size);
+ }
+ }
- bufs[c] = col->rc_abd;
- col->rc_abd = abd_alloc_linear(col->rc_size, B_TRUE);
- abd_copy(col->rc_abd, bufs[c], col->rc_size);
+ break;
}
}
- n = rm->rm_cols - rm->rm_firstdatacol;
+ n = rr->rr_cols - rr->rr_firstdatacol;
/*
* Figure out which data columns are missing.
*/
nmissing_rows = 0;
for (t = 0; t < ntgts; t++) {
- if (tgts[t] >= rm->rm_firstdatacol) {
+ if (tgts[t] >= rr->rr_firstdatacol) {
missing_rows[nmissing_rows++] =
- tgts[t] - rm->rm_firstdatacol;
+ tgts[t] - rr->rr_firstdatacol;
}
}
@@ -1387,7 +1435,7 @@ vdev_raidz_reconstruct_general(raidz_map_t *rm, int *tgts, int ntgts)
*/
for (tt = 0, c = 0, i = 0; i < nmissing_rows; c++) {
ASSERT(tt < ntgts);
- ASSERT(c < rm->rm_firstdatacol);
+ ASSERT(c < rr->rr_firstdatacol);
/*
* Skip any targeted parity columns.
@@ -1422,9 +1470,9 @@ vdev_raidz_reconstruct_general(raidz_map_t *rm, int *tgts, int ntgts)
used[i] = parity_map[i];
}
- for (tt = 0, c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
+ for (tt = 0, c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
if (tt < nmissing_rows &&
- c == missing_rows[tt] + rm->rm_firstdatacol) {
+ c == missing_rows[tt] + rr->rr_firstdatacol) {
tt++;
continue;
}
@@ -1437,18 +1485,18 @@ vdev_raidz_reconstruct_general(raidz_map_t *rm, int *tgts, int ntgts)
/*
* Initialize the interesting rows of the matrix.
*/
- vdev_raidz_matrix_init(rm, n, nmissing_rows, parity_map, rows);
+ vdev_raidz_matrix_init(rr, n, nmissing_rows, parity_map, rows);
/*
* Invert the matrix.
*/
- vdev_raidz_matrix_invert(rm, n, nmissing_rows, missing_rows, rows,
+ vdev_raidz_matrix_invert(rr, n, nmissing_rows, missing_rows, rows,
invrows, used);
/*
* Reconstruct the missing data using the generated matrix.
*/
- vdev_raidz_matrix_reconstruct(rm, n, nmissing_rows, missing_rows,
+ vdev_raidz_matrix_reconstruct(rr, n, nmissing_rows, missing_rows,
invrows, used);
kmem_free(p, psize);
@@ -1457,21 +1505,24 @@ vdev_raidz_reconstruct_general(raidz_map_t *rm, int *tgts, int ntgts)
* copy back from temporary linear abds and free them
*/
if (bufs) {
- for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
- raidz_col_t *col = &rm->rm_col[c];
+ for (c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
+ raidz_col_t *col = &rr->rr_col[c];
- abd_copy(bufs[c], col->rc_abd, col->rc_size);
- abd_free(col->rc_abd);
+ if (bufs[c] != NULL) {
+ abd_copy(bufs[c], col->rc_abd, col->rc_size);
+ abd_free(col->rc_abd);
+ }
col->rc_abd = bufs[c];
}
- kmem_free(bufs, rm->rm_cols * sizeof (abd_t *));
+ kmem_free(bufs, rr->rr_cols * sizeof (abd_t *));
}
return (code);
}
-int
-vdev_raidz_reconstruct(raidz_map_t *rm, const int *t, int nt)
+static int
+vdev_raidz_reconstruct_row(raidz_map_t *rm, raidz_row_t *rr,
+ const int *t, int nt)
{
int tgts[VDEV_RAIDZ_MAXPARITY], *dt;
int ntgts;
@@ -1480,26 +1531,19 @@ vdev_raidz_reconstruct(raidz_map_t *rm, const int *t, int nt)
int nbadparity, nbaddata;
int parity_valid[VDEV_RAIDZ_MAXPARITY];
- /*
- * The tgts list must already be sorted.
- */
- for (i = 1; i < nt; i++) {
- ASSERT(t[i] > t[i - 1]);
- }
-
- nbadparity = rm->rm_firstdatacol;
- nbaddata = rm->rm_cols - nbadparity;
+ nbadparity = rr->rr_firstdatacol;
+ nbaddata = rr->rr_cols - nbadparity;
ntgts = 0;
- for (i = 0, c = 0; c < rm->rm_cols; c++) {
- if (c < rm->rm_firstdatacol)
+ for (i = 0, c = 0; c < rr->rr_cols; c++) {
+ if (c < rr->rr_firstdatacol)
parity_valid[c] = B_FALSE;
if (i < nt && c == t[i]) {
tgts[ntgts++] = c;
i++;
- } else if (rm->rm_col[c].rc_error != 0) {
+ } else if (rr->rr_col[c].rc_error != 0) {
tgts[ntgts++] = c;
- } else if (c >= rm->rm_firstdatacol) {
+ } else if (c >= rr->rr_firstdatacol) {
nbaddata--;
} else {
parity_valid[c] = B_TRUE;
@@ -1514,7 +1558,7 @@ vdev_raidz_reconstruct(raidz_map_t *rm, const int *t, int nt)
dt = &tgts[nbadparity];
/* Reconstruct using the new math implementation */
- ret = vdev_raidz_math_reconstruct(rm, parity_valid, dt, nbaddata);
+ ret = vdev_raidz_math_reconstruct(rm, rr, parity_valid, dt, nbaddata);
if (ret != RAIDZ_ORIGINAL_IMPL)
return (ret);
@@ -1524,29 +1568,29 @@ vdev_raidz_reconstruct(raidz_map_t *rm, const int *t, int nt)
switch (nbaddata) {
case 1:
if (parity_valid[VDEV_RAIDZ_P])
- return (vdev_raidz_reconstruct_p(rm, dt, 1));
+ return (vdev_raidz_reconstruct_p(rr, dt, 1));
- ASSERT(rm->rm_firstdatacol > 1);
+ ASSERT(rr->rr_firstdatacol > 1);
if (parity_valid[VDEV_RAIDZ_Q])
- return (vdev_raidz_reconstruct_q(rm, dt, 1));
+ return (vdev_raidz_reconstruct_q(rr, dt, 1));
- ASSERT(rm->rm_firstdatacol > 2);
+ ASSERT(rr->rr_firstdatacol > 2);
break;
case 2:
- ASSERT(rm->rm_firstdatacol > 1);
+ ASSERT(rr->rr_firstdatacol > 1);
if (parity_valid[VDEV_RAIDZ_P] &&
parity_valid[VDEV_RAIDZ_Q])
- return (vdev_raidz_reconstruct_pq(rm, dt, 2));
+ return (vdev_raidz_reconstruct_pq(rr, dt, 2));
- ASSERT(rm->rm_firstdatacol > 2);
+ ASSERT(rr->rr_firstdatacol > 2);
break;
}
- code = vdev_raidz_reconstruct_general(rm, tgts, ntgts);
+ code = vdev_raidz_reconstruct_general(rr, tgts, ntgts);
ASSERT(code < (1 << VDEV_RAIDZ_MAXPARITY));
ASSERT(code > 0);
return (code);
@@ -1556,8 +1600,8 @@ static int
vdev_raidz_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize,
uint64_t *logical_ashift, uint64_t *physical_ashift)
{
- vdev_t *cvd;
- uint64_t nparity = vd->vdev_nparity;
+ vdev_raidz_t *vdrz = vd->vdev_tsd;
+ uint64_t nparity = vdrz->vd_nparity;
int c;
int lasterror = 0;
int numerrors = 0;
@@ -1573,7 +1617,7 @@ vdev_raidz_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize,
vdev_open_children(vd);
for (c = 0; c < vd->vdev_children; c++) {
- cvd = vd->vdev_child[c];
+ vdev_t *cvd = vd->vdev_child[c];
if (cvd->vdev_open_error != 0) {
lasterror = cvd->vdev_open_error;
@@ -1602,19 +1646,20 @@ vdev_raidz_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize,
static void
vdev_raidz_close(vdev_t *vd)
{
- int c;
-
- for (c = 0; c < vd->vdev_children; c++)
- vdev_close(vd->vdev_child[c]);
+ for (int c = 0; c < vd->vdev_children; c++) {
+ if (vd->vdev_child[c] != NULL)
+ vdev_close(vd->vdev_child[c]);
+ }
}
static uint64_t
vdev_raidz_asize(vdev_t *vd, uint64_t psize)
{
+ vdev_raidz_t *vdrz = vd->vdev_tsd;
uint64_t asize;
uint64_t ashift = vd->vdev_top->vdev_ashift;
- uint64_t cols = vd->vdev_children;
- uint64_t nparity = vd->vdev_nparity;
+ uint64_t cols = vdrz->vd_logical_width;
+ uint64_t nparity = vdrz->vd_nparity;
asize = ((psize - 1) >> ashift) + 1;
asize += nparity * ((asize + cols - nparity - 1) / (cols - nparity));
@@ -1623,7 +1668,18 @@ vdev_raidz_asize(vdev_t *vd, uint64_t psize)
return (asize);
}
-static void
+/*
+ * The allocatable space for a raidz vdev is N * sizeof(smallest child)
+ * so each child must provide at least 1/Nth of its asize.
+ */
+static uint64_t
+vdev_raidz_min_asize(vdev_t *vd)
+{
+ return ((vd->vdev_min_asize + vd->vdev_children - 1) /
+ vd->vdev_children);
+}
+
+void
vdev_raidz_child_done(zio_t *zio)
{
raidz_col_t *rc = zio->io_private;
@@ -1634,21 +1690,21 @@ vdev_raidz_child_done(zio_t *zio)
}
static void
-vdev_raidz_io_verify(zio_t *zio, raidz_map_t *rm, int col)
+vdev_raidz_io_verify(vdev_t *vd, raidz_row_t *rr, int col)
{
#ifdef ZFS_DEBUG
- vdev_t *vd = zio->io_vd;
vdev_t *tvd = vd->vdev_top;
- range_seg64_t logical_rs, physical_rs;
- logical_rs.rs_start = zio->io_offset;
+ range_seg64_t logical_rs, physical_rs, remain_rs;
+ logical_rs.rs_start = rr->rr_offset;
logical_rs.rs_end = logical_rs.rs_start +
- vdev_raidz_asize(zio->io_vd, zio->io_size);
+ vdev_raidz_asize(vd, rr->rr_size);
- raidz_col_t *rc = &rm->rm_col[col];
+ raidz_col_t *rc = &rr->rr_col[col];
vdev_t *cvd = vd->vdev_child[rc->rc_devidx];
- vdev_xlate(cvd, &logical_rs, &physical_rs);
+ vdev_xlate(cvd, &logical_rs, &physical_rs, &remain_rs);
+ ASSERT(vdev_xlate_is_empty(&remain_rs));
ASSERT3U(rc->rc_offset, ==, physical_rs.rs_start);
ASSERT3U(rc->rc_offset, <, physical_rs.rs_end);
/*
@@ -1666,106 +1722,82 @@ vdev_raidz_io_verify(zio_t *zio, raidz_map_t *rm, int col)
#endif
}
-/*
- * Start an IO operation on a RAIDZ VDev
- *
- * Outline:
- * - For write operations:
- * 1. Generate the parity data
- * 2. Create child zio write operations to each column's vdev, for both
- * data and parity.
- * 3. If the column skips any sectors for padding, create optional dummy
- * write zio children for those areas to improve aggregation continuity.
- * - For read operations:
- * 1. Create child zio read operations to each data column's vdev to read
- * the range of data required for zio.
- * 2. If this is a scrub or resilver operation, or if any of the data
- * vdevs have had errors, then create zio read operations to the parity
- * columns' VDevs as well.
- */
static void
-vdev_raidz_io_start(zio_t *zio)
+vdev_raidz_io_start_write(zio_t *zio, raidz_row_t *rr, uint64_t ashift)
{
vdev_t *vd = zio->io_vd;
- vdev_t *tvd = vd->vdev_top;
- vdev_t *cvd;
- raidz_map_t *rm;
- raidz_col_t *rc;
+ raidz_map_t *rm = zio->io_vsd;
int c, i;
- rm = vdev_raidz_map_alloc(zio, tvd->vdev_ashift, vd->vdev_children,
- vd->vdev_nparity);
-
- ASSERT3U(rm->rm_asize, ==, vdev_psize_to_asize(vd, zio->io_size));
+ vdev_raidz_generate_parity_row(rm, rr);
- if (zio->io_type == ZIO_TYPE_WRITE) {
- vdev_raidz_generate_parity(rm);
-
- for (c = 0; c < rm->rm_cols; c++) {
- rc = &rm->rm_col[c];
- cvd = vd->vdev_child[rc->rc_devidx];
-
- /*
- * Verify physical to logical translation.
- */
- vdev_raidz_io_verify(zio, rm, c);
+ for (int c = 0; c < rr->rr_cols; c++) {
+ raidz_col_t *rc = &rr->rr_col[c];
+ if (rc->rc_size == 0)
+ continue;
- zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
- rc->rc_offset, rc->rc_abd, rc->rc_size,
- zio->io_type, zio->io_priority, 0,
- vdev_raidz_child_done, rc));
- }
+ /* Verify physical to logical translation */
+ vdev_raidz_io_verify(vd, rr, c);
- /*
- * Generate optional I/Os for any skipped sectors to improve
- * aggregation contiguity.
- */
- for (c = rm->rm_skipstart, i = 0; i < rm->rm_nskip; c++, i++) {
- ASSERT(c <= rm->rm_scols);
- if (c == rm->rm_scols)
- c = 0;
- rc = &rm->rm_col[c];
- cvd = vd->vdev_child[rc->rc_devidx];
- zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
- rc->rc_offset + rc->rc_size, NULL,
- 1 << tvd->vdev_ashift,
- zio->io_type, zio->io_priority,
- ZIO_FLAG_NODATA | ZIO_FLAG_OPTIONAL, NULL, NULL));
- }
+ zio_nowait(zio_vdev_child_io(zio, NULL,
+ vd->vdev_child[rc->rc_devidx], rc->rc_offset,
+ rc->rc_abd, rc->rc_size, zio->io_type, zio->io_priority,
+ 0, vdev_raidz_child_done, rc));
+ }
- zio_execute(zio);
- return;
+ /*
+ * Generate optional I/Os for skip sectors to improve aggregation
+ * contiguity.
+ */
+ for (c = rm->rm_skipstart, i = 0; i < rm->rm_nskip; c++, i++) {
+ ASSERT(c <= rr->rr_scols);
+ if (c == rr->rr_scols)
+ c = 0;
+
+ raidz_col_t *rc = &rr->rr_col[c];
+ vdev_t *cvd = vd->vdev_child[rc->rc_devidx];
+
+ zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
+ rc->rc_offset + rc->rc_size, NULL, 1ULL << ashift,
+ zio->io_type, zio->io_priority,
+ ZIO_FLAG_NODATA | ZIO_FLAG_OPTIONAL, NULL, NULL));
}
+}
- ASSERT(zio->io_type == ZIO_TYPE_READ);
+static void
+vdev_raidz_io_start_read(zio_t *zio, raidz_row_t *rr)
+{
+ vdev_t *vd = zio->io_vd;
/*
* Iterate over the columns in reverse order so that we hit the parity
* last -- any errors along the way will force us to read the parity.
*/
- for (c = rm->rm_cols - 1; c >= 0; c--) {
- rc = &rm->rm_col[c];
- cvd = vd->vdev_child[rc->rc_devidx];
+ for (int c = rr->rr_cols - 1; c >= 0; c--) {
+ raidz_col_t *rc = &rr->rr_col[c];
+ if (rc->rc_size == 0)
+ continue;
+ vdev_t *cvd = vd->vdev_child[rc->rc_devidx];
if (!vdev_readable(cvd)) {
- if (c >= rm->rm_firstdatacol)
- rm->rm_missingdata++;
+ if (c >= rr->rr_firstdatacol)
+ rr->rr_missingdata++;
else
- rm->rm_missingparity++;
+ rr->rr_missingparity++;
rc->rc_error = SET_ERROR(ENXIO);
rc->rc_tried = 1; /* don't even try */
rc->rc_skipped = 1;
continue;
}
if (vdev_dtl_contains(cvd, DTL_MISSING, zio->io_txg, 1)) {
- if (c >= rm->rm_firstdatacol)
- rm->rm_missingdata++;
+ if (c >= rr->rr_firstdatacol)
+ rr->rr_missingdata++;
else
- rm->rm_missingparity++;
+ rr->rr_missingparity++;
rc->rc_error = SET_ERROR(ESTALE);
rc->rc_skipped = 1;
continue;
}
- if (c >= rm->rm_firstdatacol || rm->rm_missingdata > 0 ||
+ if (c >= rr->rr_firstdatacol || rr->rr_missingdata > 0 ||
(zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER))) {
zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
rc->rc_offset, rc->rc_abd, rc->rc_size,
@@ -1773,11 +1805,56 @@ vdev_raidz_io_start(zio_t *zio)
vdev_raidz_child_done, rc));
}
}
+}
+
+/*
+ * Start an IO operation on a RAIDZ VDev
+ *
+ * Outline:
+ * - For write operations:
+ * 1. Generate the parity data
+ * 2. Create child zio write operations to each column's vdev, for both
+ * data and parity.
+ * 3. If the column skips any sectors for padding, create optional dummy
+ * write zio children for those areas to improve aggregation continuity.
+ * - For read operations:
+ * 1. Create child zio read operations to each data column's vdev to read
+ * the range of data required for zio.
+ * 2. If this is a scrub or resilver operation, or if any of the data
+ * vdevs have had errors, then create zio read operations to the parity
+ * columns' VDevs as well.
+ */
+static void
+vdev_raidz_io_start(zio_t *zio)
+{
+ vdev_t *vd = zio->io_vd;
+ vdev_t *tvd = vd->vdev_top;
+ vdev_raidz_t *vdrz = vd->vdev_tsd;
+ raidz_map_t *rm;
+
+ rm = vdev_raidz_map_alloc(zio, tvd->vdev_ashift,
+ vdrz->vd_logical_width, vdrz->vd_nparity);
+
+ /*
+ * Until raidz expansion is implemented all maps for a raidz vdev
+ * contain a single row.
+ */
+ ASSERT3U(rm->rm_nrows, ==, 1);
+ raidz_row_t *rr = rm->rm_row[0];
+
+ zio->io_vsd = rm;
+ zio->io_vsd_ops = &vdev_raidz_vsd_ops;
+
+ if (zio->io_type == ZIO_TYPE_WRITE) {
+ vdev_raidz_io_start_write(zio, rr, tvd->vdev_ashift);
+ } else {
+ ASSERT(zio->io_type == ZIO_TYPE_READ);
+ vdev_raidz_io_start_read(zio, rr);
+ }
zio_execute(zio);
}
-
/*
* Report a checksum error for a child of a RAID-Z device.
*/
@@ -1786,7 +1863,8 @@ raidz_checksum_error(zio_t *zio, raidz_col_t *rc, abd_t *bad_data)
{
vdev_t *vd = zio->io_vd->vdev_child[rc->rc_devidx];
- if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
+ if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE) &&
+ zio->io_priority != ZIO_PRIORITY_REBUILD) {
zio_bad_cksum_t zbc;
raidz_map_t *rm = zio->io_vsd;
@@ -1827,13 +1905,14 @@ raidz_checksum_verify(zio_t *zio)
* Generate the parity from the data columns. If we tried and were able to
* read the parity without error, verify that the generated parity matches the
* data we read. If it doesn't, we fire off a checksum error. Return the
- * number such failures.
+ * number of such failures.
*/
static int
-raidz_parity_verify(zio_t *zio, raidz_map_t *rm)
+raidz_parity_verify(zio_t *zio, raidz_row_t *rr)
{
abd_t *orig[VDEV_RAIDZ_MAXPARITY];
int c, ret = 0;
+ raidz_map_t *rm = zio->io_vsd;
raidz_col_t *rc;
blkptr_t *bp = zio->io_bp;
@@ -1843,8 +1922,18 @@ raidz_parity_verify(zio_t *zio, raidz_map_t *rm)
if (checksum == ZIO_CHECKSUM_NOPARITY)
return (ret);
- for (c = 0; c < rm->rm_firstdatacol; c++) {
- rc = &rm->rm_col[c];
+ /*
+ * All data columns must have been successfully read in order
+ * to use them to generate parity columns for comparison.
+ */
+ for (c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
+ rc = &rr->rr_col[c];
+ if (!rc->rc_tried || rc->rc_error != 0)
+ return (ret);
+ }
+
+ for (c = 0; c < rr->rr_firstdatacol; c++) {
+ rc = &rr->rr_col[c];
if (!rc->rc_tried || rc->rc_error != 0)
continue;
@@ -1852,12 +1941,19 @@ raidz_parity_verify(zio_t *zio, raidz_map_t *rm)
abd_copy(orig[c], rc->rc_abd, rc->rc_size);
}
- vdev_raidz_generate_parity(rm);
+ /*
+ * Regenerates parity even for !tried||rc_error!=0 columns. This
+ * isn't harmful but it does have the side effect of fixing stuff
+ * we didn't realize was necessary (i.e. even if we return 0).
+ */
+ vdev_raidz_generate_parity_row(rm, rr);
+
+ for (c = 0; c < rr->rr_firstdatacol; c++) {
+ rc = &rr->rr_col[c];
- for (c = 0; c < rm->rm_firstdatacol; c++) {
- rc = &rm->rm_col[c];
if (!rc->rc_tried || rc->rc_error != 0)
continue;
+
if (abd_cmp(orig[c], rc->rc_abd) != 0) {
raidz_checksum_error(zio, rc, orig[c]);
rc->rc_error = SET_ERROR(ECKSUM);
@@ -1870,456 +1966,597 @@ raidz_parity_verify(zio_t *zio, raidz_map_t *rm)
}
static int
-vdev_raidz_worst_error(raidz_map_t *rm)
+vdev_raidz_worst_error(raidz_row_t *rr)
{
int error = 0;
- for (int c = 0; c < rm->rm_cols; c++)
- error = zio_worst_error(error, rm->rm_col[c].rc_error);
+ for (int c = 0; c < rr->rr_cols; c++)
+ error = zio_worst_error(error, rr->rr_col[c].rc_error);
return (error);
}
-/*
- * Iterate over all combinations of bad data and attempt a reconstruction.
- * Note that the algorithm below is non-optimal because it doesn't take into
- * account how reconstruction is actually performed. For example, with
- * triple-parity RAID-Z the reconstruction procedure is the same if column 4
- * is targeted as invalid as if columns 1 and 4 are targeted since in both
- * cases we'd only use parity information in column 0.
- */
-static int
-vdev_raidz_combrec(zio_t *zio, int total_errors, int data_errors)
+static void
+vdev_raidz_io_done_verified(zio_t *zio, raidz_row_t *rr)
{
- raidz_map_t *rm = zio->io_vsd;
- raidz_col_t *rc;
- abd_t *orig[VDEV_RAIDZ_MAXPARITY];
- int tstore[VDEV_RAIDZ_MAXPARITY + 2];
- int *tgts = &tstore[1];
- int curr, next, i, c, n;
- int code, ret = 0;
+ int unexpected_errors = 0;
+ int parity_errors = 0;
+ int parity_untried = 0;
+ int data_errors = 0;
- ASSERT(total_errors < rm->rm_firstdatacol);
+ ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
+
+ for (int c = 0; c < rr->rr_cols; c++) {
+ raidz_col_t *rc = &rr->rr_col[c];
+
+ if (rc->rc_error) {
+ if (c < rr->rr_firstdatacol)
+ parity_errors++;
+ else
+ data_errors++;
+
+ if (!rc->rc_skipped)
+ unexpected_errors++;
+ } else if (c < rr->rr_firstdatacol && !rc->rc_tried) {
+ parity_untried++;
+ }
+ }
/*
- * This simplifies one edge condition.
+ * If we read more parity disks than were used for
+ * reconstruction, confirm that the other parity disks produced
+ * correct data.
+ *
+ * Note that we also regenerate parity when resilvering so we
+ * can write it out to failed devices later.
*/
- tgts[-1] = -1;
+ if (parity_errors + parity_untried <
+ rr->rr_firstdatacol - data_errors ||
+ (zio->io_flags & ZIO_FLAG_RESILVER)) {
+ int n = raidz_parity_verify(zio, rr);
+ unexpected_errors += n;
+ ASSERT3U(parity_errors + n, <=, rr->rr_firstdatacol);
+ }
- for (n = 1; n <= rm->rm_firstdatacol - total_errors; n++) {
+ if (zio->io_error == 0 && spa_writeable(zio->io_spa) &&
+ (unexpected_errors > 0 || (zio->io_flags & ZIO_FLAG_RESILVER))) {
/*
- * Initialize the targets array by finding the first n columns
- * that contain no error.
- *
- * If there were no data errors, we need to ensure that we're
- * always explicitly attempting to reconstruct at least one
- * data column. To do this, we simply push the highest target
- * up into the data columns.
+ * Use the good data we have in hand to repair damaged children.
*/
- for (c = 0, i = 0; i < n; i++) {
- if (i == n - 1 && data_errors == 0 &&
- c < rm->rm_firstdatacol) {
- c = rm->rm_firstdatacol;
+ for (int c = 0; c < rr->rr_cols; c++) {
+ raidz_col_t *rc = &rr->rr_col[c];
+ vdev_t *vd = zio->io_vd;
+ vdev_t *cvd = vd->vdev_child[rc->rc_devidx];
+
+ if ((rc->rc_error == 0 || rc->rc_size == 0) &&
+ (rc->rc_repair == 0)) {
+ continue;
}
- while (rm->rm_col[c].rc_error != 0) {
- c++;
- ASSERT3S(c, <, rm->rm_cols);
+ zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
+ rc->rc_offset, rc->rc_abd, rc->rc_size,
+ ZIO_TYPE_WRITE,
+ zio->io_priority == ZIO_PRIORITY_REBUILD ?
+ ZIO_PRIORITY_REBUILD : ZIO_PRIORITY_ASYNC_WRITE,
+ ZIO_FLAG_IO_REPAIR | (unexpected_errors ?
+ ZIO_FLAG_SELF_HEAL : 0), NULL, NULL));
+ }
+ }
+}
+
+static void
+raidz_restore_orig_data(raidz_map_t *rm)
+{
+ for (int i = 0; i < rm->rm_nrows; i++) {
+ raidz_row_t *rr = rm->rm_row[i];
+ for (int c = 0; c < rr->rr_cols; c++) {
+ raidz_col_t *rc = &rr->rr_col[c];
+ if (rc->rc_need_orig_restore) {
+ abd_copy_from_buf(rc->rc_abd,
+ rc->rc_orig_data, rc->rc_size);
+ rc->rc_need_orig_restore = B_FALSE;
}
+ }
+ }
+}
+
+/*
+ * returns EINVAL if reconstruction of the block will not be possible
+ * returns ECKSUM if this specific reconstruction failed
+ * returns 0 on successful reconstruction
+ */
+static int
+raidz_reconstruct(zio_t *zio, int *ltgts, int ntgts, int nparity)
+{
+ raidz_map_t *rm = zio->io_vsd;
- tgts[i] = c++;
+ /* Reconstruct each row */
+ for (int r = 0; r < rm->rm_nrows; r++) {
+ raidz_row_t *rr = rm->rm_row[r];
+ int my_tgts[VDEV_RAIDZ_MAXPARITY]; /* value is child id */
+ int t = 0;
+ int dead = 0;
+ int dead_data = 0;
+
+ for (int c = 0; c < rr->rr_cols; c++) {
+ raidz_col_t *rc = &rr->rr_col[c];
+ ASSERT0(rc->rc_need_orig_restore);
+ if (rc->rc_error != 0) {
+ dead++;
+ if (c >= nparity)
+ dead_data++;
+ continue;
+ }
+ if (rc->rc_size == 0)
+ continue;
+ for (int lt = 0; lt < ntgts; lt++) {
+ if (rc->rc_devidx == ltgts[lt]) {
+ if (rc->rc_orig_data == NULL) {
+ rc->rc_orig_data =
+ zio_buf_alloc(rc->rc_size);
+ abd_copy_to_buf(
+ rc->rc_orig_data,
+ rc->rc_abd, rc->rc_size);
+ }
+ rc->rc_need_orig_restore = B_TRUE;
+
+ dead++;
+ if (c >= nparity)
+ dead_data++;
+ my_tgts[t++] = c;
+ break;
+ }
+ }
+ }
+ if (dead > nparity) {
+ /* reconstruction not possible */
+ raidz_restore_orig_data(rm);
+ return (EINVAL);
}
+ rr->rr_code = 0;
+ if (dead_data > 0)
+ rr->rr_code = vdev_raidz_reconstruct_row(rm, rr,
+ my_tgts, t);
+ }
- /*
- * Setting tgts[n] simplifies the other edge condition.
- */
- tgts[n] = rm->rm_cols;
+ /* Check for success */
+ if (raidz_checksum_verify(zio) == 0) {
+
+ /* Reconstruction succeeded - report errors */
+ for (int i = 0; i < rm->rm_nrows; i++) {
+ raidz_row_t *rr = rm->rm_row[i];
+
+ for (int c = 0; c < rr->rr_cols; c++) {
+ raidz_col_t *rc = &rr->rr_col[c];
+ if (rc->rc_need_orig_restore) {
+ /*
+ * Note: if this is a parity column,
+ * we don't really know if it's wrong.
+ * We need to let
+ * vdev_raidz_io_done_verified() check
+ * it, and if we set rc_error, it will
+ * think that it is a "known" error
+ * that doesn't need to be checked
+ * or corrected.
+ */
+ if (rc->rc_error == 0 &&
+ c >= rr->rr_firstdatacol) {
+ raidz_checksum_error(zio,
+ rc, rc->rc_gdata);
+ rc->rc_error =
+ SET_ERROR(ECKSUM);
+ }
+ rc->rc_need_orig_restore = B_FALSE;
+ }
+ }
- /*
- * These buffers were allocated in previous iterations.
- */
- for (i = 0; i < n - 1; i++) {
- ASSERT(orig[i] != NULL);
+ vdev_raidz_io_done_verified(zio, rr);
}
- orig[n - 1] = abd_alloc_sametype(rm->rm_col[0].rc_abd,
- rm->rm_col[0].rc_size);
+ zio_checksum_verified(zio);
- curr = 0;
- next = tgts[curr];
+ return (0);
+ }
- while (curr != n) {
- tgts[curr] = next;
- curr = 0;
+ /* Reconstruction failed - restore original data */
+ raidz_restore_orig_data(rm);
+ return (ECKSUM);
+}
- /*
- * Save off the original data that we're going to
- * attempt to reconstruct.
- */
- for (i = 0; i < n; i++) {
- ASSERT(orig[i] != NULL);
- c = tgts[i];
- ASSERT3S(c, >=, 0);
- ASSERT3S(c, <, rm->rm_cols);
- rc = &rm->rm_col[c];
- abd_copy(orig[i], rc->rc_abd, rc->rc_size);
- }
+/*
+ * Iterate over all combinations of N bad vdevs and attempt a reconstruction.
+ * Note that the algorithm below is non-optimal because it doesn't take into
+ * account how reconstruction is actually performed. For example, with
+ * triple-parity RAID-Z the reconstruction procedure is the same if column 4
+ * is targeted as invalid as if columns 1 and 4 are targeted since in both
+ * cases we'd only use parity information in column 0.
+ *
+ * The order that we find the various possible combinations of failed
+ * disks is dictated by these rules:
+ * - Examine each "slot" (the "i" in tgts[i])
+ * - Try to increment this slot (tgts[i] = tgts[i] + 1)
+ * - if we can't increment because it runs into the next slot,
+ * reset our slot to the minimum, and examine the next slot
+ *
+ * For example, with a 6-wide RAIDZ3, and no known errors (so we have to choose
+ * 3 columns to reconstruct), we will generate the following sequence:
+ *
+ * STATE ACTION
+ * 0 1 2 special case: skip since these are all parity
+ * 0 1 3 first slot: reset to 0; middle slot: increment to 2
+ * 0 2 3 first slot: increment to 1
+ * 1 2 3 first: reset to 0; middle: reset to 1; last: increment to 4
+ * 0 1 4 first: reset to 0; middle: increment to 2
+ * 0 2 4 first: increment to 1
+ * 1 2 4 first: reset to 0; middle: increment to 3
+ * 0 3 4 first: increment to 1
+ * 1 3 4 first: increment to 2
+ * 2 3 4 first: reset to 0; middle: reset to 1; last: increment to 5
+ * 0 1 5 first: reset to 0; middle: increment to 2
+ * 0 2 5 first: increment to 1
+ * 1 2 5 first: reset to 0; middle: increment to 3
+ * 0 3 5 first: increment to 1
+ * 1 3 5 first: increment to 2
+ * 2 3 5 first: reset to 0; middle: increment to 4
+ * 0 4 5 first: increment to 1
+ * 1 4 5 first: increment to 2
+ * 2 4 5 first: increment to 3
+ * 3 4 5 done
+ *
+ * This strategy works for dRAID but is less effecient when there are a large
+ * number of child vdevs and therefore permutations to check. Furthermore,
+ * since the raidz_map_t rows likely do not overlap reconstruction would be
+ * possible as long as there are no more than nparity data errors per row.
+ * These additional permutations are not currently checked but could be as
+ * a future improvement.
+ */
+static int
+vdev_raidz_combrec(zio_t *zio)
+{
+ int nparity = vdev_get_nparity(zio->io_vd);
+ raidz_map_t *rm = zio->io_vsd;
- /*
- * Attempt a reconstruction and exit the outer loop on
- * success.
- */
- code = vdev_raidz_reconstruct(rm, tgts, n);
- if (raidz_checksum_verify(zio) == 0) {
-
- for (i = 0; i < n; i++) {
- c = tgts[i];
- rc = &rm->rm_col[c];
- ASSERT(rc->rc_error == 0);
- if (rc->rc_tried)
- raidz_checksum_error(zio, rc,
- orig[i]);
- rc->rc_error = SET_ERROR(ECKSUM);
- }
+ /* Check if there's enough data to attempt reconstrution. */
+ for (int i = 0; i < rm->rm_nrows; i++) {
+ raidz_row_t *rr = rm->rm_row[i];
+ int total_errors = 0;
- ret = code;
- goto done;
- }
+ for (int c = 0; c < rr->rr_cols; c++) {
+ if (rr->rr_col[c].rc_error)
+ total_errors++;
+ }
- /*
- * Restore the original data.
- */
- for (i = 0; i < n; i++) {
- c = tgts[i];
- rc = &rm->rm_col[c];
- abd_copy(rc->rc_abd, orig[i], rc->rc_size);
- }
+ if (total_errors > nparity)
+ return (vdev_raidz_worst_error(rr));
+ }
- do {
+ for (int num_failures = 1; num_failures <= nparity; num_failures++) {
+ int tstore[VDEV_RAIDZ_MAXPARITY + 2];
+ int *ltgts = &tstore[1]; /* value is logical child ID */
+
+ /* Determine number of logical children, n */
+ int n = zio->io_vd->vdev_children;
+
+ ASSERT3U(num_failures, <=, nparity);
+ ASSERT3U(num_failures, <=, VDEV_RAIDZ_MAXPARITY);
+
+ /* Handle corner cases in combrec logic */
+ ltgts[-1] = -1;
+ for (int i = 0; i < num_failures; i++) {
+ ltgts[i] = i;
+ }
+ ltgts[num_failures] = n;
+
+ for (;;) {
+ int err = raidz_reconstruct(zio, ltgts, num_failures,
+ nparity);
+ if (err == EINVAL) {
/*
- * Find the next valid column after the curr
- * position..
+ * Reconstruction not possible with this #
+ * failures; try more failures.
*/
- for (next = tgts[curr] + 1;
- next < rm->rm_cols &&
- rm->rm_col[next].rc_error != 0; next++)
- continue;
+ break;
+ } else if (err == 0)
+ return (0);
+
+ /* Compute next targets to try */
+ for (int t = 0; ; t++) {
+ ASSERT3U(t, <, num_failures);
+ ltgts[t]++;
+ if (ltgts[t] == n) {
+ /* try more failures */
+ ASSERT3U(t, ==, num_failures - 1);
+ break;
+ }
- ASSERT(next <= tgts[curr + 1]);
+ ASSERT3U(ltgts[t], <, n);
+ ASSERT3U(ltgts[t], <=, ltgts[t + 1]);
/*
* If that spot is available, we're done here.
+ * Try the next combination.
*/
- if (next != tgts[curr + 1])
+ if (ltgts[t] != ltgts[t + 1])
break;
/*
- * Otherwise, find the next valid column after
- * the previous position.
+ * Otherwise, reset this tgt to the minimum,
+ * and move on to the next tgt.
*/
- for (c = tgts[curr - 1] + 1;
- rm->rm_col[c].rc_error != 0; c++)
- continue;
-
- tgts[curr] = c;
- curr++;
+ ltgts[t] = ltgts[t - 1] + 1;
+ ASSERT3U(ltgts[t], ==, t);
+ }
- } while (curr != n);
+ /* Increase the number of failures and keep trying. */
+ if (ltgts[num_failures - 1] == n)
+ break;
}
}
- n--;
-done:
- for (i = 0; i < n; i++)
- abd_free(orig[i]);
- return (ret);
+ return (ECKSUM);
+}
+
+void
+vdev_raidz_reconstruct(raidz_map_t *rm, const int *t, int nt)
+{
+ for (uint64_t row = 0; row < rm->rm_nrows; row++) {
+ raidz_row_t *rr = rm->rm_row[row];
+ vdev_raidz_reconstruct_row(rm, rr, t, nt);
+ }
}
/*
- * Complete an IO operation on a RAIDZ VDev
+ * Complete a write IO operation on a RAIDZ VDev
*
* Outline:
- * - For write operations:
* 1. Check for errors on the child IOs.
* 2. Return, setting an error code if too few child VDevs were written
* to reconstruct the data later. Note that partial writes are
* considered successful if they can be reconstructed at all.
- * - For read operations:
- * 1. Check for errors on the child IOs.
- * 2. If data errors occurred:
- * a. Try to reassemble the data from the parity available.
- * b. If we haven't yet read the parity drives, read them now.
- * c. If all parity drives have been read but the data still doesn't
- * reassemble with a correct checksum, then try combinatorial
- * reconstruction.
- * d. If that doesn't work, return an error.
- * 3. If there were unexpected errors or this is a resilver operation,
- * rewrite the vdevs that had errors.
*/
static void
-vdev_raidz_io_done(zio_t *zio)
+vdev_raidz_io_done_write_impl(zio_t *zio, raidz_row_t *rr)
+{
+ int total_errors = 0;
+
+ ASSERT3U(rr->rr_missingparity, <=, rr->rr_firstdatacol);
+ ASSERT3U(rr->rr_missingdata, <=, rr->rr_cols - rr->rr_firstdatacol);
+ ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
+
+ for (int c = 0; c < rr->rr_cols; c++) {
+ raidz_col_t *rc = &rr->rr_col[c];
+
+ if (rc->rc_error) {
+ ASSERT(rc->rc_error != ECKSUM); /* child has no bp */
+
+ total_errors++;
+ }
+ }
+
+ /*
+ * Treat partial writes as a success. If we couldn't write enough
+ * columns to reconstruct the data, the I/O failed. Otherwise,
+ * good enough.
+ *
+ * Now that we support write reallocation, it would be better
+ * to treat partial failure as real failure unless there are
+ * no non-degraded top-level vdevs left, and not update DTLs
+ * if we intend to reallocate.
+ */
+ if (total_errors > rr->rr_firstdatacol) {
+ zio->io_error = zio_worst_error(zio->io_error,
+ vdev_raidz_worst_error(rr));
+ }
+}
+
+/*
+ * return 0 if no reconstruction occurred, otherwise the "code" from
+ * vdev_raidz_reconstruct().
+ */
+static int
+vdev_raidz_io_done_reconstruct_known_missing(zio_t *zio, raidz_map_t *rm,
+ raidz_row_t *rr)
{
- vdev_t *vd = zio->io_vd;
- vdev_t *cvd;
- raidz_map_t *rm = zio->io_vsd;
- raidz_col_t *rc = NULL;
- int unexpected_errors = 0;
int parity_errors = 0;
int parity_untried = 0;
int data_errors = 0;
int total_errors = 0;
- int n, c;
- int tgts[VDEV_RAIDZ_MAXPARITY];
- int code;
-
- ASSERT(zio->io_bp != NULL); /* XXX need to add code to enforce this */
+ int code = 0;
- ASSERT(rm->rm_missingparity <= rm->rm_firstdatacol);
- ASSERT(rm->rm_missingdata <= rm->rm_cols - rm->rm_firstdatacol);
+ ASSERT3U(rr->rr_missingparity, <=, rr->rr_firstdatacol);
+ ASSERT3U(rr->rr_missingdata, <=, rr->rr_cols - rr->rr_firstdatacol);
+ ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
- for (c = 0; c < rm->rm_cols; c++) {
- rc = &rm->rm_col[c];
+ for (int c = 0; c < rr->rr_cols; c++) {
+ raidz_col_t *rc = &rr->rr_col[c];
if (rc->rc_error) {
ASSERT(rc->rc_error != ECKSUM); /* child has no bp */
- if (c < rm->rm_firstdatacol)
+ if (c < rr->rr_firstdatacol)
parity_errors++;
else
data_errors++;
- if (!rc->rc_skipped)
- unexpected_errors++;
-
total_errors++;
- } else if (c < rm->rm_firstdatacol && !rc->rc_tried) {
+ } else if (c < rr->rr_firstdatacol && !rc->rc_tried) {
parity_untried++;
}
}
- if (zio->io_type == ZIO_TYPE_WRITE) {
- /*
- * XXX -- for now, treat partial writes as a success.
- * (If we couldn't write enough columns to reconstruct
- * the data, the I/O failed. Otherwise, good enough.)
- *
- * Now that we support write reallocation, it would be better
- * to treat partial failure as real failure unless there are
- * no non-degraded top-level vdevs left, and not update DTLs
- * if we intend to reallocate.
- */
- /* XXPOLICY */
- if (total_errors > rm->rm_firstdatacol)
- zio->io_error = vdev_raidz_worst_error(rm);
-
- return;
- }
-
- ASSERT(zio->io_type == ZIO_TYPE_READ);
/*
- * There are three potential phases for a read:
- * 1. produce valid data from the columns read
- * 2. read all disks and try again
- * 3. perform combinatorial reconstruction
- *
- * Each phase is progressively both more expensive and less likely to
- * occur. If we encounter more errors than we can repair or all phases
- * fail, we have no choice but to return an error.
+ * If there were data errors and the number of errors we saw was
+ * correctable -- less than or equal to the number of parity disks read
+ * -- reconstruct based on the missing data.
*/
+ if (data_errors != 0 &&
+ total_errors <= rr->rr_firstdatacol - parity_untried) {
+ /*
+ * We either attempt to read all the parity columns or
+ * none of them. If we didn't try to read parity, we
+ * wouldn't be here in the correctable case. There must
+ * also have been fewer parity errors than parity
+ * columns or, again, we wouldn't be in this code path.
+ */
+ ASSERT(parity_untried == 0);
+ ASSERT(parity_errors < rr->rr_firstdatacol);
- /*
- * If the number of errors we saw was correctable -- less than or equal
- * to the number of parity disks read -- attempt to produce data that
- * has a valid checksum. Naturally, this case applies in the absence of
- * any errors.
- */
- if (total_errors <= rm->rm_firstdatacol - parity_untried) {
- if (data_errors == 0) {
- if (raidz_checksum_verify(zio) == 0) {
- /*
- * If we read parity information (unnecessarily
- * as it happens since no reconstruction was
- * needed) regenerate and verify the parity.
- * We also regenerate parity when resilvering
- * so we can write it out to the failed device
- * later.
- */
- if (parity_errors + parity_untried <
- rm->rm_firstdatacol ||
- (zio->io_flags & ZIO_FLAG_RESILVER)) {
- n = raidz_parity_verify(zio, rm);
- unexpected_errors += n;
- ASSERT(parity_errors + n <=
- rm->rm_firstdatacol);
- }
- goto done;
+ /*
+ * Identify the data columns that reported an error.
+ */
+ int n = 0;
+ int tgts[VDEV_RAIDZ_MAXPARITY];
+ for (int c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
+ raidz_col_t *rc = &rr->rr_col[c];
+ if (rc->rc_error != 0) {
+ ASSERT(n < VDEV_RAIDZ_MAXPARITY);
+ tgts[n++] = c;
}
- } else {
- /*
- * We either attempt to read all the parity columns or
- * none of them. If we didn't try to read parity, we
- * wouldn't be here in the correctable case. There must
- * also have been fewer parity errors than parity
- * columns or, again, we wouldn't be in this code path.
- */
- ASSERT(parity_untried == 0);
- ASSERT(parity_errors < rm->rm_firstdatacol);
+ }
- /*
- * Identify the data columns that reported an error.
- */
- n = 0;
- for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
- rc = &rm->rm_col[c];
- if (rc->rc_error != 0) {
- ASSERT(n < VDEV_RAIDZ_MAXPARITY);
- tgts[n++] = c;
- }
- }
+ ASSERT(rr->rr_firstdatacol >= n);
- ASSERT(rm->rm_firstdatacol >= n);
+ code = vdev_raidz_reconstruct_row(rm, rr, tgts, n);
+ }
- code = vdev_raidz_reconstruct(rm, tgts, n);
+ return (code);
+}
- if (raidz_checksum_verify(zio) == 0) {
- /*
- * If we read more parity disks than were used
- * for reconstruction, confirm that the other
- * parity disks produced correct data. This
- * routine is suboptimal in that it regenerates
- * the parity that we already used in addition
- * to the parity that we're attempting to
- * verify, but this should be a relatively
- * uncommon case, and can be optimized if it
- * becomes a problem. Note that we regenerate
- * parity when resilvering so we can write it
- * out to failed devices later.
- */
- if (parity_errors < rm->rm_firstdatacol - n ||
- (zio->io_flags & ZIO_FLAG_RESILVER)) {
- n = raidz_parity_verify(zio, rm);
- unexpected_errors += n;
- ASSERT(parity_errors + n <=
- rm->rm_firstdatacol);
- }
+/*
+ * Return the number of reads issued.
+ */
+static int
+vdev_raidz_read_all(zio_t *zio, raidz_row_t *rr)
+{
+ vdev_t *vd = zio->io_vd;
+ int nread = 0;
- goto done;
- }
- }
- }
+ rr->rr_missingdata = 0;
+ rr->rr_missingparity = 0;
/*
- * This isn't a typical situation -- either we got a read error or
- * a child silently returned bad data. Read every block so we can
- * try again with as much data and parity as we can track down. If
- * we've already been through once before, all children will be marked
- * as tried so we'll proceed to combinatorial reconstruction.
+ * If this rows contains empty sectors which are not required
+ * for a normal read then allocate an ABD for them now so they
+ * may be read, verified, and any needed repairs performed.
*/
- unexpected_errors = 1;
- rm->rm_missingdata = 0;
- rm->rm_missingparity = 0;
+ if (rr->rr_nempty && rr->rr_abd_empty == NULL)
+ vdev_draid_map_alloc_empty(zio, rr);
- for (c = 0; c < rm->rm_cols; c++) {
- if (rm->rm_col[c].rc_tried)
+ for (int c = 0; c < rr->rr_cols; c++) {
+ raidz_col_t *rc = &rr->rr_col[c];
+ if (rc->rc_tried || rc->rc_size == 0)
continue;
- zio_vdev_io_redone(zio);
- do {
- rc = &rm->rm_col[c];
- if (rc->rc_tried)
- continue;
- zio_nowait(zio_vdev_child_io(zio, NULL,
- vd->vdev_child[rc->rc_devidx],
- rc->rc_offset, rc->rc_abd, rc->rc_size,
- zio->io_type, zio->io_priority, 0,
- vdev_raidz_child_done, rc));
- } while (++c < rm->rm_cols);
-
- return;
+ zio_nowait(zio_vdev_child_io(zio, NULL,
+ vd->vdev_child[rc->rc_devidx],
+ rc->rc_offset, rc->rc_abd, rc->rc_size,
+ zio->io_type, zio->io_priority, 0,
+ vdev_raidz_child_done, rc));
+ nread++;
}
+ return (nread);
+}
- /*
- * At this point we've attempted to reconstruct the data given the
- * errors we detected, and we've attempted to read all columns. There
- * must, therefore, be one or more additional problems -- silent errors
- * resulting in invalid data rather than explicit I/O errors resulting
- * in absent data. We check if there is enough additional data to
- * possibly reconstruct the data and then perform combinatorial
- * reconstruction over all possible combinations. If that fails,
- * we're cooked.
- */
- if (total_errors > rm->rm_firstdatacol) {
- zio->io_error = vdev_raidz_worst_error(rm);
+/*
+ * We're here because either there were too many errors to even attempt
+ * reconstruction (total_errors == rm_first_datacol), or vdev_*_combrec()
+ * failed. In either case, there is enough bad data to prevent reconstruction.
+ * Start checksum ereports for all children which haven't failed.
+ */
+static void
+vdev_raidz_io_done_unrecoverable(zio_t *zio)
+{
+ raidz_map_t *rm = zio->io_vsd;
- } else if (total_errors < rm->rm_firstdatacol &&
- (code = vdev_raidz_combrec(zio, total_errors, data_errors)) != 0) {
- /*
- * If we didn't use all the available parity for the
- * combinatorial reconstruction, verify that the remaining
- * parity is correct.
- */
- if (code != (1 << rm->rm_firstdatacol) - 1)
- (void) raidz_parity_verify(zio, rm);
- } else {
- /*
- * We're here because either:
- *
- * total_errors == rm_first_datacol, or
- * vdev_raidz_combrec() failed
- *
- * In either case, there is enough bad data to prevent
- * reconstruction.
- *
- * Start checksum ereports for all children which haven't
- * failed, and the IO wasn't speculative.
- */
- zio->io_error = SET_ERROR(ECKSUM);
-
- if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
- for (c = 0; c < rm->rm_cols; c++) {
- vdev_t *cvd;
- rc = &rm->rm_col[c];
- cvd = vd->vdev_child[rc->rc_devidx];
- if (rc->rc_error != 0)
- continue;
+ for (int i = 0; i < rm->rm_nrows; i++) {
+ raidz_row_t *rr = rm->rm_row[i];
- zio_bad_cksum_t zbc;
- zbc.zbc_has_cksum = 0;
- zbc.zbc_injected = rm->rm_ecksuminjected;
-
- int ret = zfs_ereport_start_checksum(
- zio->io_spa, cvd, &zio->io_bookmark, zio,
- rc->rc_offset, rc->rc_size,
- (void *)(uintptr_t)c, &zbc);
- if (ret != EALREADY) {
- mutex_enter(&cvd->vdev_stat_lock);
- cvd->vdev_stat.vs_checksum_errors++;
- mutex_exit(&cvd->vdev_stat_lock);
- }
+ for (int c = 0; c < rr->rr_cols; c++) {
+ raidz_col_t *rc = &rr->rr_col[c];
+ vdev_t *cvd = zio->io_vd->vdev_child[rc->rc_devidx];
+
+ if (rc->rc_error != 0)
+ continue;
+
+ zio_bad_cksum_t zbc;
+ zbc.zbc_has_cksum = 0;
+ zbc.zbc_injected = rm->rm_ecksuminjected;
+
+ int ret = zfs_ereport_start_checksum(zio->io_spa,
+ cvd, &zio->io_bookmark, zio, rc->rc_offset,
+ rc->rc_size, (void *)(uintptr_t)c, &zbc);
+ if (ret != EALREADY) {
+ mutex_enter(&cvd->vdev_stat_lock);
+ cvd->vdev_stat.vs_checksum_errors++;
+ mutex_exit(&cvd->vdev_stat_lock);
}
}
}
+}
-done:
- zio_checksum_verified(zio);
+void
+vdev_raidz_io_done(zio_t *zio)
+{
+ raidz_map_t *rm = zio->io_vsd;
- if (zio->io_error == 0 && spa_writeable(zio->io_spa) &&
- (unexpected_errors || (zio->io_flags & ZIO_FLAG_RESILVER))) {
- /*
- * Use the good data we have in hand to repair damaged children.
- */
- for (c = 0; c < rm->rm_cols; c++) {
- rc = &rm->rm_col[c];
- cvd = vd->vdev_child[rc->rc_devidx];
+ if (zio->io_type == ZIO_TYPE_WRITE) {
+ for (int i = 0; i < rm->rm_nrows; i++) {
+ vdev_raidz_io_done_write_impl(zio, rm->rm_row[i]);
+ }
+ } else {
+ for (int i = 0; i < rm->rm_nrows; i++) {
+ raidz_row_t *rr = rm->rm_row[i];
+ rr->rr_code =
+ vdev_raidz_io_done_reconstruct_known_missing(zio,
+ rm, rr);
+ }
- if (rc->rc_error == 0)
- continue;
+ if (raidz_checksum_verify(zio) == 0) {
+ for (int i = 0; i < rm->rm_nrows; i++) {
+ raidz_row_t *rr = rm->rm_row[i];
+ vdev_raidz_io_done_verified(zio, rr);
+ }
+ zio_checksum_verified(zio);
+ } else {
+ /*
+ * A sequential resilver has no checksum which makes
+ * combinatoral reconstruction impossible. This code
+ * path is unreachable since raidz_checksum_verify()
+ * has no checksum to verify and must succeed.
+ */
+ ASSERT3U(zio->io_priority, !=, ZIO_PRIORITY_REBUILD);
- zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
- rc->rc_offset, rc->rc_abd, rc->rc_size,
- ZIO_TYPE_WRITE, ZIO_PRIORITY_ASYNC_WRITE,
- ZIO_FLAG_IO_REPAIR | (unexpected_errors ?
- ZIO_FLAG_SELF_HEAL : 0), NULL, NULL));
+ /*
+ * This isn't a typical situation -- either we got a
+ * read error or a child silently returned bad data.
+ * Read every block so we can try again with as much
+ * data and parity as we can track down. If we've
+ * already been through once before, all children will
+ * be marked as tried so we'll proceed to combinatorial
+ * reconstruction.
+ */
+ int nread = 0;
+ for (int i = 0; i < rm->rm_nrows; i++) {
+ nread += vdev_raidz_read_all(zio,
+ rm->rm_row[i]);
+ }
+ if (nread != 0) {
+ /*
+ * Normally our stage is VDEV_IO_DONE, but if
+ * we've already called redone(), it will have
+ * changed to VDEV_IO_START, in which case we
+ * don't want to call redone() again.
+ */
+ if (zio->io_stage != ZIO_STAGE_VDEV_IO_START)
+ zio_vdev_io_redone(zio);
+ return;
+ }
+
+ zio->io_error = vdev_raidz_combrec(zio);
+ if (zio->io_error == ECKSUM &&
+ !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
+ vdev_raidz_io_done_unrecoverable(zio);
+ }
}
}
}
@@ -2327,7 +2564,8 @@ done:
static void
vdev_raidz_state_change(vdev_t *vd, int faulted, int degraded)
{
- if (faulted > vd->vdev_nparity)
+ vdev_raidz_t *vdrz = vd->vdev_tsd;
+ if (faulted > vdrz->vd_nparity)
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
VDEV_AUX_NO_REPLICAS);
else if (degraded + faulted != 0)
@@ -2343,18 +2581,26 @@ vdev_raidz_state_change(vdev_t *vd, int faulted, int degraded)
* width blocks must be resilvered.
*/
static boolean_t
-vdev_raidz_need_resilver(vdev_t *vd, uint64_t offset, size_t psize)
+vdev_raidz_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
+ uint64_t phys_birth)
{
+ vdev_raidz_t *vdrz = vd->vdev_tsd;
uint64_t dcols = vd->vdev_children;
- uint64_t nparity = vd->vdev_nparity;
+ uint64_t nparity = vdrz->vd_nparity;
uint64_t ashift = vd->vdev_top->vdev_ashift;
/* The starting RAIDZ (parent) vdev sector of the block. */
- uint64_t b = offset >> ashift;
+ uint64_t b = DVA_GET_OFFSET(dva) >> ashift;
/* The zio's size in units of the vdev's minimum sector size. */
uint64_t s = ((psize - 1) >> ashift) + 1;
/* The first column for this stripe. */
uint64_t f = b % dcols;
+ /* Unreachable by sequential resilver. */
+ ASSERT3U(phys_birth, !=, TXG_UNKNOWN);
+
+ if (!vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1))
+ return (B_FALSE);
+
if (s + nparity >= dcols)
return (B_TRUE);
@@ -2375,7 +2621,8 @@ vdev_raidz_need_resilver(vdev_t *vd, uint64_t offset, size_t psize)
}
static void
-vdev_raidz_xlate(vdev_t *cvd, const range_seg64_t *in, range_seg64_t *res)
+vdev_raidz_xlate(vdev_t *cvd, const range_seg64_t *logical_rs,
+ range_seg64_t *physical_rs, range_seg64_t *remain_rs)
{
vdev_t *raidvd = cvd->vdev_parent;
ASSERT(raidvd->vdev_ops == &vdev_raidz_ops);
@@ -2385,10 +2632,10 @@ vdev_raidz_xlate(vdev_t *cvd, const range_seg64_t *in, range_seg64_t *res)
uint64_t ashift = raidvd->vdev_top->vdev_ashift;
/* make sure the offsets are block-aligned */
- ASSERT0(in->rs_start % (1 << ashift));
- ASSERT0(in->rs_end % (1 << ashift));
- uint64_t b_start = in->rs_start >> ashift;
- uint64_t b_end = in->rs_end >> ashift;
+ ASSERT0(logical_rs->rs_start % (1 << ashift));
+ ASSERT0(logical_rs->rs_end % (1 << ashift));
+ uint64_t b_start = logical_rs->rs_start >> ashift;
+ uint64_t b_end = logical_rs->rs_end >> ashift;
uint64_t start_row = 0;
if (b_start > tgt_col) /* avoid underflow */
@@ -2398,17 +2645,119 @@ vdev_raidz_xlate(vdev_t *cvd, const range_seg64_t *in, range_seg64_t *res)
if (b_end > tgt_col)
end_row = ((b_end - tgt_col - 1) / width) + 1;
- res->rs_start = start_row << ashift;
- res->rs_end = end_row << ashift;
+ physical_rs->rs_start = start_row << ashift;
+ physical_rs->rs_end = end_row << ashift;
- ASSERT3U(res->rs_start, <=, in->rs_start);
- ASSERT3U(res->rs_end - res->rs_start, <=, in->rs_end - in->rs_start);
+ ASSERT3U(physical_rs->rs_start, <=, logical_rs->rs_start);
+ ASSERT3U(physical_rs->rs_end - physical_rs->rs_start, <=,
+ logical_rs->rs_end - logical_rs->rs_start);
+}
+
+/*
+ * Initialize private RAIDZ specific fields from the nvlist.
+ */
+static int
+vdev_raidz_init(spa_t *spa, nvlist_t *nv, void **tsd)
+{
+ vdev_raidz_t *vdrz;
+ uint64_t nparity;
+
+ uint_t children;
+ nvlist_t **child;
+ int error = nvlist_lookup_nvlist_array(nv,
+ ZPOOL_CONFIG_CHILDREN, &child, &children);
+ if (error != 0)
+ return (SET_ERROR(EINVAL));
+
+ if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, &nparity) == 0) {
+ if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
+ return (SET_ERROR(EINVAL));
+
+ /*
+ * Previous versions could only support 1 or 2 parity
+ * device.
+ */
+ if (nparity > 1 && spa_version(spa) < SPA_VERSION_RAIDZ2)
+ return (SET_ERROR(EINVAL));
+ else if (nparity > 2 && spa_version(spa) < SPA_VERSION_RAIDZ3)
+ return (SET_ERROR(EINVAL));
+ } else {
+ /*
+ * We require the parity to be specified for SPAs that
+ * support multiple parity levels.
+ */
+ if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
+ return (SET_ERROR(EINVAL));
+
+ /*
+ * Otherwise, we default to 1 parity device for RAID-Z.
+ */
+ nparity = 1;
+ }
+
+ vdrz = kmem_zalloc(sizeof (*vdrz), KM_SLEEP);
+ vdrz->vd_logical_width = children;
+ vdrz->vd_nparity = nparity;
+
+ *tsd = vdrz;
+
+ return (0);
+}
+
+static void
+vdev_raidz_fini(vdev_t *vd)
+{
+ kmem_free(vd->vdev_tsd, sizeof (vdev_raidz_t));
+}
+
+/*
+ * Add RAIDZ specific fields to the config nvlist.
+ */
+static void
+vdev_raidz_config_generate(vdev_t *vd, nvlist_t *nv)
+{
+ ASSERT3P(vd->vdev_ops, ==, &vdev_raidz_ops);
+ vdev_raidz_t *vdrz = vd->vdev_tsd;
+
+ /*
+ * Make sure someone hasn't managed to sneak a fancy new vdev
+ * into a crufty old storage pool.
+ */
+ ASSERT(vdrz->vd_nparity == 1 ||
+ (vdrz->vd_nparity <= 2 &&
+ spa_version(vd->vdev_spa) >= SPA_VERSION_RAIDZ2) ||
+ (vdrz->vd_nparity <= 3 &&
+ spa_version(vd->vdev_spa) >= SPA_VERSION_RAIDZ3));
+
+ /*
+ * Note that we'll add these even on storage pools where they
+ * aren't strictly required -- older software will just ignore
+ * it.
+ */
+ fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vdrz->vd_nparity);
+}
+
+static uint64_t
+vdev_raidz_nparity(vdev_t *vd)
+{
+ vdev_raidz_t *vdrz = vd->vdev_tsd;
+ return (vdrz->vd_nparity);
+}
+
+static uint64_t
+vdev_raidz_ndisks(vdev_t *vd)
+{
+ return (vd->vdev_children);
}
vdev_ops_t vdev_raidz_ops = {
+ .vdev_op_init = vdev_raidz_init,
+ .vdev_op_fini = vdev_raidz_fini,
.vdev_op_open = vdev_raidz_open,
.vdev_op_close = vdev_raidz_close,
.vdev_op_asize = vdev_raidz_asize,
+ .vdev_op_min_asize = vdev_raidz_min_asize,
+ .vdev_op_min_alloc = NULL,
.vdev_op_io_start = vdev_raidz_io_start,
.vdev_op_io_done = vdev_raidz_io_done,
.vdev_op_state_change = vdev_raidz_state_change,
@@ -2417,6 +2766,11 @@ vdev_ops_t vdev_raidz_ops = {
.vdev_op_rele = NULL,
.vdev_op_remap = NULL,
.vdev_op_xlate = vdev_raidz_xlate,
+ .vdev_op_rebuild_asize = NULL,
+ .vdev_op_metaslab_init = NULL,
+ .vdev_op_config_generate = vdev_raidz_config_generate,
+ .vdev_op_nparity = vdev_raidz_nparity,
+ .vdev_op_ndisks = vdev_raidz_ndisks,
.vdev_op_type = VDEV_TYPE_RAIDZ, /* name of this vdev type */
.vdev_op_leaf = B_FALSE /* not a leaf vdev */
};
diff --git a/module/zfs/vdev_raidz_math.c b/module/zfs/vdev_raidz_math.c
index 9595a7b95..a8eca06f9 100644
--- a/module/zfs/vdev_raidz_math.c
+++ b/module/zfs/vdev_raidz_math.c
@@ -149,7 +149,7 @@ vdev_raidz_math_get_ops(void)
* Select parity generation method for raidz_map
*/
int
-vdev_raidz_math_generate(raidz_map_t *rm)
+vdev_raidz_math_generate(raidz_map_t *rm, raidz_row_t *rr)
{
raidz_gen_f gen_parity = NULL;
@@ -174,7 +174,7 @@ vdev_raidz_math_generate(raidz_map_t *rm)
if (gen_parity == NULL)
return (RAIDZ_ORIGINAL_IMPL);
- gen_parity(rm);
+ gen_parity(rr);
return (0);
}
@@ -241,8 +241,8 @@ reconstruct_fun_pqr_sel(raidz_map_t *rm, const int *parity_valid,
* @nbaddata - Number of failed data columns
*/
int
-vdev_raidz_math_reconstruct(raidz_map_t *rm, const int *parity_valid,
- const int *dt, const int nbaddata)
+vdev_raidz_math_reconstruct(raidz_map_t *rm, raidz_row_t *rr,
+ const int *parity_valid, const int *dt, const int nbaddata)
{
raidz_rec_f rec_fn = NULL;
@@ -265,7 +265,7 @@ vdev_raidz_math_reconstruct(raidz_map_t *rm, const int *parity_valid,
if (rec_fn == NULL)
return (RAIDZ_ORIGINAL_IMPL);
else
- return (rec_fn(rm, dt));
+ return (rec_fn(rr, dt));
}
const char *raidz_gen_name[] = {
diff --git a/module/zfs/vdev_raidz_math_impl.h b/module/zfs/vdev_raidz_math_impl.h
index 89c2082c4..35e016fc6 100644
--- a/module/zfs/vdev_raidz_math_impl.h
+++ b/module/zfs/vdev_raidz_math_impl.h
@@ -26,6 +26,7 @@
#define _VDEV_RAIDZ_MATH_IMPL_H
#include <sys/types.h>
+#include <sys/vdev_raidz_impl.h>
#define raidz_inline inline __attribute__((always_inline))
#ifndef noinline
@@ -36,33 +37,33 @@
* Functions calculate multiplication constants for data reconstruction.
* Coefficients depend on RAIDZ geometry, indexes of failed child vdevs, and
* used parity columns for reconstruction.
- * @rm RAIDZ map
+ * @rr RAIDZ row
* @tgtidx array of missing data indexes
* @coeff output array of coefficients. Array must be provided by
* user and must hold minimum MUL_CNT values.
*/
static noinline void
-raidz_rec_q_coeff(const raidz_map_t *rm, const int *tgtidx, unsigned *coeff)
+raidz_rec_q_coeff(const raidz_row_t *rr, const int *tgtidx, unsigned *coeff)
{
- const unsigned ncols = raidz_ncols(rm);
+ const unsigned ncols = rr->rr_cols;
const unsigned x = tgtidx[TARGET_X];
coeff[MUL_Q_X] = gf_exp2(255 - (ncols - x - 1));
}
static noinline void
-raidz_rec_r_coeff(const raidz_map_t *rm, const int *tgtidx, unsigned *coeff)
+raidz_rec_r_coeff(const raidz_row_t *rr, const int *tgtidx, unsigned *coeff)
{
- const unsigned ncols = raidz_ncols(rm);
+ const unsigned ncols = rr->rr_cols;
const unsigned x = tgtidx[TARGET_X];
coeff[MUL_R_X] = gf_exp4(255 - (ncols - x - 1));
}
static noinline void
-raidz_rec_pq_coeff(const raidz_map_t *rm, const int *tgtidx, unsigned *coeff)
+raidz_rec_pq_coeff(const raidz_row_t *rr, const int *tgtidx, unsigned *coeff)
{
- const unsigned ncols = raidz_ncols(rm);
+ const unsigned ncols = rr->rr_cols;
const unsigned x = tgtidx[TARGET_X];
const unsigned y = tgtidx[TARGET_Y];
gf_t a, b, e;
@@ -76,9 +77,9 @@ raidz_rec_pq_coeff(const raidz_map_t *rm, const int *tgtidx, unsigned *coeff)
}
static noinline void
-raidz_rec_pr_coeff(const raidz_map_t *rm, const int *tgtidx, unsigned *coeff)
+raidz_rec_pr_coeff(const raidz_row_t *rr, const int *tgtidx, unsigned *coeff)
{
- const unsigned ncols = raidz_ncols(rm);
+ const unsigned ncols = rr->rr_cols;
const unsigned x = tgtidx[TARGET_X];
const unsigned y = tgtidx[TARGET_Y];
@@ -93,9 +94,9 @@ raidz_rec_pr_coeff(const raidz_map_t *rm, const int *tgtidx, unsigned *coeff)
}
static noinline void
-raidz_rec_qr_coeff(const raidz_map_t *rm, const int *tgtidx, unsigned *coeff)
+raidz_rec_qr_coeff(const raidz_row_t *rr, const int *tgtidx, unsigned *coeff)
{
- const unsigned ncols = raidz_ncols(rm);
+ const unsigned ncols = rr->rr_cols;
const unsigned x = tgtidx[TARGET_X];
const unsigned y = tgtidx[TARGET_Y];
@@ -114,9 +115,9 @@ raidz_rec_qr_coeff(const raidz_map_t *rm, const int *tgtidx, unsigned *coeff)
}
static noinline void
-raidz_rec_pqr_coeff(const raidz_map_t *rm, const int *tgtidx, unsigned *coeff)
+raidz_rec_pqr_coeff(const raidz_row_t *rr, const int *tgtidx, unsigned *coeff)
{
- const unsigned ncols = raidz_ncols(rm);
+ const unsigned ncols = rr->rr_cols;
const unsigned x = tgtidx[TARGET_X];
const unsigned y = tgtidx[TARGET_Y];
const unsigned z = tgtidx[TARGET_Z];
@@ -347,26 +348,26 @@ raidz_mul_abd_cb(void *dc, size_t size, void *private)
/*
* Generate P parity (RAIDZ1)
*
- * @rm RAIDZ map
+ * @rr RAIDZ row
*/
static raidz_inline void
-raidz_generate_p_impl(raidz_map_t * const rm)
+raidz_generate_p_impl(raidz_row_t * const rr)
{
size_t c;
- const size_t ncols = raidz_ncols(rm);
- const size_t psize = rm->rm_col[CODE_P].rc_size;
- abd_t *pabd = rm->rm_col[CODE_P].rc_abd;
+ const size_t ncols = rr->rr_cols;
+ const size_t psize = rr->rr_col[CODE_P].rc_size;
+ abd_t *pabd = rr->rr_col[CODE_P].rc_abd;
size_t size;
abd_t *dabd;
raidz_math_begin();
/* start with first data column */
- raidz_copy(pabd, rm->rm_col[1].rc_abd, psize);
+ raidz_copy(pabd, rr->rr_col[1].rc_abd, psize);
for (c = 2; c < ncols; c++) {
- dabd = rm->rm_col[c].rc_abd;
- size = rm->rm_col[c].rc_size;
+ dabd = rr->rr_col[c].rc_abd;
+ size = rr->rr_col[c].rc_size;
/* add data column */
raidz_add(pabd, dabd, size);
@@ -414,29 +415,29 @@ raidz_gen_pq_add(void **c, const void *dc, const size_t csize,
/*
* Generate PQ parity (RAIDZ2)
*
- * @rm RAIDZ map
+ * @rr RAIDZ row
*/
static raidz_inline void
-raidz_generate_pq_impl(raidz_map_t * const rm)
+raidz_generate_pq_impl(raidz_row_t * const rr)
{
size_t c;
- const size_t ncols = raidz_ncols(rm);
- const size_t csize = rm->rm_col[CODE_P].rc_size;
+ const size_t ncols = rr->rr_cols;
+ const size_t csize = rr->rr_col[CODE_P].rc_size;
size_t dsize;
abd_t *dabd;
abd_t *cabds[] = {
- rm->rm_col[CODE_P].rc_abd,
- rm->rm_col[CODE_Q].rc_abd
+ rr->rr_col[CODE_P].rc_abd,
+ rr->rr_col[CODE_Q].rc_abd
};
raidz_math_begin();
- raidz_copy(cabds[CODE_P], rm->rm_col[2].rc_abd, csize);
- raidz_copy(cabds[CODE_Q], rm->rm_col[2].rc_abd, csize);
+ raidz_copy(cabds[CODE_P], rr->rr_col[2].rc_abd, csize);
+ raidz_copy(cabds[CODE_Q], rr->rr_col[2].rc_abd, csize);
for (c = 3; c < ncols; c++) {
- dabd = rm->rm_col[c].rc_abd;
- dsize = rm->rm_col[c].rc_size;
+ dabd = rr->rr_col[c].rc_abd;
+ dsize = rr->rr_col[c].rc_size;
abd_raidz_gen_iterate(cabds, dabd, csize, dsize, 2,
raidz_gen_pq_add);
@@ -487,31 +488,31 @@ raidz_gen_pqr_add(void **c, const void *dc, const size_t csize,
/*
* Generate PQR parity (RAIDZ2)
*
- * @rm RAIDZ map
+ * @rr RAIDZ row
*/
static raidz_inline void
-raidz_generate_pqr_impl(raidz_map_t * const rm)
+raidz_generate_pqr_impl(raidz_row_t * const rr)
{
size_t c;
- const size_t ncols = raidz_ncols(rm);
- const size_t csize = rm->rm_col[CODE_P].rc_size;
+ const size_t ncols = rr->rr_cols;
+ const size_t csize = rr->rr_col[CODE_P].rc_size;
size_t dsize;
abd_t *dabd;
abd_t *cabds[] = {
- rm->rm_col[CODE_P].rc_abd,
- rm->rm_col[CODE_Q].rc_abd,
- rm->rm_col[CODE_R].rc_abd
+ rr->rr_col[CODE_P].rc_abd,
+ rr->rr_col[CODE_Q].rc_abd,
+ rr->rr_col[CODE_R].rc_abd
};
raidz_math_begin();
- raidz_copy(cabds[CODE_P], rm->rm_col[3].rc_abd, csize);
- raidz_copy(cabds[CODE_Q], rm->rm_col[3].rc_abd, csize);
- raidz_copy(cabds[CODE_R], rm->rm_col[3].rc_abd, csize);
+ raidz_copy(cabds[CODE_P], rr->rr_col[3].rc_abd, csize);
+ raidz_copy(cabds[CODE_Q], rr->rr_col[3].rc_abd, csize);
+ raidz_copy(cabds[CODE_R], rr->rr_col[3].rc_abd, csize);
for (c = 4; c < ncols; c++) {
- dabd = rm->rm_col[c].rc_abd;
- dsize = rm->rm_col[c].rc_size;
+ dabd = rr->rr_col[c].rc_abd;
+ dsize = rr->rr_col[c].rc_size;
abd_raidz_gen_iterate(cabds, dabd, csize, dsize, 3,
raidz_gen_pqr_add);
@@ -579,33 +580,36 @@ raidz_generate_pqr_impl(raidz_map_t * const rm)
* @syn_method raidz_add_abd()
* @rec_method not applicable
*
- * @rm RAIDZ map
+ * @rr RAIDZ row
* @tgtidx array of missing data indexes
*/
static raidz_inline int
-raidz_reconstruct_p_impl(raidz_map_t *rm, const int *tgtidx)
+raidz_reconstruct_p_impl(raidz_row_t *rr, const int *tgtidx)
{
size_t c;
- const size_t firstdc = raidz_parity(rm);
- const size_t ncols = raidz_ncols(rm);
+ const size_t firstdc = rr->rr_firstdatacol;
+ const size_t ncols = rr->rr_cols;
const size_t x = tgtidx[TARGET_X];
- const size_t xsize = rm->rm_col[x].rc_size;
- abd_t *xabd = rm->rm_col[x].rc_abd;
+ const size_t xsize = rr->rr_col[x].rc_size;
+ abd_t *xabd = rr->rr_col[x].rc_abd;
size_t size;
abd_t *dabd;
+ if (xabd == NULL)
+ return (1 << CODE_P);
+
raidz_math_begin();
/* copy P into target */
- raidz_copy(xabd, rm->rm_col[CODE_P].rc_abd, xsize);
+ raidz_copy(xabd, rr->rr_col[CODE_P].rc_abd, xsize);
/* generate p_syndrome */
for (c = firstdc; c < ncols; c++) {
if (c == x)
continue;
- dabd = rm->rm_col[c].rc_abd;
- size = MIN(rm->rm_col[c].rc_size, xsize);
+ dabd = rr->rr_col[c].rc_abd;
+ size = MIN(rr->rr_col[c].rc_size, xsize);
raidz_add(xabd, dabd, size);
}
@@ -653,30 +657,33 @@ raidz_syn_q_abd(void **xc, const void *dc, const size_t xsize,
* @syn_method raidz_add_abd()
* @rec_method raidz_mul_abd_cb()
*
- * @rm RAIDZ map
+ * @rr RAIDZ row
* @tgtidx array of missing data indexes
*/
static raidz_inline int
-raidz_reconstruct_q_impl(raidz_map_t *rm, const int *tgtidx)
+raidz_reconstruct_q_impl(raidz_row_t *rr, const int *tgtidx)
{
size_t c;
size_t dsize;
abd_t *dabd;
- const size_t firstdc = raidz_parity(rm);
- const size_t ncols = raidz_ncols(rm);
+ const size_t firstdc = rr->rr_firstdatacol;
+ const size_t ncols = rr->rr_cols;
const size_t x = tgtidx[TARGET_X];
- abd_t *xabd = rm->rm_col[x].rc_abd;
- const size_t xsize = rm->rm_col[x].rc_size;
+ abd_t *xabd = rr->rr_col[x].rc_abd;
+ const size_t xsize = rr->rr_col[x].rc_size;
abd_t *tabds[] = { xabd };
+ if (xabd == NULL)
+ return (1 << CODE_Q);
+
unsigned coeff[MUL_CNT];
- raidz_rec_q_coeff(rm, tgtidx, coeff);
+ raidz_rec_q_coeff(rr, tgtidx, coeff);
raidz_math_begin();
/* Start with first data column if present */
if (firstdc != x) {
- raidz_copy(xabd, rm->rm_col[firstdc].rc_abd, xsize);
+ raidz_copy(xabd, rr->rr_col[firstdc].rc_abd, xsize);
} else {
raidz_zero(xabd, xsize);
}
@@ -687,8 +694,8 @@ raidz_reconstruct_q_impl(raidz_map_t *rm, const int *tgtidx)
dabd = NULL;
dsize = 0;
} else {
- dabd = rm->rm_col[c].rc_abd;
- dsize = rm->rm_col[c].rc_size;
+ dabd = rr->rr_col[c].rc_abd;
+ dsize = rr->rr_col[c].rc_size;
}
abd_raidz_gen_iterate(tabds, dabd, xsize, dsize, 1,
@@ -696,7 +703,7 @@ raidz_reconstruct_q_impl(raidz_map_t *rm, const int *tgtidx)
}
/* add Q to the syndrome */
- raidz_add(xabd, rm->rm_col[CODE_Q].rc_abd, xsize);
+ raidz_add(xabd, rr->rr_col[CODE_Q].rc_abd, xsize);
/* transform the syndrome */
abd_iterate_func(xabd, 0, xsize, raidz_mul_abd_cb, (void*) coeff);
@@ -744,30 +751,33 @@ raidz_syn_r_abd(void **xc, const void *dc, const size_t tsize,
* @syn_method raidz_add_abd()
* @rec_method raidz_mul_abd_cb()
*
- * @rm RAIDZ map
+ * @rr RAIDZ rr
* @tgtidx array of missing data indexes
*/
static raidz_inline int
-raidz_reconstruct_r_impl(raidz_map_t *rm, const int *tgtidx)
+raidz_reconstruct_r_impl(raidz_row_t *rr, const int *tgtidx)
{
size_t c;
size_t dsize;
abd_t *dabd;
- const size_t firstdc = raidz_parity(rm);
- const size_t ncols = raidz_ncols(rm);
+ const size_t firstdc = rr->rr_firstdatacol;
+ const size_t ncols = rr->rr_cols;
const size_t x = tgtidx[TARGET_X];
- const size_t xsize = rm->rm_col[x].rc_size;
- abd_t *xabd = rm->rm_col[x].rc_abd;
+ const size_t xsize = rr->rr_col[x].rc_size;
+ abd_t *xabd = rr->rr_col[x].rc_abd;
abd_t *tabds[] = { xabd };
+ if (xabd == NULL)
+ return (1 << CODE_R);
+
unsigned coeff[MUL_CNT];
- raidz_rec_r_coeff(rm, tgtidx, coeff);
+ raidz_rec_r_coeff(rr, tgtidx, coeff);
raidz_math_begin();
/* Start with first data column if present */
if (firstdc != x) {
- raidz_copy(xabd, rm->rm_col[firstdc].rc_abd, xsize);
+ raidz_copy(xabd, rr->rr_col[firstdc].rc_abd, xsize);
} else {
raidz_zero(xabd, xsize);
}
@@ -779,8 +789,8 @@ raidz_reconstruct_r_impl(raidz_map_t *rm, const int *tgtidx)
dabd = NULL;
dsize = 0;
} else {
- dabd = rm->rm_col[c].rc_abd;
- dsize = rm->rm_col[c].rc_size;
+ dabd = rr->rr_col[c].rc_abd;
+ dsize = rr->rr_col[c].rc_size;
}
abd_raidz_gen_iterate(tabds, dabd, xsize, dsize, 1,
@@ -788,7 +798,7 @@ raidz_reconstruct_r_impl(raidz_map_t *rm, const int *tgtidx)
}
/* add R to the syndrome */
- raidz_add(xabd, rm->rm_col[CODE_R].rc_abd, xsize);
+ raidz_add(xabd, rr->rr_col[CODE_R].rc_abd, xsize);
/* transform the syndrome */
abd_iterate_func(xabd, 0, xsize, raidz_mul_abd_cb, (void *)coeff);
@@ -881,31 +891,34 @@ raidz_rec_pq_abd(void **tc, const size_t tsize, void **c,
* @syn_method raidz_syn_pq_abd()
* @rec_method raidz_rec_pq_abd()
*
- * @rm RAIDZ map
+ * @rr RAIDZ row
* @tgtidx array of missing data indexes
*/
static raidz_inline int
-raidz_reconstruct_pq_impl(raidz_map_t *rm, const int *tgtidx)
+raidz_reconstruct_pq_impl(raidz_row_t *rr, const int *tgtidx)
{
size_t c;
size_t dsize;
abd_t *dabd;
- const size_t firstdc = raidz_parity(rm);
- const size_t ncols = raidz_ncols(rm);
+ const size_t firstdc = rr->rr_firstdatacol;
+ const size_t ncols = rr->rr_cols;
const size_t x = tgtidx[TARGET_X];
const size_t y = tgtidx[TARGET_Y];
- const size_t xsize = rm->rm_col[x].rc_size;
- const size_t ysize = rm->rm_col[y].rc_size;
- abd_t *xabd = rm->rm_col[x].rc_abd;
- abd_t *yabd = rm->rm_col[y].rc_abd;
+ const size_t xsize = rr->rr_col[x].rc_size;
+ const size_t ysize = rr->rr_col[y].rc_size;
+ abd_t *xabd = rr->rr_col[x].rc_abd;
+ abd_t *yabd = rr->rr_col[y].rc_abd;
abd_t *tabds[2] = { xabd, yabd };
abd_t *cabds[] = {
- rm->rm_col[CODE_P].rc_abd,
- rm->rm_col[CODE_Q].rc_abd
+ rr->rr_col[CODE_P].rc_abd,
+ rr->rr_col[CODE_Q].rc_abd
};
+ if (xabd == NULL)
+ return ((1 << CODE_P) | (1 << CODE_Q));
+
unsigned coeff[MUL_CNT];
- raidz_rec_pq_coeff(rm, tgtidx, coeff);
+ raidz_rec_pq_coeff(rr, tgtidx, coeff);
/*
* Check if some of targets is shorter then others
@@ -921,8 +934,8 @@ raidz_reconstruct_pq_impl(raidz_map_t *rm, const int *tgtidx)
/* Start with first data column if present */
if (firstdc != x) {
- raidz_copy(xabd, rm->rm_col[firstdc].rc_abd, xsize);
- raidz_copy(yabd, rm->rm_col[firstdc].rc_abd, xsize);
+ raidz_copy(xabd, rr->rr_col[firstdc].rc_abd, xsize);
+ raidz_copy(yabd, rr->rr_col[firstdc].rc_abd, xsize);
} else {
raidz_zero(xabd, xsize);
raidz_zero(yabd, xsize);
@@ -934,8 +947,8 @@ raidz_reconstruct_pq_impl(raidz_map_t *rm, const int *tgtidx)
dabd = NULL;
dsize = 0;
} else {
- dabd = rm->rm_col[c].rc_abd;
- dsize = rm->rm_col[c].rc_size;
+ dabd = rr->rr_col[c].rc_abd;
+ dsize = rr->rr_col[c].rc_size;
}
abd_raidz_gen_iterate(tabds, dabd, xsize, dsize, 2,
@@ -946,7 +959,7 @@ raidz_reconstruct_pq_impl(raidz_map_t *rm, const int *tgtidx)
/* Copy shorter targets back to the original abd buffer */
if (ysize < xsize)
- raidz_copy(rm->rm_col[y].rc_abd, yabd, ysize);
+ raidz_copy(rr->rr_col[y].rc_abd, yabd, ysize);
raidz_math_end();
@@ -1038,30 +1051,34 @@ raidz_rec_pr_abd(void **t, const size_t tsize, void **c,
* @syn_method raidz_syn_pr_abd()
* @rec_method raidz_rec_pr_abd()
*
- * @rm RAIDZ map
+ * @rr RAIDZ row
* @tgtidx array of missing data indexes
*/
static raidz_inline int
-raidz_reconstruct_pr_impl(raidz_map_t *rm, const int *tgtidx)
+raidz_reconstruct_pr_impl(raidz_row_t *rr, const int *tgtidx)
{
size_t c;
size_t dsize;
abd_t *dabd;
- const size_t firstdc = raidz_parity(rm);
- const size_t ncols = raidz_ncols(rm);
+ const size_t firstdc = rr->rr_firstdatacol;
+ const size_t ncols = rr->rr_cols;
const size_t x = tgtidx[0];
const size_t y = tgtidx[1];
- const size_t xsize = rm->rm_col[x].rc_size;
- const size_t ysize = rm->rm_col[y].rc_size;
- abd_t *xabd = rm->rm_col[x].rc_abd;
- abd_t *yabd = rm->rm_col[y].rc_abd;
+ const size_t xsize = rr->rr_col[x].rc_size;
+ const size_t ysize = rr->rr_col[y].rc_size;
+ abd_t *xabd = rr->rr_col[x].rc_abd;
+ abd_t *yabd = rr->rr_col[y].rc_abd;
abd_t *tabds[2] = { xabd, yabd };
abd_t *cabds[] = {
- rm->rm_col[CODE_P].rc_abd,
- rm->rm_col[CODE_R].rc_abd
+ rr->rr_col[CODE_P].rc_abd,
+ rr->rr_col[CODE_R].rc_abd
};
+
+ if (xabd == NULL)
+ return ((1 << CODE_P) | (1 << CODE_R));
+
unsigned coeff[MUL_CNT];
- raidz_rec_pr_coeff(rm, tgtidx, coeff);
+ raidz_rec_pr_coeff(rr, tgtidx, coeff);
/*
* Check if some of targets are shorter then others.
@@ -1077,8 +1094,8 @@ raidz_reconstruct_pr_impl(raidz_map_t *rm, const int *tgtidx)
/* Start with first data column if present */
if (firstdc != x) {
- raidz_copy(xabd, rm->rm_col[firstdc].rc_abd, xsize);
- raidz_copy(yabd, rm->rm_col[firstdc].rc_abd, xsize);
+ raidz_copy(xabd, rr->rr_col[firstdc].rc_abd, xsize);
+ raidz_copy(yabd, rr->rr_col[firstdc].rc_abd, xsize);
} else {
raidz_zero(xabd, xsize);
raidz_zero(yabd, xsize);
@@ -1090,8 +1107,8 @@ raidz_reconstruct_pr_impl(raidz_map_t *rm, const int *tgtidx)
dabd = NULL;
dsize = 0;
} else {
- dabd = rm->rm_col[c].rc_abd;
- dsize = rm->rm_col[c].rc_size;
+ dabd = rr->rr_col[c].rc_abd;
+ dsize = rr->rr_col[c].rc_size;
}
abd_raidz_gen_iterate(tabds, dabd, xsize, dsize, 2,
@@ -1104,14 +1121,14 @@ raidz_reconstruct_pr_impl(raidz_map_t *rm, const int *tgtidx)
* Copy shorter targets back to the original abd buffer
*/
if (ysize < xsize)
- raidz_copy(rm->rm_col[y].rc_abd, yabd, ysize);
+ raidz_copy(rr->rr_col[y].rc_abd, yabd, ysize);
raidz_math_end();
if (ysize < xsize)
abd_free(yabd);
- return ((1 << CODE_P) | (1 << CODE_Q));
+ return ((1 << CODE_P) | (1 << CODE_R));
}
@@ -1201,30 +1218,34 @@ raidz_rec_qr_abd(void **t, const size_t tsize, void **c,
* @syn_method raidz_syn_qr_abd()
* @rec_method raidz_rec_qr_abd()
*
- * @rm RAIDZ map
+ * @rr RAIDZ row
* @tgtidx array of missing data indexes
*/
static raidz_inline int
-raidz_reconstruct_qr_impl(raidz_map_t *rm, const int *tgtidx)
+raidz_reconstruct_qr_impl(raidz_row_t *rr, const int *tgtidx)
{
size_t c;
size_t dsize;
abd_t *dabd;
- const size_t firstdc = raidz_parity(rm);
- const size_t ncols = raidz_ncols(rm);
+ const size_t firstdc = rr->rr_firstdatacol;
+ const size_t ncols = rr->rr_cols;
const size_t x = tgtidx[TARGET_X];
const size_t y = tgtidx[TARGET_Y];
- const size_t xsize = rm->rm_col[x].rc_size;
- const size_t ysize = rm->rm_col[y].rc_size;
- abd_t *xabd = rm->rm_col[x].rc_abd;
- abd_t *yabd = rm->rm_col[y].rc_abd;
+ const size_t xsize = rr->rr_col[x].rc_size;
+ const size_t ysize = rr->rr_col[y].rc_size;
+ abd_t *xabd = rr->rr_col[x].rc_abd;
+ abd_t *yabd = rr->rr_col[y].rc_abd;
abd_t *tabds[2] = { xabd, yabd };
abd_t *cabds[] = {
- rm->rm_col[CODE_Q].rc_abd,
- rm->rm_col[CODE_R].rc_abd
+ rr->rr_col[CODE_Q].rc_abd,
+ rr->rr_col[CODE_R].rc_abd
};
+
+ if (xabd == NULL)
+ return ((1 << CODE_Q) | (1 << CODE_R));
+
unsigned coeff[MUL_CNT];
- raidz_rec_qr_coeff(rm, tgtidx, coeff);
+ raidz_rec_qr_coeff(rr, tgtidx, coeff);
/*
* Check if some of targets is shorter then others
@@ -1240,8 +1261,8 @@ raidz_reconstruct_qr_impl(raidz_map_t *rm, const int *tgtidx)
/* Start with first data column if present */
if (firstdc != x) {
- raidz_copy(xabd, rm->rm_col[firstdc].rc_abd, xsize);
- raidz_copy(yabd, rm->rm_col[firstdc].rc_abd, xsize);
+ raidz_copy(xabd, rr->rr_col[firstdc].rc_abd, xsize);
+ raidz_copy(yabd, rr->rr_col[firstdc].rc_abd, xsize);
} else {
raidz_zero(xabd, xsize);
raidz_zero(yabd, xsize);
@@ -1253,8 +1274,8 @@ raidz_reconstruct_qr_impl(raidz_map_t *rm, const int *tgtidx)
dabd = NULL;
dsize = 0;
} else {
- dabd = rm->rm_col[c].rc_abd;
- dsize = rm->rm_col[c].rc_size;
+ dabd = rr->rr_col[c].rc_abd;
+ dsize = rr->rr_col[c].rc_size;
}
abd_raidz_gen_iterate(tabds, dabd, xsize, dsize, 2,
@@ -1267,7 +1288,7 @@ raidz_reconstruct_qr_impl(raidz_map_t *rm, const int *tgtidx)
* Copy shorter targets back to the original abd buffer
*/
if (ysize < xsize)
- raidz_copy(rm->rm_col[y].rc_abd, yabd, ysize);
+ raidz_copy(rr->rr_col[y].rc_abd, yabd, ysize);
raidz_math_end();
@@ -1384,34 +1405,38 @@ raidz_rec_pqr_abd(void **t, const size_t tsize, void **c,
* @syn_method raidz_syn_pqr_abd()
* @rec_method raidz_rec_pqr_abd()
*
- * @rm RAIDZ map
+ * @rr RAIDZ row
* @tgtidx array of missing data indexes
*/
static raidz_inline int
-raidz_reconstruct_pqr_impl(raidz_map_t *rm, const int *tgtidx)
+raidz_reconstruct_pqr_impl(raidz_row_t *rr, const int *tgtidx)
{
size_t c;
size_t dsize;
abd_t *dabd;
- const size_t firstdc = raidz_parity(rm);
- const size_t ncols = raidz_ncols(rm);
+ const size_t firstdc = rr->rr_firstdatacol;
+ const size_t ncols = rr->rr_cols;
const size_t x = tgtidx[TARGET_X];
const size_t y = tgtidx[TARGET_Y];
const size_t z = tgtidx[TARGET_Z];
- const size_t xsize = rm->rm_col[x].rc_size;
- const size_t ysize = rm->rm_col[y].rc_size;
- const size_t zsize = rm->rm_col[z].rc_size;
- abd_t *xabd = rm->rm_col[x].rc_abd;
- abd_t *yabd = rm->rm_col[y].rc_abd;
- abd_t *zabd = rm->rm_col[z].rc_abd;
+ const size_t xsize = rr->rr_col[x].rc_size;
+ const size_t ysize = rr->rr_col[y].rc_size;
+ const size_t zsize = rr->rr_col[z].rc_size;
+ abd_t *xabd = rr->rr_col[x].rc_abd;
+ abd_t *yabd = rr->rr_col[y].rc_abd;
+ abd_t *zabd = rr->rr_col[z].rc_abd;
abd_t *tabds[] = { xabd, yabd, zabd };
abd_t *cabds[] = {
- rm->rm_col[CODE_P].rc_abd,
- rm->rm_col[CODE_Q].rc_abd,
- rm->rm_col[CODE_R].rc_abd
+ rr->rr_col[CODE_P].rc_abd,
+ rr->rr_col[CODE_Q].rc_abd,
+ rr->rr_col[CODE_R].rc_abd
};
+
+ if (xabd == NULL)
+ return ((1 << CODE_P) | (1 << CODE_Q) | (1 << CODE_R));
+
unsigned coeff[MUL_CNT];
- raidz_rec_pqr_coeff(rm, tgtidx, coeff);
+ raidz_rec_pqr_coeff(rr, tgtidx, coeff);
/*
* Check if some of targets is shorter then others
@@ -1431,9 +1456,9 @@ raidz_reconstruct_pqr_impl(raidz_map_t *rm, const int *tgtidx)
/* Start with first data column if present */
if (firstdc != x) {
- raidz_copy(xabd, rm->rm_col[firstdc].rc_abd, xsize);
- raidz_copy(yabd, rm->rm_col[firstdc].rc_abd, xsize);
- raidz_copy(zabd, rm->rm_col[firstdc].rc_abd, xsize);
+ raidz_copy(xabd, rr->rr_col[firstdc].rc_abd, xsize);
+ raidz_copy(yabd, rr->rr_col[firstdc].rc_abd, xsize);
+ raidz_copy(zabd, rr->rr_col[firstdc].rc_abd, xsize);
} else {
raidz_zero(xabd, xsize);
raidz_zero(yabd, xsize);
@@ -1446,8 +1471,8 @@ raidz_reconstruct_pqr_impl(raidz_map_t *rm, const int *tgtidx)
dabd = NULL;
dsize = 0;
} else {
- dabd = rm->rm_col[c].rc_abd;
- dsize = rm->rm_col[c].rc_size;
+ dabd = rr->rr_col[c].rc_abd;
+ dsize = rr->rr_col[c].rc_size;
}
abd_raidz_gen_iterate(tabds, dabd, xsize, dsize, 3,
@@ -1460,9 +1485,9 @@ raidz_reconstruct_pqr_impl(raidz_map_t *rm, const int *tgtidx)
* Copy shorter targets back to the original abd buffer
*/
if (ysize < xsize)
- raidz_copy(rm->rm_col[y].rc_abd, yabd, ysize);
+ raidz_copy(rr->rr_col[y].rc_abd, yabd, ysize);
if (zsize < xsize)
- raidz_copy(rm->rm_col[z].rc_abd, zabd, zsize);
+ raidz_copy(rr->rr_col[z].rc_abd, zabd, zsize);
raidz_math_end();
diff --git a/module/zfs/vdev_rebuild.c b/module/zfs/vdev_rebuild.c
index 3362d608c..784d1af15 100644
--- a/module/zfs/vdev_rebuild.c
+++ b/module/zfs/vdev_rebuild.c
@@ -25,6 +25,7 @@
*/
#include <sys/vdev_impl.h>
+#include <sys/vdev_draid.h>
#include <sys/dsl_scan.h>
#include <sys/spa_impl.h>
#include <sys/metaslab_impl.h>
@@ -63,13 +64,15 @@
*
* Limitations:
*
- * - Only supported for mirror vdev types. Due to the variable stripe
- * width used by raidz sequential reconstruction is not possible.
+ * - Sequential reconstruction is not possible on RAIDZ due to its
+ * variable stripe width. Note dRAID uses a fixed stripe width which
+ * avoids this issue, but comes at the expense of some usable capacity.
*
- * - Block checksums are not verified during sequential reconstuction.
+ * - Block checksums are not verified during sequential reconstruction.
* Similar to traditional RAID the parity/mirror data is reconstructed
* but cannot be immediately double checked. For this reason when the
- * last active resilver completes the pool is automatically scrubbed.
+ * last active resilver completes the pool is automatically scrubbed
+ * by default.
*
* - Deferred resilvers using sequential reconstruction are not currently
* supported. When adding another vdev to an active top-level resilver
@@ -77,8 +80,8 @@
*
* Advantages:
*
- * - Sequential reconstuction is performed in LBA order which may be faster
- * than healing reconstuction particularly when using using HDDs (or
+ * - Sequential reconstruction is performed in LBA order which may be faster
+ * than healing reconstruction particularly when using using HDDs (or
* especially with SMR devices). Only allocated capacity is resilvered.
*
* - Sequential reconstruction is not constrained by ZFS block boundaries.
@@ -86,9 +89,9 @@
* allowing all of these logical blocks to be repaired with a single IO.
*
* - Unlike a healing resilver or scrub which are pool wide operations,
- * sequential reconstruction is handled by the top-level mirror vdevs.
- * This allows for it to be started or canceled on a top-level vdev
- * without impacting any other top-level vdevs in the pool.
+ * sequential reconstruction is handled by the top-level vdevs. This
+ * allows for it to be started or canceled on a top-level vdev without
+ * impacting any other top-level vdevs in the pool.
*
* - Data only referenced by a pool checkpoint will be repaired because
* that space is reflected in the space maps. This differs for a
@@ -97,17 +100,35 @@
/*
- * Maximum number of queued rebuild I/Os top-level vdev. The number of
- * concurrent rebuild I/Os issued to the device is controlled by the
- * zfs_vdev_rebuild_min_active and zfs_vdev_rebuild_max_active module
- * options.
+ * Size of rebuild reads; defaults to 1MiB per data disk and is capped at
+ * SPA_MAXBLOCKSIZE.
*/
-unsigned int zfs_rebuild_queue_limit = 20;
+unsigned long zfs_rebuild_max_segment = 1024 * 1024;
/*
- * Size of rebuild reads; defaults to 1MiB and is capped at SPA_MAXBLOCKSIZE.
+ * Maximum number of parallelly executed bytes per leaf vdev caused by a
+ * sequential resilver. We attempt to strike a balance here between keeping
+ * the vdev queues full of I/Os at all times and not overflowing the queues
+ * to cause long latency, which would cause long txg sync times.
+ *
+ * A large default value can be safely used here because the default target
+ * segment size is also large (zfs_rebuild_max_segment=1M). This helps keep
+ * the queue depth short.
+ *
+ * 32MB was selected as the default value to achieve good performance with
+ * a large 90-drive dRAID HDD configuration (draid2:8d:90c:2s). A sequential
+ * rebuild was unable to saturate all of the drives using smaller values.
+ * With a value of 32MB the sequential resilver write rate was measured at
+ * 800MB/s sustained while rebuilding to a distributed spare.
*/
-unsigned long zfs_rebuild_max_segment = 1024 * 1024;
+unsigned long zfs_rebuild_vdev_limit = 32 << 20;
+
+/*
+ * Automatically start a pool scrub when the last active sequential resilver
+ * completes in order to verify the checksums of all blocks which have been
+ * resilvered. This option is enabled by default and is strongly recommended.
+ */
+int zfs_rebuild_scrub_enabled = 1;
/*
* For vdev_rebuild_initiate_sync() and vdev_rebuild_reset_sync().
@@ -293,7 +314,7 @@ vdev_rebuild_complete_sync(void *arg, dmu_tx_t *tx)
VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
REBUILD_PHYS_ENTRIES, vrp, tx));
- vdev_dtl_reassess(vd, tx->tx_txg, vrp->vrp_max_txg, B_TRUE, B_TRUE);
+ vdev_dtl_reassess(vd, tx->tx_txg, vrp->vrp_max_txg, B_TRUE, B_TRUE);
spa_feature_decr(vd->vdev_spa, SPA_FEATURE_DEVICE_REBUILD, tx);
spa_history_log_internal(spa, "rebuild", tx,
@@ -306,7 +327,16 @@ vdev_rebuild_complete_sync(void *arg, dmu_tx_t *tx)
vd->vdev_rebuilding = B_FALSE;
mutex_exit(&vd->vdev_rebuild_lock);
- spa_notify_waiters(spa);
+ /*
+ * While we're in syncing context take the opportunity to
+ * setup the scrub when there are no more active rebuilds.
+ */
+ if (!vdev_rebuild_active(spa->spa_root_vdev) &&
+ zfs_rebuild_scrub_enabled) {
+ pool_scan_func_t func = POOL_SCAN_SCRUB;
+ dsl_scan_setup_sync(&func, tx);
+ }
+
cv_broadcast(&vd->vdev_rebuild_cv);
}
@@ -438,7 +468,7 @@ vdev_rebuild_cb(zio_t *zio)
vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
vdev_t *vd = vr->vr_top_vdev;
- mutex_enter(&vd->vdev_rebuild_io_lock);
+ mutex_enter(&vr->vr_io_lock);
if (zio->io_error == ENXIO && !vdev_writeable(vd)) {
/*
* The I/O failed because the top-level vdev was unavailable.
@@ -455,34 +485,30 @@ vdev_rebuild_cb(zio_t *zio)
abd_free(zio->io_abd);
- ASSERT3U(vd->vdev_rebuild_inflight, >, 0);
- vd->vdev_rebuild_inflight--;
- cv_broadcast(&vd->vdev_rebuild_io_cv);
- mutex_exit(&vd->vdev_rebuild_io_lock);
+ ASSERT3U(vr->vr_bytes_inflight, >, 0);
+ vr->vr_bytes_inflight -= zio->io_size;
+ cv_broadcast(&vr->vr_io_cv);
+ mutex_exit(&vr->vr_io_lock);
spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
}
/*
- * Rebuild the data in this range by constructing a special dummy block
- * pointer for the given range. It has no relation to any existing blocks
- * in the pool. But by disabling checksum verification and issuing a scrub
- * I/O mirrored vdevs will replicate the block using any available mirror
- * leaf vdevs.
+ * Initialize a block pointer that can be used to read the given segment
+ * for sequential rebuild.
*/
static void
-vdev_rebuild_rebuild_block(vdev_rebuild_t *vr, uint64_t start, uint64_t asize,
- uint64_t txg)
+vdev_rebuild_blkptr_init(blkptr_t *bp, vdev_t *vd, uint64_t start,
+ uint64_t asize)
{
- vdev_t *vd = vr->vr_top_vdev;
- spa_t *spa = vd->vdev_spa;
- uint64_t psize = asize;
-
- ASSERT(vd->vdev_ops == &vdev_mirror_ops ||
+ ASSERT(vd->vdev_ops == &vdev_draid_ops ||
+ vd->vdev_ops == &vdev_mirror_ops ||
vd->vdev_ops == &vdev_replacing_ops ||
vd->vdev_ops == &vdev_spare_ops);
- blkptr_t blk, *bp = &blk;
+ uint64_t psize = vd->vdev_ops == &vdev_draid_ops ?
+ vdev_draid_asize_to_psize(vd, asize) : asize;
+
BP_ZERO(bp);
DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id);
@@ -499,19 +525,6 @@ vdev_rebuild_rebuild_block(vdev_rebuild_t *vr, uint64_t start, uint64_t asize,
BP_SET_LEVEL(bp, 0);
BP_SET_DEDUP(bp, 0);
BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
-
- /*
- * We increment the issued bytes by the asize rather than the psize
- * so the scanned and issued bytes may be directly compared. This
- * is consistent with the scrub/resilver issued reporting.
- */
- vr->vr_pass_bytes_issued += asize;
- vr->vr_rebuild_phys.vrp_bytes_issued += asize;
-
- zio_nowait(zio_read(spa->spa_txg_zio[txg & TXG_MASK], spa, bp,
- abd_alloc(psize, B_FALSE), psize, vdev_rebuild_cb, vr,
- ZIO_PRIORITY_REBUILD, ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL |
- ZIO_FLAG_RESILVER, NULL));
}
/*
@@ -525,6 +538,7 @@ vdev_rebuild_range(vdev_rebuild_t *vr, uint64_t start, uint64_t size)
uint64_t ms_id __maybe_unused = vr->vr_scan_msp->ms_id;
vdev_t *vd = vr->vr_top_vdev;
spa_t *spa = vd->vdev_spa;
+ blkptr_t blk;
ASSERT3U(ms_id, ==, start >> vd->vdev_ms_shift);
ASSERT3U(ms_id, ==, (start + size - 1) >> vd->vdev_ms_shift);
@@ -532,14 +546,26 @@ vdev_rebuild_range(vdev_rebuild_t *vr, uint64_t start, uint64_t size)
vr->vr_pass_bytes_scanned += size;
vr->vr_rebuild_phys.vrp_bytes_scanned += size;
- mutex_enter(&vd->vdev_rebuild_io_lock);
+ /*
+ * Rebuild the data in this range by constructing a special block
+ * pointer. It has no relation to any existing blocks in the pool.
+ * However, by disabling checksum verification and issuing a scrub IO
+ * we can reconstruct and repair any children with missing data.
+ */
+ vdev_rebuild_blkptr_init(&blk, vd, start, size);
+ uint64_t psize = BP_GET_PSIZE(&blk);
+
+ if (!vdev_dtl_need_resilver(vd, &blk.blk_dva[0], psize, TXG_UNKNOWN))
+ return (0);
+
+ mutex_enter(&vr->vr_io_lock);
/* Limit in flight rebuild I/Os */
- while (vd->vdev_rebuild_inflight >= zfs_rebuild_queue_limit)
- cv_wait(&vd->vdev_rebuild_io_cv, &vd->vdev_rebuild_io_lock);
+ while (vr->vr_bytes_inflight >= vr->vr_bytes_inflight_max)
+ cv_wait(&vr->vr_io_cv, &vr->vr_io_lock);
- vd->vdev_rebuild_inflight++;
- mutex_exit(&vd->vdev_rebuild_io_lock);
+ vr->vr_bytes_inflight += psize;
+ mutex_exit(&vr->vr_io_lock);
dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
@@ -558,46 +584,30 @@ vdev_rebuild_range(vdev_rebuild_t *vr, uint64_t start, uint64_t size)
/* When exiting write out our progress. */
if (vdev_rebuild_should_stop(vd)) {
- mutex_enter(&vd->vdev_rebuild_io_lock);
- vd->vdev_rebuild_inflight--;
- mutex_exit(&vd->vdev_rebuild_io_lock);
+ mutex_enter(&vr->vr_io_lock);
+ vr->vr_bytes_inflight -= psize;
+ mutex_exit(&vr->vr_io_lock);
spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
mutex_exit(&vd->vdev_rebuild_lock);
dmu_tx_commit(tx);
return (SET_ERROR(EINTR));
}
mutex_exit(&vd->vdev_rebuild_lock);
+ dmu_tx_commit(tx);
vr->vr_scan_offset[txg & TXG_MASK] = start + size;
- vdev_rebuild_rebuild_block(vr, start, size, txg);
+ vr->vr_pass_bytes_issued += size;
+ vr->vr_rebuild_phys.vrp_bytes_issued += size;
- dmu_tx_commit(tx);
+ zio_nowait(zio_read(spa->spa_txg_zio[txg & TXG_MASK], spa, &blk,
+ abd_alloc(psize, B_FALSE), psize, vdev_rebuild_cb, vr,
+ ZIO_PRIORITY_REBUILD, ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL |
+ ZIO_FLAG_RESILVER, NULL));
return (0);
}
/*
- * Split range into legally-sized logical chunks given the constraints of the
- * top-level mirror vdev type.
- */
-static uint64_t
-vdev_rebuild_chunk_size(vdev_t *vd, uint64_t start, uint64_t size)
-{
- uint64_t chunk_size, max_asize, max_segment;
-
- ASSERT(vd->vdev_ops == &vdev_mirror_ops ||
- vd->vdev_ops == &vdev_replacing_ops ||
- vd->vdev_ops == &vdev_spare_ops);
-
- max_segment = MIN(P2ROUNDUP(zfs_rebuild_max_segment,
- 1 << vd->vdev_ashift), SPA_MAXBLOCKSIZE);
- max_asize = vdev_psize_to_asize(vd, max_segment);
- chunk_size = MIN(size, max_asize);
-
- return (chunk_size);
-}
-
-/*
* Issues rebuild I/Os for all ranges in the provided vr->vr_tree range tree.
*/
static int
@@ -625,7 +635,14 @@ vdev_rebuild_ranges(vdev_rebuild_t *vr)
while (size > 0) {
uint64_t chunk_size;
- chunk_size = vdev_rebuild_chunk_size(vd, start, size);
+ /*
+ * Split range into legally-sized logical chunks
+ * given the constraints of the top-level vdev
+ * being rebuilt (dRAID or mirror).
+ */
+ ASSERT3P(vd->vdev_ops, !=, NULL);
+ chunk_size = vd->vdev_ops->vdev_op_rebuild_asize(vd,
+ start, size, zfs_rebuild_max_segment);
error = vdev_rebuild_range(vr, start, chunk_size);
if (error != 0)
@@ -747,10 +764,16 @@ vdev_rebuild_thread(void *arg)
vr->vr_top_vdev = vd;
vr->vr_scan_msp = NULL;
vr->vr_scan_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
+ mutex_init(&vr->vr_io_lock, NULL, MUTEX_DEFAULT, NULL);
+ cv_init(&vr->vr_io_cv, NULL, CV_DEFAULT, NULL);
+
vr->vr_pass_start_time = gethrtime();
vr->vr_pass_bytes_scanned = 0;
vr->vr_pass_bytes_issued = 0;
+ vr->vr_bytes_inflight_max = MAX(1ULL << 20,
+ zfs_rebuild_vdev_limit * vd->vdev_children);
+
uint64_t update_est_time = gethrtime();
vdev_rebuild_update_bytes_est(vd, 0);
@@ -780,21 +803,32 @@ vdev_rebuild_thread(void *arg)
ASSERT0(range_tree_space(vr->vr_scan_tree));
- /*
- * Disable any new allocations to this metaslab and wait
- * for any writes inflight to complete. This is needed to
- * ensure all allocated ranges are rebuilt.
- */
+ /* Disable any new allocations to this metaslab */
metaslab_disable(msp);
spa_config_exit(spa, SCL_CONFIG, FTAG);
- txg_wait_synced(dsl, 0);
mutex_enter(&msp->ms_sync_lock);
mutex_enter(&msp->ms_lock);
/*
+ * If there are outstanding allocations wait for them to be
+ * synced. This is needed to ensure all allocated ranges are
+ * on disk and therefore will be rebuilt.
+ */
+ for (int j = 0; j < TXG_SIZE; j++) {
+ if (range_tree_space(msp->ms_allocating[j])) {
+ mutex_exit(&msp->ms_lock);
+ mutex_exit(&msp->ms_sync_lock);
+ txg_wait_synced(dsl, 0);
+ mutex_enter(&msp->ms_sync_lock);
+ mutex_enter(&msp->ms_lock);
+ break;
+ }
+ }
+
+ /*
* When a metaslab has been allocated from read its allocated
- * ranges from the space map object in to the vr_scan_tree.
+ * ranges from the space map object into the vr_scan_tree.
* Then add inflight / unflushed ranges and remove inflight /
* unflushed frees. This is the minimum range to be rebuilt.
*/
@@ -827,7 +861,7 @@ vdev_rebuild_thread(void *arg)
/*
* To provide an accurate estimate re-calculate the estimated
* size every 5 minutes to account for recent allocations and
- * frees made space maps which have not yet been rebuilt.
+ * frees made to space maps which have not yet been rebuilt.
*/
if (gethrtime() > update_est_time + SEC2NSEC(300)) {
update_est_time = gethrtime();
@@ -851,11 +885,14 @@ vdev_rebuild_thread(void *arg)
spa_config_exit(spa, SCL_CONFIG, FTAG);
/* Wait for any remaining rebuild I/O to complete */
- mutex_enter(&vd->vdev_rebuild_io_lock);
- while (vd->vdev_rebuild_inflight > 0)
- cv_wait(&vd->vdev_rebuild_io_cv, &vd->vdev_rebuild_io_lock);
+ mutex_enter(&vr->vr_io_lock);
+ while (vr->vr_bytes_inflight > 0)
+ cv_wait(&vr->vr_io_cv, &vr->vr_io_lock);
- mutex_exit(&vd->vdev_rebuild_io_lock);
+ mutex_exit(&vr->vr_io_lock);
+
+ mutex_destroy(&vr->vr_io_lock);
+ cv_destroy(&vr->vr_io_cv);
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
@@ -1100,5 +1137,11 @@ vdev_rebuild_get_stats(vdev_t *tvd, vdev_rebuild_stat_t *vrs)
/* BEGIN CSTYLED */
ZFS_MODULE_PARAM(zfs, zfs_, rebuild_max_segment, ULONG, ZMOD_RW,
- "Max segment size in bytes of rebuild reads");
+ "Max segment size in bytes of rebuild reads");
+
+ZFS_MODULE_PARAM(zfs, zfs_, rebuild_vdev_limit, ULONG, ZMOD_RW,
+ "Max bytes in flight per leaf vdev for sequential resilvers");
+
+ZFS_MODULE_PARAM(zfs, zfs_, rebuild_scrub_enabled, INT, ZMOD_RW,
+ "Automatically scrub after sequential resilver completes");
/* END CSTYLED */
diff --git a/module/zfs/vdev_removal.c b/module/zfs/vdev_removal.c
index ed7d1d4b3..4606af9aa 100644
--- a/module/zfs/vdev_removal.c
+++ b/module/zfs/vdev_removal.c
@@ -250,7 +250,7 @@ vdev_remove_initiate_sync(void *arg, dmu_tx_t *tx)
spa_vdev_removal_t *svr = NULL;
uint64_t txg __maybe_unused = dmu_tx_get_txg(tx);
- ASSERT3P(vd->vdev_ops, !=, &vdev_raidz_ops);
+ ASSERT0(vdev_get_nparity(vd));
svr = spa_vdev_removal_create(vd);
ASSERT(vd->vdev_removing);
@@ -1120,7 +1120,7 @@ static void
vdev_remove_enlist_zaps(vdev_t *vd, nvlist_t *zlist)
{
ASSERT3P(zlist, !=, NULL);
- ASSERT3P(vd->vdev_ops, !=, &vdev_raidz_ops);
+ ASSERT0(vdev_get_nparity(vd));
if (vd->vdev_leaf_zap != 0) {
char zkey[32];
@@ -2041,7 +2041,7 @@ spa_vdev_remove_top_check(vdev_t *vd)
/*
* All vdevs in normal class must have the same ashift
- * and not be raidz.
+ * and not be raidz or draid.
*/
vdev_t *rvd = spa->spa_root_vdev;
int num_indirect = 0;
@@ -2064,7 +2064,7 @@ spa_vdev_remove_top_check(vdev_t *vd)
num_indirect++;
if (!vdev_is_concrete(cvd))
continue;
- if (cvd->vdev_ops == &vdev_raidz_ops)
+ if (vdev_get_nparity(cvd) != 0)
return (SET_ERROR(EINVAL));
/*
* Need the mirror to be mirror of leaf vdevs only
@@ -2217,18 +2217,30 @@ spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
* in this pool.
*/
if (vd == NULL || unspare) {
- if (vd == NULL)
- vd = spa_lookup_by_guid(spa, guid, B_TRUE);
- ev = spa_event_create(spa, vd, NULL,
- ESC_ZFS_VDEV_REMOVE_AUX);
-
- vd_type = VDEV_TYPE_SPARE;
- vd_path = spa_strdup(fnvlist_lookup_string(
- nv, ZPOOL_CONFIG_PATH));
- spa_vdev_remove_aux(spa->spa_spares.sav_config,
- ZPOOL_CONFIG_SPARES, spares, nspares, nv);
- spa_load_spares(spa);
- spa->spa_spares.sav_sync = B_TRUE;
+ char *type;
+ boolean_t draid_spare = B_FALSE;
+
+ if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type)
+ == 0 && strcmp(type, VDEV_TYPE_DRAID_SPARE) == 0)
+ draid_spare = B_TRUE;
+
+ if (vd == NULL && draid_spare) {
+ error = SET_ERROR(ENOTSUP);
+ } else {
+ if (vd == NULL)
+ vd = spa_lookup_by_guid(spa,
+ guid, B_TRUE);
+ ev = spa_event_create(spa, vd, NULL,
+ ESC_ZFS_VDEV_REMOVE_AUX);
+
+ vd_type = VDEV_TYPE_SPARE;
+ vd_path = spa_strdup(fnvlist_lookup_string(
+ nv, ZPOOL_CONFIG_PATH));
+ spa_vdev_remove_aux(spa->spa_spares.sav_config,
+ ZPOOL_CONFIG_SPARES, spares, nspares, nv);
+ spa_load_spares(spa);
+ spa->spa_spares.sav_sync = B_TRUE;
+ }
} else {
error = SET_ERROR(EBUSY);
}
diff --git a/module/zfs/vdev_root.c b/module/zfs/vdev_root.c
index 9e8aac7d0..45ddc2f71 100644
--- a/module/zfs/vdev_root.c
+++ b/module/zfs/vdev_root.c
@@ -142,9 +142,13 @@ vdev_root_state_change(vdev_t *vd, int faulted, int degraded)
}
vdev_ops_t vdev_root_ops = {
+ .vdev_op_init = NULL,
+ .vdev_op_fini = NULL,
.vdev_op_open = vdev_root_open,
.vdev_op_close = vdev_root_close,
.vdev_op_asize = vdev_default_asize,
+ .vdev_op_min_asize = vdev_default_min_asize,
+ .vdev_op_min_alloc = NULL,
.vdev_op_io_start = NULL, /* not applicable to the root */
.vdev_op_io_done = NULL, /* not applicable to the root */
.vdev_op_state_change = vdev_root_state_change,
@@ -153,6 +157,11 @@ vdev_ops_t vdev_root_ops = {
.vdev_op_rele = NULL,
.vdev_op_remap = NULL,
.vdev_op_xlate = NULL,
+ .vdev_op_rebuild_asize = NULL,
+ .vdev_op_metaslab_init = NULL,
+ .vdev_op_config_generate = NULL,
+ .vdev_op_nparity = NULL,
+ .vdev_op_ndisks = NULL,
.vdev_op_type = VDEV_TYPE_ROOT, /* name of this vdev type */
.vdev_op_leaf = B_FALSE /* not a leaf vdev */
};
diff --git a/module/zfs/vdev_trim.c b/module/zfs/vdev_trim.c
index 02b42ddd5..895957bda 100644
--- a/module/zfs/vdev_trim.c
+++ b/module/zfs/vdev_trim.c
@@ -311,7 +311,8 @@ vdev_trim_change_state(vdev_t *vd, vdev_trim_state_t new_state,
vd->vdev_trim_secure = secure;
}
- boolean_t resumed = !!(vd->vdev_trim_state == VDEV_TRIM_SUSPENDED);
+ vdev_trim_state_t old_state = vd->vdev_trim_state;
+ boolean_t resumed = (old_state == VDEV_TRIM_SUSPENDED);
vd->vdev_trim_state = new_state;
dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
@@ -332,9 +333,12 @@ vdev_trim_change_state(vdev_t *vd, vdev_trim_state_t new_state,
"vdev=%s suspended", vd->vdev_path);
break;
case VDEV_TRIM_CANCELED:
- spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_CANCEL);
- spa_history_log_internal(spa, "trim", tx,
- "vdev=%s canceled", vd->vdev_path);
+ if (old_state == VDEV_TRIM_ACTIVE ||
+ old_state == VDEV_TRIM_SUSPENDED) {
+ spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_CANCEL);
+ spa_history_log_internal(spa, "trim", tx,
+ "vdev=%s canceled", vd->vdev_path);
+ }
break;
case VDEV_TRIM_COMPLETE:
spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_FINISH);
@@ -601,6 +605,32 @@ vdev_trim_ranges(trim_args_t *ta)
return (0);
}
+static void
+vdev_trim_xlate_last_rs_end(void *arg, range_seg64_t *physical_rs)
+{
+ uint64_t *last_rs_end = (uint64_t *)arg;
+
+ if (physical_rs->rs_end > *last_rs_end)
+ *last_rs_end = physical_rs->rs_end;
+}
+
+static void
+vdev_trim_xlate_progress(void *arg, range_seg64_t *physical_rs)
+{
+ vdev_t *vd = (vdev_t *)arg;
+
+ uint64_t size = physical_rs->rs_end - physical_rs->rs_start;
+ vd->vdev_trim_bytes_est += size;
+
+ if (vd->vdev_trim_last_offset >= physical_rs->rs_end) {
+ vd->vdev_trim_bytes_done += size;
+ } else if (vd->vdev_trim_last_offset > physical_rs->rs_start &&
+ vd->vdev_trim_last_offset <= physical_rs->rs_end) {
+ vd->vdev_trim_bytes_done +=
+ vd->vdev_trim_last_offset - physical_rs->rs_start;
+ }
+}
+
/*
* Calculates the completion percentage of a manual TRIM.
*/
@@ -618,27 +648,35 @@ vdev_trim_calculate_progress(vdev_t *vd)
metaslab_t *msp = vd->vdev_top->vdev_ms[i];
mutex_enter(&msp->ms_lock);
- uint64_t ms_free = msp->ms_size -
- metaslab_allocated_space(msp);
-
- if (vd->vdev_top->vdev_ops == &vdev_raidz_ops)
- ms_free /= vd->vdev_top->vdev_children;
+ uint64_t ms_free = (msp->ms_size -
+ metaslab_allocated_space(msp)) /
+ vdev_get_ndisks(vd->vdev_top);
/*
* Convert the metaslab range to a physical range
* on our vdev. We use this to determine if we are
* in the middle of this metaslab range.
*/
- range_seg64_t logical_rs, physical_rs;
+ range_seg64_t logical_rs, physical_rs, remain_rs;
logical_rs.rs_start = msp->ms_start;
logical_rs.rs_end = msp->ms_start + msp->ms_size;
- vdev_xlate(vd, &logical_rs, &physical_rs);
+ /* Metaslab space after this offset has not been trimmed. */
+ vdev_xlate(vd, &logical_rs, &physical_rs, &remain_rs);
if (vd->vdev_trim_last_offset <= physical_rs.rs_start) {
vd->vdev_trim_bytes_est += ms_free;
mutex_exit(&msp->ms_lock);
continue;
- } else if (vd->vdev_trim_last_offset > physical_rs.rs_end) {
+ }
+
+ /* Metaslab space before this offset has been trimmed */
+ uint64_t last_rs_end = physical_rs.rs_end;
+ if (!vdev_xlate_is_empty(&remain_rs)) {
+ vdev_xlate_walk(vd, &remain_rs,
+ vdev_trim_xlate_last_rs_end, &last_rs_end);
+ }
+
+ if (vd->vdev_trim_last_offset > last_rs_end) {
vd->vdev_trim_bytes_done += ms_free;
vd->vdev_trim_bytes_est += ms_free;
mutex_exit(&msp->ms_lock);
@@ -659,21 +697,9 @@ vdev_trim_calculate_progress(vdev_t *vd)
rs != NULL; rs = zfs_btree_next(bt, &idx, &idx)) {
logical_rs.rs_start = rs_get_start(rs, rt);
logical_rs.rs_end = rs_get_end(rs, rt);
- vdev_xlate(vd, &logical_rs, &physical_rs);
-
- uint64_t size = physical_rs.rs_end -
- physical_rs.rs_start;
- vd->vdev_trim_bytes_est += size;
- if (vd->vdev_trim_last_offset >= physical_rs.rs_end) {
- vd->vdev_trim_bytes_done += size;
- } else if (vd->vdev_trim_last_offset >
- physical_rs.rs_start &&
- vd->vdev_trim_last_offset <=
- physical_rs.rs_end) {
- vd->vdev_trim_bytes_done +=
- vd->vdev_trim_last_offset -
- physical_rs.rs_start;
- }
+
+ vdev_xlate_walk(vd, &logical_rs,
+ vdev_trim_xlate_progress, vd);
}
mutex_exit(&msp->ms_lock);
}
@@ -741,8 +767,38 @@ vdev_trim_load(vdev_t *vd)
return (err);
}
+static void
+vdev_trim_xlate_range_add(void *arg, range_seg64_t *physical_rs)
+{
+ trim_args_t *ta = arg;
+ vdev_t *vd = ta->trim_vdev;
+
+ /*
+ * Only a manual trim will be traversing the vdev sequentially.
+ * For an auto trim all valid ranges should be added.
+ */
+ if (ta->trim_type == TRIM_TYPE_MANUAL) {
+
+ /* Only add segments that we have not visited yet */
+ if (physical_rs->rs_end <= vd->vdev_trim_last_offset)
+ return;
+
+ /* Pick up where we left off mid-range. */
+ if (vd->vdev_trim_last_offset > physical_rs->rs_start) {
+ ASSERT3U(physical_rs->rs_end, >,
+ vd->vdev_trim_last_offset);
+ physical_rs->rs_start = vd->vdev_trim_last_offset;
+ }
+ }
+
+ ASSERT3U(physical_rs->rs_end, >, physical_rs->rs_start);
+
+ range_tree_add(ta->trim_tree, physical_rs->rs_start,
+ physical_rs->rs_end - physical_rs->rs_start);
+}
+
/*
- * Convert the logical range into a physical range and add it to the
+ * Convert the logical range into physical ranges and add them to the
* range tree passed in the trim_args_t.
*/
static void
@@ -750,7 +806,7 @@ vdev_trim_range_add(void *arg, uint64_t start, uint64_t size)
{
trim_args_t *ta = arg;
vdev_t *vd = ta->trim_vdev;
- range_seg64_t logical_rs, physical_rs;
+ range_seg64_t logical_rs;
logical_rs.rs_start = start;
logical_rs.rs_end = start + size;
@@ -767,44 +823,7 @@ vdev_trim_range_add(void *arg, uint64_t start, uint64_t size)
}
ASSERT(vd->vdev_ops->vdev_op_leaf);
- vdev_xlate(vd, &logical_rs, &physical_rs);
-
- IMPLY(vd->vdev_top == vd,
- logical_rs.rs_start == physical_rs.rs_start);
- IMPLY(vd->vdev_top == vd,
- logical_rs.rs_end == physical_rs.rs_end);
-
- /*
- * Only a manual trim will be traversing the vdev sequentially.
- * For an auto trim all valid ranges should be added.
- */
- if (ta->trim_type == TRIM_TYPE_MANUAL) {
-
- /* Only add segments that we have not visited yet */
- if (physical_rs.rs_end <= vd->vdev_trim_last_offset)
- return;
-
- /* Pick up where we left off mid-range. */
- if (vd->vdev_trim_last_offset > physical_rs.rs_start) {
- ASSERT3U(physical_rs.rs_end, >,
- vd->vdev_trim_last_offset);
- physical_rs.rs_start = vd->vdev_trim_last_offset;
- }
- }
-
- ASSERT3U(physical_rs.rs_end, >=, physical_rs.rs_start);
-
- /*
- * With raidz, it's possible that the logical range does not live on
- * this leaf vdev. We only add the physical range to this vdev's if it
- * has a length greater than 0.
- */
- if (physical_rs.rs_end > physical_rs.rs_start) {
- range_tree_add(ta->trim_tree, physical_rs.rs_start,
- physical_rs.rs_end - physical_rs.rs_start);
- } else {
- ASSERT3U(physical_rs.rs_end, ==, physical_rs.rs_start);
- }
+ vdev_xlate_walk(vd, &logical_rs, vdev_trim_xlate_range_add, arg);
}
/*
diff --git a/module/zfs/zfs_fm.c b/module/zfs/zfs_fm.c
index a8341f50b..ea71ef325 100644
--- a/module/zfs/zfs_fm.c
+++ b/module/zfs/zfs_fm.c
@@ -1111,7 +1111,9 @@ zfs_ereport_start_checksum(spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb,
bcopy(info, report->zcr_ckinfo, sizeof (*info));
}
- report->zcr_align = 1ULL << vd->vdev_top->vdev_ashift;
+ report->zcr_sector = 1ULL << vd->vdev_top->vdev_ashift;
+ report->zcr_align =
+ vdev_psize_to_asize(vd->vdev_top, report->zcr_sector);
report->zcr_length = length;
#ifdef _KERNEL
diff --git a/module/zfs/zio.c b/module/zfs/zio.c
index ccba6cea3..982940dbd 100644
--- a/module/zfs/zio.c
+++ b/module/zfs/zio.c
@@ -1702,16 +1702,16 @@ zio_write_compress(zio_t *zio)
return (zio);
} else {
/*
- * Round up compressed size up to the ashift
- * of the smallest-ashift device, and zero the tail.
- * This ensures that the compressed size of the BP
- * (and thus compressratio property) are correct,
+ * Round compressed size up to the minimum allocation
+ * size of the smallest-ashift device, and zero the
+ * tail. This ensures that the compressed size of the
+ * BP (and thus compressratio property) are correct,
* in that we charge for the padding used to fill out
* the last sector.
*/
- ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
- size_t rounded = (size_t)P2ROUNDUP(psize,
- 1ULL << spa->spa_min_ashift);
+ ASSERT3U(spa->spa_min_alloc, >=, SPA_MINBLOCKSHIFT);
+ size_t rounded = (size_t)roundup(psize,
+ spa->spa_min_alloc);
if (rounded >= lsize) {
compress = ZIO_COMPRESS_OFF;
zio_buf_free(cbuf, lsize);
@@ -3754,19 +3754,37 @@ zio_vdev_io_start(zio_t *zio)
* However, indirect vdevs point off to other vdevs which may have
* DTL's, so we never bypass them. The child i/os on concrete vdevs
* will be properly bypassed instead.
+ *
+ * Leaf DTL_PARTIAL can be empty when a legitimate write comes from
+ * a dRAID spare vdev. For example, when a dRAID spare is first
+ * used, its spare blocks need to be written to but the leaf vdev's
+ * of such blocks can have empty DTL_PARTIAL.
+ *
+ * There seemed no clean way to allow such writes while bypassing
+ * spurious ones. At this point, just avoid all bypassing for dRAID
+ * for correctness.
*/
if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
!(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
zio->io_txg != 0 && /* not a delegated i/o */
vd->vdev_ops != &vdev_indirect_ops &&
+ vd->vdev_top->vdev_ops != &vdev_draid_ops &&
!vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
ASSERT(zio->io_type == ZIO_TYPE_WRITE);
zio_vdev_io_bypass(zio);
return (zio);
}
- if (vd->vdev_ops->vdev_op_leaf && (zio->io_type == ZIO_TYPE_READ ||
- zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM)) {
+ /*
+ * Select the next best leaf I/O to process. Distributed spares are
+ * excluded since they dispatch the I/O directly to a leaf vdev after
+ * applying the dRAID mapping.
+ */
+ if (vd->vdev_ops->vdev_op_leaf &&
+ vd->vdev_ops != &vdev_draid_spare_ops &&
+ (zio->io_type == ZIO_TYPE_READ ||
+ zio->io_type == ZIO_TYPE_WRITE ||
+ zio->io_type == ZIO_TYPE_TRIM)) {
if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio))
return (zio);
@@ -3803,8 +3821,8 @@ zio_vdev_io_done(zio_t *zio)
if (zio->io_delay)
zio->io_delay = gethrtime() - zio->io_delay;
- if (vd != NULL && vd->vdev_ops->vdev_op_leaf) {
-
+ if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
+ vd->vdev_ops != &vdev_draid_spare_ops) {
vdev_queue_io_done(zio);
if (zio->io_type == ZIO_TYPE_WRITE)
@@ -4206,7 +4224,7 @@ zio_checksum_verify(zio_t *zio)
if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
return (zio);
- ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
+ ASSERT3U(zio->io_prop.zp_checksum, ==, ZIO_CHECKSUM_LABEL);
}
if ((error = zio_checksum_error(zio, &info)) != 0) {
diff --git a/module/zfs/zio_inject.c b/module/zfs/zio_inject.c
index fb8ce0916..e56ea8868 100644
--- a/module/zfs/zio_inject.c
+++ b/module/zfs/zio_inject.c
@@ -265,6 +265,12 @@ zio_handle_fault_injection(zio_t *zio, int error)
if (zio->io_type != ZIO_TYPE_READ)
return (0);
+ /*
+ * A rebuild I/O has no checksum to verify.
+ */
+ if (zio->io_priority == ZIO_PRIORITY_REBUILD && error == ECKSUM)
+ return (0);
+
rw_enter(&inject_lock, RW_READER);
for (handler = list_head(&inject_handlers); handler != NULL;
diff --git a/scripts/Makefile.am b/scripts/Makefile.am
index 9d3994752..af7c36c8f 100644
--- a/scripts/Makefile.am
+++ b/scripts/Makefile.am
@@ -36,6 +36,7 @@ export ZPOOL_SCRIPT_DIR=$$CMD_DIR/zpool/zpool.d
export ZPOOL_SCRIPTS_PATH=$$CMD_DIR/zpool/zpool.d
export CONTRIB_DIR=@abs_top_builddir@/contrib
export LIB_DIR=@abs_top_builddir@/lib
+export SYSCONF_DIR=@abs_top_builddir@/etc
export INSTALL_UDEV_DIR=@udevdir@
export INSTALL_UDEV_RULE_DIR=@udevruledir@
diff --git a/scripts/zfs-helpers.sh b/scripts/zfs-helpers.sh
index 02b492200..f4edd48e8 100755
--- a/scripts/zfs-helpers.sh
+++ b/scripts/zfs-helpers.sh
@@ -166,6 +166,8 @@ if [ "${INSTALL}" = "yes" ]; then
"$INSTALL_UDEV_RULE_DIR/90-zfs.rules"
install "$CMD_DIR/zpool/zpool.d" \
"$INSTALL_SYSCONF_DIR/zfs/zpool.d"
+ install "$SYSCONF_DIR/zfs/draid.d" \
+ "$INSTALL_SYSCONF_DIR/zfs/draid.d"
install "$CONTRIB_DIR/pyzfs/libzfs_core" \
"$INSTALL_PYTHON_DIR/libzfs_core"
# Ideally we would install these in the configured ${libdir}, which is
@@ -185,6 +187,7 @@ else
remove "$INSTALL_UDEV_RULE_DIR/69-vdev.rules"
remove "$INSTALL_UDEV_RULE_DIR/90-zfs.rules"
remove "$INSTALL_SYSCONF_DIR/zfs/zpool.d"
+ remove "$INSTALL_SYSCONF_DIR/zfs/draid.d"
remove "$INSTALL_PYTHON_DIR/libzfs_core"
remove "/lib/libzfs_core.so"
remove "/lib/libnvpair.so"
diff --git a/scripts/zloop.sh b/scripts/zloop.sh
index 3d9baaf0e..bbe326aa0 100755
--- a/scripts/zloop.sh
+++ b/scripts/zloop.sh
@@ -18,6 +18,7 @@
#
# Copyright (c) 2015 by Delphix. All rights reserved.
# Copyright (C) 2016 Lawrence Livermore National Security, LLC.
+# Copyright (c) 2017, Intel Corporation.
#
BASE_DIR=$(dirname "$0")
@@ -246,27 +247,60 @@ while [[ $timeout -eq 0 ]] || [[ $curtime -le $((starttime + timeout)) ]]; do
or_die rm -rf "$workdir"
or_die mkdir "$workdir"
- # switch between common arrangements & fully randomized
- if [[ $((RANDOM % 2)) -eq 0 ]]; then
- mirrors=2
- raidz=0
+ # switch between three types of configs
+ # 1/3 basic, 1/3 raidz mix, and 1/3 draid mix
+ choice=$((RANDOM % 3))
+
+ # ashift range 9 - 15
+ align=$(((RANDOM % 2) * 3 + 9))
+
+ # randomly use special classes
+ class="special=random"
+
+ if [[ $choice -eq 0 ]]; then
+ # basic mirror only
parity=1
+ mirrors=2
+ draid_data=0
+ draid_spares=0
+ raid_children=0
vdevs=2
- else
- mirrors=$(((RANDOM % 3) * 1))
+ raid_type="raidz"
+ elif [[ $choice -eq 1 ]]; then
+ # fully randomized mirror/raidz (sans dRAID)
parity=$(((RANDOM % 3) + 1))
- raidz=$((((RANDOM % 9) + parity + 1) * (RANDOM % 2)))
+ mirrors=$(((RANDOM % 3) * 1))
+ draid_data=0
+ draid_spares=0
+ raid_children=$((((RANDOM % 9) + parity + 1) * (RANDOM % 2)))
vdevs=$(((RANDOM % 3) + 3))
+ raid_type="raidz"
+ else
+ # fully randomized dRAID (sans mirror/raidz)
+ parity=$(((RANDOM % 3) + 1))
+ mirrors=0
+ draid_data=$(((RANDOM % 8) + 3))
+ draid_spares=$(((RANDOM % 2) + parity))
+ stripe=$((draid_data + parity))
+ extra=$((draid_spares + (RANDOM % 4)))
+ raid_children=$(((((RANDOM % 4) + 1) * stripe) + extra))
+ vdevs=$((RANDOM % 3))
+ raid_type="draid"
fi
- align=$(((RANDOM % 2) * 3 + 9))
- runtime=$((RANDOM % 100))
+
+ # run from 30 to 120 seconds
+ runtime=$(((RANDOM % 90) + 30))
passtime=$((RANDOM % (runtime / 3 + 1) + 10))
+ zopt="$zopt -K $raid_type"
zopt="$zopt -m $mirrors"
- zopt="$zopt -r $raidz"
+ zopt="$zopt -r $raid_children"
+ zopt="$zopt -D $draid_data"
+ zopt="$zopt -S $draid_spares"
zopt="$zopt -R $parity"
zopt="$zopt -v $vdevs"
zopt="$zopt -a $align"
+ zopt="$zopt -C $class"
zopt="$zopt -T $runtime"
zopt="$zopt -P $passtime"
zopt="$zopt -s $size"
diff --git a/tests/runfiles/common.run b/tests/runfiles/common.run
index 1a4693b7d..c91da0a45 100644
--- a/tests/runfiles/common.run
+++ b/tests/runfiles/common.run
@@ -333,6 +333,8 @@ tests = ['zpool_create_001_pos', 'zpool_create_002_pos',
'zpool_create_020_pos', 'zpool_create_021_pos', 'zpool_create_022_pos',
'zpool_create_023_neg', 'zpool_create_024_pos',
'zpool_create_encrypted', 'zpool_create_crypt_combos',
+ 'zpool_create_draid_001_pos', 'zpool_create_draid_002_pos',
+ 'zpool_create_draid_003_pos', 'zpool_create_draid_004_pos',
'zpool_create_features_001_pos', 'zpool_create_features_002_pos',
'zpool_create_features_003_pos', 'zpool_create_features_004_neg',
'zpool_create_features_005_pos',
@@ -375,7 +377,7 @@ tests = ['zpool_import_001_pos', 'zpool_import_002_pos',
'zpool_import_006_pos', 'zpool_import_007_pos', 'zpool_import_008_pos',
'zpool_import_009_neg', 'zpool_import_010_pos', 'zpool_import_011_neg',
'zpool_import_012_pos', 'zpool_import_013_neg', 'zpool_import_014_pos',
- 'zpool_import_015_pos',
+ 'zpool_import_015_pos', 'zpool_import_016_pos', 'zpool_import_017_pos',
'zpool_import_features_001_pos', 'zpool_import_features_002_neg',
'zpool_import_features_003_pos', 'zpool_import_missing_001_pos',
'zpool_import_missing_002_pos', 'zpool_import_missing_003_pos',
@@ -710,12 +712,14 @@ tests = ['redacted_compressed', 'redacted_contents', 'redacted_deleted',
tags = ['functional', 'redacted_send']
[tests/functional/raidz]
-tests = ['raidz_001_neg', 'raidz_002_pos']
+tests = ['raidz_001_neg', 'raidz_002_pos', 'raidz_003_pos', 'raidz_004_pos']
tags = ['functional', 'raidz']
[tests/functional/redundancy]
-tests = ['redundancy_001_pos', 'redundancy_002_pos', 'redundancy_003_pos',
- 'redundancy_004_neg']
+tests = ['redundancy_draid1', 'redundancy_draid2', 'redundancy_draid3',
+ 'redundancy_draid_spare1', 'redundancy_draid_spare2',
+ 'redundancy_draid_spare3', 'redundancy_mirror', 'redundancy_raidz1',
+ 'redundancy_raidz2', 'redundancy_raidz3', 'redundancy_stripe']
tags = ['functional', 'redundancy']
[tests/functional/refquota]
diff --git a/tests/test-runner/bin/zts-report.py.in b/tests/test-runner/bin/zts-report.py.in
index 6b5cd191c..50fc96475 100755
--- a/tests/test-runner/bin/zts-report.py.in
+++ b/tests/test-runner/bin/zts-report.py.in
@@ -218,6 +218,7 @@ maybe = {
'no_space/enospc_002_pos': ['FAIL', enospc_reason],
'projectquota/setup': ['SKIP', exec_reason],
'redundancy/redundancy_004_neg': ['FAIL', '7290'],
+ 'redundancy/redundancy_draid_spare3': ['SKIP', known_reason],
'reservation/reservation_008_pos': ['FAIL', '7741'],
'reservation/reservation_018_pos': ['FAIL', '5642'],
'rsend/rsend_019_pos': ['FAIL', '6086'],
diff --git a/tests/zfs-tests/cmd/Makefile.am b/tests/zfs-tests/cmd/Makefile.am
index bf54c1d45..7fe9a2c57 100644
--- a/tests/zfs-tests/cmd/Makefile.am
+++ b/tests/zfs-tests/cmd/Makefile.am
@@ -6,6 +6,7 @@ SUBDIRS = \
chg_usr_exec \
devname2devid \
dir_rd_update \
+ draid \
file_check \
file_trunc \
file_write \
diff --git a/tests/zfs-tests/cmd/draid/.gitignore b/tests/zfs-tests/cmd/draid/.gitignore
new file mode 100644
index 000000000..911b9f077
--- /dev/null
+++ b/tests/zfs-tests/cmd/draid/.gitignore
@@ -0,0 +1 @@
+/draid
diff --git a/tests/zfs-tests/cmd/draid/Makefile.am b/tests/zfs-tests/cmd/draid/Makefile.am
new file mode 100644
index 000000000..69fed7a6b
--- /dev/null
+++ b/tests/zfs-tests/cmd/draid/Makefile.am
@@ -0,0 +1,15 @@
+include $(top_srcdir)/config/Rules.am
+
+pkgexecdir = $(datadir)/@PACKAGE@/zfs-tests/bin
+
+AM_CFLAGS += $(ZLIB_CFLAGS)
+
+pkgexec_PROGRAMS = draid
+
+draid_SOURCES = draid.c
+
+draid_LDADD = \
+ $(abs_top_builddir)/lib/libzpool/libzpool.la \
+ $(abs_top_builddir)/lib/libnvpair/libnvpair.la
+
+draid_LDADD += $(ZLIB_LIBS)
diff --git a/tests/zfs-tests/cmd/draid/draid.c b/tests/zfs-tests/cmd/draid/draid.c
new file mode 100644
index 000000000..861c6ba1a
--- /dev/null
+++ b/tests/zfs-tests/cmd/draid/draid.c
@@ -0,0 +1,1414 @@
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+/*
+ * Copyright (c) 2018 Intel Corporation.
+ * Copyright (c) 2020 by Lawrence Livermore National Security, LLC.
+ */
+
+#include <stdio.h>
+#include <zlib.h>
+#include <zfs_fletcher.h>
+#include <sys/vdev_draid.h>
+#include <sys/nvpair.h>
+#include <sys/stat.h>
+
+/*
+ * The number of rows to generate for new permutation maps.
+ */
+#define MAP_ROWS_DEFAULT 256
+
+/*
+ * Key values for dRAID maps when stored as nvlists.
+ */
+#define MAP_SEED "seed"
+#define MAP_CHECKSUM "checksum"
+#define MAP_WORST_RATIO "worst_ratio"
+#define MAP_AVG_RATIO "avg_ratio"
+#define MAP_CHILDREN "children"
+#define MAP_NPERMS "nperms"
+#define MAP_PERMS "perms"
+
+static void
+draid_usage(void)
+{
+ (void) fprintf(stderr,
+ "usage: draid command args ...\n"
+ "Available commands are:\n"
+ "\n"
+ "\tdraid generate [-cv] [-m min] [-n max] [-p passes] FILE\n"
+ "\tdraid verify [-rv] FILE\n"
+ "\tdraid dump [-v] [-m min] [-n max] FILE\n"
+ "\tdraid table FILE\n"
+ "\tdraid merge FILE SRC SRC...\n");
+ exit(1);
+}
+
+static int
+read_map(const char *filename, nvlist_t **allcfgs)
+{
+ int block_size = 131072;
+ int buf_size = 131072;
+ int tmp_size, error;
+ char *tmp_buf;
+
+ struct stat64 stat;
+ if (lstat64(filename, &stat) != 0)
+ return (errno);
+
+ if (stat.st_size == 0 ||
+ !(S_ISREG(stat.st_mode) || S_ISLNK(stat.st_mode))) {
+ return (EINVAL);
+ }
+
+ gzFile fp = gzopen(filename, "rb");
+ if (fp == Z_NULL)
+ return (errno);
+
+ char *buf = malloc(buf_size);
+ if (buf == NULL) {
+ (void) gzclose(fp);
+ return (ENOMEM);
+ }
+
+ ssize_t rc, bytes = 0;
+ while (!gzeof(fp)) {
+ rc = gzread(fp, buf + bytes, block_size);
+ if ((rc < 0) || (rc == 0 && !gzeof(fp))) {
+ free(buf);
+ (void) gzclose(fp);
+ (void) gzerror(fp, &error);
+ return (error);
+ } else {
+ bytes += rc;
+
+ if (bytes + block_size >= buf_size) {
+ tmp_size = 2 * buf_size;
+ tmp_buf = malloc(tmp_size);
+ if (tmp_buf == NULL) {
+ free(buf);
+ (void) gzclose(fp);
+ return (ENOMEM);
+ }
+
+ memcpy(tmp_buf, buf, bytes);
+ free(buf);
+ buf = tmp_buf;
+ buf_size = tmp_size;
+ }
+ }
+ }
+
+ (void) gzclose(fp);
+
+ error = nvlist_unpack(buf, bytes, allcfgs, 0);
+ free(buf);
+
+ return (error);
+}
+
+/*
+ * Read a map from the specified filename. A file contains multiple maps
+ * which are indexed by the number of children. The caller is responsible
+ * for freeing the configuration returned.
+ */
+static int
+read_map_key(const char *filename, char *key, nvlist_t **cfg)
+{
+ nvlist_t *allcfgs, *foundcfg = NULL;
+ int error;
+
+ error = read_map(filename, &allcfgs);
+ if (error != 0)
+ return (error);
+
+ nvlist_lookup_nvlist(allcfgs, key, &foundcfg);
+ if (foundcfg != NULL) {
+ nvlist_dup(foundcfg, cfg, KM_SLEEP);
+ error = 0;
+ } else {
+ error = ENOENT;
+ }
+
+ nvlist_free(allcfgs);
+
+ return (error);
+}
+
+/*
+ * Write all mappings to the map file.
+ */
+static int
+write_map(const char *filename, nvlist_t *allcfgs)
+{
+ size_t buflen = 0;
+ int error;
+
+ error = nvlist_size(allcfgs, &buflen, NV_ENCODE_XDR);
+ if (error)
+ return (error);
+
+ char *buf = malloc(buflen);
+ if (buf == NULL)
+ return (ENOMEM);
+
+ error = nvlist_pack(allcfgs, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP);
+ if (error) {
+ free(buf);
+ return (error);
+ }
+
+ /*
+ * Atomically update the file using a temporary file and the
+ * traditional unlink then rename steps. This code provides
+ * no locking, it only guarantees the packed nvlist on disk
+ * is updated atomically and is internally consistent.
+ */
+ char *tmpname = calloc(MAXPATHLEN, 1);
+ if (tmpname == NULL) {
+ free(buf);
+ return (ENOMEM);
+ }
+
+ snprintf(tmpname, MAXPATHLEN - 1, "%s.XXXXXX", filename);
+
+ int fd = mkstemp(tmpname);
+ if (fd < 0) {
+ error = errno;
+ free(buf);
+ free(tmpname);
+ return (error);
+ }
+ (void) close(fd);
+
+ gzFile fp = gzopen(tmpname, "w9b");
+ if (fp == Z_NULL) {
+ error = errno;
+ free(buf);
+ free(tmpname);
+ return (errno);
+ }
+
+ ssize_t rc, bytes = 0;
+ while (bytes < buflen) {
+ size_t size = MIN(buflen - bytes, 131072);
+ rc = gzwrite(fp, buf + bytes, size);
+ if (rc < 0) {
+ free(buf);
+ (void) gzerror(fp, &error);
+ (void) gzclose(fp);
+ (void) unlink(tmpname);
+ free(tmpname);
+ return (error);
+ } else if (rc == 0) {
+ break;
+ } else {
+ bytes += rc;
+ }
+ }
+
+ free(buf);
+ (void) gzclose(fp);
+
+ if (bytes != buflen) {
+ (void) unlink(tmpname);
+ free(tmpname);
+ return (EIO);
+ }
+
+ /*
+ * Unlink the previous config file and replace it with the updated
+ * version. If we're able to unlink the file then directory is
+ * writable by us and the subsequent rename should never fail.
+ */
+ error = unlink(filename);
+ if (error != 0 && errno != ENOENT) {
+ error = errno;
+ (void) unlink(tmpname);
+ free(tmpname);
+ return (error);
+ }
+
+ error = rename(tmpname, filename);
+ if (error != 0) {
+ error = errno;
+ (void) unlink(tmpname);
+ free(tmpname);
+ return (error);
+ }
+
+ free(tmpname);
+
+ return (0);
+}
+
+/*
+ * Add the dRAID map to the file and write it out.
+ */
+static int
+write_map_key(const char *filename, char *key, draid_map_t *map,
+ double worst_ratio, double avg_ratio)
+{
+ nvlist_t *nv_cfg, *allcfgs;
+ int error;
+
+ /*
+ * Add the configuration to an existing or new file. The new
+ * configuration will replace an existing configuration with the
+ * same key if it has a lower ratio and is therefore better.
+ */
+ error = read_map(filename, &allcfgs);
+ if (error == ENOENT) {
+ allcfgs = fnvlist_alloc();
+ } else if (error != 0) {
+ return (error);
+ }
+
+ error = nvlist_lookup_nvlist(allcfgs, key, &nv_cfg);
+ if (error == 0) {
+ uint64_t nv_cfg_worst_ratio = fnvlist_lookup_uint64(nv_cfg,
+ MAP_WORST_RATIO);
+ double nv_worst_ratio = (double)nv_cfg_worst_ratio / 1000.0;
+
+ if (worst_ratio < nv_worst_ratio) {
+ /* Replace old map with the more balanced new map. */
+ fnvlist_remove(allcfgs, key);
+ } else {
+ /* The old map is preferable, keep it. */
+ nvlist_free(allcfgs);
+ return (EEXIST);
+ }
+ }
+
+ nvlist_t *cfg = fnvlist_alloc();
+ fnvlist_add_uint64(cfg, MAP_SEED, map->dm_seed);
+ fnvlist_add_uint64(cfg, MAP_CHECKSUM, map->dm_checksum);
+ fnvlist_add_uint64(cfg, MAP_CHILDREN, map->dm_children);
+ fnvlist_add_uint64(cfg, MAP_NPERMS, map->dm_nperms);
+ fnvlist_add_uint8_array(cfg, MAP_PERMS, map->dm_perms,
+ map->dm_children * map->dm_nperms * sizeof (uint8_t));
+
+ fnvlist_add_uint64(cfg, MAP_WORST_RATIO,
+ (uint64_t)(worst_ratio * 1000.0));
+ fnvlist_add_uint64(cfg, MAP_AVG_RATIO,
+ (uint64_t)(avg_ratio * 1000.0));
+
+ error = nvlist_add_nvlist(allcfgs, key, cfg);
+ if (error == 0)
+ error = write_map(filename, allcfgs);
+
+ nvlist_free(cfg);
+ nvlist_free(allcfgs);
+ return (error);
+}
+
+static void
+dump_map(draid_map_t *map, char *key, double worst_ratio, double avg_ratio,
+ int verbose)
+{
+ if (verbose == 0) {
+ return;
+ } else if (verbose == 1) {
+ printf(" \"%s\": seed: 0x%016llx worst_ratio: %2.03f "
+ "avg_ratio: %2.03f\n", key, (u_longlong_t)map->dm_seed,
+ worst_ratio, avg_ratio);
+ return;
+ } else {
+ printf(" \"%s\":\n"
+ " seed: 0x%016llx\n"
+ " checksum: 0x%016llx\n"
+ " worst_ratio: %2.03f\n"
+ " avg_ratio: %2.03f\n"
+ " children: %llu\n"
+ " nperms: %llu\n",
+ key, (u_longlong_t)map->dm_seed,
+ (u_longlong_t)map->dm_checksum, worst_ratio, avg_ratio,
+ (u_longlong_t)map->dm_children,
+ (u_longlong_t)map->dm_nperms);
+
+ if (verbose > 2) {
+ printf(" perms = {\n");
+ for (int i = 0; i < map->dm_nperms; i++) {
+ printf(" { ");
+ for (int j = 0; j < map->dm_children; j++) {
+ printf("%3d%s ", map->dm_perms[
+ i * map->dm_children + j],
+ j < map->dm_children - 1 ?
+ "," : "");
+ }
+ printf(" },\n");
+ }
+ printf(" }\n");
+ } else if (verbose == 2) {
+ printf(" draid_perms = <omitted>\n");
+ }
+ }
+}
+
+static void
+dump_map_nv(char *key, nvlist_t *cfg, int verbose)
+{
+ draid_map_t map;
+ uint_t c;
+
+ uint64_t worst_ratio = fnvlist_lookup_uint64(cfg, MAP_WORST_RATIO);
+ uint64_t avg_ratio = fnvlist_lookup_uint64(cfg, MAP_AVG_RATIO);
+
+ map.dm_seed = fnvlist_lookup_uint64(cfg, MAP_SEED);
+ map.dm_checksum = fnvlist_lookup_uint64(cfg, MAP_CHECKSUM);
+ map.dm_children = fnvlist_lookup_uint64(cfg, MAP_CHILDREN);
+ map.dm_nperms = fnvlist_lookup_uint64(cfg, MAP_NPERMS);
+ nvlist_lookup_uint8_array(cfg, MAP_PERMS, &map.dm_perms, &c);
+
+ dump_map(&map, key, (double)worst_ratio / 1000.0,
+ avg_ratio / 1000.0, verbose);
+}
+
+/*
+ * Print a summary of the mapping.
+ */
+static int
+dump_map_key(const char *filename, char *key, int verbose)
+{
+ nvlist_t *cfg;
+ int error;
+
+ error = read_map_key(filename, key, &cfg);
+ if (error != 0)
+ return (error);
+
+ dump_map_nv(key, cfg, verbose);
+
+ return (0);
+}
+
+/*
+ * Allocate a new permutation map for evaluation.
+ */
+static int
+alloc_new_map(uint64_t children, uint64_t nperms, uint64_t seed,
+ draid_map_t **mapp)
+{
+ draid_map_t *map;
+ int error;
+
+ map = malloc(sizeof (draid_map_t));
+ if (map == NULL)
+ return (ENOMEM);
+
+ map->dm_children = children;
+ map->dm_nperms = nperms;
+ map->dm_seed = seed;
+ map->dm_checksum = 0;
+
+ error = vdev_draid_generate_perms(map, &map->dm_perms);
+ if (error) {
+ free(map);
+ return (error);
+ }
+
+ *mapp = map;
+
+ return (0);
+}
+
+/*
+ * Allocate the fixed permutation map for N children.
+ */
+static int
+alloc_fixed_map(uint64_t children, draid_map_t **mapp)
+{
+ const draid_map_t *fixed_map;
+ draid_map_t *map;
+ int error;
+
+ error = vdev_draid_lookup_map(children, &fixed_map);
+ if (error)
+ return (error);
+
+ map = malloc(sizeof (draid_map_t));
+ if (map == NULL)
+ return (ENOMEM);
+
+ memcpy(map, fixed_map, sizeof (draid_map_t));
+ VERIFY3U(map->dm_checksum, !=, 0);
+
+ error = vdev_draid_generate_perms(map, &map->dm_perms);
+ if (error) {
+ free(map);
+ return (error);
+ }
+
+ *mapp = map;
+
+ return (0);
+}
+
+/*
+ * Free a permutation map.
+ */
+static void
+free_map(draid_map_t *map)
+{
+ free(map->dm_perms);
+ free(map);
+}
+
+/*
+ * Check if dev is in the provided list of faulted devices.
+ */
+static inline boolean_t
+is_faulted(int *faulted_devs, int nfaulted, int dev)
+{
+ for (int i = 0; i < nfaulted; i++)
+ if (faulted_devs[i] == dev)
+ return (B_TRUE);
+
+ return (B_FALSE);
+}
+
+/*
+ * Evaluate how resilvering I/O will be distributed given a list of faulted
+ * vdevs. As a simplification we assume one IO is sufficient to repair each
+ * damaged device in a group.
+ */
+static double
+eval_resilver(draid_map_t *map, uint64_t groupwidth, uint64_t nspares,
+ int *faulted_devs, int nfaulted, int *min_child_ios, int *max_child_ios)
+{
+ uint64_t children = map->dm_children;
+ uint64_t ngroups = 1;
+ uint64_t ndisks = children - nspares;
+
+ /*
+ * Calculate the minimum number of groups required to fill a slice.
+ */
+ while (ngroups * (groupwidth) % (children - nspares) != 0)
+ ngroups++;
+
+ int *ios = calloc(map->dm_children, sizeof (uint64_t));
+
+ /* Resilver all rows */
+ for (int i = 0; i < map->dm_nperms; i++) {
+ uint8_t *row = &map->dm_perms[i * map->dm_children];
+
+ /* Resilver all groups with faulted drives */
+ for (int j = 0; j < ngroups; j++) {
+ uint64_t spareidx = map->dm_children - nspares;
+ boolean_t repair_needed = B_FALSE;
+
+ /* See if any devices in this group are faulted */
+ uint64_t groupstart = (j * groupwidth) % ndisks;
+
+ for (int k = 0; k < groupwidth; k++) {
+ uint64_t groupidx = (groupstart + k) % ndisks;
+
+ repair_needed = is_faulted(faulted_devs,
+ nfaulted, row[groupidx]);
+ if (repair_needed)
+ break;
+ }
+
+ if (repair_needed == B_FALSE)
+ continue;
+
+ /*
+ * This group is degraded. Calculate the number of
+ * reads the non-faulted drives require and the number
+ * of writes to the distributed hot spare for this row.
+ */
+ for (int k = 0; k < groupwidth; k++) {
+ uint64_t groupidx = (groupstart + k) % ndisks;
+
+ if (!is_faulted(faulted_devs, nfaulted,
+ row[groupidx])) {
+ ios[row[groupidx]]++;
+ } else if (nspares > 0) {
+ while (is_faulted(faulted_devs,
+ nfaulted, row[spareidx])) {
+ spareidx++;
+ }
+
+ ASSERT3U(spareidx, <, map->dm_children);
+ ios[row[spareidx]]++;
+ spareidx++;
+ }
+ }
+ }
+ }
+
+ *min_child_ios = INT_MAX;
+ *max_child_ios = 0;
+
+ /*
+ * Find the drives with fewest and most required I/O. These values
+ * are used to calculate the imbalance ratio. To avoid returning an
+ * infinite value for permutations which have children that perform
+ * no IO a floor of 1 IO per child is set. This ensures a meaningful
+ * ratio is returned for comparison and it is not an uncommon when
+ * there are a large number of children.
+ */
+ for (int i = 0; i < map->dm_children; i++) {
+
+ if (is_faulted(faulted_devs, nfaulted, i)) {
+ ASSERT0(ios[i]);
+ continue;
+ }
+
+ if (ios[i] == 0)
+ ios[i] = 1;
+
+ if (ios[i] < *min_child_ios)
+ *min_child_ios = ios[i];
+
+ if (ios[i] > *max_child_ios)
+ *max_child_ios = ios[i];
+ }
+
+ ASSERT3S(*min_child_ios, !=, INT_MAX);
+ ASSERT3S(*max_child_ios, !=, 0);
+
+ double ratio = (double)(*max_child_ios) / (double)(*min_child_ios);
+
+ free(ios);
+
+ return (ratio);
+}
+
+/*
+ * Evaluate the quality of the permutation mapping by considering possible
+ * device failures. Returns the imbalance ratio for the worst mapping which
+ * is defined to be the largest number of child IOs over the fewest number
+ * child IOs. A value of 1.0 indicates the mapping is perfectly balance and
+ * all children perform an equal amount of work during reconstruction.
+ */
+static void
+eval_decluster(draid_map_t *map, double *worst_ratiop, double *avg_ratiop)
+{
+ uint64_t children = map->dm_children;
+ double worst_ratio = 1.0;
+ double sum = 0;
+ int worst_min_ios = 0, worst_max_ios = 0;
+ int n = 0;
+
+ /*
+ * When there are only 2 children there can be no distributed
+ * spare and no resilver to evaluate. Default to a ratio of 1.0
+ * for this degenerate case.
+ */
+ if (children == VDEV_DRAID_MIN_CHILDREN) {
+ *worst_ratiop = 1.0;
+ *avg_ratiop = 1.0;
+ return;
+ }
+
+ /*
+ * Score the mapping as if it had either 1 or 2 distributed spares.
+ */
+ for (int nspares = 1; nspares <= 2; nspares++) {
+ uint64_t faults = nspares;
+
+ /*
+ * Score groupwidths up to 19. This value was choosen as the
+ * largest reasonable width (16d+3p). dRAID pools may be still
+ * be created with wider stripes but they are not considered in
+ * this analysis in order to optimize for the most common cases.
+ */
+ for (uint64_t groupwidth = 2;
+ groupwidth <= MIN(children - nspares, 19);
+ groupwidth++) {
+ int faulted_devs[2];
+ int min_ios, max_ios;
+
+ /*
+ * Score possible devices faults. This is limited
+ * to exactly one fault per distributed spare for
+ * the purposes of this similation.
+ */
+ for (int f1 = 0; f1 < children; f1++) {
+ faulted_devs[0] = f1;
+ double ratio;
+
+ if (faults == 1) {
+ ratio = eval_resilver(map, groupwidth,
+ nspares, faulted_devs, faults,
+ &min_ios, &max_ios);
+
+ if (ratio > worst_ratio) {
+ worst_ratio = ratio;
+ worst_min_ios = min_ios;
+ worst_max_ios = max_ios;
+ }
+
+ sum += ratio;
+ n++;
+ } else if (faults == 2) {
+ for (int f2 = f1 + 1; f2 < children;
+ f2++) {
+ faulted_devs[1] = f2;
+
+ ratio = eval_resilver(map,
+ groupwidth, nspares,
+ faulted_devs, faults,
+ &min_ios, &max_ios);
+
+ if (ratio > worst_ratio) {
+ worst_ratio = ratio;
+ worst_min_ios = min_ios;
+ worst_max_ios = max_ios;
+ }
+
+ sum += ratio;
+ n++;
+ }
+ }
+ }
+ }
+ }
+
+ *worst_ratiop = worst_ratio;
+ *avg_ratiop = sum / n;
+
+ /*
+ * Log the min/max io values for particularly unbalanced maps.
+ * Since the maps are generated entirely randomly these are possible
+ * be exceedingly unlikely. We log it for possible investigation.
+ */
+ if (worst_ratio > 100.0) {
+ dump_map(map, "DEBUG", worst_ratio, *avg_ratiop, 2);
+ printf("worst_min_ios=%d worst_max_ios=%d\n",
+ worst_min_ios, worst_max_ios);
+ }
+}
+
+static int
+eval_maps(uint64_t children, int passes, uint64_t *map_seed,
+ draid_map_t **best_mapp, double *best_ratiop, double *avg_ratiop)
+{
+ draid_map_t *best_map = NULL;
+ double best_worst_ratio = 1000.0;
+ double best_avg_ratio = 1000.0;
+
+ /*
+ * Perform the requested number of passes evaluating randomly
+ * generated permutation maps. Only the best version is kept.
+ */
+ for (int i = 0; i < passes; i++) {
+ double worst_ratio, avg_ratio;
+ draid_map_t *map;
+ int error;
+
+ /*
+ * Calculate the next seed and generate a new candidate map.
+ */
+ error = alloc_new_map(children, MAP_ROWS_DEFAULT,
+ vdev_draid_rand(map_seed), &map);
+ if (error)
+ return (error);
+
+ /*
+ * Consider maps with a lower worst_ratio to be of higher
+ * quality. Some maps may have a lower avg_ratio but they
+ * are discarded since they might include some particularly
+ * imbalanced permuations. The average is tracked to in
+ * order to get a sense of the average permutation quality.
+ */
+ eval_decluster(map, &worst_ratio, &avg_ratio);
+
+ if (best_map == NULL || worst_ratio < best_worst_ratio) {
+
+ if (best_map != NULL)
+ free_map(best_map);
+
+ best_map = map;
+ best_worst_ratio = worst_ratio;
+ best_avg_ratio = avg_ratio;
+ } else {
+ free_map(map);
+ }
+ }
+
+ /*
+ * After determining the best map generate a checksum over the full
+ * permutation array. This checksum is verified when opening a dRAID
+ * pool to ensure the generated in memory permutations are correct.
+ */
+ zio_cksum_t cksum;
+ fletcher_4_native_varsize(best_map->dm_perms,
+ sizeof (uint8_t) * best_map->dm_children * best_map->dm_nperms,
+ &cksum);
+ best_map->dm_checksum = cksum.zc_word[0];
+
+ *best_mapp = best_map;
+ *best_ratiop = best_worst_ratio;
+ *avg_ratiop = best_avg_ratio;
+
+ return (0);
+}
+
+static int
+draid_generate(int argc, char *argv[])
+{
+ char filename[MAXPATHLEN];
+ uint64_t map_seed;
+ int c, fd, error, verbose = 0, passes = 1, continuous = 0;
+ int min_children = VDEV_DRAID_MIN_CHILDREN;
+ int max_children = VDEV_DRAID_MAX_CHILDREN;
+ int restarts = 0;
+
+ while ((c = getopt(argc, argv, ":cm:n:p:v")) != -1) {
+ switch (c) {
+ case 'c':
+ continuous++;
+ break;
+ case 'm':
+ min_children = (int)strtol(optarg, NULL, 0);
+ if (min_children < VDEV_DRAID_MIN_CHILDREN) {
+ (void) fprintf(stderr, "A minimum of 2 "
+ "children are required.\n");
+ return (1);
+ }
+
+ break;
+ case 'n':
+ max_children = (int)strtol(optarg, NULL, 0);
+ if (max_children > VDEV_DRAID_MAX_CHILDREN) {
+ (void) fprintf(stderr, "A maximum of %d "
+ "children are allowed.\n",
+ VDEV_DRAID_MAX_CHILDREN);
+ return (1);
+ }
+ break;
+ case 'p':
+ passes = (int)strtol(optarg, NULL, 0);
+ break;
+ case 'v':
+ /*
+ * 0 - Only log when a better map is added to the file.
+ * 1 - Log the current best map for each child count.
+ * Minimal output on a single summary line.
+ * 2 - Log the current best map for each child count.
+ * More verbose includes most map fields.
+ * 3 - Log the current best map for each child count.
+ * Very verbose all fields including the full map.
+ */
+ verbose++;
+ break;
+ case ':':
+ (void) fprintf(stderr,
+ "missing argument for '%c' option\n", optopt);
+ draid_usage();
+ break;
+ case '?':
+ (void) fprintf(stderr, "invalid option '%c'\n",
+ optopt);
+ draid_usage();
+ break;
+ }
+ }
+
+ if (argc > optind) {
+ bzero(filename, MAXPATHLEN);
+ strncpy(filename, argv[optind], MAXPATHLEN - 1);
+ } else {
+ (void) fprintf(stderr, "A FILE must be specified.\n");
+ return (1);
+ }
+
+restart:
+ /*
+ * Start with a fresh seed from /dev/urandom.
+ */
+ fd = open("/dev/urandom", O_RDONLY);
+ if (fd < 0) {
+ printf("Unable to open /dev/urandom: %s\n:", strerror(errno));
+ return (1);
+ } else {
+ ssize_t bytes = sizeof (map_seed);
+ ssize_t bytes_read = 0;
+
+ while (bytes_read < bytes) {
+ ssize_t rc = read(fd, ((char *)&map_seed) + bytes_read,
+ bytes - bytes_read);
+ if (rc < 0) {
+ printf("Unable to read /dev/urandom: %s\n:",
+ strerror(errno));
+ return (1);
+ }
+ bytes_read += rc;
+ }
+
+ (void) close(fd);
+ }
+
+ if (restarts == 0)
+ printf("Writing generated mappings to '%s':\n", filename);
+
+ /*
+ * Generate maps for all requested child counts. The best map for
+ * each child count is written out to the specified file. If the file
+ * already contains a better mapping this map will not be added.
+ */
+ for (uint64_t children = min_children;
+ children <= max_children; children++) {
+ char key[8] = { 0 };
+ draid_map_t *map;
+ double worst_ratio = 1000.0;
+ double avg_ratio = 1000.0;
+
+ error = eval_maps(children, passes, &map_seed, &map,
+ &worst_ratio, &avg_ratio);
+ if (error) {
+ printf("Error eval_maps(): %s\n", strerror(error));
+ return (1);
+ }
+
+ if (worst_ratio < 1.0 || avg_ratio < 1.0) {
+ printf("Error ratio < 1.0: worst_ratio = %2.03f "
+ "avg_ratio = %2.03f\n", worst_ratio, avg_ratio);
+ return (1);
+ }
+
+ snprintf(key, 7, "%llu", (u_longlong_t)children);
+ error = write_map_key(filename, key, map, worst_ratio,
+ avg_ratio);
+ if (error == 0) {
+ /* The new map was added to the file. */
+ dump_map(map, key, worst_ratio, avg_ratio,
+ MAX(verbose, 1));
+ } else if (error == EEXIST) {
+ /* The existing map was preferable and kept. */
+ if (verbose > 0)
+ dump_map_key(filename, key, verbose);
+ } else {
+ printf("Error write_map_key(): %s\n", strerror(error));
+ return (1);
+ }
+
+ free_map(map);
+ }
+
+ /*
+ * When the continuous option is set restart at the minimum number of
+ * children instead of exiting. This option is useful as a mechanism
+ * to continuous try and refine the discovered permutations.
+ */
+ if (continuous) {
+ restarts++;
+ printf("Restarting by request (-c): %d\n", restarts);
+ goto restart;
+ }
+
+ return (0);
+}
+
+/*
+ * Verify each map in the file by generating its in-memory permutation array
+ * and comfirming its checksum is correct.
+ */
+static int
+draid_verify(int argc, char *argv[])
+{
+ char filename[MAXPATHLEN];
+ int n = 0, c, error, verbose = 1;
+ int check_ratios = 0;
+
+ while ((c = getopt(argc, argv, ":rv")) != -1) {
+ switch (c) {
+ case 'r':
+ check_ratios++;
+ break;
+ case 'v':
+ verbose++;
+ break;
+ case ':':
+ (void) fprintf(stderr,
+ "missing argument for '%c' option\n", optopt);
+ draid_usage();
+ break;
+ case '?':
+ (void) fprintf(stderr, "invalid option '%c'\n",
+ optopt);
+ draid_usage();
+ break;
+ }
+ }
+
+ if (argc > optind) {
+ char *abspath = malloc(MAXPATHLEN);
+ if (abspath == NULL)
+ return (ENOMEM);
+
+ bzero(filename, MAXPATHLEN);
+ if (realpath(argv[optind], abspath) != NULL)
+ strncpy(filename, abspath, MAXPATHLEN - 1);
+ else
+ strncpy(filename, argv[optind], MAXPATHLEN - 1);
+
+ free(abspath);
+ } else {
+ (void) fprintf(stderr, "A FILE must be specified.\n");
+ return (1);
+ }
+
+ printf("Verifying permutation maps: '%s'\n", filename);
+
+ /*
+ * Lookup hardcoded permutation map for each valid number of children
+ * and verify a generated map has the correct checksum. Then compare
+ * the generated map values with the nvlist map values read from the
+ * reference file to cross-check the permutation.
+ */
+ for (uint64_t children = VDEV_DRAID_MIN_CHILDREN;
+ children <= VDEV_DRAID_MAX_CHILDREN;
+ children++) {
+ draid_map_t *map;
+ char key[8];
+
+ bzero(key, 8);
+ snprintf(key, 8, "%llu", (u_longlong_t)children);
+
+ error = alloc_fixed_map(children, &map);
+ if (error) {
+ printf("Error alloc_fixed_map() failed: %s\n",
+ error == ECKSUM ? "Invalid checksum" :
+ strerror(error));
+ return (1);
+ }
+
+ uint64_t nv_seed, nv_checksum, nv_children, nv_nperms;
+ uint8_t *nv_perms;
+ nvlist_t *cfg;
+ uint_t c;
+
+ error = read_map_key(filename, key, &cfg);
+ if (error != 0) {
+ printf("Error read_map_key() failed: %s\n",
+ strerror(error));
+ free_map(map);
+ return (1);
+ }
+
+ nv_seed = fnvlist_lookup_uint64(cfg, MAP_SEED);
+ nv_checksum = fnvlist_lookup_uint64(cfg, MAP_CHECKSUM);
+ nv_children = fnvlist_lookup_uint64(cfg, MAP_CHILDREN);
+ nv_nperms = fnvlist_lookup_uint64(cfg, MAP_NPERMS);
+ nvlist_lookup_uint8_array(cfg, MAP_PERMS, &nv_perms, &c);
+
+ /*
+ * Compare draid_map_t and nvlist reference values.
+ */
+ if (map->dm_seed != nv_seed) {
+ printf("Error different seeds: 0x%016llx != "
+ "0x%016llx\n", (u_longlong_t)map->dm_seed,
+ (u_longlong_t)nv_seed);
+ error = EINVAL;
+ }
+
+ if (map->dm_checksum != nv_checksum) {
+ printf("Error different checksums: 0x%016llx "
+ "!= 0x%016llx\n",
+ (u_longlong_t)map->dm_checksum,
+ (u_longlong_t)nv_checksum);
+ error = EINVAL;
+ }
+
+ if (map->dm_children != nv_children) {
+ printf("Error different children: %llu "
+ "!= %llu\n", (u_longlong_t)map->dm_children,
+ (u_longlong_t)nv_children);
+ error = EINVAL;
+ }
+
+ if (map->dm_nperms != nv_nperms) {
+ printf("Error different nperms: %llu "
+ "!= %llu\n", (u_longlong_t)map->dm_nperms,
+ (u_longlong_t)nv_nperms);
+ error = EINVAL;
+ }
+
+ for (uint64_t i = 0; i < nv_children * nv_nperms; i++) {
+ if (map->dm_perms[i] != nv_perms[i]) {
+ printf("Error different perms[%llu]: "
+ "%d != %d\n", (u_longlong_t)i,
+ (int)map->dm_perms[i],
+ (int)nv_perms[i]);
+ error = EINVAL;
+ break;
+ }
+ }
+
+ /*
+ * For good measure recalculate the worst and average
+ * ratios and confirm they match the nvlist values.
+ */
+ if (check_ratios) {
+ uint64_t nv_worst_ratio, nv_avg_ratio;
+ double worst_ratio, avg_ratio;
+
+ eval_decluster(map, &worst_ratio, &avg_ratio);
+
+ nv_worst_ratio = fnvlist_lookup_uint64(cfg,
+ MAP_WORST_RATIO);
+ nv_avg_ratio = fnvlist_lookup_uint64(cfg,
+ MAP_AVG_RATIO);
+
+ if (worst_ratio < 1.0 || avg_ratio < 1.0) {
+ printf("Error ratio out of range %2.03f, "
+ "%2.03f\n", worst_ratio, avg_ratio);
+ error = EINVAL;
+ }
+
+ if ((uint64_t)(worst_ratio * 1000.0) !=
+ nv_worst_ratio) {
+ printf("Error different worst_ratio %2.03f "
+ "!= %2.03f\n", (double)nv_worst_ratio /
+ 1000.0, worst_ratio);
+ error = EINVAL;
+ }
+
+ if ((uint64_t)(avg_ratio * 1000.0) != nv_avg_ratio) {
+ printf("Error different average_ratio %2.03f "
+ "!= %2.03f\n", (double)nv_avg_ratio /
+ 1000.0, avg_ratio);
+ error = EINVAL;
+ }
+ }
+
+ if (error) {
+ free_map(map);
+ nvlist_free(cfg);
+ return (1);
+ }
+
+ if (verbose > 0) {
+ printf("- %llu children: good\n",
+ (u_longlong_t)children);
+ }
+ n++;
+
+ free_map(map);
+ nvlist_free(cfg);
+ }
+
+ if (n != (VDEV_DRAID_MAX_CHILDREN - 1)) {
+ printf("Error permutation maps missing: %d / %d checked\n",
+ n, VDEV_DRAID_MAX_CHILDREN - 1);
+ return (1);
+ }
+
+ printf("Successfully verified %d / %d permutation maps\n",
+ n, VDEV_DRAID_MAX_CHILDREN - 1);
+
+ return (0);
+}
+
+/*
+ * Dump the contents of the specified mapping(s) for inspection.
+ */
+static int
+draid_dump(int argc, char *argv[])
+{
+ char filename[MAXPATHLEN];
+ int c, error, verbose = 1;
+ int min_children = VDEV_DRAID_MIN_CHILDREN;
+ int max_children = VDEV_DRAID_MAX_CHILDREN;
+
+ while ((c = getopt(argc, argv, ":vm:n:")) != -1) {
+ switch (c) {
+ case 'm':
+ min_children = (int)strtol(optarg, NULL, 0);
+ if (min_children < 2) {
+ (void) fprintf(stderr, "A minimum of 2 "
+ "children are required.\n");
+ return (1);
+ }
+
+ break;
+ case 'n':
+ max_children = (int)strtol(optarg, NULL, 0);
+ if (max_children > VDEV_DRAID_MAX_CHILDREN) {
+ (void) fprintf(stderr, "A maximum of %d "
+ "children are allowed.\n",
+ VDEV_DRAID_MAX_CHILDREN);
+ return (1);
+ }
+ break;
+ case 'v':
+ verbose++;
+ break;
+ case ':':
+ (void) fprintf(stderr,
+ "missing argument for '%c' option\n", optopt);
+ draid_usage();
+ break;
+ case '?':
+ (void) fprintf(stderr, "invalid option '%c'\n",
+ optopt);
+ draid_usage();
+ break;
+ }
+ }
+
+ if (argc > optind) {
+ bzero(filename, MAXPATHLEN);
+ strncpy(filename, argv[optind], MAXPATHLEN - 1);
+ } else {
+ (void) fprintf(stderr, "A FILE must be specified.\n");
+ return (1);
+ }
+
+ /*
+ * Dump maps for the requested child counts.
+ */
+ for (uint64_t children = min_children;
+ children <= max_children; children++) {
+ char key[8] = { 0 };
+
+ snprintf(key, 7, "%llu", (u_longlong_t)children);
+ error = dump_map_key(filename, key, verbose);
+ if (error) {
+ printf("Error dump_map_key(): %s\n", strerror(error));
+ return (1);
+ }
+ }
+
+ return (0);
+}
+
+/*
+ * Print all of the mappings as a C formated draid_map_t array. This table
+ * is found in the module/zcommon/zfs_draid.c file and is the definative
+ * source for all mapping used by dRAID. It cannot be updated without
+ * changing the dRAID on disk format.
+ */
+static int
+draid_table(int argc, char *argv[])
+{
+ char filename[MAXPATHLEN];
+ int error;
+
+ if (argc > optind) {
+ bzero(filename, MAXPATHLEN);
+ strncpy(filename, argv[optind], MAXPATHLEN - 1);
+ } else {
+ (void) fprintf(stderr, "A FILE must be specified.\n");
+ return (1);
+ }
+
+ printf("static const draid_map_t "
+ "draid_maps[VDEV_DRAID_MAX_MAPS] = {\n");
+
+ for (uint64_t children = VDEV_DRAID_MIN_CHILDREN;
+ children <= VDEV_DRAID_MAX_CHILDREN;
+ children++) {
+ uint64_t seed, checksum, nperms, avg_ratio;
+ nvlist_t *cfg;
+ char key[8];
+
+ bzero(key, 8);
+ snprintf(key, 8, "%llu", (u_longlong_t)children);
+
+ error = read_map_key(filename, key, &cfg);
+ if (error != 0) {
+ printf("Error read_map_key() failed: %s\n",
+ strerror(error));
+ return (1);
+ }
+
+ seed = fnvlist_lookup_uint64(cfg, MAP_SEED);
+ checksum = fnvlist_lookup_uint64(cfg, MAP_CHECKSUM);
+ children = fnvlist_lookup_uint64(cfg, MAP_CHILDREN);
+ nperms = fnvlist_lookup_uint64(cfg, MAP_NPERMS);
+ avg_ratio = fnvlist_lookup_uint64(cfg, MAP_AVG_RATIO);
+
+ printf("\t{ %3llu, %3llu, 0x%016llx, 0x%016llx },\t"
+ "/* %2.03f */\n", (u_longlong_t)children,
+ (u_longlong_t)nperms, (u_longlong_t)seed,
+ (u_longlong_t)checksum, (double)avg_ratio / 1000.0);
+
+ nvlist_free(cfg);
+ }
+
+ printf("};\n");
+
+ return (0);
+}
+
+static int
+draid_merge_impl(nvlist_t *allcfgs, const char *srcfilename, int *mergedp)
+{
+ nvlist_t *srccfgs;
+ nvpair_t *elem = NULL;
+ int error, merged = 0;
+
+ error = read_map(srcfilename, &srccfgs);
+ if (error != 0)
+ return (error);
+
+ while ((elem = nvlist_next_nvpair(srccfgs, elem)) != NULL) {
+ uint64_t nv_worst_ratio;
+ uint64_t allcfg_worst_ratio;
+ nvlist_t *cfg, *allcfg;
+ char *key;
+
+ switch (nvpair_type(elem)) {
+ case DATA_TYPE_NVLIST:
+
+ (void) nvpair_value_nvlist(elem, &cfg);
+ key = nvpair_name(elem);
+
+ nv_worst_ratio = fnvlist_lookup_uint64(cfg,
+ MAP_WORST_RATIO);
+
+ error = nvlist_lookup_nvlist(allcfgs, key, &allcfg);
+ if (error == 0) {
+ allcfg_worst_ratio = fnvlist_lookup_uint64(
+ allcfg, MAP_WORST_RATIO);
+
+ if (nv_worst_ratio < allcfg_worst_ratio) {
+ fnvlist_remove(allcfgs, key);
+ error = nvlist_add_nvlist(allcfgs,
+ key, cfg);
+ merged++;
+ }
+ } else if (error == ENOENT) {
+ error = nvlist_add_nvlist(allcfgs, key, cfg);
+ merged++;
+ } else {
+ return (error);
+ }
+
+ break;
+ default:
+ continue;
+ }
+ }
+
+ nvlist_free(srccfgs);
+
+ *mergedp = merged;
+
+ return (0);
+}
+
+/*
+ * Merge the best map for each child count found in the listed files into
+ * a new file. This allows 'draid generate' to be run in parallel and for
+ * the results maps to be combined.
+ */
+static int
+draid_merge(int argc, char *argv[])
+{
+ char filename[MAXPATHLEN];
+ int c, error, total_merged = 0, verbose = 0;
+ nvlist_t *allcfgs;
+
+ while ((c = getopt(argc, argv, ":v")) != -1) {
+ switch (c) {
+ case 'v':
+ verbose++;
+ break;
+ case ':':
+ (void) fprintf(stderr,
+ "missing argument for '%c' option\n", optopt);
+ draid_usage();
+ break;
+ case '?':
+ (void) fprintf(stderr, "invalid option '%c'\n",
+ optopt);
+ draid_usage();
+ break;
+ }
+ }
+
+ if (argc < 4) {
+ (void) fprintf(stderr,
+ "A FILE and multiple SRCs must be specified.\n");
+ return (1);
+ }
+
+ bzero(filename, MAXPATHLEN);
+ strncpy(filename, argv[optind], MAXPATHLEN - 1);
+ optind++;
+
+ error = read_map(filename, &allcfgs);
+ if (error == ENOENT) {
+ allcfgs = fnvlist_alloc();
+ } else if (error != 0) {
+ printf("Error read_map(): %s\n", strerror(error));
+ return (error);
+ }
+
+ while (optind < argc) {
+ char srcfilename[MAXPATHLEN];
+ int merged = 0;
+
+ bzero(srcfilename, MAXPATHLEN);
+ strncpy(srcfilename, argv[optind], MAXPATHLEN - 1);
+
+ error = draid_merge_impl(allcfgs, srcfilename, &merged);
+ if (error) {
+ printf("Error draid_merge_impl(): %s\n",
+ strerror(error));
+ nvlist_free(allcfgs);
+ return (1);
+ }
+
+ total_merged += merged;
+ printf("Merged %d key(s) from '%s' into '%s'\n", merged,
+ srcfilename, filename);
+
+ optind++;
+ }
+
+ if (total_merged > 0)
+ write_map(filename, allcfgs);
+
+ printf("Merged a total of %d key(s) into '%s'\n", total_merged,
+ filename);
+
+ nvlist_free(allcfgs);
+
+ return (0);
+}
+
+int
+main(int argc, char *argv[])
+{
+ if (argc < 2)
+ draid_usage();
+
+ char *subcommand = argv[1];
+
+ if (strcmp(subcommand, "generate") == 0) {
+ return (draid_generate(argc - 1, argv + 1));
+ } else if (strcmp(subcommand, "verify") == 0) {
+ return (draid_verify(argc - 1, argv + 1));
+ } else if (strcmp(subcommand, "dump") == 0) {
+ return (draid_dump(argc - 1, argv + 1));
+ } else if (strcmp(subcommand, "table") == 0) {
+ return (draid_table(argc - 1, argv + 1));
+ } else if (strcmp(subcommand, "merge") == 0) {
+ return (draid_merge(argc - 1, argv + 1));
+ } else {
+ draid_usage();
+ }
+}
diff --git a/tests/zfs-tests/include/commands.cfg b/tests/zfs-tests/include/commands.cfg
index 2b81e1c19..299653547 100644
--- a/tests/zfs-tests/include/commands.cfg
+++ b/tests/zfs-tests/include/commands.cfg
@@ -197,6 +197,7 @@ export ZFSTEST_FILES='badsend
chg_usr_exec
devname2devid
dir_rd_update
+ draid
file_check
file_trunc
file_write
diff --git a/tests/zfs-tests/include/libtest.shlib b/tests/zfs-tests/include/libtest.shlib
index 98ef54e4d..d494eda55 100644
--- a/tests/zfs-tests/include/libtest.shlib
+++ b/tests/zfs-tests/include/libtest.shlib
@@ -2336,7 +2336,7 @@ function check_pool_status # pool token keyword <verbose>
function is_pool_resilvering #pool <verbose>
{
check_pool_status "$1" "scan" \
- "resilver[ ()0-9A-Za-z_-]* in progress since" $2
+ "resilver[ ()0-9A-Za-z:_-]* in progress since" $2
return $?
}
diff --git a/tests/zfs-tests/include/tunables.cfg b/tests/zfs-tests/include/tunables.cfg
index b9e7fe2df..e93e299ea 100644
--- a/tests/zfs-tests/include/tunables.cfg
+++ b/tests/zfs-tests/include/tunables.cfg
@@ -60,6 +60,7 @@ MULTIHOST_IMPORT_INTERVALS multihost.import_intervals zfs_multihost_import_inter
MULTIHOST_INTERVAL multihost.interval zfs_multihost_interval
OVERRIDE_ESTIMATE_RECORDSIZE send.override_estimate_recordsize zfs_override_estimate_recordsize
PREFETCH_DISABLE prefetch.disable zfs_prefetch_disable
+REBUILD_SCRUB_ENABLED rebuild_scrub_enabled zfs_rebuild_scrub_enabled
REMOVAL_SUSPEND_PROGRESS removal_suspend_progress zfs_removal_suspend_progress
REMOVE_MAX_SEGMENT remove_max_segment zfs_remove_max_segment
RESILVER_MIN_TIME_MS resilver_min_time_ms zfs_resilver_min_time_ms
diff --git a/tests/zfs-tests/tests/functional/cli_root/zfs_mount/zfs_mount.kshlib b/tests/zfs-tests/tests/functional/cli_root/zfs_mount/zfs_mount.kshlib
index bd45fabbc..85566e565 100644
--- a/tests/zfs-tests/tests/functional/cli_root/zfs_mount/zfs_mount.kshlib
+++ b/tests/zfs-tests/tests/functional/cli_root/zfs_mount/zfs_mount.kshlib
@@ -66,7 +66,8 @@ function setup_filesystem #disklist #pool #fs #mntpoint #type #vdev
if [[ $vdev != "" && \
$vdev != "mirror" && \
- $vdev != "raidz" ]] ; then
+ $vdev != "raidz" && \
+ $vdev != "draid" ]] ; then
log_note "Wrong vdev: (\"$vdev\")"
return 1
diff --git a/tests/zfs-tests/tests/functional/cli_root/zpool_add/zpool_add_001_pos.ksh b/tests/zfs-tests/tests/functional/cli_root/zpool_add/zpool_add_001_pos.ksh
index aa50de3be..191ec839a 100755
--- a/tests/zfs-tests/tests/functional/cli_root/zpool_add/zpool_add_001_pos.ksh
+++ b/tests/zfs-tests/tests/functional/cli_root/zpool_add/zpool_add_001_pos.ksh
@@ -55,23 +55,26 @@ log_assert "'zpool add <pool> <vdev> ...' can add devices to the pool."
log_onexit cleanup
-set -A keywords "" "mirror" "raidz" "raidz1" "spare"
+set -A keywords "" "mirror" "raidz" "raidz1" "draid:1s" "draid1:1s" "spare"
pooldevs="${DISK0} \
\"${DISK0} ${DISK1}\" \
\"${DISK0} ${DISK1} ${DISK2}\""
mirrordevs="\"${DISK0} ${DISK1}\""
raidzdevs="\"${DISK0} ${DISK1}\""
+draiddevs="\"${DISK0} ${DISK1} ${DISK2}\""
disk0=$TEST_BASE_DIR/disk0
disk1=$TEST_BASE_DIR/disk1
-truncate -s $MINVDEVSIZE $disk0 $disk1
+disk2=$TEST_BASE_DIR/disk2
+truncate -s $MINVDEVSIZE $disk0 $disk1 $disk2
typeset -i i=0
typeset vdev
eval set -A poolarray $pooldevs
eval set -A mirrorarray $mirrordevs
eval set -A raidzarray $raidzdevs
+eval set -A draidarray $draiddevs
while (( $i < ${#keywords[*]} )); do
@@ -108,6 +111,19 @@ while (( $i < ${#keywords[*]} )); do
done
;;
+ draid:1s|draid1:1s)
+ for vdev in "${draidarray[@]}"; do
+ create_pool "$TESTPOOL" "${keywords[i]}" \
+ "$disk0" "$disk1" "$disk2"
+ log_must poolexists "$TESTPOOL"
+ log_must zpool add "$TESTPOOL" ${keywords[i]} $vdev
+ log_must vdevs_in_pool "$TESTPOOL" "$vdev"
+ log_must vdevs_in_pool "$TESTPOOL" "draid1-0-0"
+ log_must vdevs_in_pool "$TESTPOOL" "draid1-1-0"
+ destroy_pool "$TESTPOOL"
+ done
+
+ ;;
esac
(( i = i+1 ))
diff --git a/tests/zfs-tests/tests/functional/cli_root/zpool_create/Makefile.am b/tests/zfs-tests/tests/functional/cli_root/zpool_create/Makefile.am
index 3c595935a..4d75851bd 100644
--- a/tests/zfs-tests/tests/functional/cli_root/zpool_create/Makefile.am
+++ b/tests/zfs-tests/tests/functional/cli_root/zpool_create/Makefile.am
@@ -27,6 +27,10 @@ dist_pkgdata_SCRIPTS = \
zpool_create_024_pos.ksh \
zpool_create_encrypted.ksh \
zpool_create_crypt_combos.ksh \
+ zpool_create_draid_001_pos.ksh \
+ zpool_create_draid_002_pos.ksh \
+ zpool_create_draid_003_pos.ksh \
+ zpool_create_draid_004_pos.ksh \
zpool_create_features_001_pos.ksh \
zpool_create_features_002_pos.ksh \
zpool_create_features_003_pos.ksh \
@@ -36,5 +40,6 @@ dist_pkgdata_SCRIPTS = \
zpool_create_tempname.ksh
dist_pkgdata_DATA = \
+ draidcfg.gz \
zpool_create.cfg \
zpool_create.shlib
diff --git a/tests/zfs-tests/tests/functional/cli_root/zpool_create/draidcfg.gz b/tests/zfs-tests/tests/functional/cli_root/zpool_create/draidcfg.gz
new file mode 100644
index 000000000..b8c0a583c
--- /dev/null
+++ b/tests/zfs-tests/tests/functional/cli_root/zpool_create/draidcfg.gz
Binary files differ
diff --git a/tests/zfs-tests/tests/functional/cli_root/zpool_create/zpool_create_001_pos.ksh b/tests/zfs-tests/tests/functional/cli_root/zpool_create/zpool_create_001_pos.ksh
index 799160722..42f57beae 100755
--- a/tests/zfs-tests/tests/functional/cli_root/zpool_create/zpool_create_001_pos.ksh
+++ b/tests/zfs-tests/tests/functional/cli_root/zpool_create/zpool_create_001_pos.ksh
@@ -64,14 +64,16 @@ pooldevs="${DISK0} \
\"${DISK0} ${DISK1}\" \
\"${DISK0} ${DISK1} ${DISK2}\" \
\"$disk1 $disk2\""
-raidzdevs="\"${DISK0} ${DISK1} ${DISK2}\""
mirrordevs="\"${DISK0} ${DISK1}\" \
$raidzdevs \
\"$disk1 $disk2\""
+raidzdevs="\"${DISK0} ${DISK1} ${DISK2}\""
+draiddevs="\"${DISK0} ${DISK1} ${DISK2}\""
create_pool_test "$TESTPOOL" "" "$pooldevs"
create_pool_test "$TESTPOOL" "mirror" "$mirrordevs"
create_pool_test "$TESTPOOL" "raidz" "$raidzdevs"
create_pool_test "$TESTPOOL" "raidz1" "$raidzdevs"
+create_pool_test "$TESTPOOL" "draid" "$draiddevs"
log_pass "'zpool create <pool> <vspec> ...' success."
diff --git a/tests/zfs-tests/tests/functional/cli_root/zpool_create/zpool_create_005_pos.ksh b/tests/zfs-tests/tests/functional/cli_root/zpool_create/zpool_create_005_pos.ksh
index 165453e8b..e1d8cc474 100755
--- a/tests/zfs-tests/tests/functional/cli_root/zpool_create/zpool_create_005_pos.ksh
+++ b/tests/zfs-tests/tests/functional/cli_root/zpool_create/zpool_create_005_pos.ksh
@@ -54,7 +54,7 @@ log_assert "'zpool create [-R root][-m mountpoint] <pool> <vdev> ...' can create
"an alternate pool or a new pool mounted at the specified mountpoint."
log_onexit cleanup
-set -A pooltype "" "mirror" "raidz" "raidz1" "raidz2"
+set -A pooltype "" "mirror" "raidz" "raidz1" "raidz2" "draid" "draid2"
#
# cleanup the pools created in previous case if zpool_create_004_pos timedout
@@ -67,8 +67,8 @@ done
rm -rf $TESTDIR
log_must mkdir -p $TESTDIR
typeset -i i=1
-while (( i < 4 )); do
- log_must mkfile $FILESIZE $TESTDIR/file.$i
+while (( i < 5 )); do
+ log_must truncate -s $FILESIZE $TESTDIR/file.$i
(( i = i + 1 ))
done
@@ -87,7 +87,7 @@ do
log_must zpool destroy -f $TESTPOOL
[[ -d $TESTDIR1 ]] && rm -rf $TESTDIR1
log_must zpool create $opt $TESTPOOL ${pooltype[i]} \
- $file.1 $file.2 $file.3
+ $file.1 $file.2 $file.3 $file.4
! poolexists $TESTPOOL && \
log_fail "Creating pool with $opt fails."
mpt=`zfs mount | egrep "^$TESTPOOL[^/]" | awk '{print $2}'`
diff --git a/tests/zfs-tests/tests/functional/cli_root/zpool_create/zpool_create_006_pos.ksh b/tests/zfs-tests/tests/functional/cli_root/zpool_create/zpool_create_006_pos.ksh
index 15cd23e44..79b41fdae 100755
--- a/tests/zfs-tests/tests/functional/cli_root/zpool_create/zpool_create_006_pos.ksh
+++ b/tests/zfs-tests/tests/functional/cli_root/zpool_create/zpool_create_006_pos.ksh
@@ -97,6 +97,20 @@ set -A valid_args \
"raidz2 $vdev0 $vdev1 $vdev2 spare $vdev3 raidz2 $vdev4 $vdev5 $vdev6" \
"raidz3 $vdev0 $vdev1 $vdev2 $vdev3 \
mirror $vdev4 $vdev5 $vdev6 $vdev7" \
+ "draid $vdev0 $vdev1 $vdev2 mirror $vdev3 $vdev4" \
+ "draid $vdev0 $vdev1 $vdev2 raidz1 $vdev3 $vdev4 $vdev5" \
+ "draid $vdev0 $vdev1 $vdev2 draid1 $vdev3 $vdev4 $vdev5" \
+ "draid $vdev0 $vdev1 $vdev2 special mirror $vdev3 $vdev4" \
+ "draid2 $vdev0 $vdev1 $vdev2 $vdev3 mirror $vdev4 $vdev5 $vdev6" \
+ "draid2 $vdev0 $vdev1 $vdev2 $vdev3 raidz2 $vdev4 $vdev5 $vdev6" \
+ "draid2 $vdev0 $vdev1 $vdev2 $vdev3 draid2 $vdev4 $vdev5 $vdev6 $vdev7"\
+ "draid2 $vdev0 $vdev1 $vdev2 $vdev3 \
+ special mirror $vdev4 $vdev5 $vdev6" \
+ "draid2 $vdev0 $vdev1 $vdev2 $vdev3 \
+ special mirror $vdev4 $vdev5 $vdev6 \
+ cache $vdev7 log mirror $vdev8 $vdev9" \
+ "draid $vdev0 $vdev1 $vdev2 draid $vdev4 $vdev5 $vdev6 $vdev7 \
+ special mirror $vdev8 $vdev9" \
"spare $vdev0 $vdev1 $vdev2 mirror $vdev3 $vdev4 raidz $vdev5 $vdev6"
set -A forced_args \
@@ -109,11 +123,19 @@ set -A forced_args \
"raidz $vdev0 $vdev1 raidz2 $vdev2 $vdev3 $vdev4" \
"raidz $vdev0 $vdev1 raidz2 $vdev2 $vdev3 $vdev4 spare $vdev5" \
"raidz $vdev0 $vdev1 spare $vdev2 raidz2 $vdev3 $vdev4 $vdev5" \
+ "raidz $vdev0 $vdev1 draid2 $vdev2 $vdev3 $vdev4 $vdev5" \
+ "raidz $vdev0 $vdev1 draid3 $vdev2 $vdev3 $vdev4 $vdev5 $vdev6" \
"mirror $vdev0 $vdev1 raidz $vdev2 $vdev3 raidz2 $vdev4 $vdev5 $vdev6" \
"mirror $vdev0 $vdev1 raidz $vdev2 $vdev3 \
raidz2 $vdev4 $vdev5 $vdev6 spare $vdev7" \
"mirror $vdev0 $vdev1 raidz $vdev2 $vdev3 \
spare $vdev4 raidz2 $vdev5 $vdev6 $vdev7" \
+ "mirror $vdev0 $vdev1 draid $vdev2 $vdev3 $vdev4 \
+ draid2 $vdev5 $vdev6 $vdev7 $vdev8 spare $vdev9" \
+ "draid $vdev0 $vdev1 $vdev2 $vdev3 \
+ draid2 $vdev4 $vdev5 $vdev6 $vdev7 $vdev8" \
+ "draid $vdev0 $vdev1 $vdev2 draid $vdev4 $vdev5 $vdev6 \
+ special mirror $vdev7 $vdev8 $vdev9" \
"spare $vdev0 $vdev1 $vdev2 mirror $vdev3 $vdev4 \
raidz2 $vdev5 $vdev6 $vdev7"
diff --git a/tests/zfs-tests/tests/functional/cli_root/zpool_create/zpool_create_007_neg.ksh b/tests/zfs-tests/tests/functional/cli_root/zpool_create/zpool_create_007_neg.ksh
index bafc238ea..2873202cc 100755
--- a/tests/zfs-tests/tests/functional/cli_root/zpool_create/zpool_create_007_neg.ksh
+++ b/tests/zfs-tests/tests/functional/cli_root/zpool_create/zpool_create_007_neg.ksh
@@ -54,13 +54,16 @@ set -A args "" "-?" "-n" "-f" "-nf" "-fn" "-f -n" "--f" "-e" "-s" \
"$TESTPOOL c0txd0" "$TESTPOOL c0t0dx" "$TESTPOOL cxtxdx" \
"$TESTPOOL mirror" "$TESTPOOL raidz" "$TESTPOOL mirror raidz" \
"$TESTPOOL raidz1" "$TESTPOOL mirror raidz1" \
+ "$TESTPOOL draid1" "$TESTPOOL mirror draid1" \
"$TESTPOOL mirror c?t?d?" "$TESTPOOL mirror $DISK0 c0t1d?" \
"$TESTPOOL RAIDZ $DISK0 $DISK1" \
"$TESTPOOL $DISK0 log $DISK1 log $DISK2" \
"$TESTPOOL $DISK0 spare $DISK1 spare $DISK2" \
- "$TESTPOOL RAIDZ1 $DISK0 $DISK1" \
- "$TESTPOOL MIRROR $DISK0" "$TESTPOOL raidz $DISK0" \
- "$TESTPOOL raidz1 $DISK0" \
+ "$TESTPOOL RAIDZ1 $DISK0 $DISK1" "$TESTPOOL MIRROR $DISK0" \
+ "$TESTPOOL DRAID $DISK1 $DISK2 $DISK3" "$TESTPOOL raidz $DISK0" \
+ "$TESTPOOL raidz1 $DISK0" "$TESTPOOL draid $DISK0" \
+ "$TESTPOOL draid2 $DISK0 $DISK1" \
+ "$TESTPOOL draid $DISK0 $DISK1 $DISK2 spare s0-draid1-0" \
"1tank $DISK0" "1234 $DISK0" "?tank $DISK0" \
"tan%k $DISK0" "ta@# $DISK0" "tan+k $DISK0" \
"$BYND_MAX_NAME $DISK0"
diff --git a/tests/zfs-tests/tests/functional/cli_root/zpool_create/zpool_create_009_neg.ksh b/tests/zfs-tests/tests/functional/cli_root/zpool_create/zpool_create_009_neg.ksh
index 0d7acdb40..e2f389903 100755
--- a/tests/zfs-tests/tests/functional/cli_root/zpool_create/zpool_create_009_neg.ksh
+++ b/tests/zfs-tests/tests/functional/cli_root/zpool_create/zpool_create_009_neg.ksh
@@ -63,7 +63,7 @@ log_onexit cleanup
unset NOINUSE_CHECK
typeset opt
-for opt in "" "mirror" "raidz" "raidz1"; do
+for opt in "" "mirror" "raidz" "draid"; do
if [[ $opt == "" ]]; then
typeset disks=$DISK0
else
diff --git a/tests/zfs-tests/tests/functional/cli_root/zpool_create/zpool_create_010_neg.ksh b/tests/zfs-tests/tests/functional/cli_root/zpool_create/zpool_create_010_neg.ksh
index e0b3850e4..36bbaa7de 100755
--- a/tests/zfs-tests/tests/functional/cli_root/zpool_create/zpool_create_010_neg.ksh
+++ b/tests/zfs-tests/tests/functional/cli_root/zpool_create/zpool_create_010_neg.ksh
@@ -63,15 +63,16 @@ log_must zfs create $TESTPOOL/$TESTFS
log_must zfs set mountpoint=$TESTDIR $TESTPOOL/$TESTFS
typeset -l devsize=$(($SPA_MINDEVSIZE - 1024 * 1024))
-for files in $TESTDIR/file1 $TESTDIR/file2
+for files in $TESTDIR/file1 $TESTDIR/file2 $TESTDIR/file3
do
- log_must mkfile $devsize $files
+ log_must truncate -s $devsize $files
done
set -A args \
"$TOOSMALL $TESTDIR/file1" "$TESTPOOL1 $TESTDIR/file1 $TESTDIR/file2" \
"$TOOSMALL mirror $TESTDIR/file1 $TESTDIR/file2" \
- "$TOOSMALL raidz $TESTDIR/file1 $TESTDIR/file2"
+ "$TOOSMALL raidz $TESTDIR/file1 $TESTDIR/file2" \
+ "$TOOSMALL draid $TESTDIR/file1 $TESTDIR/file2 $TESTDIR/file3"
typeset -i i=0
while [[ $i -lt ${#args[*]} ]]; do
diff --git a/tests/zfs-tests/tests/functional/cli_root/zpool_create/zpool_create_011_neg.ksh b/tests/zfs-tests/tests/functional/cli_root/zpool_create/zpool_create_011_neg.ksh
index 140771d4f..9437033ae 100755
--- a/tests/zfs-tests/tests/functional/cli_root/zpool_create/zpool_create_011_neg.ksh
+++ b/tests/zfs-tests/tests/functional/cli_root/zpool_create/zpool_create_011_neg.ksh
@@ -54,7 +54,7 @@ function cleanup
destroy_pool $pool
done
- rm -rf $disk1 $disk2 $disk3
+ rm -rf $disk1 $disk2 $disk3 $disk4
if [[ -n $saved_dump_dev ]]; then
log_must dumpadm -u -d $saved_dump_dev
@@ -66,12 +66,16 @@ log_onexit cleanup
disk1=$(create_blockfile $FILESIZE)
disk2=$(create_blockfile $FILESIZE)
-disk3=$(create_blockfile $FILESIZE1)
+disk3=$(create_blockfile $FILESIZE)
+disk4=$(create_blockfile $FILESIZE1)
mirror1="$DISK0 $DISK1"
mirror2="$disk1 $disk2"
raidz1=$mirror1
raidz2=$mirror2
-diff_size_dev="$disk2 $disk3"
+draid1="$DISK0 $DISK1 $DISK2"
+draid2="$disk1 $disk2 $disk3"
+diff_size_dev="$disk2 $disk4"
+draid_diff_size_dev="$disk1 $disk2 $disk4"
vfstab_dev=$(find_vfstab_dev)
if is_illumos; then
@@ -91,13 +95,17 @@ set -A arg \
"$TESTPOOL1 mirror mirror $mirror1 mirror $mirror2" \
"$TESTPOOL1 raidz raidz $raidz1 raidz $raidz2" \
"$TESTPOOL1 raidz1 raidz1 $raidz1 raidz1 $raidz2" \
+ "$TESTPOOL1 draid draid $draid draid $draid2" \
"$TESTPOOL1 mirror raidz $raidz1 raidz $raidz2" \
"$TESTPOOL1 mirror raidz1 $raidz1 raidz1 $raidz2" \
+ "$TESTPOOL1 mirror draid $draid1 draid $draid2" \
"$TESTPOOL1 raidz mirror $mirror1 mirror $mirror2" \
"$TESTPOOL1 raidz1 mirror $mirror1 mirror $mirror2" \
+ "$TESTPOOL1 draid1 mirror $mirror1 mirror $mirror2" \
"$TESTPOOL1 mirror $diff_size_dev" \
"$TESTPOOL1 raidz $diff_size_dev" \
"$TESTPOOL1 raidz1 $diff_size_dev" \
+ "$TESTPOOL1 draid1 $draid_diff_size_dev" \
"$TESTPOOL1 mirror $mirror1 spare $mirror2 spare $diff_size_dev" \
"$TESTPOOL1 $vfstab_dev" \
"$TESTPOOL1 ${DISK0}s10" \
diff --git a/tests/zfs-tests/tests/functional/cli_root/zpool_create/zpool_create_draid_001_pos.ksh b/tests/zfs-tests/tests/functional/cli_root/zpool_create/zpool_create_draid_001_pos.ksh
new file mode 100755
index 000000000..9717af505
--- /dev/null
+++ b/tests/zfs-tests/tests/functional/cli_root/zpool_create/zpool_create_draid_001_pos.ksh
@@ -0,0 +1,75 @@
+#!/bin/ksh -p
+#
+# CDDL HEADER START
+#
+# The contents of this file are subject to the terms of the
+# Common Development and Distribution License (the "License").
+# You may not use this file except in compliance with the License.
+#
+# You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+# or http://www.opensolaris.org/os/licensing.
+# See the License for the specific language governing permissions
+# and limitations under the License.
+#
+# When distributing Covered Code, include this CDDL HEADER in each
+# file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+# If applicable, add the following below this CDDL HEADER, with the
+# fields enclosed by brackets "[]" replaced with your own identifying
+# information: Portions Copyright [yyyy] [name of copyright owner]
+#
+# CDDL HEADER END
+#
+
+#
+# Copyright (c) 2020 Lawrence Livermore National Security, LLC.
+
+. $STF_SUITE/include/libtest.shlib
+
+#
+# DESCRIPTION:
+# Create a variety of dRAID pools using the minimal dRAID vdev syntax.
+#
+# STRATEGY:
+# 1) Create the required number of allowed dRAID vdevs.
+# 2) Create few pools of various sizes using the draid1|draid2|draid3 syntax.
+#
+
+verify_runnable "global"
+
+function cleanup
+{
+ poolexists $TESTPOOL && destroy_pool $TESTPOOL
+
+ rm -f $all_vdevs
+ rmdir $TESTDIR
+}
+
+log_assert "'zpool create <pool> <draid1|2|3> ...' can create a pool."
+
+log_onexit cleanup
+
+all_vdevs=$(echo $TESTDIR/file.{01..84})
+
+mkdir $TESTDIR
+log_must truncate -s $MINVDEVSIZE $all_vdevs
+
+# Verify all configurations up to 24 vdevs.
+for parity in {1..3}; do
+ for children in {$((parity + 2))..24}; do
+ vdevs=$(echo $TESTDIR/file.{01..${children}})
+ log_must zpool create $TESTPOOL draid$parity $vdevs
+ log_must poolexists $TESTPOOL
+ destroy_pool $TESTPOOL
+ done
+done
+
+# Spot check a few large configurations.
+children_counts="53 84"
+for children in $children_counts; do
+ vdevs=$(echo $TESTDIR/file.{01..${children}})
+ log_must zpool create $TESTPOOL draid $vdevs
+ log_must poolexists $TESTPOOL
+ destroy_pool $TESTPOOL
+done
+
+log_pass "'zpool create <pool> <draid1|2|3> <vdevs> ...' success."
diff --git a/tests/zfs-tests/tests/functional/cli_root/zpool_create/zpool_create_draid_002_pos.ksh b/tests/zfs-tests/tests/functional/cli_root/zpool_create/zpool_create_draid_002_pos.ksh
new file mode 100755
index 000000000..2e1ff3931
--- /dev/null
+++ b/tests/zfs-tests/tests/functional/cli_root/zpool_create/zpool_create_draid_002_pos.ksh
@@ -0,0 +1,82 @@
+#!/bin/ksh -p
+#
+# CDDL HEADER START
+#
+# The contents of this file are subject to the terms of the
+# Common Development and Distribution License (the "License").
+# You may not use this file except in compliance with the License.
+#
+# You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+# or http://www.opensolaris.org/os/licensing.
+# See the License for the specific language governing permissions
+# and limitations under the License.
+#
+# When distributing Covered Code, include this CDDL HEADER in each
+# file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+# If applicable, add the following below this CDDL HEADER, with the
+# fields enclosed by brackets "[]" replaced with your own identifying
+# information: Portions Copyright [yyyy] [name of copyright owner]
+#
+# CDDL HEADER END
+#
+
+#
+# Copyright (c) 2020 Lawrence Livermore National Security, LLC.
+
+. $STF_SUITE/include/libtest.shlib
+
+#
+# DESCRIPTION:
+# Create dRAID pool using the maximum number of vdevs (255). Then verify
+# that creating a pool with 256 fails as expected.
+#
+# STRATEGY:
+# 1) Verify a pool with fewer than the required vdevs fails.
+# 2) Verify pools with a valid number of vdevs succeed.
+# 3) Verify a pool which exceeds the maximum number of vdevs fails.
+#
+
+verify_runnable "global"
+
+function cleanup
+{
+ poolexists $TESTPOOL && destroy_pool $TESTPOOL
+
+ rm -f $all_vdevs
+ rmdir $TESTDIR
+}
+
+log_assert "'zpool create <pool> draid <vdevs>'"
+
+log_onexit cleanup
+
+all_vdevs=$(echo $TESTDIR/file.{01..256})
+
+mkdir $TESTDIR
+log_must truncate -s $MINVDEVSIZE $all_vdevs
+
+# Below maximum dRAID vdev count for specified parity level.
+log_mustnot zpool create $TESTPOOL draid1 $(echo $TESTDIR/file.{01..01})
+log_mustnot zpool create $TESTPOOL draid2 $(echo $TESTDIR/file.{01..02})
+log_mustnot zpool create $TESTPOOL draid3 $(echo $TESTDIR/file.{01..03})
+
+# Verify pool sizes from 2-10. Values in between are skipped to speed
+# up the test case but will be exercised by the random pool creation
+# done in zpool_create_draid_002_pos.ksh.
+for (( i=2; i<=10; i++ )); do
+ log_must zpool create $TESTPOOL draid:${i}c \
+ $(echo $TESTDIR/file.{01..$i})
+ log_must destroy_pool $TESTPOOL
+done
+
+# Verify pool sizes from 254-255.
+for (( i=254; i<=255; i++ )); do
+ log_must zpool create $TESTPOOL draid:${i}c \
+ $(echo $TESTDIR/file.{01..$i})
+ log_must destroy_pool $TESTPOOL
+done
+
+# Exceeds maximum dRAID vdev count (256).
+log_mustnot zpool create $TESTPOOL draid $(echo $TESTDIR/file.{01..256})
+
+log_pass "'zpool create <pool> draid <vdevs>'"
diff --git a/tests/zfs-tests/tests/functional/cli_root/zpool_create/zpool_create_draid_003_pos.ksh b/tests/zfs-tests/tests/functional/cli_root/zpool_create/zpool_create_draid_003_pos.ksh
new file mode 100755
index 000000000..52cd00cf4
--- /dev/null
+++ b/tests/zfs-tests/tests/functional/cli_root/zpool_create/zpool_create_draid_003_pos.ksh
@@ -0,0 +1,112 @@
+#!/bin/ksh -p
+#
+# CDDL HEADER START
+#
+# The contents of this file are subject to the terms of the
+# Common Development and Distribution License (the "License").
+# You may not use this file except in compliance with the License.
+#
+# You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+# or http://www.opensolaris.org/os/licensing.
+# See the License for the specific language governing permissions
+# and limitations under the License.
+#
+# When distributing Covered Code, include this CDDL HEADER in each
+# file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+# If applicable, add the following below this CDDL HEADER, with the
+# fields enclosed by brackets "[]" replaced with your own identifying
+# information: Portions Copyright [yyyy] [name of copyright owner]
+#
+# CDDL HEADER END
+#
+
+#
+# Copyright (c) 2020 Lawrence Livermore National Security, LLC.
+
+. $STF_SUITE/include/libtest.shlib
+
+#
+# DESCRIPTION:
+# Verify allowed striped widths (data+parity) and hot spares may be
+# configured at pool creation time.
+#
+# STRATEGY:
+# 1) Test valid stripe/spare combinations given the number of children.
+# 2) Test invalid stripe/spare/children combinations outside the allow limits.
+#
+
+verify_runnable "global"
+
+function cleanup
+{
+ poolexists $TESTPOOL && destroy_pool $TESTPOOL
+
+ rm -f $draid_vdevs
+ rmdir $TESTDIR
+}
+
+log_assert "'zpool create <pool> draid:#d:#c:#s <vdevs>'"
+
+log_onexit cleanup
+
+mkdir $TESTDIR
+
+# Generate 10 random valid configurations to test.
+for (( i=0; i<10; i++ )); do
+ parity=$(random_int_between 1 3)
+ spares=$(random_int_between 0 3)
+ data=$(random_int_between 1 16)
+
+ (( min_children = (data + parity + spares) ))
+ children=$(random_int_between $min_children 32)
+
+ draid="draid${parity}:${data}d:${children}c:${spares}s"
+
+ draid_vdevs=$(echo $TESTDIR/file.{01..$children})
+ log_must truncate -s $MINVDEVSIZE $draid_vdevs
+
+ log_must zpool create $TESTPOOL $draid $draid_vdevs
+ log_must poolexists $TESTPOOL
+ destroy_pool $TESTPOOL
+
+ rm -f $draid_vdevs
+done
+
+children=32
+draid_vdevs=$(echo $TESTDIR/file.{01..$children})
+log_must truncate -s $MINVDEVSIZE $draid_vdevs
+
+mkdir $TESTDIR
+log_must truncate -s $MINVDEVSIZE $draid_vdevs
+
+# Out of order and unknown suffixes should fail.
+log_mustnot zpool create $TESTPOOL draid:d8 $draid_vdevs
+log_mustnot zpool create $TESTPOOL draid:s3 $draid_vdevs
+log_mustnot zpool create $TESTPOOL draid:c32 $draid_vdevs
+log_mustnot zpool create $TESTPOOL draid:10x $draid_vdevs
+log_mustnot zpool create $TESTPOOL draid:x10 $draid_vdevs
+
+# Exceeds maximum data disks (limited by total children)
+log_must zpool create $TESTPOOL draid2:30d $draid_vdevs
+log_must destroy_pool $TESTPOOL
+log_mustnot zpool create $TESTPOOL draid2:31d $draid_vdevs
+
+# At least one data disk must be requested.
+log_mustnot zpool create $TESTPOOL draid2:0d $draid_vdevs
+
+# Check invalid parity levels.
+log_mustnot zpool create $TESTPOOL draid0 $draid_vdevs
+log_mustnot zpool create $TESTPOOL draid4 $draid_vdevs
+
+# Spares are limited: spares < children - (parity + data).
+log_must zpool create $TESTPOOL draid2:20d:10s $draid_vdevs
+log_must destroy_pool $TESTPOOL
+log_mustnot zpool create $TESTPOOL draid2:20d:11s $draid_vdevs
+
+# The required children argument is enforced.
+log_mustnot zpool create $TESTPOOL draid2:0c $draid_vdevs
+log_mustnot zpool create $TESTPOOL draid2:31c $draid_vdevs
+log_must zpool create $TESTPOOL draid2:32c $draid_vdevs
+destroy_pool $TESTPOOL
+
+log_pass "'zpool create <pool> draid:#d:#c:#s <vdevs>'"
diff --git a/tests/zfs-tests/tests/functional/cli_root/zpool_create/zpool_create_draid_004_pos.ksh b/tests/zfs-tests/tests/functional/cli_root/zpool_create/zpool_create_draid_004_pos.ksh
new file mode 100755
index 000000000..6b700fa36
--- /dev/null
+++ b/tests/zfs-tests/tests/functional/cli_root/zpool_create/zpool_create_draid_004_pos.ksh
@@ -0,0 +1,43 @@
+#!/bin/ksh -p
+#
+# CDDL HEADER START
+#
+# The contents of this file are subject to the terms of the
+# Common Development and Distribution License (the "License").
+# You may not use this file except in compliance with the License.
+#
+# You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+# or http://www.opensolaris.org/os/licensing.
+# See the License for the specific language governing permissions
+# and limitations under the License.
+#
+# When distributing Covered Code, include this CDDL HEADER in each
+# file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+# If applicable, add the following below this CDDL HEADER, with the
+# fields enclosed by brackets "[]" replaced with your own identifying
+# information: Portions Copyright [yyyy] [name of copyright owner]
+#
+# CDDL HEADER END
+#
+
+#
+# Copyright (c) 2020 Lawrence Livermore National Security, LLC.
+#
+
+. $STF_SUITE/include/libtest.shlib
+
+#
+# DESCRIPTION:
+# Verify generated dRAID permutation maps against the authoritative
+# reference file contains the full permutations.
+#
+
+verify_runnable "global"
+
+log_assert "'draid verify'"
+
+DRAIDCFG="$STF_SUITE/tests/functional/cli_root/zpool_create/draidcfg.gz"
+
+log_must draid verify $DRAIDCFG
+
+log_pass "'draid verify'"
diff --git a/tests/zfs-tests/tests/functional/cli_root/zpool_expand/zpool_expand_001_pos.ksh b/tests/zfs-tests/tests/functional/cli_root/zpool_expand/zpool_expand_001_pos.ksh
index f39e6267b..922e35125 100755
--- a/tests/zfs-tests/tests/functional/cli_root/zpool_expand/zpool_expand_001_pos.ksh
+++ b/tests/zfs-tests/tests/functional/cli_root/zpool_expand/zpool_expand_001_pos.ksh
@@ -72,7 +72,7 @@ log_onexit cleanup
log_assert "zpool can be autoexpanded after set autoexpand=on on vdev expansion"
-for type in " " mirror raidz raidz2; do
+for type in " " mirror raidz draid; do
log_note "Setting up loopback, scsi_debug, and file vdevs"
log_must truncate -s $org_size $FILE_LO
DEV1=$(losetup -f)
@@ -144,6 +144,16 @@ for type in " " mirror raidz raidz2; do
if [[ $? -ne 0 ]] ; then
log_fail "pool $TESTPOOL1 has not expanded"
fi
+ elif [[ $type == "draid" ]]; then
+ typeset expansion_size=$((2*($exp_size-$org_size)))
+ zpool history -il $TESTPOOL1 | \
+ grep "pool '$TESTPOOL1' size:" | \
+ grep "vdev online" | \
+ grep "(+${expansion_size})" >/dev/null 2>&1
+
+ if [[ $? -ne 0 ]]; then
+ log_fail "pool $TESTPOOL has not expanded"
+ fi
else
typeset expansion_size=$((3*($exp_size-$org_size)))
zpool history -il $TESTPOOL1 | \
diff --git a/tests/zfs-tests/tests/functional/cli_root/zpool_expand/zpool_expand_002_pos.ksh b/tests/zfs-tests/tests/functional/cli_root/zpool_expand/zpool_expand_002_pos.ksh
index a49d4fc17..62843b062 100755
--- a/tests/zfs-tests/tests/functional/cli_root/zpool_expand/zpool_expand_002_pos.ksh
+++ b/tests/zfs-tests/tests/functional/cli_root/zpool_expand/zpool_expand_002_pos.ksh
@@ -63,7 +63,7 @@ log_onexit cleanup
log_assert "zpool can expand after zpool online -e zvol vdevs on vdev expansion"
-for type in " " mirror raidz raidz2; do
+for type in " " mirror raidz draid:1s; do
# Initialize the file devices and the pool
for i in 1 2 3; do
log_must truncate -s $org_size ${TEMPFILE}.$i
@@ -92,6 +92,8 @@ for type in " " mirror raidz raidz2; do
if [[ $type == "mirror" ]]; then
typeset expected_zpool_expandsize=$(($exp_size-$org_size))
+ elif [[ $type == "draid:1s" ]]; then
+ typeset expected_zpool_expandsize=$((2*($exp_size-$org_size)))
else
typeset expected_zpool_expandsize=$((3*($exp_size-$org_size)))
fi
@@ -147,6 +149,17 @@ for type in " " mirror raidz raidz2; do
log_fail "pool $TESTPOOL1 has not expanded " \
"after zpool online -e"
fi
+ elif [[ $type == "draid:1s" ]]; then
+ typeset expansion_size=$((2*($exp_size-$org_size)))
+ zpool history -il $TESTPOOL1 | \
+ grep "pool '$TESTPOOL1' size:" | \
+ grep "vdev online" | \
+ grep "(+${expansion_size})" >/dev/null 2>&1
+
+ if [[ $? -ne 0 ]] ; then
+ log_fail "pool $TESTPOOL1 has not expanded " \
+ "after zpool online -e"
+ fi
else
typeset expansion_size=$((3*($exp_size-$org_size)))
zpool history -il $TESTPOOL1 | \
@@ -160,9 +173,17 @@ for type in " " mirror raidz raidz2; do
fi
fi
else
- log_fail "pool $TESTPOOL1 did not expand after vdev expansion " \
- "and zpool online -e"
+ log_fail "pool $TESTPOOL1 did not expand after vdev " \
+ "expansion and zpool online -e"
fi
+
+ # For dRAID pools verify the distributed spare was resized after
+ # expansion and it is large enough to be used to replace a pool vdev.
+ if [[ $type == "draid:1s" ]]; then
+ log_must zpool replace -w $TESTPOOL1 $TEMPFILE.3 draid1-0-0
+ verify_pool $TESTPOOL1
+ fi
+
log_must zpool destroy $TESTPOOL1
done
log_pass "zpool can expand after zpool online -e"
diff --git a/tests/zfs-tests/tests/functional/cli_root/zpool_expand/zpool_expand_003_neg.ksh b/tests/zfs-tests/tests/functional/cli_root/zpool_expand/zpool_expand_003_neg.ksh
index 323d0b907..b3c71b666 100755
--- a/tests/zfs-tests/tests/functional/cli_root/zpool_expand/zpool_expand_003_neg.ksh
+++ b/tests/zfs-tests/tests/functional/cli_root/zpool_expand/zpool_expand_003_neg.ksh
@@ -73,7 +73,7 @@ log_onexit cleanup
log_assert "zpool can not expand if set autoexpand=off after vdev expansion"
-for type in " " mirror raidz raidz2; do
+for type in " " mirror raidz draid; do
log_note "Setting up loopback, scsi_debug, and file vdevs"
log_must truncate -s $org_size $FILE_LO
DEV1=$(losetup -f)
diff --git a/tests/zfs-tests/tests/functional/cli_root/zpool_expand/zpool_expand_004_pos.ksh b/tests/zfs-tests/tests/functional/cli_root/zpool_expand/zpool_expand_004_pos.ksh
index 8a4db824b..09e2b6da2 100755
--- a/tests/zfs-tests/tests/functional/cli_root/zpool_expand/zpool_expand_004_pos.ksh
+++ b/tests/zfs-tests/tests/functional/cli_root/zpool_expand/zpool_expand_004_pos.ksh
@@ -61,7 +61,7 @@ log_onexit cleanup
log_assert "After vdev expansion, all 4 labels have the same set of uberblocks."
-for type in " " mirror raidz raidz2; do
+for type in " " mirror raidz draid; do
for i in 1 2 3; do
log_must truncate -s $org_size ${TEMPFILE}.$i
done
diff --git a/tests/zfs-tests/tests/functional/cli_root/zpool_get/zpool_get.cfg b/tests/zfs-tests/tests/functional/cli_root/zpool_get/zpool_get.cfg
index 8abef65de..3c536ca12 100644
--- a/tests/zfs-tests/tests/functional/cli_root/zpool_get/zpool_get.cfg
+++ b/tests/zfs-tests/tests/functional/cli_root/zpool_get/zpool_get.cfg
@@ -80,6 +80,7 @@ typeset -a properties=(
"feature@bookmark_written"
"feature@log_spacemap"
"feature@device_rebuild"
+ "feature@draid"
)
if is_linux || is_freebsd; then
diff --git a/tests/zfs-tests/tests/functional/cli_root/zpool_import/Makefile.am b/tests/zfs-tests/tests/functional/cli_root/zpool_import/Makefile.am
index ad0f9c46e..a99c5011e 100644
--- a/tests/zfs-tests/tests/functional/cli_root/zpool_import/Makefile.am
+++ b/tests/zfs-tests/tests/functional/cli_root/zpool_import/Makefile.am
@@ -29,6 +29,8 @@ dist_pkgdata_SCRIPTS = \
zpool_import_013_neg.ksh \
zpool_import_014_pos.ksh \
zpool_import_015_pos.ksh \
+ zpool_import_016_pos.ksh \
+ zpool_import_017_pos.ksh \
zpool_import_all_001_pos.ksh \
zpool_import_features_001_pos.ksh \
zpool_import_features_002_neg.ksh \
diff --git a/tests/zfs-tests/tests/functional/cli_root/zpool_import/import_cachefile_device_added.ksh b/tests/zfs-tests/tests/functional/cli_root/zpool_import/import_cachefile_device_added.ksh
index ab72042a2..3238faaa9 100755
--- a/tests/zfs-tests/tests/functional/cli_root/zpool_import/import_cachefile_device_added.ksh
+++ b/tests/zfs-tests/tests/functional/cli_root/zpool_import/import_cachefile_device_added.ksh
@@ -69,6 +69,8 @@ test_add_vdevs "mirror $VDEV0 $VDEV1" "mirror $VDEV2 $VDEV3" \
"mirror $VDEV0 $VDEV1 mirror $VDEV2 $VDEV3"
test_add_vdevs "$VDEV0" "raidz $VDEV1 $VDEV2 $VDEV3" \
"$VDEV0 raidz $VDEV1 $VDEV2 $VDEV3"
+test_add_vdevs "$VDEV0" "draid $VDEV1 $VDEV2 $VDEV3" \
+ "$VDEV0 draid $VDEV1 $VDEV2 $VDEV3"
test_add_vdevs "$VDEV0" "log $VDEV1" "$VDEV0 log $VDEV1"
test_add_vdevs "$VDEV0 log $VDEV1" "$VDEV2" "$VDEV0 $VDEV2 log $VDEV1"
test_add_vdevs "$VDEV0" "$VDEV1 log $VDEV2" "$VDEV0 $VDEV1 log $VDEV2"
diff --git a/tests/zfs-tests/tests/functional/cli_root/zpool_import/import_cachefile_device_replaced.ksh b/tests/zfs-tests/tests/functional/cli_root/zpool_import/import_cachefile_device_replaced.ksh
index a42c69747..8a81c18cd 100755
--- a/tests/zfs-tests/tests/functional/cli_root/zpool_import/import_cachefile_device_replaced.ksh
+++ b/tests/zfs-tests/tests/functional/cli_root/zpool_import/import_cachefile_device_replaced.ksh
@@ -155,6 +155,12 @@ test_replacing_vdevs "raidz $VDEV0 $VDEV1 $VDEV2" \
"$VDEV0 $VDEV1 $VDEV2" \
true 20
+test_replacing_vdevs "draid:1s $VDEV0 $VDEV1 $VDEV2 $VDEV3 $VDEV4" \
+ "$VDEV1" "$VDEV5" \
+ "draid $VDEV0 $VDEV5 $VDEV2 $VDEV3 $VDEV4 spares draid1-0-0" \
+ "$VDEV0 $VDEV1 $VDEV2 $VDEV3 $VDEV4" \
+ true 30
+
set_zfs_txg_timeout $ZFS_TXG_TIMEOUT
log_pass "zpool import -c cachefile_unaware_of_replace passed."
diff --git a/tests/zfs-tests/tests/functional/cli_root/zpool_import/import_cachefile_shared_device.ksh b/tests/zfs-tests/tests/functional/cli_root/zpool_import/import_cachefile_shared_device.ksh
index 887993dfd..87942b4a5 100755
--- a/tests/zfs-tests/tests/functional/cli_root/zpool_import/import_cachefile_shared_device.ksh
+++ b/tests/zfs-tests/tests/functional/cli_root/zpool_import/import_cachefile_shared_device.ksh
@@ -108,6 +108,7 @@ test_shared_device "mirror $VDEV0 $VDEV1" "mirror $VDEV1 $VDEV2" "$VDEV1"
test_shared_device "mirror $VDEV0 $VDEV1 $VDEV2" "mirror $VDEV2 $VDEV3" \
"$VDEV2"
test_shared_device "raidz $VDEV0 $VDEV1 $VDEV2" "$VDEV2" "$VDEV2"
+test_shared_device "draid $VDEV0 $VDEV1 $VDEV2" "$VDEV2" "$VDEV2"
test_shared_device "$VDEV0 log $VDEV1" "$VDEV2 log $VDEV1" "$VDEV1" "-m"
log_pass "Pool doesn't write to a device it doesn't own anymore."
diff --git a/tests/zfs-tests/tests/functional/cli_root/zpool_import/import_paths_changed.ksh b/tests/zfs-tests/tests/functional/cli_root/zpool_import/import_paths_changed.ksh
index 7ee306e26..15f3a0a7b 100755
--- a/tests/zfs-tests/tests/functional/cli_root/zpool_import/import_paths_changed.ksh
+++ b/tests/zfs-tests/tests/functional/cli_root/zpool_import/import_paths_changed.ksh
@@ -89,9 +89,11 @@ test_new_paths "$VDEV0 $VDEV1" "$VDEV0 $VDEV1"
test_new_paths "mirror $VDEV0 $VDEV1" "$VDEV0 $VDEV1"
test_new_paths "$VDEV0 log $VDEV1" "$VDEV1"
test_new_paths "raidz $VDEV0 $VDEV1 $VDEV2" "$VDEV1"
+test_new_paths "draid $VDEV0 $VDEV1 $VDEV2" "$VDEV1"
test_swap_paths "$VDEV0 $VDEV1" "$VDEV0" "$VDEV1"
test_swap_paths "raidz $VDEV0 $VDEV1 $VDEV2" "$VDEV0" "$VDEV1"
+test_swap_paths "draid $VDEV0 $VDEV1 $VDEV2" "$VDEV0" "$VDEV1"
test_swap_paths "mirror $VDEV0 $VDEV1 mirror $VDEV2 $VDEV3" \
"$VDEV0" "$VDEV2"
diff --git a/tests/zfs-tests/tests/functional/cli_root/zpool_import/import_rewind_config_changed.ksh b/tests/zfs-tests/tests/functional/cli_root/zpool_import/import_rewind_config_changed.ksh
index 74d75b6cd..3ac8c104f 100755
--- a/tests/zfs-tests/tests/functional/cli_root/zpool_import/import_rewind_config_changed.ksh
+++ b/tests/zfs-tests/tests/functional/cli_root/zpool_import/import_rewind_config_changed.ksh
@@ -220,6 +220,7 @@ test_add_vdevs "$VDEV0 $VDEV1" "$VDEV2"
test_add_vdevs "$VDEV0" "$VDEV1 $VDEV2"
test_add_vdevs "mirror $VDEV0 $VDEV1" "mirror $VDEV2 $VDEV3"
test_add_vdevs "$VDEV0" "raidz $VDEV1 $VDEV2 $VDEV3"
+test_add_vdevs "$VDEV0" "draid $VDEV1 $VDEV2 $VDEV3"
test_add_vdevs "$VDEV0" "log $VDEV1"
test_add_vdevs "$VDEV0 log $VDEV1" "$VDEV2"
diff --git a/tests/zfs-tests/tests/functional/cli_root/zpool_import/import_rewind_device_replaced.ksh b/tests/zfs-tests/tests/functional/cli_root/zpool_import/import_rewind_device_replaced.ksh
index 94d1cb25d..b03b39d17 100755
--- a/tests/zfs-tests/tests/functional/cli_root/zpool_import/import_rewind_device_replaced.ksh
+++ b/tests/zfs-tests/tests/functional/cli_root/zpool_import/import_rewind_device_replaced.ksh
@@ -176,6 +176,11 @@ test_replace_vdev "raidz $VDEV0 $VDEV1 $VDEV2" \
"raidz $VDEV0 $VDEV3 $VDEV2" \
"$VDEV0 $VDEV1 $VDEV2" 10
+test_replace_vdev "draid $VDEV0 $VDEV1 $VDEV2 $VDEV3" \
+ "$VDEV1" "$VDEV4" \
+ "draid $VDEV0 $VDEV4 $VDEV2 $VDEV3 spares draid1-0-0" \
+ "$VDEV0 $VDEV1 $VDEV2 $VDEV3" 10
+
set_zfs_txg_timeout $ZFS_TXG_TIMEOUT
log_pass "zpool import rewind after device replacement passed."
diff --git a/tests/zfs-tests/tests/functional/cli_root/zpool_import/setup.ksh b/tests/zfs-tests/tests/functional/cli_root/zpool_import/setup.ksh
index 74324c84e..22e619d74 100755
--- a/tests/zfs-tests/tests/functional/cli_root/zpool_import/setup.ksh
+++ b/tests/zfs-tests/tests/functional/cli_root/zpool_import/setup.ksh
@@ -49,7 +49,7 @@ log_must zfs set mountpoint=$TESTDIR $TESTPOOL/$TESTFS
i=0
while (( i < $MAX_NUM )); do
- log_must mkfile $FILE_SIZE ${DEVICE_DIR}/${DEVICE_FILE}$i
+ log_must truncate -s $FILE_SIZE ${DEVICE_DIR}/${DEVICE_FILE}$i
(( i = i + 1 ))
done
diff --git a/tests/zfs-tests/tests/functional/cli_root/zpool_import/zpool_import.cfg b/tests/zfs-tests/tests/functional/cli_root/zpool_import/zpool_import.cfg
index 6c1ab194e..25f541ebf 100644
--- a/tests/zfs-tests/tests/functional/cli_root/zpool_import/zpool_import.cfg
+++ b/tests/zfs-tests/tests/functional/cli_root/zpool_import/zpool_import.cfg
@@ -34,7 +34,7 @@ export DISK=${DISKS%% *}
export FS_SIZE="$((($MINVDEVSIZE / (1024 * 1024)) * 32))m"
export FILE_SIZE="$((MINVDEVSIZE))"
export SLICE_SIZE="$((($MINVDEVSIZE / (1024 * 1024)) * 2))m"
-export MAX_NUM=5
+export MAX_NUM=6
export DEVICE_DIR=$TEST_BASE_DIR/dev_import-test
export BACKUP_DEVICE_DIR=$TEST_BASE_DIR/bakdev_import-test
export DEVICE_FILE=disk
@@ -60,5 +60,6 @@ export VDEV1=$DEVICE_DIR/${DEVICE_FILE}1
export VDEV2=$DEVICE_DIR/${DEVICE_FILE}2
export VDEV3=$DEVICE_DIR/${DEVICE_FILE}3
export VDEV4=$DEVICE_DIR/${DEVICE_FILE}4
+export VDEV5=$DEVICE_DIR/${DEVICE_FILE}5
export ALTER_ROOT=/alter_import-test
diff --git a/tests/zfs-tests/tests/functional/cli_root/zpool_import/zpool_import.kshlib b/tests/zfs-tests/tests/functional/cli_root/zpool_import/zpool_import.kshlib
index 48794c982..8bbd668a9 100644
--- a/tests/zfs-tests/tests/functional/cli_root/zpool_import/zpool_import.kshlib
+++ b/tests/zfs-tests/tests/functional/cli_root/zpool_import/zpool_import.kshlib
@@ -31,7 +31,7 @@ function cleanup
log_must rm -rf $DEVICE_DIR/*
typeset i=0
while (( i < $MAX_NUM )); do
- log_must mkfile $FILE_SIZE ${DEVICE_DIR}/${DEVICE_FILE}$i
+ log_must truncate -s $FILE_SIZE ${DEVICE_DIR}/${DEVICE_FILE}$i
((i += 1))
done
is_linux && set_tunable32 TXG_HISTORY 0
@@ -163,7 +163,7 @@ function increase_device_sizes
typeset -i i=0
while (( i < $MAX_NUM )); do
- log_must mkfile $newfilesize ${DEVICE_DIR}/${DEVICE_FILE}$i
+ log_must truncate -s $newfilesize ${DEVICE_DIR}/${DEVICE_FILE}$i
((i += 1))
done
}
@@ -171,15 +171,18 @@ function increase_device_sizes
#
# Translate vdev names returned by zpool status into more generic names.
#
-# eg: mirror-2 --> mirror
-#
function _translate_vdev
{
typeset vdev=$1
- typeset keywords="mirror replacing raidz1 raidz2 raidz3 indirect"
+ #
+ # eg: mirror-2 --> mirror
+ # eg: draid2:4d:12c:1s-0 --> draid2
+ #
+ typeset keywords="mirror replacing raidz1 raidz2 raidz3 indirect draid1 draid2 draid3"
for word in $keywords; do
- echo $vdev | egrep "^${word}-[0-9]+\$" > /dev/null
+ echo $vdev | egrep -qE \
+ "^${word}-[0-9]+\$|^${word}:[0-9]+d:[0-9]c:[0-9]+s-[0-9]+\$"
if [[ $? -eq 0 ]]; then
vdev=$word
break
@@ -188,6 +191,7 @@ function _translate_vdev
[[ $vdev == "logs" ]] && echo "log" && return 0
[[ $vdev == "raidz1" ]] && echo "raidz" && return 0
+ [[ $vdev == "draid1" ]] && echo "draid" && return 0
echo $vdev
return 0
diff --git a/tests/zfs-tests/tests/functional/cli_root/zpool_import/zpool_import_007_pos.ksh b/tests/zfs-tests/tests/functional/cli_root/zpool_import/zpool_import_007_pos.ksh
index 6e93fd471..928efebdd 100755
--- a/tests/zfs-tests/tests/functional/cli_root/zpool_import/zpool_import_007_pos.ksh
+++ b/tests/zfs-tests/tests/functional/cli_root/zpool_import/zpool_import_007_pos.ksh
@@ -63,7 +63,7 @@ log_assert "For raidz, one destroyed pools devices was removed or used by " \
"other pool, it still can be imported correctly."
log_onexit cleanup
-log_must zpool create $TESTPOOL1 raidz $VDEV0 $VDEV1 $VDEV2 $VDIV3
+log_must zpool create $TESTPOOL1 raidz $VDEV0 $VDEV1 $VDEV2 $VDEV3
typeset guid=$(get_config $TESTPOOL1 pool_guid)
typeset target=$TESTPOOL1
if (( RANDOM % 2 == 0 )) ; then
diff --git a/tests/zfs-tests/tests/functional/cli_root/zpool_import/zpool_import_008_pos.ksh b/tests/zfs-tests/tests/functional/cli_root/zpool_import/zpool_import_008_pos.ksh
index 096bbe811..f8da584aa 100755
--- a/tests/zfs-tests/tests/functional/cli_root/zpool_import/zpool_import_008_pos.ksh
+++ b/tests/zfs-tests/tests/functional/cli_root/zpool_import/zpool_import_008_pos.ksh
@@ -63,7 +63,7 @@ log_assert "For raidz2, two destroyed pools devices was removed or used by " \
"other pool, it still can be imported correctly."
log_onexit cleanup
-log_must zpool create $TESTPOOL1 raidz2 $VDEV0 $VDEV1 $VDEV2 $VDIV3
+log_must zpool create $TESTPOOL1 raidz2 $VDEV0 $VDEV1 $VDEV2 $VDEV3
typeset guid=$(get_config $TESTPOOL1 pool_guid)
typeset target=$TESTPOOL1
if (( RANDOM % 2 == 0 )) ; then
diff --git a/tests/zfs-tests/tests/functional/cli_root/zpool_import/zpool_import_010_pos.ksh b/tests/zfs-tests/tests/functional/cli_root/zpool_import/zpool_import_010_pos.ksh
index b337bd00f..212024dfc 100755
--- a/tests/zfs-tests/tests/functional/cli_root/zpool_import/zpool_import_010_pos.ksh
+++ b/tests/zfs-tests/tests/functional/cli_root/zpool_import/zpool_import_010_pos.ksh
@@ -39,7 +39,7 @@
# STRATEGY:
# 1. Create a 5 ways mirror pool A with dev0/1/2/3/4, then destroy it.
# 2. Create a stripe pool B with dev1. Then destroy it.
-# 3. Create a raidz2 pool C with dev2/3/4. Then destroy it.
+# 3. Create a draid2 pool C with dev2/3/4/5. Then destroy it.
# 4. Create a raidz pool D with dev3/4. Then destroy it.
# 5. Create a stripe pool E with dev4. Then destroy it.
# 6. Verify 'zpool import -D -a' recover all the pools.
@@ -74,7 +74,7 @@ log_must zpool destroy $poolA
log_must zpool create $poolB $VDEV1
log_must zpool destroy $poolB
-log_must zpool create $poolC raidz2 $VDEV2 $VDEV3 $VDEV4
+log_must zpool create $poolC draid2 $VDEV2 $VDEV3 $VDEV4 $VDEV5
log_must zpool destroy $poolC
log_must zpool create $poolD raidz $VDEV3 $VDEV4
diff --git a/tests/zfs-tests/tests/functional/cli_root/zpool_import/zpool_import_016_pos.ksh b/tests/zfs-tests/tests/functional/cli_root/zpool_import/zpool_import_016_pos.ksh
new file mode 100755
index 000000000..5434625cb
--- /dev/null
+++ b/tests/zfs-tests/tests/functional/cli_root/zpool_import/zpool_import_016_pos.ksh
@@ -0,0 +1,91 @@
+#!/bin/ksh -p
+#
+# CDDL HEADER START
+#
+# The contents of this file are subject to the terms of the
+# Common Development and Distribution License (the "License").
+# You may not use this file except in compliance with the License.
+#
+# You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+# or http://www.opensolaris.org/os/licensing.
+# See the License for the specific language governing permissions
+# and limitations under the License.
+#
+# When distributing Covered Code, include this CDDL HEADER in each
+# file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+# If applicable, add the following below this CDDL HEADER, with the
+# fields enclosed by brackets "[]" replaced with your own identifying
+# information: Portions Copyright [yyyy] [name of copyright owner]
+#
+# CDDL HEADER END
+#
+
+#
+# Copyright 2007 Sun Microsystems, Inc. All rights reserved.
+# Use is subject to license terms.
+#
+
+#
+# Copyright (c) 2012, 2016 by Delphix. All rights reserved.
+# Copyright (c) 2020 Lawrence Livermore National Security, LLC.
+#
+
+. $STF_SUITE/include/libtest.shlib
+. $STF_SUITE/tests/functional/cli_root/zpool_import/zpool_import.cfg
+
+#
+# DESCRIPTION:
+# For draid, one destroyed pools devices was removed or used by other
+# pool, it still can be imported correctly.
+#
+# STRATEGY:
+# 1. Create a draid pool A with N disks.
+# 2. Destroy this pool A.
+# 3. Create another pool B with 1 disk which was used by pool A.
+# 4. Verify import this draid pool can succeed.
+#
+
+verify_runnable "global"
+
+function cleanup
+{
+ destroy_pool $TESTPOOL2
+ destroy_pool $TESTPOOL1
+
+ log_must rm -rf $DEVICE_DIR/*
+ typeset i=0
+ while (( i < $MAX_NUM )); do
+ log_must mkfile $FILE_SIZE ${DEVICE_DIR}/${DEVICE_FILE}$i
+ ((i += 1))
+ done
+}
+
+log_assert "For draid, one destroyed pools devices was removed or used by " \
+ "other pool, it still can be imported correctly."
+log_onexit cleanup
+
+log_must zpool create $TESTPOOL1 draid $VDEV0 $VDEV1 $VDEV2 $VDEV3
+typeset guid=$(get_config $TESTPOOL1 pool_guid)
+typeset target=$TESTPOOL1
+if (( RANDOM % 2 == 0 )) ; then
+ target=$guid
+ log_note "Import by guid."
+fi
+log_must zpool destroy $TESTPOOL1
+
+log_must zpool create $TESTPOOL2 $VDEV0
+log_must zpool import -d $DEVICE_DIR -D -f $target
+log_must zpool destroy $TESTPOOL1
+
+log_must zpool destroy $TESTPOOL2
+log_must rm -rf $VDEV0
+log_must zpool import -d $DEVICE_DIR -D -f $target
+log_must zpool destroy $TESTPOOL1
+
+log_note "For draid, two destroyed pool's devices were used, import failed."
+log_must mkfile $FILE_SIZE $VDEV0
+log_must zpool create $TESTPOOL2 $VDEV0 $VDEV1
+log_mustnot zpool import -d $DEVICE_DIR -D -f $target
+log_must zpool destroy $TESTPOOL2
+
+log_pass "zpool import -D draid passed."
diff --git a/tests/zfs-tests/tests/functional/cli_root/zpool_import/zpool_import_017_pos.ksh b/tests/zfs-tests/tests/functional/cli_root/zpool_import/zpool_import_017_pos.ksh
new file mode 100755
index 000000000..2e6cef265
--- /dev/null
+++ b/tests/zfs-tests/tests/functional/cli_root/zpool_import/zpool_import_017_pos.ksh
@@ -0,0 +1,92 @@
+#!/bin/ksh -p
+#
+# CDDL HEADER START
+#
+# The contents of this file are subject to the terms of the
+# Common Development and Distribution License (the "License").
+# You may not use this file except in compliance with the License.
+#
+# You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+# or http://www.opensolaris.org/os/licensing.
+# See the License for the specific language governing permissions
+# and limitations under the License.
+#
+# When distributing Covered Code, include this CDDL HEADER in each
+# file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+# If applicable, add the following below this CDDL HEADER, with the
+# fields enclosed by brackets "[]" replaced with your own identifying
+# information: Portions Copyright [yyyy] [name of copyright owner]
+#
+# CDDL HEADER END
+#
+
+#
+# Copyright 2007 Sun Microsystems, Inc. All rights reserved.
+# Use is subject to license terms.
+#
+
+#
+# Copyright (c) 2012, 2016 by Delphix. All rights reserved.
+# Copyright (c) 2020 Lawrence Livermore National Security, LLC.
+#
+
+. $STF_SUITE/include/libtest.shlib
+. $STF_SUITE/tests/functional/cli_root/zpool_import/zpool_import.cfg
+
+#
+# DESCRIPTION:
+# For draid2, two destroyed pool's devices were removed or used by other
+# pool, it still can be imported correctly.
+#
+# STRATEGY:
+# 1. Create a draid2 pool A with N disks.
+# 2. Destroy this pool A.
+# 3. Create another pool B with two disks which were used by pool A.
+# 4. Verify import this draid2 pool can succeed.
+#
+
+verify_runnable "global"
+
+function cleanup
+{
+ destroy_pool $TESTPOOL2
+ destroy_pool $TESTPOOL1
+
+ log_must rm -rf $DEVICE_DIR/*
+ typeset i=0
+ while (( i < $MAX_NUM )); do
+ log_must mkfile $FILE_SIZE ${DEVICE_DIR}/${DEVICE_FILE}$i
+ ((i += 1))
+ done
+}
+
+log_assert "For draid2, two destroyed pools devices was removed or used by " \
+ "other pool, it still can be imported correctly."
+log_onexit cleanup
+
+log_must zpool create $TESTPOOL1 draid2 $VDEV0 $VDEV1 $VDEV2 $VDEV3
+typeset guid=$(get_config $TESTPOOL1 pool_guid)
+typeset target=$TESTPOOL1
+if (( RANDOM % 2 == 0 )) ; then
+ target=$guid
+ log_note "Import by guid."
+fi
+log_must zpool destroy $TESTPOOL1
+
+log_must zpool create $TESTPOOL2 $VDEV0 $VDEV1
+log_must zpool import -d $DEVICE_DIR -D -f $target
+log_must zpool destroy $TESTPOOL1
+
+log_must zpool destroy $TESTPOOL2
+log_must rm -rf $VDEV0 $VDEV1
+log_must zpool import -d $DEVICE_DIR -D -f $target
+log_must zpool destroy $TESTPOOL1
+
+log_note "For draid2, more than two destroyed pool's devices were used, " \
+ "import failed."
+log_must mkfile $FILE_SIZE $VDEV0 $VDEV1
+log_must zpool create $TESTPOOL2 $VDEV0 $VDEV1 $VDEV2
+log_mustnot zpool import -d $DEVICE_DIR -D -f $target
+log_must zpool destroy $TESTPOOL2
+
+log_pass "zpool import -D draid2 passed."
diff --git a/tests/zfs-tests/tests/functional/cli_root/zpool_import/zpool_import_missing_001_pos.ksh b/tests/zfs-tests/tests/functional/cli_root/zpool_import/zpool_import_missing_001_pos.ksh
index 78e9bbf68..3b5167ff0 100755
--- a/tests/zfs-tests/tests/functional/cli_root/zpool_import/zpool_import_missing_001_pos.ksh
+++ b/tests/zfs-tests/tests/functional/cli_root/zpool_import/zpool_import_missing_001_pos.ksh
@@ -57,8 +57,8 @@
# Using the various combinations.
# - Regular import
# - Alternate Root Specified
-# It should be succeed with single d/m device upon 'raidz' & 'mirror',
-# but failed against 'regular' or more d/m devices.
+# It should succeed with single d/m device upon 'raidz', 'mirror',
+# 'draid' but failed against 'regular' or more d/m devices.
# 6. If import succeed, verify following is true:
# - The pool shows up under 'zpool list'.
# - The pool's health should be DEGRADED.
@@ -67,7 +67,16 @@
verify_runnable "global"
-set -A vdevs "" "mirror" "raidz"
+# Randomly test a subset of combinations to speed up the test.
+(( rc=RANDOM % 3 ))
+if [[ $rc == 0 ]] ; then
+ set -A vdevs "" "mirror" "raidz"
+elif [[ $rc == 1 ]] ; then
+ set -A vdevs "" "mirror" "draid"
+else
+ set -A vdevs "" "raidz" "draid"
+fi
+
set -A options "" "-R $ALTER_ROOT"
function cleanup
@@ -89,7 +98,8 @@ function recreate_files
log_must rm -rf $DEVICE_DIR/*
typeset i=0
while (( i < $MAX_NUM )); do
- log_must mkfile $FILE_SIZE ${DEVICE_DIR}/${DEVICE_FILE}$i
+ log_must rm -f ${DEVICE_DIR}/${DEVICE_FILE}$i
+ log_must truncate -s $FILE_SIZE ${DEVICE_DIR}/${DEVICE_FILE}$i
((i += 1))
done
}
@@ -157,6 +167,9 @@ while (( i < ${#vdevs[*]} )); do
'raidz') (( count > 1 )) && \
action=log_mustnot
;;
+ 'draid') (( count > 1 )) && \
+ action=log_mustnot
+ ;;
'') action=log_mustnot
;;
esac
diff --git a/tests/zfs-tests/tests/functional/cli_root/zpool_import/zpool_import_missing_002_pos.ksh b/tests/zfs-tests/tests/functional/cli_root/zpool_import/zpool_import_missing_002_pos.ksh
index c6d263707..60af3f321 100755
--- a/tests/zfs-tests/tests/functional/cli_root/zpool_import/zpool_import_missing_002_pos.ksh
+++ b/tests/zfs-tests/tests/functional/cli_root/zpool_import/zpool_import_missing_002_pos.ksh
@@ -43,6 +43,8 @@
# before data integrity is compromised
# - Raidz could withstand one devices failing
# before data integrity is compromised
+# - dRAID could withstand one devices failing
+# before data integrity is compromised
# Verify that is true.
#
# STRATEGY:
@@ -50,6 +52,7 @@
# - Regular pool
# - Mirror
# - Raidz
+# - dRAID
# 2. Create necessary filesystem and test files.
# 3. Export the test pool.
# 4. Move one or more device files to other directory
@@ -62,7 +65,16 @@
verify_runnable "global"
-set -A vdevs "" "mirror" "raidz"
+# Randomly test a subset of combinations to speed up the test.
+(( rc=RANDOM % 3 ))
+if [[ $rc == 0 ]] ; then
+ set -A vdevs "" "mirror" "raidz"
+elif [[ $rc == 1 ]] ; then
+ set -A vdevs "" "mirror" "draid"
+else
+ set -A vdevs "" "raidz" "draid"
+fi
+
set -A options "" "-R $ALTER_ROOT"
function cleanup
@@ -88,7 +100,8 @@ function cleanup_all
while (( i < $MAX_NUM )); do
typeset dev_file=${DEVICE_DIR}/${DEVICE_FILE}$i
if [[ ! -e ${dev_file} ]]; then
- log_must mkfile $FILE_SIZE ${dev_file}
+ log_must rm -f ${dev_file}
+ log_must truncate -s $FILE_SIZE ${dev_file}
fi
((i += 1))
done
@@ -158,7 +171,8 @@ while (( i < ${#vdevs[*]} )); do
# Backup all device files while filesystem prepared.
#
if [[ -z $backup ]] ; then
- log_must tar cf $DEVICE_DIR/$DEVICE_ARCHIVE ${DEVICE_FILE}*
+ log_must tar cf $DEVICE_DIR/$DEVICE_ARCHIVE \
+ ${DEVICE_FILE}0 ${DEVICE_FILE}1 ${DEVICE_FILE}2
backup="true"
fi
@@ -174,6 +188,9 @@ while (( i < ${#vdevs[*]} )); do
'raidz') (( count == 1 )) && \
action=log_must
;;
+ 'draid') (( count == 1 )) && \
+ action=log_must
+ ;;
esac
typeset target=$TESTPOOL1
diff --git a/tests/zfs-tests/tests/functional/cli_root/zpool_import/zpool_import_missing_003_pos.ksh b/tests/zfs-tests/tests/functional/cli_root/zpool_import/zpool_import_missing_003_pos.ksh
index 6fa55250a..9d4629a77 100755
--- a/tests/zfs-tests/tests/functional/cli_root/zpool_import/zpool_import_missing_003_pos.ksh
+++ b/tests/zfs-tests/tests/functional/cli_root/zpool_import/zpool_import_missing_003_pos.ksh
@@ -64,7 +64,7 @@ if ! is_illumos; then
log_unsupported "Test case may be slow"
fi
-set -A vdevs "" "mirror" "raidz"
+set -A vdevs "" "mirror" "raidz" "draid"
function verify
{
@@ -207,6 +207,9 @@ while (( i < ${#vdevs[*]} )); do
'raidz') (( overlap > 1 )) && \
action=log_mustnot
;;
+ 'draid') (( overlap > 1 )) && \
+ action=log_mustnot
+ ;;
'') action=log_mustnot
;;
esac
diff --git a/tests/zfs-tests/tests/functional/cli_root/zpool_wait/scan/zpool_wait_replace_cancel.ksh b/tests/zfs-tests/tests/functional/cli_root/zpool_wait/scan/zpool_wait_replace_cancel.ksh
index f135de4bc..a899e9f99 100755
--- a/tests/zfs-tests/tests/functional/cli_root/zpool_wait/scan/zpool_wait_replace_cancel.ksh
+++ b/tests/zfs-tests/tests/functional/cli_root/zpool_wait/scan/zpool_wait_replace_cancel.ksh
@@ -41,6 +41,7 @@ function cleanup
log_must zpool detach $TESTPOOL $DISK2
get_disklist $TESTPOOL | grep $DISK3 >/dev/null && \
log_must zpool detach $TESTPOOL $DISK3
+ log_must zpool sync $TESTPOOL
}
typeset pid
diff --git a/tests/zfs-tests/tests/functional/fault/auto_offline_001_pos.ksh b/tests/zfs-tests/tests/functional/fault/auto_offline_001_pos.ksh
index 1bf54b1a8..0abe1e2ce 100755
--- a/tests/zfs-tests/tests/functional/fault/auto_offline_001_pos.ksh
+++ b/tests/zfs-tests/tests/functional/fault/auto_offline_001_pos.ksh
@@ -54,7 +54,7 @@ if is_linux; then
# Add one 512b scsi_debug device (4Kn would generate IO errors)
# NOTE: must be larger than other "file" vdevs and minimum SPA devsize:
# add 32m of fudge
- load_scsi_debug $(($SPA_MINDEVSIZE/1024/1024+32)) 1 1 1 '512b'
+ load_scsi_debug $(($MINVDEVSIZE/1024/1024+32)) 1 1 1 '512b'
else
log_unsupported "scsi debug module unsupported"
fi
@@ -85,10 +85,10 @@ typeset poolconfs=(
"mirror $filedev1 $filedev2 special mirror $filedev3 $removedev"
)
-log_must truncate -s $SPA_MINDEVSIZE $filedev1
-log_must truncate -s $SPA_MINDEVSIZE $filedev2
-log_must truncate -s $SPA_MINDEVSIZE $filedev3
-log_must truncate -s $SPA_MINDEVSIZE $sparedev
+log_must truncate -s $MINVDEVSIZE $filedev1
+log_must truncate -s $MINVDEVSIZE $filedev2
+log_must truncate -s $MINVDEVSIZE $filedev3
+log_must truncate -s $MINVDEVSIZE $sparedev
for conf in "${poolconfs[@]}"
do
diff --git a/tests/zfs-tests/tests/functional/fault/auto_spare_001_pos.ksh b/tests/zfs-tests/tests/functional/fault/auto_spare_001_pos.ksh
index b6af1a3f4..a93267185 100755
--- a/tests/zfs-tests/tests/functional/fault/auto_spare_001_pos.ksh
+++ b/tests/zfs-tests/tests/functional/fault/auto_spare_001_pos.ksh
@@ -55,36 +55,59 @@ zed_events_drain
TESTFILE="/$TESTPOOL/$TESTFS/testfile"
-for type in "mirror" "raidz" "raidz2"; do
- # 1. Create a pool with hot spares
- truncate -s $SPA_MINDEVSIZE $VDEV_FILES $SPARE_FILE
- log_must zpool create -f $TESTPOOL $type $VDEV_FILES spare $SPARE_FILE
+for type in "mirror" "raidz" "raidz2" "draid:1s"; do
+ if [ "$type" = "draid:1s" ]; then
+ # 1. Create a dRAID pool with a distributed hot spare
+ #
+ # Corruption is injected in the file-2 instead of file-1
+ # vdev since the dRAID permutation at these offsets maps
+ # to distributed spare space and not data devices.
+ #
+ log_must truncate -s $MINVDEVSIZE $VDEV_FILES
+ log_must zpool create -f $TESTPOOL $type $VDEV_FILES
+ SPARE="draid1-0-0"
+ FAULT="$TEST_BASE_DIR/file-2"
+ else
+ # 1. Create a pool with hot spares
+ log_must truncate -s $MINVDEVSIZE $VDEV_FILES $SPARE_FILE
+ log_must zpool create -f $TESTPOOL $type $VDEV_FILES \
+ spare $SPARE_FILE
+ SPARE=$SPARE_FILE
+ FAULT=$FAULT_FILE
+ fi
# 2. Create a filesystem with the primary cache disable to force reads
log_must zfs create -o primarycache=none $TESTPOOL/$TESTFS
log_must zfs set recordsize=16k $TESTPOOL/$TESTFS
# 3. Write a file to the pool to be read back
- log_must dd if=/dev/urandom of=$TESTFILE bs=1M count=16
+ log_must dd if=/dev/urandom of=$TESTFILE bs=1M count=64
# 4. Inject IO ERRORS on read with a zinject error handler
- log_must zinject -d $FAULT_FILE -e io -T read $TESTPOOL
+ log_must zinject -d $FAULT -e io -T read $TESTPOOL
log_must cp $TESTFILE /dev/null
# 5. Verify the ZED kicks in a hot spare and expected pool/device status
log_note "Wait for ZED to auto-spare"
- log_must wait_vdev_state $TESTPOOL $FAULT_FILE "FAULTED" 60
- log_must wait_vdev_state $TESTPOOL $SPARE_FILE "ONLINE" 60
- log_must wait_hotspare_state $TESTPOOL $SPARE_FILE "INUSE"
+ log_must wait_vdev_state $TESTPOOL $FAULT "FAULTED" 60
+ log_must wait_vdev_state $TESTPOOL $SPARE "ONLINE" 60
+ log_must wait_hotspare_state $TESTPOOL $SPARE "INUSE"
log_must check_state $TESTPOOL "" "DEGRADED"
+ # The ZED will use a sequential resilver for dRAID. Wait for the
+ # resilver and subsequent scrub to complete before moving on.
+ if [ "$type" = "draid:1s" ]; then
+ log_must wait_scrubbed $TESTPOOL
+ fi
+
# 6. Clear the fault
log_must zinject -c all
- log_must zpool clear $TESTPOOL $FAULT_FILE
+ log_must zpool clear $TESTPOOL $FAULT
# 7. Verify the hot spare is available and expected pool/device status
- log_must wait_vdev_state $TESTPOOL $FAULT_FILE "ONLINE" 60
- log_must wait_hotspare_state $TESTPOOL $SPARE_FILE "AVAIL"
+ log_must wait_vdev_state $TESTPOOL $FAULT "ONLINE" 60
+ log_must wait_hotspare_state $TESTPOOL $SPARE "AVAIL"
+
log_must is_pool_resilvered $TESTPOOL
log_must check_state $TESTPOOL "" "ONLINE"
diff --git a/tests/zfs-tests/tests/functional/fault/auto_spare_002_pos.ksh b/tests/zfs-tests/tests/functional/fault/auto_spare_002_pos.ksh
index f6d720a01..e9517bad7 100755
--- a/tests/zfs-tests/tests/functional/fault/auto_spare_002_pos.ksh
+++ b/tests/zfs-tests/tests/functional/fault/auto_spare_002_pos.ksh
@@ -60,15 +60,16 @@ TESTFILE="/$TESTPOOL/$TESTFS/testfile"
for type in "mirror" "raidz" "raidz2"; do
# 1. Create a pool with hot spares
- truncate -s $SPA_MINDEVSIZE $VDEV_FILES $SPARE_FILE
- log_must zpool create -f $TESTPOOL $type $VDEV_FILES spare $SPARE_FILE
+ log_must truncate -s $MINVDEVSIZE $VDEV_FILES $SPARE_FILE
+ log_must zpool create -f $TESTPOOL $type $VDEV_FILES \
+ spare $SPARE_FILE
# 2. Create a filesystem with the primary cache disable to force reads
log_must zfs create -o primarycache=none $TESTPOOL/$TESTFS
log_must zfs set recordsize=16k $TESTPOOL/$TESTFS
# 3. Write a file to the pool to be read back
- log_must dd if=/dev/urandom of=$TESTFILE bs=1M count=16
+ log_must dd if=/dev/urandom of=$TESTFILE bs=1M count=64
# 4. Inject CHECKSUM ERRORS on read with a zinject error handler
log_must zinject -d $FAULT_FILE -e corrupt -f 50 -T read $TESTPOOL
diff --git a/tests/zfs-tests/tests/functional/fault/auto_spare_ashift.ksh b/tests/zfs-tests/tests/functional/fault/auto_spare_ashift.ksh
index e9857518e..f4fd21d04 100755
--- a/tests/zfs-tests/tests/functional/fault/auto_spare_ashift.ksh
+++ b/tests/zfs-tests/tests/functional/fault/auto_spare_ashift.ksh
@@ -60,7 +60,7 @@ FAIL_DEVICE="$TEST_BASE_DIR/fail-dev"
# 1. Create a pool from 512b devices and set "ashift" pool property accordingly
for vdev in $SAFE_DEVICE $FAIL_DEVICE; do
- truncate -s $SPA_MINDEVSIZE $vdev
+ truncate -s $MINVDEVSIZE $vdev
done
log_must zpool create -f $TESTPOOL mirror $SAFE_DEVICE $FAIL_DEVICE
# NOTE: file VDEVs should be added as 512b devices, verify this "just in case"
@@ -71,7 +71,7 @@ log_must zpool set ashift=9 $TESTPOOL
# 2. Add one 512e spare device (4Kn would generate IO errors on replace)
# NOTE: must be larger than the existing 512b devices, add 32m of fudge
-load_scsi_debug $(($SPA_MINDEVSIZE/1024/1024+32)) $SDHOSTS $SDTGTS $SDLUNS '512e'
+load_scsi_debug $(($MINVDEVSIZE/1024/1024+32)) $SDHOSTS $SDTGTS $SDLUNS '512e'
SPARE_DEVICE=$(get_debug_device)
log_must_busy zpool add $TESTPOOL spare $SPARE_DEVICE
diff --git a/tests/zfs-tests/tests/functional/fault/auto_spare_multiple.ksh b/tests/zfs-tests/tests/functional/fault/auto_spare_multiple.ksh
index bec413527..8a9cf6f53 100755
--- a/tests/zfs-tests/tests/functional/fault/auto_spare_multiple.ksh
+++ b/tests/zfs-tests/tests/functional/fault/auto_spare_multiple.ksh
@@ -63,15 +63,43 @@ FAULT_DEV1="$TEST_BASE_DIR/fault-dev1"
FAULT_DEV2="$TEST_BASE_DIR/fault-dev2"
SAFE_DEV1="$TEST_BASE_DIR/safe-dev1"
SAFE_DEV2="$TEST_BASE_DIR/safe-dev2"
-DATA_DEVS="$FAULT_DEV1 $FAULT_DEV2 $SAFE_DEV1 $SAFE_DEV2"
+SAFE_DEV3="$TEST_BASE_DIR/safe-dev3"
+SAFE_DEV4="$TEST_BASE_DIR/safe-dev4"
+DATA_DEVS="$FAULT_DEV1 $FAULT_DEV2 $SAFE_DEV1 $SAFE_DEV2 $SAFE_DEV3 $SAFE_DEV4"
SPARE_DEV1="$TEST_BASE_DIR/spare-dev1"
SPARE_DEV2="$TEST_BASE_DIR/spare-dev2"
SPARE_DEVS="$SPARE_DEV1 $SPARE_DEV2"
-for type in "mirror" "raidz" "raidz2" "raidz3"; do
- # 1. Create a pool with two hot spares
- truncate -s $SPA_MINDEVSIZE $DATA_DEVS $SPARE_DEVS
- log_must zpool create -f $TESTPOOL $type $DATA_DEVS spare $SPARE_DEVS
+for type in "mirror" "raidz" "raidz2" "raidz3" "draid2:1s"; do
+ if [ "$type" = "draid2:1s" ]; then
+ # 1. Create a dRAID pool with a distributed and traditional
+ # hot spare to provide test coverage for both configurations.
+ #
+ # Corruption is injected in the third and fourth vdevs
+ # since the dRAID permutation at these offsets maps to
+ # distributed spare space and not data devices.
+ #
+ truncate -s $MINVDEVSIZE $DATA_DEVS $SPARE_DEV1
+ log_must zpool create -f $TESTPOOL $type $SAFE_DEV1 \
+ $SAFE_DEV2 $FAULT_DEV1 $FAULT_DEV2 $SAFE_DEV3 $SAFE_DEV4 \
+ spare $SPARE_DEV1
+ SPARE1=$SPARE_DEV1
+ SPARE2="draid2-0-0"
+ elif [ "$type" = "mirror" ]; then
+ # 1. Create a 3-way mirror pool with two hot spares
+ truncate -s $MINVDEVSIZE $DATA_DEVS $SPARE_DEVS
+ log_must zpool create -f $TESTPOOL $type \
+ $FAULT_DEV1 $FAULT_DEV2 $SAFE_DEV1 spare $SPARE_DEVS
+ SPARE1=$SPARE_DEV1
+ SPARE2=$SPARE_DEV2
+ else
+ # 1. Create a raidz pool with two hot spares
+ truncate -s $MINVDEVSIZE $DATA_DEVS $SPARE_DEVS
+ log_must zpool create -f $TESTPOOL $type $DATA_DEVS \
+ spare $SPARE_DEVS
+ SPARE1=$SPARE_DEV1
+ SPARE2=$SPARE_DEV2
+ fi
# 2. Inject IO ERRORS with a zinject error handler on the first device
log_must zinject -d $FAULT_DEV1 -e io -T all -f 100 $TESTPOOL
@@ -79,11 +107,11 @@ for type in "mirror" "raidz" "raidz2" "raidz3"; do
# 3. Start a scrub
log_must zpool scrub $TESTPOOL
- # 4. Verify the ZED kicks in a hot spare and expected pool/device status
+ # 4. Verify the ZED kicks in a hot spare and the pool/device status
log_note "Wait for ZED to auto-spare"
log_must wait_vdev_state $TESTPOOL $FAULT_DEV1 "FAULTED" 60
- log_must wait_vdev_state $TESTPOOL $SPARE_DEV1 "ONLINE" 60
- log_must wait_hotspare_state $TESTPOOL $SPARE_DEV1 "INUSE"
+ log_must wait_vdev_state $TESTPOOL $SPARE1 "ONLINE" 60
+ log_must wait_hotspare_state $TESTPOOL $SPARE1 "INUSE"
log_must check_state $TESTPOOL "" "DEGRADED"
# 5. Inject IO ERRORS on a second device
@@ -98,10 +126,14 @@ for type in "mirror" "raidz" "raidz2" "raidz3"; do
# 7. Verify the ZED kicks in a second hot spare
log_note "Wait for ZED to auto-spare"
log_must wait_vdev_state $TESTPOOL $FAULT_DEV2 "FAULTED" 60
- log_must wait_vdev_state $TESTPOOL $SPARE_DEV2 "ONLINE" 60
- log_must wait_hotspare_state $TESTPOOL $SPARE_DEV2 "INUSE"
+ log_must wait_vdev_state $TESTPOOL $SPARE2 "ONLINE" 60
+ log_must wait_hotspare_state $TESTPOOL $SPARE2 "INUSE"
log_must check_state $TESTPOOL "" "DEGRADED"
+ while is_pool_scrubbing $TESTPOOL || is_pool_resilvering $TESTPOOL; do
+ sleep 1
+ done
+
# 8. Clear the fault on both devices
log_must zinject -c all
log_must zpool clear $TESTPOOL $FAULT_DEV1
@@ -110,8 +142,8 @@ for type in "mirror" "raidz" "raidz2" "raidz3"; do
# 9. Verify the hot spares are available and expected pool/device status
log_must wait_vdev_state $TESTPOOL $FAULT_DEV1 "ONLINE" 60
log_must wait_vdev_state $TESTPOOL $FAULT_DEV2 "ONLINE" 60
- log_must wait_hotspare_state $TESTPOOL $SPARE_DEV1 "AVAIL"
- log_must wait_hotspare_state $TESTPOOL $SPARE_DEV2 "AVAIL"
+ log_must wait_hotspare_state $TESTPOOL $SPARE1 "AVAIL"
+ log_must wait_hotspare_state $TESTPOOL $SPARE2 "AVAIL"
log_must check_state $TESTPOOL "" "ONLINE"
# Cleanup
@@ -120,11 +152,37 @@ done
# Rinse and repeat, this time faulting both devices at the same time
# NOTE: "raidz" is excluded since it cannot survive 2 faulted devices
-# NOTE: "mirror" is a 4-way mirror here and should survive this test
-for type in "mirror" "raidz2" "raidz3"; do
- # 1. Create a pool with two hot spares
- truncate -s $SPA_MINDEVSIZE $DATA_DEVS $SPARE_DEVS
- log_must zpool create -f $TESTPOOL $type $DATA_DEVS spare $SPARE_DEVS
+# NOTE: "mirror" is a 3-way mirror here and should survive this test
+for type in "mirror" "raidz2" "raidz3" "draid2:1s"; do
+ if [ "$type" = "draid2:1s" ]; then
+ # 1. Create a dRAID pool with a distributed and traditional
+ # hot spare to provide test coverage for both configurations.
+ #
+ # Corruption is injected in the third and fourth vdevs
+ # since the dRAID permutation at these offsets maps to
+ # distributed spare space and not data devices.
+ #
+ truncate -s $MINVDEVSIZE $DATA_DEVS $SPARE_DEV1
+ log_must zpool create -f $TESTPOOL $type $SAFE_DEV1 \
+ $SAFE_DEV2 $FAULT_DEV1 $FAULT_DEV2 $SAFE_DEV3 $SAFE_DEV4 \
+ spare $SPARE_DEV1
+ SPARE1=$SPARE_DEV1
+ SPARE2="draid2-0-0"
+ elif [ "$type" = "mirror" ]; then
+ # 1. Create a 3-way mirror pool with two hot spares
+ truncate -s $MINVDEVSIZE $DATA_DEVS $SPARE_DEVS
+ log_must zpool create -f $TESTPOOL $type \
+ $FAULT_DEV1 $FAULT_DEV2 $SAFE_DEV1 spare $SPARE_DEVS
+ SPARE1=$SPARE_DEV1
+ SPARE2=$SPARE_DEV2
+ else
+ # 1. Create a raidz pool with two hot spares
+ truncate -s $MINVDEVSIZE $DATA_DEVS $SPARE_DEVS
+ log_must zpool create -f $TESTPOOL $type $DATA_DEVS \
+ spare $SPARE_DEVS
+ SPARE1=$SPARE_DEV1
+ SPARE2=$SPARE_DEV2
+ fi
# 2. Inject IO ERRORS with a zinject error handler on two devices
log_must eval "zinject -d $FAULT_DEV1 -e io -T all -f 100 $TESTPOOL &"
@@ -133,14 +191,14 @@ for type in "mirror" "raidz2" "raidz3"; do
# 3. Start a scrub
log_must zpool scrub $TESTPOOL
- # 4. Verify the ZED kicks in two hot spares and expected pool/device status
+ # 4. Verify the ZED kicks in two hot spares and the pool/device status
log_note "Wait for ZED to auto-spare"
log_must wait_vdev_state $TESTPOOL $FAULT_DEV1 "FAULTED" 60
log_must wait_vdev_state $TESTPOOL $FAULT_DEV2 "FAULTED" 60
- log_must wait_vdev_state $TESTPOOL $SPARE_DEV1 "ONLINE" 60
- log_must wait_vdev_state $TESTPOOL $SPARE_DEV2 "ONLINE" 60
- log_must wait_hotspare_state $TESTPOOL $SPARE_DEV1 "INUSE"
- log_must wait_hotspare_state $TESTPOOL $SPARE_DEV2 "INUSE"
+ log_must wait_vdev_state $TESTPOOL $SPARE1 "ONLINE" 60
+ log_must wait_vdev_state $TESTPOOL $SPARE2 "ONLINE" 60
+ log_must wait_hotspare_state $TESTPOOL $SPARE1 "INUSE"
+ log_must wait_hotspare_state $TESTPOOL $SPARE2 "INUSE"
log_must check_state $TESTPOOL "" "DEGRADED"
# 5. Clear the fault on both devices
diff --git a/tests/zfs-tests/tests/functional/fault/auto_spare_shared.ksh b/tests/zfs-tests/tests/functional/fault/auto_spare_shared.ksh
index 467161359..4229537b3 100755
--- a/tests/zfs-tests/tests/functional/fault/auto_spare_shared.ksh
+++ b/tests/zfs-tests/tests/functional/fault/auto_spare_shared.ksh
@@ -42,7 +42,7 @@ if is_linux; then
# Add one 512b spare device (4Kn would generate IO errors on replace)
# NOTE: must be larger than other "file" vdevs and minimum SPA devsize:
# add 32m of fudge
- load_scsi_debug $(($SPA_MINDEVSIZE/1024/1024+32)) 1 1 1 '512b'
+ load_scsi_debug $(($MINVDEVSIZE/1024/1024+32)) 1 1 1 '512b'
else
log_unsupported "scsi debug module unsupported"
fi
@@ -72,7 +72,7 @@ SPARE_DISKDEV="$(get_debug_device)"
for vdev in $SAFE_FILEDEVPOOL1 $SAFE_FILEDEVPOOL2 $FAIL_FILEDEVPOOL1 \
$FAIL_FILEDEVPOOL2 $SPARE_FILEDEV; do
- log_must truncate -s $SPA_MINDEVSIZE $vdev
+ log_must truncate -s $MINVDEVSIZE $vdev
done
for spare in $SPARE_FILEDEV $SPARE_DISKDEV; do
diff --git a/tests/zfs-tests/tests/functional/raidz/Makefile.am b/tests/zfs-tests/tests/functional/raidz/Makefile.am
index 694de18a6..d93eb73cf 100644
--- a/tests/zfs-tests/tests/functional/raidz/Makefile.am
+++ b/tests/zfs-tests/tests/functional/raidz/Makefile.am
@@ -3,4 +3,6 @@ dist_pkgdata_SCRIPTS = \
setup.ksh \
cleanup.ksh \
raidz_001_neg.ksh \
- raidz_002_pos.ksh
+ raidz_002_pos.ksh \
+ raidz_003_pos.ksh \
+ raidz_004_pos.ksh
diff --git a/tests/zfs-tests/tests/functional/raidz/raidz_003_pos.ksh b/tests/zfs-tests/tests/functional/raidz/raidz_003_pos.ksh
new file mode 100755
index 000000000..bf22632c7
--- /dev/null
+++ b/tests/zfs-tests/tests/functional/raidz/raidz_003_pos.ksh
@@ -0,0 +1,41 @@
+#!/bin/ksh -p
+#
+# CDDL HEADER START
+#
+# The contents of this file are subject to the terms of the
+# Common Development and Distribution License (the "License").
+# You may not use this file except in compliance with the License.
+#
+# You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+# or http://www.opensolaris.org/os/licensing.
+# See the License for the specific language governing permissions
+# and limitations under the License.
+#
+# When distributing Covered Code, include this CDDL HEADER in each
+# file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+# If applicable, add the following below this CDDL HEADER, with the
+# fields enclosed by brackets "[]" replaced with your own identifying
+# information: Portions Copyright [yyyy] [name of copyright owner]
+#
+# CDDL HEADER END
+#
+
+#
+# Copyright (c) 2020 by vStack. All rights reserved.
+#
+
+. $STF_SUITE/include/libtest.shlib
+
+#
+# DESCRIPTION:
+# Call the raidz_test tool with -S and -e to test all supported raidz
+# implementations with expanded map and default reflow offset.
+# This options will test several raidz block geometries and several zio
+# parameters that affect raidz block layout. Data reconstruction performs
+# all combinations of failed disks. Wall time is set to 5min, but actual
+# runtime might be longer.
+#
+
+log_must raidz_test -S -e -t 60
+
+log_pass "raidz_test parameter sweep test with expanded map succeeded."
diff --git a/tests/zfs-tests/tests/functional/raidz/raidz_004_pos.ksh b/tests/zfs-tests/tests/functional/raidz/raidz_004_pos.ksh
new file mode 100755
index 000000000..6cd2bf7c9
--- /dev/null
+++ b/tests/zfs-tests/tests/functional/raidz/raidz_004_pos.ksh
@@ -0,0 +1,41 @@
+#!/bin/ksh -p
+#
+# CDDL HEADER START
+#
+# The contents of this file are subject to the terms of the
+# Common Development and Distribution License (the "License").
+# You may not use this file except in compliance with the License.
+#
+# You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+# or http://www.opensolaris.org/os/licensing.
+# See the License for the specific language governing permissions
+# and limitations under the License.
+#
+# When distributing Covered Code, include this CDDL HEADER in each
+# file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+# If applicable, add the following below this CDDL HEADER, with the
+# fields enclosed by brackets "[]" replaced with your own identifying
+# information: Portions Copyright [yyyy] [name of copyright owner]
+#
+# CDDL HEADER END
+#
+
+#
+# Copyright (c) 2020 by vStack. All rights reserved.
+#
+
+. $STF_SUITE/include/libtest.shlib
+
+#
+# DESCRIPTION:
+# Call the raidz_test tool with -S and -e to test all supported raidz
+# implementations with expanded map and zero reflow offset.
+# This options will test several raidz block geometries and several zio
+# parameters that affect raidz block layout. Data reconstruction performs
+# all combinations of failed disks. Wall time is set to 5min, but actual
+# runtime might be longer.
+#
+
+log_must raidz_test -S -e -r 0 -t 60
+
+log_pass "raidz_test parameter sweep test with expanded map succeeded."
diff --git a/tests/zfs-tests/tests/functional/redundancy/Makefile.am b/tests/zfs-tests/tests/functional/redundancy/Makefile.am
index 6f6cc405b..b2d4414b2 100644
--- a/tests/zfs-tests/tests/functional/redundancy/Makefile.am
+++ b/tests/zfs-tests/tests/functional/redundancy/Makefile.am
@@ -2,10 +2,17 @@ pkgdatadir = $(datadir)/@PACKAGE@/zfs-tests/tests/functional/redundancy
dist_pkgdata_SCRIPTS = \
setup.ksh \
cleanup.ksh \
- redundancy_001_pos.ksh \
- redundancy_002_pos.ksh \
- redundancy_003_pos.ksh \
- redundancy_004_neg.ksh
+ redundancy_draid1.ksh \
+ redundancy_draid2.ksh \
+ redundancy_draid3.ksh \
+ redundancy_draid_spare1.ksh \
+ redundancy_draid_spare2.ksh \
+ redundancy_draid_spare3.ksh \
+ redundancy_mirror.ksh \
+ redundancy_raidz1.ksh \
+ redundancy_raidz2.ksh \
+ redundancy_raidz3.ksh \
+ redundancy_stripe.ksh
dist_pkgdata_DATA = \
redundancy.cfg \
diff --git a/tests/zfs-tests/tests/functional/redundancy/redundancy.kshlib b/tests/zfs-tests/tests/functional/redundancy/redundancy.kshlib
index 9bf2df0d1..26ded8720 100644
--- a/tests/zfs-tests/tests/functional/redundancy/redundancy.kshlib
+++ b/tests/zfs-tests/tests/functional/redundancy/redundancy.kshlib
@@ -67,6 +67,23 @@ function random
}
#
+# Get the number of checksum errors for the pool.
+#
+# $1 Pool
+#
+function cksum_pool
+{
+ typeset -i cksum=$(zpool status $1 | awk '
+ !NF { isvdev = 0 }
+ isvdev { errors += $NF }
+ /CKSUM$/ { isvdev = 1 }
+ END { print errors }
+ ')
+
+ echo $cksum
+}
+
+#
# Record the directories construction and checksum all the files which reside
# within the specified pool
#
@@ -81,6 +98,7 @@ function record_data
[[ -z $pool ]] && log_fail "No specified pool."
[[ -f $recordfile ]] && log_must rm -f $recordfile
+ sync_pool $pool
typeset mntpnt
mntpnt=$(get_prop mountpoint $pool)
log_must eval "du -a $mntpnt > $recordfile 2>&1"
@@ -119,22 +137,43 @@ function setup_test_env
destroy_pool $pool
fi
- log_must mkfile $MINVDEVSIZE $vdevs
+ log_must truncate -s $MINVDEVSIZE $vdevs
- log_must zpool create -m $TESTDIR $pool $keyword $vdevs
+ log_must zpool create -f -m $TESTDIR $pool $keyword $vdevs
log_note "Filling up the filesystem ..."
typeset -i ret=0
typeset -i i=0
typeset file=$TESTDIR/file
+ typeset -i limit
+ (( limit = $(get_prop available $pool) / 4 ))
+
while true ; do
- file_write -o create -f $file.$i \
- -b $BLOCKSZ -c $NUM_WRITES
+ [[ $(get_prop available $pool) -lt $limit ]] && break
+ file_write -o create -f $file.$i -b $BLOCKSZ -c $NUM_WRITES
+ ret=$?
+ (( $ret != 0 )) && break
+ (( i = i + 1 ))
+ done
+
+ record_data $TESTPOOL $PRE_RECORD_FILE
+}
+
+function refill_test_env
+{
+ log_note "Re-filling the filesystem ..."
+ typeset -i ret=0
+ typeset -i i=0
+ typeset mntpnt
+ mntpnt=$(get_prop mountpoint $pool)
+ typeset file=$mntpnt/file
+ while [[ -e $file.$i ]]; do
+ log_must rm -f $file.$i
+ file_write -o create -f $file.$i -b $BLOCKSZ -c $NUM_WRITES
ret=$?
(( $ret != 0 )) && break
(( i = i + 1 ))
done
- (($ret != 28 )) && log_note "file_write return value($ret) is unexpected."
record_data $TESTPOOL $PRE_RECORD_FILE
}
diff --git a/tests/zfs-tests/tests/functional/redundancy/redundancy_draid1.ksh b/tests/zfs-tests/tests/functional/redundancy/redundancy_draid1.ksh
new file mode 100755
index 000000000..85d420ab0
--- /dev/null
+++ b/tests/zfs-tests/tests/functional/redundancy/redundancy_draid1.ksh
@@ -0,0 +1,78 @@
+#!/bin/ksh -p
+#
+# CDDL HEADER START
+#
+# The contents of this file are subject to the terms of the
+# Common Development and Distribution License (the "License").
+# You may not use this file except in compliance with the License.
+#
+# You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+# or http://www.opensolaris.org/os/licensing.
+# See the License for the specific language governing permissions
+# and limitations under the License.
+#
+# When distributing Covered Code, include this CDDL HEADER in each
+# file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+# If applicable, add the following below this CDDL HEADER, with the
+# fields enclosed by brackets "[]" replaced with your own identifying
+# information: Portions Copyright [yyyy] [name of copyright owner]
+#
+# CDDL HEADER END
+#
+
+#
+# Copyright 2007 Sun Microsystems, Inc. All rights reserved.
+# Use is subject to license terms.
+#
+
+#
+# Copyright (c) 2013 by Delphix. All rights reserved.
+# Copyright (c) 2020 by Lawrence Livermore National Security, LLC.
+#
+
+. $STF_SUITE/include/libtest.shlib
+. $STF_SUITE/tests/functional/redundancy/redundancy.kshlib
+
+#
+# DESCRIPTION:
+# A draid pool can withstand at most 1 device failing or missing.
+#
+# STRATEGY:
+# 1. Create N(>3,<6) virtual disk files.
+# 2. Create draid pool based on the virtual disk files.
+# 3. Fill the filesystem with directories and files.
+# 4. Record all the files and directories checksum information.
+# 5. Damaged one of the virtual disk file.
+# 6. Verify the data is correct to prove draid can withstand 1 device is
+# failing.
+#
+
+verify_runnable "global"
+
+log_assert "Verify draid pool can withstand one device failing."
+log_onexit cleanup
+
+typeset -i cnt=$(random_int_between 3 6)
+setup_test_env $TESTPOOL draid $cnt
+
+#
+# Inject data corruption error for draid pool
+#
+damage_devs $TESTPOOL 1 "label"
+log_must is_data_valid $TESTPOOL
+log_must clear_errors $TESTPOOL
+
+#
+# Inject bad device error for draid pool
+#
+damage_devs $TESTPOOL 1
+log_must is_data_valid $TESTPOOL
+log_must recover_bad_missing_devs $TESTPOOL 1
+
+#
+# Inject missing device error for draid pool
+#
+remove_devs $TESTPOOL 1
+log_must is_data_valid $TESTPOOL
+
+log_pass "draid pool can withstand one device failing passed."
diff --git a/tests/zfs-tests/tests/functional/redundancy/redundancy_draid2.ksh b/tests/zfs-tests/tests/functional/redundancy/redundancy_draid2.ksh
new file mode 100755
index 000000000..04f1fdfb1
--- /dev/null
+++ b/tests/zfs-tests/tests/functional/redundancy/redundancy_draid2.ksh
@@ -0,0 +1,85 @@
+#!/bin/ksh -p
+#
+# CDDL HEADER START
+#
+# The contents of this file are subject to the terms of the
+# Common Development and Distribution License (the "License").
+# You may not use this file except in compliance with the License.
+#
+# You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+# or http://www.opensolaris.org/os/licensing.
+# See the License for the specific language governing permissions
+# and limitations under the License.
+#
+# When distributing Covered Code, include this CDDL HEADER in each
+# file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+# If applicable, add the following below this CDDL HEADER, with the
+# fields enclosed by brackets "[]" replaced with your own identifying
+# information: Portions Copyright [yyyy] [name of copyright owner]
+#
+# CDDL HEADER END
+#
+
+#
+# Copyright 2007 Sun Microsystems, Inc. All rights reserved.
+# Use is subject to license terms.
+#
+
+#
+# Copyright (c) 2013 by Delphix. All rights reserved.
+# Copyright (c) 2020 by Lawrence Livermore National Security, LLC.
+#
+
+. $STF_SUITE/include/libtest.shlib
+. $STF_SUITE/tests/functional/redundancy/redundancy.kshlib
+
+#
+# DESCRIPTION:
+# A draid2 pool can withstand 2 devices are failing or missing.
+#
+# STRATEGY:
+# 1. Create N(>4,<6) virtual disk files.
+# 2. Create draid2 pool based on the virtual disk files.
+# 3. Fill the filesystem with directories and files.
+# 4. Record all the files and directories checksum information.
+# 5. Damaged at most two of the virtual disk files.
+# 6. Verify the data is correct to prove draid2 can withstand 2 devices
+# are failing.
+#
+
+verify_runnable "global"
+
+log_assert "Verify draid2 pool can withstand two devices failing."
+log_onexit cleanup
+
+typeset -i cnt=$(random_int_between 4 6)
+setup_test_env $TESTPOOL draid2 $cnt
+
+#
+# Inject data corruption errors for draid2 pool
+#
+for i in 1 2; do
+ damage_devs $TESTPOOL $i "label"
+ log_must is_data_valid $TESTPOOL
+ log_must clear_errors $TESTPOOL
+done
+
+#
+# Inject bad devices errors for draid2 pool
+#
+for i in 1 2; do
+ damage_devs $TESTPOOL $i
+ log_must is_data_valid $TESTPOOL
+ log_must recover_bad_missing_devs $TESTPOOL $i
+done
+
+#
+# Inject missing device errors for draid2 pool
+#
+for i in 1 2; do
+ remove_devs $TESTPOOL $i
+ log_must is_data_valid $TESTPOOL
+ log_must recover_bad_missing_devs $TESTPOOL $i
+done
+
+log_pass "draid2 pool can withstand two devices failing passed."
diff --git a/tests/zfs-tests/tests/functional/redundancy/redundancy_draid3.ksh b/tests/zfs-tests/tests/functional/redundancy/redundancy_draid3.ksh
new file mode 100755
index 000000000..bddd150d0
--- /dev/null
+++ b/tests/zfs-tests/tests/functional/redundancy/redundancy_draid3.ksh
@@ -0,0 +1,85 @@
+#!/bin/ksh -p
+#
+# CDDL HEADER START
+#
+# The contents of this file are subject to the terms of the
+# Common Development and Distribution License (the "License").
+# You may not use this file except in compliance with the License.
+#
+# You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+# or http://www.opensolaris.org/os/licensing.
+# See the License for the specific language governing permissions
+# and limitations under the License.
+#
+# When distributing Covered Code, include this CDDL HEADER in each
+# file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+# If applicable, add the following below this CDDL HEADER, with the
+# fields enclosed by brackets "[]" replaced with your own identifying
+# information: Portions Copyright [yyyy] [name of copyright owner]
+#
+# CDDL HEADER END
+#
+
+#
+# Copyright 2007 Sun Microsystems, Inc. All rights reserved.
+# Use is subject to license terms.
+#
+
+#
+# Copyright (c) 2013 by Delphix. All rights reserved.
+# Copyright (c) 2020 by Lawrence Livermore National Security, LLC.
+#
+
+. $STF_SUITE/include/libtest.shlib
+. $STF_SUITE/tests/functional/redundancy/redundancy.kshlib
+
+#
+# DESCRIPTION:
+# A draid3 pool can withstand 3 devices are failing or missing.
+#
+# STRATEGY:
+# 1. Create N(>5,<6) virtual disk files.
+# 2. Create draid3 pool based on the virtual disk files.
+# 3. Fill the filesystem with directories and files.
+# 4. Record all the files and directories checksum information.
+# 5. Damaged at most two of the virtual disk files.
+# 6. Verify the data is correct to prove draid3 can withstand 3 devices
+# are failing.
+#
+
+verify_runnable "global"
+
+log_assert "Verify draid3 pool can withstand three devices failing."
+log_onexit cleanup
+
+typeset -i cnt=$(random_int_between 5 6)
+setup_test_env $TESTPOOL draid3 $cnt
+
+#
+# Inject data corruption errors for draid3 pool
+#
+for i in 1 2 3; do
+ damage_devs $TESTPOOL $i "label"
+ log_must is_data_valid $TESTPOOL
+ log_must clear_errors $TESTPOOL
+done
+
+#
+# Inject bad devices errors for draid3 pool
+#
+for i in 1 2 3; do
+ damage_devs $TESTPOOL $i
+ log_must is_data_valid $TESTPOOL
+ log_must recover_bad_missing_devs $TESTPOOL $i
+done
+
+#
+# Inject missing device errors for draid3 pool
+#
+for i in 1 2 3; do
+ remove_devs $TESTPOOL $i
+ log_must is_data_valid $TESTPOOL
+ log_must recover_bad_missing_devs $TESTPOOL $i
+done
+
+log_pass "draid3 pool can withstand three devices failing passed."
diff --git a/tests/zfs-tests/tests/functional/redundancy/redundancy_draid_spare1.ksh b/tests/zfs-tests/tests/functional/redundancy/redundancy_draid_spare1.ksh
new file mode 100755
index 000000000..3b7951596
--- /dev/null
+++ b/tests/zfs-tests/tests/functional/redundancy/redundancy_draid_spare1.ksh
@@ -0,0 +1,107 @@
+#!/bin/ksh -p
+
+#
+# CDDL HEADER START
+#
+# This file and its contents are supplied under the terms of the
+# Common Development and Distribution License ("CDDL"), version 1.0.
+# You may only use this file in accordance with the terms of version
+# 1.0 of the CDDL.
+#
+# A full copy of the text of the CDDL should have accompanied this
+# source. A copy of the CDDL is also available via the Internet at
+# http://www.illumos.org/license/CDDL.
+#
+# CDDL HEADER END
+#
+
+#
+# Copyright (c) 2019, Datto Inc. All rights reserved.
+# Copyright (c) 2020 by Lawrence Livermore National Security, LLC.
+#
+
+. $STF_SUITE/include/libtest.shlib
+. $STF_SUITE/tests/functional/redundancy/redundancy.kshlib
+
+#
+# DESCRIPTION:
+# Verify resilver to dRAID distributed spares.
+#
+# STRATEGY:
+# 1. For resilvers:
+# a. Create a semi-random dRAID pool configuration which can:
+# - sustain N failures (1-3), and
+# - has N distributed spares to replace all faulted vdevs
+# b. Fill the pool with data
+# c. Systematically fault a vdev, then replace it with a spare
+# d. Scrub the pool to verify no data was lost
+# e. Verify the contents of files in the pool
+#
+
+log_assert "Verify resilver to dRAID distributed spares"
+
+log_onexit cleanup
+
+for replace_mode in "healing" "sequential"; do
+
+ if [[ "$replace_mode" = "sequential" ]]; then
+ flags="-s"
+ else
+ flags=""
+ fi
+
+ parity=$(random_int_between 1 3)
+ spares=$(random_int_between $parity 3)
+ data=$(random_int_between 1 8)
+
+ (( min_children = (data + parity + spares) ))
+ children=$(random_int_between $min_children 16)
+
+ draid="draid${parity}:${data}d:${children}c:${spares}s"
+
+ setup_test_env $TESTPOOL $draid $children
+
+ i=0
+ while [[ $i -lt $spares ]]; do
+ fault_vdev="$BASEDIR/vdev$i"
+ spare_vdev="draid${parity}-0-${i}"
+
+ log_must zpool offline -f $TESTPOOL $fault_vdev
+ log_must check_vdev_state $TESTPOOL $fault_vdev "FAULTED"
+ log_must zpool replace -w $flags $TESTPOOL \
+ $fault_vdev $spare_vdev
+ log_must check_vdev_state spare-$i "DEGRADED"
+ log_must check_vdev_state $spare_vdev "ONLINE"
+ log_must check_hotspare_state $TESTPOOL $spare_vdev "INUSE"
+ log_must zpool detach $TESTPOOL $fault_vdev
+
+ resilver_cksum=$(cksum_pool $TESTPOOL)
+ if [[ $resilver_cksum != 0 ]]; then
+ log_must zpool status -v $TESTPOOL
+ log_fail "$replace_mode resilver "
+ "cksum errors: $resilver_cksum"
+ fi
+
+ if [[ "$replace_mode" = "healing" ]]; then
+ log_must zpool scrub $TESTPOOL
+ fi
+
+ log_must wait_scrubbed $TESTPOOL
+ log_must check_pool_status $TESTPOOL "scan" "repaired 0B"
+ log_must check_pool_status $TESTPOOL "scan" "with 0 errors"
+
+ scrub_cksum=$(cksum_pool $TESTPOOL)
+ if [[ $scrub_cksum != 0 ]]; then
+ log_must zpool status -v $TESTPOOL
+ log_fail "scrub cksum errors: $scrub_cksum"
+ fi
+
+ (( i += 1 ))
+ done
+
+ log_must is_data_valid $TESTPOOL
+
+ cleanup
+done
+
+log_pass "Verify resilver to dRAID distributed spares"
diff --git a/tests/zfs-tests/tests/functional/redundancy/redundancy_draid_spare2.ksh b/tests/zfs-tests/tests/functional/redundancy/redundancy_draid_spare2.ksh
new file mode 100755
index 000000000..08fdd558f
--- /dev/null
+++ b/tests/zfs-tests/tests/functional/redundancy/redundancy_draid_spare2.ksh
@@ -0,0 +1,80 @@
+#!/bin/ksh -p
+
+#
+# CDDL HEADER START
+#
+# This file and its contents are supplied under the terms of the
+# Common Development and Distribution License ("CDDL"), version 1.0.
+# You may only use this file in accordance with the terms of version
+# 1.0 of the CDDL.
+#
+# A full copy of the text of the CDDL should have accompanied this
+# source. A copy of the CDDL is also available via the Internet at
+# http://www.illumos.org/license/CDDL.
+#
+# CDDL HEADER END
+#
+
+#
+# Copyright (c) 2020 by Lawrence Livermore National Security, LLC.
+#
+
+. $STF_SUITE/include/libtest.shlib
+. $STF_SUITE/tests/functional/redundancy/redundancy.kshlib
+
+#
+# DESCRIPTION:
+# Verify multiple dRAID spares can be used.
+#
+# STRATEGY:
+# 1. Create a pool and fill it with data.
+# 2. Engage 3 distributed spares and verify the pool
+# 3. Refill the filesystem with new data
+# 4. Clear the pool to online previous faulted devices and resilver
+# 5. Verify the pool and its contents
+#
+
+log_assert "Verify multiple dRAID spares"
+
+log_onexit cleanup
+
+parity=1
+spares=3
+data=$(random_int_between 1 4)
+children=10
+draid="draid${parity}:${data}d:${children}c:${spares}s"
+
+setup_test_env $TESTPOOL $draid $children
+
+# Replace vdev7 -> draid1-0-0
+log_must zpool offline -f $TESTPOOL $BASEDIR/vdev7
+log_must zpool replace -w $TESTPOOL $BASEDIR/vdev7 draid1-0-0
+
+# Replace vdev8 -> draid1-0-1
+log_must zpool offline -f $TESTPOOL $BASEDIR/vdev8
+log_must zpool replace -w $TESTPOOL $BASEDIR/vdev8 draid1-0-1
+
+# Replace vdev9 -> draid1-0-2
+log_must zpool offline -f $TESTPOOL $BASEDIR/vdev9
+log_must zpool replace -w $TESTPOOL $BASEDIR/vdev9 draid1-0-2
+
+# Verify, refill and verify the pool contents.
+verify_pool $TESTPOOL
+refill_test_env $TESTPOOL
+verify_pool $TESTPOOL
+
+# Bring everything back online and check for errors.
+log_must zpool clear $TESTPOOL
+log_must zpool wait -t resilver $TESTPOOL
+
+log_must wait_hotspare_state $TESTPOOL draid1-0-0 "AVAIL"
+log_must wait_hotspare_state $TESTPOOL draid1-0-1 "AVAIL"
+log_must wait_hotspare_state $TESTPOOL draid1-0-2 "AVAIL"
+
+log_must zpool scrub -w $TESTPOOL
+log_must check_pool_status $TESTPOOL "scan" "repaired 0B"
+log_must check_pool_status $TESTPOOL "scan" "with 0 errors"
+
+log_must is_data_valid $TESTPOOL
+
+log_pass "Verify multiple dRAID spares"
diff --git a/tests/zfs-tests/tests/functional/redundancy/redundancy_draid_spare3.ksh b/tests/zfs-tests/tests/functional/redundancy/redundancy_draid_spare3.ksh
new file mode 100755
index 000000000..587a1be0a
--- /dev/null
+++ b/tests/zfs-tests/tests/functional/redundancy/redundancy_draid_spare3.ksh
@@ -0,0 +1,197 @@
+#!/bin/ksh -p
+
+#
+# CDDL HEADER START
+#
+# This file and its contents are supplied under the terms of the
+# Common Development and Distribution License ("CDDL"), version 1.0.
+# You may only use this file in accordance with the terms of version
+# 1.0 of the CDDL.
+#
+# A full copy of the text of the CDDL should have accompanied this
+# source. A copy of the CDDL is also available via the Internet at
+# http://www.illumos.org/license/CDDL.
+#
+# CDDL HEADER END
+#
+
+#
+# Copyright (c) 2020 by Lawrence Livermore National Security, LLC.
+#
+
+. $STF_SUITE/include/libtest.shlib
+. $STF_SUITE/tests/functional/redundancy/redundancy.kshlib
+
+#
+# DESCRIPTION:
+# Verify dRAID resilver to traditional and distributed spares for
+# a variety of pool configurations and pool states.
+#
+# STRATEGY:
+# 1. For resilvers:
+# a. Create a semi-random dRAID pool configuration which can
+# sustain 1 failure and has 5 distributed spares.
+# b. Fill the pool with data
+# c. Systematically fault and replace vdevs in the pools with
+# spares to test resilving in common pool states.
+# d. Scrub the pool to verify no data was lost
+# e. Verify the contents of files in the pool
+#
+
+log_assert "Verify dRAID resilver"
+
+function cleanup_tunable
+{
+ log_must set_tunable32 REBUILD_SCRUB_ENABLED 1
+ cleanup
+}
+
+log_onexit cleanup_tunable
+
+if is_kmemleak; then
+ log_unsupported "Test case runs slowly when kmemleak is enabled"
+fi
+
+#
+# Disable scrubbing after a sequential resilver to verify the resilver
+# alone is able to reconstruct the data without the help of a scrub.
+#
+log_must set_tunable32 REBUILD_SCRUB_ENABLED 0
+
+for replace_mode in "healing" "sequential"; do
+
+ if [[ "$replace_mode" = "sequential" ]]; then
+ flags="-s"
+ else
+ flags=""
+ fi
+
+ parity=1
+ spares=5
+ data=$(random_int_between 1 4)
+ children=10
+ draid="draid${parity}:${data}d:${children}c:${spares}s"
+
+ setup_test_env $TESTPOOL $draid $children
+
+ #
+ # Perform a variety of replacements to normal and distributed spares
+ # for a variety of different vdev configurations to exercise different
+ # resilver code paths. The final configuration is expected to be:
+ #
+ # NAME STATE READ WRITE CKSUM
+ # testpool DEGRADED 0 0 0
+ # draid1:1d:10c:5s-0 DEGRADED 0 0 0
+ # /var/tmp/basedir.28683/new_vdev0 ONLINE 0 0 0
+ # /var/tmp/basedir.28683/new_vdev1 ONLINE 0 0 0
+ # spare-2 DEGRADED 0 0 0
+ # /var/tmp/basedir.28683/vdev2 FAULTED 0 0 0
+ # draid1-0-3 ONLINE 0 0 0
+ # spare-3 DEGRADED 0 0 0
+ # /var/tmp/basedir.28683/vdev3 FAULTED 0 0 0
+ # draid1-0-4 ONLINE 0 0 0
+ # /var/tmp/basedir.28683/vdev4 ONLINE 0 0 0
+ # /var/tmp/basedir.28683/vdev5 ONLINE 0 0 0
+ # /var/tmp/basedir.28683/vdev6 ONLINE 0 0 0
+ # draid1-0-0 ONLINE 0 0 0
+ # spare-8 DEGRADED 0 0 0
+ # /var/tmp/basedir.28683/vdev8 FAULTED 0 0 0
+ # draid1-0-1 ONLINE 0 0 0
+ # spare-9 ONLINE 0 0 0
+ # /var/tmp/basedir.28683/vdev9 ONLINE 0 0 0
+ # draid1-0-2 ONLINE 0 0 0
+ # spares
+ # draid1-0-0 INUSE currently in use
+ # draid1-0-1 INUSE currently in use
+ # draid1-0-2 INUSE currently in use
+ # draid1-0-3 INUSE currently in use
+ # draid1-0-4 INUSE currently in use
+ #
+
+ # Distributed spare which replaces original online device
+ log_must check_vdev_state $TESTPOOL $BASEDIR/vdev7 "ONLINE"
+ log_must zpool replace -w $flags $TESTPOOL $BASEDIR/vdev7 draid1-0-0
+ log_must zpool detach $TESTPOOL $BASEDIR/vdev7
+ log_must check_vdev_state $TESTPOOL draid1-0-0 "ONLINE"
+ log_must check_hotspare_state $TESTPOOL draid1-0-0 "INUSE"
+
+ # Distributed spare in mirror with original device faulted
+ log_must zpool offline -f $TESTPOOL $BASEDIR/vdev8
+ log_must check_vdev_state $TESTPOOL $BASEDIR/vdev8 "FAULTED"
+ log_must zpool replace -w $flags $TESTPOOL $BASEDIR/vdev8 draid1-0-1
+ log_must check_vdev_state $TESTPOOL spare-8 "DEGRADED"
+ log_must check_vdev_state $TESTPOOL draid1-0-1 "ONLINE"
+ log_must check_hotspare_state $TESTPOOL draid1-0-1 "INUSE"
+
+ # Distributed spare in mirror with original device still online
+ log_must check_vdev_state $TESTPOOL $BASEDIR/vdev9 "ONLINE"
+ log_must zpool replace -w $flags $TESTPOOL $BASEDIR/vdev9 draid1-0-2
+ log_must check_vdev_state $TESTPOOL spare-9 "ONLINE"
+ log_must check_vdev_state $TESTPOOL draid1-0-2 "ONLINE"
+ log_must check_hotspare_state $TESTPOOL draid1-0-2 "INUSE"
+
+ # Normal faulted device replacement
+ new_vdev0="$BASEDIR/new_vdev0"
+ log_must truncate -s $MINVDEVSIZE $new_vdev0
+ log_must zpool offline -f $TESTPOOL $BASEDIR/vdev0
+ log_must check_vdev_state $TESTPOOL $BASEDIR/vdev0 "FAULTED"
+ log_must zpool replace -w $flags $TESTPOOL $BASEDIR/vdev0 $new_vdev0
+ log_must check_vdev_state $TESTPOOL $new_vdev0 "ONLINE"
+
+ # Distributed spare faulted device replacement
+ log_must zpool offline -f $TESTPOOL $BASEDIR/vdev2
+ log_must check_vdev_state $TESTPOOL $BASEDIR/vdev2 "FAULTED"
+ log_must zpool replace -w $flags $TESTPOOL $BASEDIR/vdev2 draid1-0-3
+ log_must check_vdev_state $TESTPOOL spare-2 "DEGRADED"
+ log_must check_vdev_state $TESTPOOL draid1-0-3 "ONLINE"
+ log_must check_hotspare_state $TESTPOOL draid1-0-3 "INUSE"
+
+ # Normal online device replacement
+ new_vdev1="$BASEDIR/new_vdev1"
+ log_must truncate -s $MINVDEVSIZE $new_vdev1
+ log_must check_vdev_state $TESTPOOL $BASEDIR/vdev1 "ONLINE"
+ log_must zpool replace -w $flags $TESTPOOL $BASEDIR/vdev1 $new_vdev1
+ log_must check_vdev_state $TESTPOOL $new_vdev1 "ONLINE"
+
+ # Distributed spare online device replacement (then fault)
+ log_must zpool replace -w $flags $TESTPOOL $BASEDIR/vdev3 draid1-0-4
+ log_must check_vdev_state $TESTPOOL spare-3 "ONLINE"
+ log_must check_vdev_state $TESTPOOL draid1-0-4 "ONLINE"
+ log_must check_hotspare_state $TESTPOOL draid1-0-4 "INUSE"
+ log_must zpool offline -f $TESTPOOL $BASEDIR/vdev3
+ log_must check_vdev_state $TESTPOOL $BASEDIR/vdev3 "FAULTED"
+ log_must check_vdev_state $TESTPOOL spare-3 "DEGRADED"
+
+ resilver_cksum=$(cksum_pool $TESTPOOL)
+ if [[ $resilver_cksum != 0 ]]; then
+ log_must zpool status -v $TESTPOOL
+ log_fail "$replace_mode resilver cksum errors: $resilver_cksum"
+ fi
+
+ if [[ "$replace_mode" = "healing" ]]; then
+ log_must zpool scrub -w $TESTPOOL
+ else
+ if [[ $(get_tunable REBUILD_SCRUB_ENABLED) -eq 0 ]]; then
+ log_must zpool scrub -w $TESTPOOL
+ else
+ log_must wait_scrubbed $TESTPOOL
+ fi
+ fi
+
+ log_must is_pool_scrubbed $TESTPOOL
+
+ scrub_cksum=$(cksum_pool $TESTPOOL)
+ if [[ $scrub_cksum != 0 ]]; then
+ log_must zpool status -v $TESTPOOL
+ log_fail "scrub cksum errors: $scrub_cksum"
+ fi
+
+ log_must check_pool_status $TESTPOOL "scan" "repaired 0B"
+ log_must check_pool_status $TESTPOOL "scan" "with 0 errors"
+
+ log_must is_data_valid $TESTPOOL
+
+ cleanup
+done
+
+log_pass "Verify resilver to dRAID distributed spares"
diff --git a/tests/zfs-tests/tests/functional/redundancy/redundancy_003_pos.ksh b/tests/zfs-tests/tests/functional/redundancy/redundancy_mirror.ksh
index b7b791b24..b7b791b24 100755
--- a/tests/zfs-tests/tests/functional/redundancy/redundancy_003_pos.ksh
+++ b/tests/zfs-tests/tests/functional/redundancy/redundancy_mirror.ksh
diff --git a/tests/zfs-tests/tests/functional/redundancy/redundancy_001_pos.ksh b/tests/zfs-tests/tests/functional/redundancy/redundancy_raidz1.ksh
index 90d14f600..a73890e4c 100755
--- a/tests/zfs-tests/tests/functional/redundancy/redundancy_001_pos.ksh
+++ b/tests/zfs-tests/tests/functional/redundancy/redundancy_raidz1.ksh
@@ -48,7 +48,7 @@
verify_runnable "global"
-log_assert "Verify raidz pool can withstand one device is failing."
+log_assert "Verify raidz pool can withstand one device failing."
log_onexit cleanup
typeset -i cnt=$(random_int_between 2 5)
@@ -74,4 +74,4 @@ log_must recover_bad_missing_devs $TESTPOOL 1
remove_devs $TESTPOOL 1
log_must is_data_valid $TESTPOOL
-log_pass "Raidz pool can withstand one devices is failing passed."
+log_pass "raidz pool can withstand one device failing passed."
diff --git a/tests/zfs-tests/tests/functional/redundancy/redundancy_002_pos.ksh b/tests/zfs-tests/tests/functional/redundancy/redundancy_raidz2.ksh
index 74bda1999..94b9b8825 100755
--- a/tests/zfs-tests/tests/functional/redundancy/redundancy_002_pos.ksh
+++ b/tests/zfs-tests/tests/functional/redundancy/redundancy_raidz2.ksh
@@ -48,7 +48,7 @@
verify_runnable "global"
-log_assert "Verify raidz2 pool can withstand two devices are failing."
+log_assert "Verify raidz2 pool can withstand two devices failing."
log_onexit cleanup
typeset -i cnt=$(random_int_between 3 5)
@@ -81,4 +81,4 @@ for i in 1 2; do
log_must recover_bad_missing_devs $TESTPOOL $i
done
-log_pass "Raidz2 pool can withstand two devices are failing passed."
+log_pass "raidz2 pool can withstand two devices failing passed."
diff --git a/tests/zfs-tests/tests/functional/redundancy/redundancy_raidz3.ksh b/tests/zfs-tests/tests/functional/redundancy/redundancy_raidz3.ksh
new file mode 100755
index 000000000..0a01c4710
--- /dev/null
+++ b/tests/zfs-tests/tests/functional/redundancy/redundancy_raidz3.ksh
@@ -0,0 +1,84 @@
+#!/bin/ksh -p
+#
+# CDDL HEADER START
+#
+# The contents of this file are subject to the terms of the
+# Common Development and Distribution License (the "License").
+# You may not use this file except in compliance with the License.
+#
+# You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+# or http://www.opensolaris.org/os/licensing.
+# See the License for the specific language governing permissions
+# and limitations under the License.
+#
+# When distributing Covered Code, include this CDDL HEADER in each
+# file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+# If applicable, add the following below this CDDL HEADER, with the
+# fields enclosed by brackets "[]" replaced with your own identifying
+# information: Portions Copyright [yyyy] [name of copyright owner]
+#
+# CDDL HEADER END
+#
+
+#
+# Copyright 2007 Sun Microsystems, Inc. All rights reserved.
+# Use is subject to license terms.
+#
+
+#
+# Copyright (c) 2013 by Delphix. All rights reserved.
+#
+
+. $STF_SUITE/include/libtest.shlib
+. $STF_SUITE/tests/functional/redundancy/redundancy.kshlib
+
+#
+# DESCRIPTION:
+# A raidz3 pool can withstand 3 devices are failing or missing.
+#
+# STRATEGY:
+# 1. Create N(>4,<5) virtual disk files.
+# 2. Create raidz3 pool based on the virtual disk files.
+# 3. Fill the filesystem with directories and files.
+# 4. Record all the files and directories checksum information.
+# 5. Damaged at most two of the virtual disk files.
+# 6. Verify the data is correct to prove raidz3 can withstand 3 devices
+# are failing.
+#
+
+verify_runnable "global"
+
+log_assert "Verify raidz3 pool can withstand three devices failing."
+log_onexit cleanup
+
+typeset -i cnt=$(random_int_between 4 5)
+setup_test_env $TESTPOOL raidz3 $cnt
+
+#
+# Inject data corruption errors for raidz3 pool
+#
+for i in 1 2 3; do
+ damage_devs $TESTPOOL $i "label"
+ log_must is_data_valid $TESTPOOL
+ log_must clear_errors $TESTPOOL
+done
+
+#
+# Inject bad devices errors for raidz3 pool
+#
+for i in 1 2 3; do
+ damage_devs $TESTPOOL $i
+ log_must is_data_valid $TESTPOOL
+ log_must recover_bad_missing_devs $TESTPOOL $i
+done
+
+#
+# Inject missing device errors for raidz3 pool
+#
+for i in 1 2 3; do
+ remove_devs $TESTPOOL $i
+ log_must is_data_valid $TESTPOOL
+ log_must recover_bad_missing_devs $TESTPOOL $i
+done
+
+log_pass "raidz3 pool can withstand three devices failing passed."
diff --git a/tests/zfs-tests/tests/functional/redundancy/redundancy_004_neg.ksh b/tests/zfs-tests/tests/functional/redundancy/redundancy_stripe.ksh
index 7ee51051e..7ee51051e 100755
--- a/tests/zfs-tests/tests/functional/redundancy/redundancy_004_neg.ksh
+++ b/tests/zfs-tests/tests/functional/redundancy/redundancy_stripe.ksh
diff --git a/tests/zfs-tests/tests/functional/replacement/attach_rebuild.ksh b/tests/zfs-tests/tests/functional/replacement/attach_rebuild.ksh
index e9427c7ad..998d3eec7 100755
--- a/tests/zfs-tests/tests/functional/replacement/attach_rebuild.ksh
+++ b/tests/zfs-tests/tests/functional/replacement/attach_rebuild.ksh
@@ -38,7 +38,7 @@
# Attaching disks during I/O should pass for supported pools.
#
# STRATEGY:
-# 1. Create multidisk pools (stripe/mirror/raidz) and
+# 1. Create multidisk pools (stripe/mirror/raidz/draid) and
# start some random I/O
# 2. Attach a disk to the pool.
# 3. Verify the integrity of the file system and the resilvering.
@@ -152,7 +152,7 @@ done
log_note "Verify 'zpool attach' fails with non-mirrors."
-for type in "" "raidz" "raidz1"; do
+for type in "" "raidz" "raidz1" "draid" "draid1"; do
for op in "" "-f"; do
create_pool $TESTPOOL1 $type $specials_list
log_must zfs create $TESTPOOL1/$TESTFS1
diff --git a/tests/zfs-tests/tests/functional/replacement/attach_resilver.ksh b/tests/zfs-tests/tests/functional/replacement/attach_resilver.ksh
index 4261d4d67..e99d681bb 100755
--- a/tests/zfs-tests/tests/functional/replacement/attach_resilver.ksh
+++ b/tests/zfs-tests/tests/functional/replacement/attach_resilver.ksh
@@ -37,7 +37,7 @@
# Attaching disks during I/O should pass for supported pools.
#
# STRATEGY:
-# 1. Create multidisk pools (stripe/mirror/raidz) and
+# 1. Create multidisk pools (stripe/mirror/raidz/draid) and
# start some random I/O
# 2. Attach a disk to the pool.
# 3. Verify the integrity of the file system and the resilvering.
@@ -151,7 +151,7 @@ done
log_note "Verify 'zpool attach' fails with non-mirrors."
-for type in "" "raidz" "raidz1"; do
+for type in "" "raidz" "raidz1" "draid"; do
for op in "" "-f"; do
create_pool $TESTPOOL1 $type $specials_list
log_must zfs create $TESTPOOL1/$TESTFS1
diff --git a/tests/zfs-tests/tests/functional/replacement/detach.ksh b/tests/zfs-tests/tests/functional/replacement/detach.ksh
index aa3ec4f7a..f049c639d 100755
--- a/tests/zfs-tests/tests/functional/replacement/detach.ksh
+++ b/tests/zfs-tests/tests/functional/replacement/detach.ksh
@@ -37,7 +37,7 @@
# Detaching disks during I/O should pass for supported pools.
#
# STRATEGY:
-# 1. Create multidisk pools (stripe/mirror/raidz) and
+# 1. Create multidisk pools (stripe/mirror/raidz/draid) and
# start some random I/O
# 2. Detach a disk from the pool.
# 3. Verify the integrity of the file system and the resilvering.
@@ -143,7 +143,7 @@ destroy_pool $TESTPOOL1
log_note "Verify 'zpool detach' fails with non-mirrors."
-for type in "" "raidz" "raidz1"; do
+for type in "" "raidz" "raidz1" "draid"; do
create_pool $TESTPOOL1 $type $specials_list
log_must zfs create $TESTPOOL1/$TESTFS1
log_must zfs set mountpoint=$TESTDIR1 $TESTPOOL1/$TESTFS1
diff --git a/tests/zfs-tests/tests/functional/replacement/rebuild_raidz.ksh b/tests/zfs-tests/tests/functional/replacement/rebuild_raidz.ksh
index c919b44b2..26dc6f87b 100755
--- a/tests/zfs-tests/tests/functional/replacement/rebuild_raidz.ksh
+++ b/tests/zfs-tests/tests/functional/replacement/rebuild_raidz.ksh
@@ -26,7 +26,7 @@
#
# DESCRIPTION:
# Executing 'zpool replace -s' for raidz vdevs failed. Sequential
-# resilvers are only allowed for stripe/mirror pools.
+# resilvers are only allowed for stripe/mirror/dRAID pools.
#
# STRATEGY:
# 1. Create a raidz pool, verify 'zpool replace -s' fails
@@ -67,4 +67,9 @@ log_must zpool create $TESTPOOL1 mirror ${VDEV_FILES[0]} ${VDEV_FILES[1]}
log_must zpool replace -s $TESTPOOL1 ${VDEV_FILES[1]} $SPARE_VDEV_FILE
destroy_pool $TESTPOOL1
+# draid
+log_must zpool create $TESTPOOL1 draid ${VDEV_FILES[@]}
+log_must zpool replace -s $TESTPOOL1 ${VDEV_FILES[1]} $SPARE_VDEV_FILE
+destroy_pool $TESTPOOL1
+
log_pass "Sequential resilver is not allowed for raidz vdevs"
diff --git a/tests/zfs-tests/tests/functional/replacement/replace_rebuild.ksh b/tests/zfs-tests/tests/functional/replacement/replace_rebuild.ksh
index 599735228..b3c7995fd 100755
--- a/tests/zfs-tests/tests/functional/replacement/replace_rebuild.ksh
+++ b/tests/zfs-tests/tests/functional/replacement/replace_rebuild.ksh
@@ -38,7 +38,7 @@
# Replacing disks during I/O should pass for supported pools.
#
# STRATEGY:
-# 1. Create multidisk pools (stripe/mirror) and
+# 1. Create multidisk pools (stripe/mirror/draid) and
# start some random I/O
# 2. Replace a disk in the pool with another disk.
# 3. Verify the integrity of the file system and the rebuilding.
@@ -137,7 +137,7 @@ done
#
log_must truncate -s $MINVDEVSIZE $TESTDIR/$REPLACEFILE
-for type in "" "mirror"; do
+for type in "" "mirror" "draid"; do
for op in "" "-f"; do
create_pool $TESTPOOL1 $type $specials_list
log_must zfs create $TESTPOOL1/$TESTFS1
diff --git a/tests/zfs-tests/tests/functional/replacement/replace_resilver.ksh b/tests/zfs-tests/tests/functional/replacement/replace_resilver.ksh
index 253cf65e4..2585397bb 100755
--- a/tests/zfs-tests/tests/functional/replacement/replace_resilver.ksh
+++ b/tests/zfs-tests/tests/functional/replacement/replace_resilver.ksh
@@ -37,7 +37,7 @@
# Replacing disks during I/O should pass for supported pools.
#
# STRATEGY:
-# 1. Create multidisk pools (stripe/mirror/raidz) and
+# 1. Create multidisk pools (stripe/mirror/raidz/draid) and
# start some random I/O
# 2. Replace a disk in the pool with another disk.
# 3. Verify the integrity of the file system and the resilvering.
@@ -134,7 +134,7 @@ done
#
log_must truncate -s $MINVDEVSIZE $TESTDIR/$REPLACEFILE
-for type in "" "raidz" "mirror"; do
+for type in "" "raidz" "mirror" "draid"; do
for op in "" "-f"; do
create_pool $TESTPOOL1 $type $specials_list
log_must zfs create $TESTPOOL1/$TESTFS1
diff --git a/tests/zfs-tests/tests/functional/trim/autotrim_config.ksh b/tests/zfs-tests/tests/functional/trim/autotrim_config.ksh
index d48ee45d0..924b56935 100755
--- a/tests/zfs-tests/tests/functional/trim/autotrim_config.ksh
+++ b/tests/zfs-tests/tests/functional/trim/autotrim_config.ksh
@@ -70,14 +70,20 @@ log_must set_tunable64 VDEV_MIN_MS_COUNT 32
typeset VDEV_MAX_MB=$(( floor(4 * MINVDEVSIZE * 0.75 / 1024 / 1024) ))
typeset VDEV_MIN_MB=$(( floor(4 * MINVDEVSIZE * 0.30 / 1024 / 1024) ))
-for type in "" "mirror" "raidz2"; do
+for type in "" "mirror" "raidz2" "draid"; do
if [[ "$type" = "" ]]; then
VDEVS="$TRIM_VDEV1"
elif [[ "$type" = "mirror" ]]; then
VDEVS="$TRIM_VDEV1 $TRIM_VDEV2"
- else
+ elif [[ "$type" = "raidz2" ]]; then
VDEVS="$TRIM_VDEV1 $TRIM_VDEV2 $TRIM_VDEV3"
+ elif [[ "$type" = "draid" ]]; then
+ VDEVS="$TRIM_VDEV1 $TRIM_VDEV2 $TRIM_VDEV3 $TRIM_VDEV4"
+
+ # The per-vdev utilization is lower due to the capacity
+ # resilverd for the distributed spare.
+ VDEV_MAX_MB=$(( floor(4 * MINVDEVSIZE * 0.50 / 1024 / 1024) ))
fi
log_must truncate -s $((4 * MINVDEVSIZE)) $VDEVS
diff --git a/tests/zfs-tests/tests/functional/trim/autotrim_integrity.ksh b/tests/zfs-tests/tests/functional/trim/autotrim_integrity.ksh
index 6af877241..78fe18fa6 100755
--- a/tests/zfs-tests/tests/functional/trim/autotrim_integrity.ksh
+++ b/tests/zfs-tests/tests/functional/trim/autotrim_integrity.ksh
@@ -60,7 +60,7 @@ log_must set_tunable64 TRIM_EXTENT_BYTES_MIN 4096
typeset trim_txg_batch=$(get_tunable TRIM_TXG_BATCH)
log_must set_tunable64 TRIM_TXG_BATCH 8
-for type in "" "mirror" "raidz" "raidz2" "raidz3"; do
+for type in "" "mirror" "raidz" "draid"; do
log_must truncate -s 1G $TRIM_VDEVS
log_must zpool create -f $TESTPOOL $type $TRIM_VDEVS
diff --git a/tests/zfs-tests/tests/functional/trim/autotrim_trim_integrity.ksh b/tests/zfs-tests/tests/functional/trim/autotrim_trim_integrity.ksh
index a0dd1c884..13c9b95e0 100755
--- a/tests/zfs-tests/tests/functional/trim/autotrim_trim_integrity.ksh
+++ b/tests/zfs-tests/tests/functional/trim/autotrim_trim_integrity.ksh
@@ -61,7 +61,7 @@ log_must set_tunable64 TRIM_EXTENT_BYTES_MIN 4096
typeset trim_txg_batch=$(get_tunable TRIM_TXG_BATCH)
log_must set_tunable64 TRIM_TXG_BATCH 8
-for type in "" "mirror" "raidz" "raidz2" "raidz3"; do
+for type in "" "mirror" "raidz" "raidz2" "draid" "draid2"; do
log_must truncate -s 1G $TRIM_VDEVS
log_must zpool create -f $TESTPOOL $type $TRIM_VDEVS
diff --git a/tests/zfs-tests/tests/functional/trim/trim_config.ksh b/tests/zfs-tests/tests/functional/trim/trim_config.ksh
index 44f187cc6..9a6e19e1c 100755
--- a/tests/zfs-tests/tests/functional/trim/trim_config.ksh
+++ b/tests/zfs-tests/tests/functional/trim/trim_config.ksh
@@ -70,14 +70,20 @@ log_must set_tunable64 VDEV_MIN_MS_COUNT 32
typeset VDEV_MAX_MB=$(( floor(4 * MINVDEVSIZE * 0.75 / 1024 / 1024) ))
typeset VDEV_MIN_MB=$(( floor(4 * MINVDEVSIZE * 0.30 / 1024 / 1024) ))
-for type in "" "mirror" "raidz2"; do
+for type in "" "mirror" "raidz2" "draid"; do
if [[ "$type" = "" ]]; then
VDEVS="$TRIM_VDEV1"
elif [[ "$type" = "mirror" ]]; then
VDEVS="$TRIM_VDEV1 $TRIM_VDEV2"
- else
+ elif [[ "$type" = "raidz2" ]]; then
VDEVS="$TRIM_VDEV1 $TRIM_VDEV2 $TRIM_VDEV3"
+ elif [[ "$type" = "draid" ]]; then
+ VDEVS="$TRIM_VDEV1 $TRIM_VDEV2 $TRIM_VDEV3 $TRIM_VDEV4"
+
+ # The per-vdev utilization is lower due to the capacity
+ # resilverd for the distributed spare.
+ VDEV_MAX_MB=$(( floor(4 * MINVDEVSIZE * 0.50 / 1024 / 1024) ))
fi
log_must truncate -s $((4 * MINVDEVSIZE)) $VDEVS
diff --git a/tests/zfs-tests/tests/functional/trim/trim_integrity.ksh b/tests/zfs-tests/tests/functional/trim/trim_integrity.ksh
index e25b52747..38f226d7f 100755
--- a/tests/zfs-tests/tests/functional/trim/trim_integrity.ksh
+++ b/tests/zfs-tests/tests/functional/trim/trim_integrity.ksh
@@ -60,7 +60,7 @@ log_must set_tunable64 TRIM_EXTENT_BYTES_MIN 4096
typeset trim_txg_batch=$(get_tunable TRIM_TXG_BATCH)
log_must set_tunable64 TRIM_TXG_BATCH 8
-for type in "" "mirror" "raidz" "raidz2" "raidz3"; do
+for type in "" "mirror" "raidz" "draid"; do
log_must truncate -s 1G $TRIM_VDEVS
log_must zpool create -f $TESTPOOL $type $TRIM_VDEVS