summaryrefslogtreecommitdiffstats
path: root/src/vulkan/anv_compiler.cpp
blob: 87aae64942b5a668ce45610b9057ce2541f91995 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
/*
 * Copyright © 2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 */

#include <sys/stat.h>
#include <unistd.h>
#include <fcntl.h>

#include "anv_private.h"
#include "anv_nir.h"

#include <brw_context.h>
#include <brw_wm.h> /* brw_new_shader_program is here */
#include <brw_nir.h>

#include <brw_vs.h>
#include <brw_gs.h>
#include <brw_cs.h>
#include "brw_vec4_gs_visitor.h"
#include <brw_compiler.h>

#include <mesa/main/shaderobj.h>
#include <mesa/main/fbobject.h>
#include <mesa/main/context.h>
#include <mesa/program/program.h>
#include <glsl/program.h>

/* XXX: We need this to keep symbols in nir.h from conflicting with the
 * generated GEN command packing headers.  We need to fix *both* to not
 * define something as generic as LOAD.
 */
#undef LOAD

#include <glsl/nir/nir_spirv.h>

#define SPIR_V_MAGIC_NUMBER 0x07230203

static void
fail_if(int cond, const char *format, ...)
{
   va_list args;

   if (!cond)
      return;

   va_start(args, format);
   vfprintf(stderr, format, args);
   va_end(args);

   exit(1);
}

static VkResult
set_binding_table_layout(struct brw_stage_prog_data *prog_data,
                         struct anv_pipeline *pipeline, uint32_t stage)
{
   unsigned bias;
   if (stage == VK_SHADER_STAGE_FRAGMENT)
      bias = MAX_RTS;
   else
      bias = 0;

   prog_data->binding_table.size_bytes = 0;
   prog_data->binding_table.texture_start = bias;
   prog_data->binding_table.ubo_start = bias;
   prog_data->binding_table.image_start = bias;

   return VK_SUCCESS;
}

static uint32_t
upload_kernel(struct anv_pipeline *pipeline, const void *data, size_t size)
{
   struct anv_state state =
      anv_state_stream_alloc(&pipeline->program_stream, size, 64);

   assert(size < pipeline->program_stream.block_pool->block_size);

   memcpy(state.map, data, size);

   return state.offset;
}

static void
create_params_array(struct anv_pipeline *pipeline,
                    struct gl_shader *shader,
                    struct brw_stage_prog_data *prog_data)
{
   VkShaderStage stage = anv_vk_shader_stage_for_mesa_stage(shader->Stage);
   unsigned num_params = 0;

   if (shader->num_uniform_components) {
      /* If the shader uses any push constants at all, we'll just give
       * them the maximum possible number
       */
      num_params += MAX_PUSH_CONSTANTS_SIZE / sizeof(float);
   }

   if (pipeline->layout && pipeline->layout->stage[stage].has_dynamic_offsets)
      num_params += MAX_DYNAMIC_BUFFERS;

   if (num_params == 0)
      return;

   prog_data->param = (const gl_constant_value **)
      anv_device_alloc(pipeline->device,
                       num_params * sizeof(gl_constant_value *),
                       8, VK_SYSTEM_ALLOC_TYPE_INTERNAL_SHADER);

   /* We now set the param values to be offsets into a
    * anv_push_constant_data structure.  Since the compiler doesn't
    * actually dereference any of the gl_constant_value pointers in the
    * params array, it doesn't really matter what we put here.
    */
   struct anv_push_constants *null_data = NULL;
   for (unsigned i = 0; i < num_params; i++)
      prog_data->param[i] =
         (const gl_constant_value *)&null_data->client_data[i * sizeof(float)];
}

static void
brw_vs_populate_key(struct brw_context *brw,
                    struct brw_vertex_program *vp,
                    struct brw_vs_prog_key *key)
{
   memset(key, 0, sizeof(*key));

   /* XXX: Handle vertex input work-arounds */

   /* XXX: Handle sampler_prog_key */
}

static bool
really_do_vs_prog(struct brw_context *brw,
                  struct gl_shader_program *prog,
                  struct brw_vertex_program *vp,
                  struct brw_vs_prog_key *key, struct anv_pipeline *pipeline)
{
   GLuint program_size;
   const GLuint *program;
   struct brw_vs_prog_data *prog_data = &pipeline->vs_prog_data;
   void *mem_ctx;
   struct gl_shader *vs = NULL;

   if (prog)
      vs = prog->_LinkedShaders[MESA_SHADER_VERTEX];

   memset(prog_data, 0, sizeof(*prog_data));

   mem_ctx = ralloc_context(NULL);

   create_params_array(pipeline, vs, &prog_data->base.base);
   anv_nir_apply_dynamic_offsets(pipeline, vs->Program->nir,
                                 &prog_data->base.base);
   anv_nir_apply_pipeline_layout(vs->Program->nir, pipeline->layout);

   prog_data->inputs_read = vp->program.Base.InputsRead;

   brw_compute_vue_map(brw->intelScreen->devinfo,
                       &prog_data->base.vue_map,
                       vp->program.Base.OutputsWritten,
                       prog ? prog->SeparateShader : false);

   set_binding_table_layout(&prog_data->base.base, pipeline,
                            VK_SHADER_STAGE_VERTEX);

   /* Emit GEN4 code.
    */
   program = brw_compile_vs(brw->intelScreen->compiler, brw, mem_ctx,
                            key, prog_data, vs->Program->nir, NULL, false, -1,
                            &program_size, NULL);
   if (program == NULL) {
      ralloc_free(mem_ctx);
      return false;
   }

   const uint32_t offset = upload_kernel(pipeline, program, program_size);
   if (prog_data->base.dispatch_mode == DISPATCH_MODE_SIMD8) {
      pipeline->vs_simd8 = offset;
      pipeline->vs_vec4 = NO_KERNEL;
   } else {
      pipeline->vs_simd8 = NO_KERNEL;
      pipeline->vs_vec4 = offset;
   }

   ralloc_free(mem_ctx);

   return true;
}

void brw_wm_populate_key(struct brw_context *brw,
                         struct brw_fragment_program *fp,
                         struct brw_wm_prog_key *key)
{
   struct gl_context *ctx = &brw->ctx;
   GLuint lookup = 0;
   GLuint line_aa;
   bool program_uses_dfdy = fp->program.UsesDFdy;
   struct gl_framebuffer draw_buffer;
   bool multisample_fbo;

   memset(key, 0, sizeof(*key));

   for (int i = 0; i < MAX_SAMPLERS; i++) {
      /* Assume color sampler, no swizzling. */
      key->tex.swizzles[i] = SWIZZLE_XYZW;
   }

   /* A non-zero framebuffer name indicates that the framebuffer was created by
    * the user rather than the window system. */
   draw_buffer.Name = 1;
   draw_buffer.Visual.samples = 1;
   draw_buffer._NumColorDrawBuffers = 1;
   draw_buffer._NumColorDrawBuffers = 1;
   draw_buffer.Width = 400;
   draw_buffer.Height = 400;
   ctx->DrawBuffer = &draw_buffer;

   multisample_fbo = ctx->DrawBuffer->Visual.samples > 1;

   /* Build the index for table lookup
    */
   if (brw->gen < 6) {
      /* _NEW_COLOR */
      if (fp->program.UsesKill || ctx->Color.AlphaEnabled)
         lookup |= IZ_PS_KILL_ALPHATEST_BIT;

      if (fp->program.Base.OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH))
         lookup |= IZ_PS_COMPUTES_DEPTH_BIT;

      /* _NEW_DEPTH */
      if (ctx->Depth.Test)
         lookup |= IZ_DEPTH_TEST_ENABLE_BIT;

      if (ctx->Depth.Test && ctx->Depth.Mask) /* ?? */
         lookup |= IZ_DEPTH_WRITE_ENABLE_BIT;

      /* _NEW_STENCIL | _NEW_BUFFERS */
      if (ctx->Stencil._Enabled) {
         lookup |= IZ_STENCIL_TEST_ENABLE_BIT;

         if (ctx->Stencil.WriteMask[0] ||
             ctx->Stencil.WriteMask[ctx->Stencil._BackFace])
            lookup |= IZ_STENCIL_WRITE_ENABLE_BIT;
      }
      key->iz_lookup = lookup;
   }

   line_aa = AA_NEVER;

   /* _NEW_LINE, _NEW_POLYGON, BRW_NEW_REDUCED_PRIMITIVE */
   if (ctx->Line.SmoothFlag) {
      if (brw->reduced_primitive == GL_LINES) {
         line_aa = AA_ALWAYS;
      }
      else if (brw->reduced_primitive == GL_TRIANGLES) {
         if (ctx->Polygon.FrontMode == GL_LINE) {
            line_aa = AA_SOMETIMES;

            if (ctx->Polygon.BackMode == GL_LINE ||
                (ctx->Polygon.CullFlag &&
                 ctx->Polygon.CullFaceMode == GL_BACK))
               line_aa = AA_ALWAYS;
         }
         else if (ctx->Polygon.BackMode == GL_LINE) {
            line_aa = AA_SOMETIMES;

            if ((ctx->Polygon.CullFlag &&
                 ctx->Polygon.CullFaceMode == GL_FRONT))
               line_aa = AA_ALWAYS;
         }
      }
   }

   key->line_aa = line_aa;

   /* _NEW_HINT */
   key->high_quality_derivatives =
      ctx->Hint.FragmentShaderDerivative == GL_NICEST;

   if (brw->gen < 6)
      key->stats_wm = brw->stats_wm;

   /* _NEW_LIGHT */
   key->flat_shade = (ctx->Light.ShadeModel == GL_FLAT);

   /* _NEW_FRAG_CLAMP | _NEW_BUFFERS */
   key->clamp_fragment_color = ctx->Color._ClampFragmentColor;

   /* _NEW_BUFFERS */
   /*
    * Include the draw buffer origin and height so that we can calculate
    * fragment position values relative to the bottom left of the drawable,
    * from the incoming screen origin relative position we get as part of our
    * payload.
    *
    * This is only needed for the WM_WPOSXY opcode when the fragment program
    * uses the gl_FragCoord input.
    *
    * We could avoid recompiling by including this as a constant referenced by
    * our program, but if we were to do that it would also be nice to handle
    * getting that constant updated at batchbuffer submit time (when we
    * hold the lock and know where the buffer really is) rather than at emit
    * time when we don't hold the lock and are just guessing.  We could also
    * just avoid using this as key data if the program doesn't use
    * fragment.position.
    *
    * For DRI2 the origin_x/y will always be (0,0) but we still need the
    * drawable height in order to invert the Y axis.
    */
   if (fp->program.Base.InputsRead & VARYING_BIT_POS) {
      key->drawable_height = ctx->DrawBuffer->Height;
   }

   if ((fp->program.Base.InputsRead & VARYING_BIT_POS) || program_uses_dfdy) {
      key->render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer);
   }

   /* _NEW_BUFFERS */
   key->nr_color_regions = ctx->DrawBuffer->_NumColorDrawBuffers;

   /* _NEW_MULTISAMPLE, _NEW_COLOR, _NEW_BUFFERS */
   key->replicate_alpha = ctx->DrawBuffer->_NumColorDrawBuffers > 1 &&
      (ctx->Multisample.SampleAlphaToCoverage || ctx->Color.AlphaEnabled);

   /* _NEW_BUFFERS _NEW_MULTISAMPLE */
   /* Ignore sample qualifier while computing this flag. */
   key->persample_shading =
      _mesa_get_min_invocations_per_fragment(ctx, &fp->program, true) > 1;
   if (key->persample_shading)
      key->persample_2x = ctx->DrawBuffer->Visual.samples == 2;

   key->compute_pos_offset =
      _mesa_get_min_invocations_per_fragment(ctx, &fp->program, false) > 1 &&
      fp->program.Base.SystemValuesRead & SYSTEM_BIT_SAMPLE_POS;

   key->compute_sample_id =
      multisample_fbo &&
      ctx->Multisample.Enabled &&
      (fp->program.Base.SystemValuesRead & SYSTEM_BIT_SAMPLE_ID);

   /* BRW_NEW_VUE_MAP_GEOM_OUT */
   if (brw->gen < 6 || _mesa_bitcount_64(fp->program.Base.InputsRead &
                                         BRW_FS_VARYING_INPUT_MASK) > 16)
      key->input_slots_valid = brw->vue_map_geom_out.slots_valid;


   /* _NEW_COLOR | _NEW_BUFFERS */
   /* Pre-gen6, the hardware alpha test always used each render
    * target's alpha to do alpha test, as opposed to render target 0's alpha
    * like GL requires.  Fix that by building the alpha test into the
    * shader, and we'll skip enabling the fixed function alpha test.
    */
   if (brw->gen < 6 && ctx->DrawBuffer->_NumColorDrawBuffers > 1 && ctx->Color.AlphaEnabled) {
      key->alpha_test_func = ctx->Color.AlphaFunc;
      key->alpha_test_ref = ctx->Color.AlphaRef;
   }

   /* The unique fragment program ID */
   key->program_string_id = fp->id;

   ctx->DrawBuffer = NULL;
}

static bool
really_do_wm_prog(struct brw_context *brw,
                  struct gl_shader_program *prog,
                  struct brw_fragment_program *fp,
                  struct brw_wm_prog_key *key, struct anv_pipeline *pipeline)
{
   void *mem_ctx = ralloc_context(NULL);
   struct brw_wm_prog_data *prog_data = &pipeline->wm_prog_data;
   struct gl_shader *fs = NULL;
   unsigned int program_size;
   const uint32_t *program;

   if (prog)
      fs = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];

   memset(prog_data, 0, sizeof(*prog_data));

   create_params_array(pipeline, fs, &prog_data->base);
   anv_nir_apply_dynamic_offsets(pipeline, fs->Program->nir, &prog_data->base);
   anv_nir_apply_pipeline_layout(fs->Program->nir, pipeline->layout);

   set_binding_table_layout(&prog_data->base, pipeline,
                            VK_SHADER_STAGE_FRAGMENT);
   /* This needs to come after shader time and pull constant entries, but we
    * don't have those set up now, so just put it after the layout entries.
    */
   prog_data->binding_table.render_target_start = 0;

   program = brw_compile_fs(brw->intelScreen->compiler, brw, mem_ctx, key,
                            prog_data, fp->program.Base.nir, fs->Program,
                            -1, -1, brw->use_rep_send, &program_size, NULL);
   if (program == NULL) {
      ralloc_free(mem_ctx);
      return false;
   }

   uint32_t offset = upload_kernel(pipeline, program, program_size);

   if (prog_data->no_8)
      pipeline->ps_simd8 = NO_KERNEL;
   else
      pipeline->ps_simd8 = offset;

   if (prog_data->no_8 || prog_data->prog_offset_16) {
      pipeline->ps_simd16 = offset + prog_data->prog_offset_16;
   } else {
      pipeline->ps_simd16 = NO_KERNEL;
   }

   ralloc_free(mem_ctx);

   return true;
}

bool
anv_codegen_gs_prog(struct brw_context *brw,
                    struct gl_shader_program *prog,
                    struct brw_geometry_program *gp,
                    struct brw_gs_prog_key *key,
                    struct anv_pipeline *pipeline)
{
   struct brw_gs_compile c;

   memset(&c, 0, sizeof(c));
   c.key = *key;
   c.gp = gp;

   c.prog_data.include_primitive_id =
      (gp->program.Base.InputsRead & VARYING_BIT_PRIMITIVE_ID) != 0;

   c.prog_data.invocations = gp->program.Invocations;

   set_binding_table_layout(&c.prog_data.base.base,
                            pipeline, VK_SHADER_STAGE_GEOMETRY);

   /* Allocate the references to the uniforms that will end up in the
    * prog_data associated with the compiled program, and which will be freed
    * by the state cache.
    *
    * Note: param_count needs to be num_uniform_components * 4, since we add
    * padding around uniform values below vec4 size, so the worst case is that
    * every uniform is a float which gets padded to the size of a vec4.
    */
   struct gl_shader *gs = prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
   int param_count = gp->program.Base.nir->num_uniforms * 4;

   c.prog_data.base.base.param =
      rzalloc_array(NULL, const gl_constant_value *, param_count);
   c.prog_data.base.base.pull_param =
      rzalloc_array(NULL, const gl_constant_value *, param_count);
   c.prog_data.base.base.image_param =
      rzalloc_array(NULL, struct brw_image_param, gs->NumImages);
   c.prog_data.base.base.nr_params = param_count;
   c.prog_data.base.base.nr_image_params = gs->NumImages;

   brw_nir_setup_glsl_uniforms(gp->program.Base.nir, prog, &gp->program.Base,
                               &c.prog_data.base.base, false);

   if (brw->gen >= 8) {
      c.prog_data.static_vertex_count = !gp->program.Base.nir ? -1 :
         nir_gs_count_vertices(gp->program.Base.nir);
   }

   if (brw->gen >= 7) {
      if (gp->program.OutputType == GL_POINTS) {
         /* When the output type is points, the geometry shader may output data
          * to multiple streams, and EndPrimitive() has no effect.  So we
          * configure the hardware to interpret the control data as stream ID.
          */
         c.prog_data.control_data_format = GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID;

         /* We only have to emit control bits if we are using streams */
         if (prog->Geom.UsesStreams)
            c.control_data_bits_per_vertex = 2;
         else
            c.control_data_bits_per_vertex = 0;
      } else {
         /* When the output type is triangle_strip or line_strip, EndPrimitive()
          * may be used to terminate the current strip and start a new one
          * (similar to primitive restart), and outputting data to multiple
          * streams is not supported.  So we configure the hardware to interpret
          * the control data as EndPrimitive information (a.k.a. "cut bits").
          */
         c.prog_data.control_data_format = GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT;

         /* We only need to output control data if the shader actually calls
          * EndPrimitive().
          */
         c.control_data_bits_per_vertex = gp->program.UsesEndPrimitive ? 1 : 0;
      }
   } else {
      /* There are no control data bits in gen6. */
      c.control_data_bits_per_vertex = 0;

      /* If it is using transform feedback, enable it */
      if (prog->TransformFeedback.NumVarying)
         c.prog_data.gen6_xfb_enabled = true;
      else
         c.prog_data.gen6_xfb_enabled = false;
   }
   c.control_data_header_size_bits =
      gp->program.VerticesOut * c.control_data_bits_per_vertex;

   /* 1 HWORD = 32 bytes = 256 bits */
   c.prog_data.control_data_header_size_hwords =
      ALIGN(c.control_data_header_size_bits, 256) / 256;

   GLbitfield64 outputs_written = gp->program.Base.OutputsWritten;

   brw_compute_vue_map(brw->intelScreen->devinfo,
                       &c.prog_data.base.vue_map, outputs_written,
                       prog ? prog->SeparateShader : false);

   /* Compute the output vertex size.
    *
    * From the Ivy Bridge PRM, Vol2 Part1 7.2.1.1 STATE_GS - Output Vertex
    * Size (p168):
    *
    *     [0,62] indicating [1,63] 16B units
    *
    *     Specifies the size of each vertex stored in the GS output entry
    *     (following any Control Header data) as a number of 128-bit units
    *     (minus one).
    *
    *     Programming Restrictions: The vertex size must be programmed as a
    *     multiple of 32B units with the following exception: Rendering is
    *     disabled (as per SOL stage state) and the vertex size output by the
    *     GS thread is 16B.
    *
    *     If rendering is enabled (as per SOL state) the vertex size must be
    *     programmed as a multiple of 32B units. In other words, the only time
    *     software can program a vertex size with an odd number of 16B units
    *     is when rendering is disabled.
    *
    * Note: B=bytes in the above text.
    *
    * It doesn't seem worth the extra trouble to optimize the case where the
    * vertex size is 16B (especially since this would require special-casing
    * the GEN assembly that writes to the URB).  So we just set the vertex
    * size to a multiple of 32B (2 vec4's) in all cases.
    *
    * The maximum output vertex size is 62*16 = 992 bytes (31 hwords).  We
    * budget that as follows:
    *
    *   512 bytes for varyings (a varying component is 4 bytes and
    *             gl_MaxGeometryOutputComponents = 128)
    *    16 bytes overhead for VARYING_SLOT_PSIZ (each varying slot is 16
    *             bytes)
    *    16 bytes overhead for gl_Position (we allocate it a slot in the VUE
    *             even if it's not used)
    *    32 bytes overhead for gl_ClipDistance (we allocate it 2 VUE slots
    *             whenever clip planes are enabled, even if the shader doesn't
    *             write to gl_ClipDistance)
    *    16 bytes overhead since the VUE size must be a multiple of 32 bytes
    *             (see below)--this causes up to 1 VUE slot to be wasted
    *   400 bytes available for varying packing overhead
    *
    * Worst-case varying packing overhead is 3/4 of a varying slot (12 bytes)
    * per interpolation type, so this is plenty.
    *
    */
   unsigned output_vertex_size_bytes = c.prog_data.base.vue_map.num_slots * 16;
   assert(brw->gen == 6 ||
          output_vertex_size_bytes <= GEN7_MAX_GS_OUTPUT_VERTEX_SIZE_BYTES);
   c.prog_data.output_vertex_size_hwords =
      ALIGN(output_vertex_size_bytes, 32) / 32;

   /* Compute URB entry size.  The maximum allowed URB entry size is 32k.
    * That divides up as follows:
    *
    *     64 bytes for the control data header (cut indices or StreamID bits)
    *   4096 bytes for varyings (a varying component is 4 bytes and
    *              gl_MaxGeometryTotalOutputComponents = 1024)
    *   4096 bytes overhead for VARYING_SLOT_PSIZ (each varying slot is 16
    *              bytes/vertex and gl_MaxGeometryOutputVertices is 256)
    *   4096 bytes overhead for gl_Position (we allocate it a slot in the VUE
    *              even if it's not used)
    *   8192 bytes overhead for gl_ClipDistance (we allocate it 2 VUE slots
    *              whenever clip planes are enabled, even if the shader doesn't
    *              write to gl_ClipDistance)
    *   4096 bytes overhead since the VUE size must be a multiple of 32
    *              bytes (see above)--this causes up to 1 VUE slot to be wasted
    *   8128 bytes available for varying packing overhead
    *
    * Worst-case varying packing overhead is 3/4 of a varying slot per
    * interpolation type, which works out to 3072 bytes, so this would allow
    * us to accommodate 2 interpolation types without any danger of running
    * out of URB space.
    *
    * In practice, the risk of running out of URB space is very small, since
    * the above figures are all worst-case, and most of them scale with the
    * number of output vertices.  So we'll just calculate the amount of space
    * we need, and if it's too large, fail to compile.
    *
    * The above is for gen7+ where we have a single URB entry that will hold
    * all the output. In gen6, we will have to allocate URB entries for every
    * vertex we emit, so our URB entries only need to be large enough to hold
    * a single vertex. Also, gen6 does not have a control data header.
    */
   unsigned output_size_bytes;
   if (brw->gen >= 7) {
      output_size_bytes =
         c.prog_data.output_vertex_size_hwords * 32 * gp->program.VerticesOut;
      output_size_bytes += 32 * c.prog_data.control_data_header_size_hwords;
   } else {
      output_size_bytes = c.prog_data.output_vertex_size_hwords * 32;
   }

   /* Broadwell stores "Vertex Count" as a full 8 DWord (32 byte) URB output,
    * which comes before the control header.
    */
   if (brw->gen >= 8)
      output_size_bytes += 32;

   assert(output_size_bytes >= 1);
   int max_output_size_bytes = GEN7_MAX_GS_URB_ENTRY_SIZE_BYTES;
   if (brw->gen == 6)
      max_output_size_bytes = GEN6_MAX_GS_URB_ENTRY_SIZE_BYTES;
   if (output_size_bytes > max_output_size_bytes)
      return false;


   /* URB entry sizes are stored as a multiple of 64 bytes in gen7+ and
    * a multiple of 128 bytes in gen6.
    */
   if (brw->gen >= 7)
      c.prog_data.base.urb_entry_size = ALIGN(output_size_bytes, 64) / 64;
   else
      c.prog_data.base.urb_entry_size = ALIGN(output_size_bytes, 128) / 128;

   /* FIXME: Need to pull this from nir shader. */
   c.prog_data.output_topology = _3DPRIM_TRISTRIP;

   /* The GLSL linker will have already matched up GS inputs and the outputs
    * of prior stages.  The driver does extend VS outputs in some cases, but
    * only for legacy OpenGL or Gen4-5 hardware, neither of which offer
    * geometry shader support.  So we can safely ignore that.
    *
    * For SSO pipelines, we use a fixed VUE map layout based on variable
    * locations, so we can rely on rendezvous-by-location making this work.
    *
    * However, we need to ignore VARYING_SLOT_PRIMITIVE_ID, as it's not
    * written by previous stages and shows up via payload magic.
    */
   GLbitfield64 inputs_read =
      gp->program.Base.InputsRead & ~VARYING_BIT_PRIMITIVE_ID;
   brw_compute_vue_map(brw->intelScreen->devinfo,
                       &c.input_vue_map, inputs_read,
                       prog->SeparateShader);

   /* GS inputs are read from the VUE 256 bits (2 vec4's) at a time, so we
    * need to program a URB read length of ceiling(num_slots / 2).
    */
   c.prog_data.base.urb_read_length = (c.input_vue_map.num_slots + 1) / 2;

   void *mem_ctx = ralloc_context(NULL);
   unsigned program_size;
   const unsigned *program =
      brw_compile_gs(brw->intelScreen->compiler, brw, &c, gp->program.Base.nir,
                     prog, mem_ctx, -1, &program_size, NULL);
   if (program == NULL) {
      ralloc_free(mem_ctx);
      return false;
   }

   pipeline->gs_vec4 = upload_kernel(pipeline, program, program_size);
   pipeline->gs_vertex_count = gp->program.VerticesIn;

   ralloc_free(mem_ctx);

   return true;
}

static bool
brw_codegen_cs_prog(struct brw_context *brw,
                    struct gl_shader_program *prog,
                    struct brw_compute_program *cp,
                    struct brw_cs_prog_key *key, struct anv_pipeline *pipeline)
{
   const GLuint *program;
   void *mem_ctx = ralloc_context(NULL);
   GLuint program_size;
   struct brw_cs_prog_data *prog_data = &pipeline->cs_prog_data;

   struct gl_shader *cs = prog->_LinkedShaders[MESA_SHADER_COMPUTE];
   assert (cs);

   memset(prog_data, 0, sizeof(*prog_data));

   set_binding_table_layout(&prog_data->base, pipeline, VK_SHADER_STAGE_COMPUTE);

   create_params_array(pipeline, cs, &prog_data->base);
   anv_nir_apply_dynamic_offsets(pipeline, cs->Program->nir, &prog_data->base);
   anv_nir_apply_pipeline_layout(cs->Program->nir, pipeline->layout);

   program = brw_compile_cs(brw->intelScreen->compiler, brw, mem_ctx, key,
                            prog_data, cs->Program->nir, -1,
                            &program_size, NULL);
   if (program == NULL) {
      ralloc_free(mem_ctx);
      return false;
   }

   if (unlikely(INTEL_DEBUG & DEBUG_CS))
      fprintf(stderr, "\n");

   pipeline->cs_simd = upload_kernel(pipeline, program, program_size);

   ralloc_free(mem_ctx);

   return true;
}

static void
brw_cs_populate_key(struct brw_context *brw,
                    struct brw_compute_program *bcp, struct brw_cs_prog_key *key)
{
   memset(key, 0, sizeof(*key));

   /* The unique compute program ID */
   key->program_string_id = bcp->id;
}

struct anv_compiler {
   struct anv_device *device;
   struct intel_screen *screen;
   struct brw_context *brw;
   struct gl_pipeline_object pipeline;
};

extern "C" {

struct anv_compiler *
anv_compiler_create(struct anv_device *device)
{
   const struct brw_device_info *devinfo = &device->info;
   struct anv_compiler *compiler;
   struct gl_context *ctx;

   compiler = rzalloc(NULL, struct anv_compiler);
   if (compiler == NULL)
      return NULL;

   compiler->screen = rzalloc(compiler, struct intel_screen);
   if (compiler->screen == NULL)
      goto fail;

   compiler->brw = rzalloc(compiler, struct brw_context);
   if (compiler->brw == NULL)
      goto fail;

   compiler->device = device;

   compiler->brw->gen = devinfo->gen;
   compiler->brw->is_g4x = devinfo->is_g4x;
   compiler->brw->is_baytrail = devinfo->is_baytrail;
   compiler->brw->is_haswell = devinfo->is_haswell;
   compiler->brw->is_cherryview = devinfo->is_cherryview;

   /* We need this at least for CS, which will check brw->max_cs_threads
    * against the work group size. */
   compiler->brw->max_vs_threads = devinfo->max_vs_threads;
   compiler->brw->max_hs_threads = devinfo->max_hs_threads;
   compiler->brw->max_ds_threads = devinfo->max_ds_threads;
   compiler->brw->max_gs_threads = devinfo->max_gs_threads;
   compiler->brw->max_wm_threads = devinfo->max_wm_threads;
   compiler->brw->max_cs_threads = devinfo->max_cs_threads;
   compiler->brw->urb.size = devinfo->urb.size;
   compiler->brw->urb.min_vs_entries = devinfo->urb.min_vs_entries;
   compiler->brw->urb.max_vs_entries = devinfo->urb.max_vs_entries;
   compiler->brw->urb.max_hs_entries = devinfo->urb.max_hs_entries;
   compiler->brw->urb.max_ds_entries = devinfo->urb.max_ds_entries;
   compiler->brw->urb.max_gs_entries = devinfo->urb.max_gs_entries;

   compiler->brw->intelScreen = compiler->screen;
   compiler->screen->devinfo = &device->info;

   brw_process_intel_debug_variable();

   compiler->screen->compiler = brw_compiler_create(compiler, &device->info);

   ctx = &compiler->brw->ctx;
   _mesa_init_shader_object_functions(&ctx->Driver);

   /* brw_select_clip_planes() needs this for bogus reasons. */
   ctx->_Shader = &compiler->pipeline;

   return compiler;

 fail:
   ralloc_free(compiler);
   return NULL;
}

void
anv_compiler_destroy(struct anv_compiler *compiler)
{
   _mesa_free_errors_data(&compiler->brw->ctx);
   ralloc_free(compiler);
}

/* From gen7_urb.c */

/* FIXME: Add to struct intel_device_info */

static const int gen8_push_size = 32 * 1024;

static void
gen7_compute_urb_partition(struct anv_pipeline *pipeline)
{
   const struct brw_device_info *devinfo = &pipeline->device->info;
   bool vs_present = pipeline->vs_simd8 != NO_KERNEL;
   unsigned vs_size = vs_present ? pipeline->vs_prog_data.base.urb_entry_size : 1;
   unsigned vs_entry_size_bytes = vs_size * 64;
   bool gs_present = pipeline->gs_vec4 != NO_KERNEL;
   unsigned gs_size = gs_present ? pipeline->gs_prog_data.base.urb_entry_size : 1;
   unsigned gs_entry_size_bytes = gs_size * 64;

   /* From p35 of the Ivy Bridge PRM (section 1.7.1: 3DSTATE_URB_GS):
    *
    *     VS Number of URB Entries must be divisible by 8 if the VS URB Entry
    *     Allocation Size is less than 9 512-bit URB entries.
    *
    * Similar text exists for GS.
    */
   unsigned vs_granularity = (vs_size < 9) ? 8 : 1;
   unsigned gs_granularity = (gs_size < 9) ? 8 : 1;

   /* URB allocations must be done in 8k chunks. */
   unsigned chunk_size_bytes = 8192;

   /* Determine the size of the URB in chunks. */
   unsigned urb_chunks = devinfo->urb.size * 1024 / chunk_size_bytes;

   /* Reserve space for push constants */
   unsigned push_constant_bytes = gen8_push_size;
   unsigned push_constant_chunks =
      push_constant_bytes / chunk_size_bytes;

   /* Initially, assign each stage the minimum amount of URB space it needs,
    * and make a note of how much additional space it "wants" (the amount of
    * additional space it could actually make use of).
    */

   /* VS has a lower limit on the number of URB entries */
   unsigned vs_chunks =
      ALIGN(devinfo->urb.min_vs_entries * vs_entry_size_bytes,
            chunk_size_bytes) / chunk_size_bytes;
   unsigned vs_wants =
      ALIGN(devinfo->urb.max_vs_entries * vs_entry_size_bytes,
            chunk_size_bytes) / chunk_size_bytes - vs_chunks;

   unsigned gs_chunks = 0;
   unsigned gs_wants = 0;
   if (gs_present) {
      /* There are two constraints on the minimum amount of URB space we can
       * allocate:
       *
       * (1) We need room for at least 2 URB entries, since we always operate
       * the GS in DUAL_OBJECT mode.
       *
       * (2) We can't allocate less than nr_gs_entries_granularity.
       */
      gs_chunks = ALIGN(MAX2(gs_granularity, 2) * gs_entry_size_bytes,
                        chunk_size_bytes) / chunk_size_bytes;
      gs_wants =
         ALIGN(devinfo->urb.max_gs_entries * gs_entry_size_bytes,
               chunk_size_bytes) / chunk_size_bytes - gs_chunks;
   }

   /* There should always be enough URB space to satisfy the minimum
    * requirements of each stage.
    */
   unsigned total_needs = push_constant_chunks + vs_chunks + gs_chunks;
   assert(total_needs <= urb_chunks);

   /* Mete out remaining space (if any) in proportion to "wants". */
   unsigned total_wants = vs_wants + gs_wants;
   unsigned remaining_space = urb_chunks - total_needs;
   if (remaining_space > total_wants)
      remaining_space = total_wants;
   if (remaining_space > 0) {
      unsigned vs_additional = (unsigned)
         round(vs_wants * (((double) remaining_space) / total_wants));
      vs_chunks += vs_additional;
      remaining_space -= vs_additional;
      gs_chunks += remaining_space;
   }

   /* Sanity check that we haven't over-allocated. */
   assert(push_constant_chunks + vs_chunks + gs_chunks <= urb_chunks);

   /* Finally, compute the number of entries that can fit in the space
    * allocated to each stage.
    */
   unsigned nr_vs_entries = vs_chunks * chunk_size_bytes / vs_entry_size_bytes;
   unsigned nr_gs_entries = gs_chunks * chunk_size_bytes / gs_entry_size_bytes;

   /* Since we rounded up when computing *_wants, this may be slightly more
    * than the maximum allowed amount, so correct for that.
    */
   nr_vs_entries = MIN2(nr_vs_entries, devinfo->urb.max_vs_entries);
   nr_gs_entries = MIN2(nr_gs_entries, devinfo->urb.max_gs_entries);

   /* Ensure that we program a multiple of the granularity. */
   nr_vs_entries = ROUND_DOWN_TO(nr_vs_entries, vs_granularity);
   nr_gs_entries = ROUND_DOWN_TO(nr_gs_entries, gs_granularity);

   /* Finally, sanity check to make sure we have at least the minimum number
    * of entries needed for each stage.
    */
   assert(nr_vs_entries >= devinfo->urb.min_vs_entries);
   if (gs_present)
      assert(nr_gs_entries >= 2);

   /* Lay out the URB in the following order:
    * - push constants
    * - VS
    * - GS
    */
   pipeline->urb.vs_start = push_constant_chunks;
   pipeline->urb.vs_size = vs_size;
   pipeline->urb.nr_vs_entries = nr_vs_entries;

   pipeline->urb.gs_start = push_constant_chunks + vs_chunks;
   pipeline->urb.gs_size = gs_size;
   pipeline->urb.nr_gs_entries = nr_gs_entries;
}

static const struct {
   uint32_t token;
   gl_shader_stage stage;
   const char *name;
} stage_info[] = {
   { GL_VERTEX_SHADER, MESA_SHADER_VERTEX, "vertex" },
   { GL_TESS_CONTROL_SHADER, (gl_shader_stage)-1,"tess control" },
   { GL_TESS_EVALUATION_SHADER, (gl_shader_stage)-1, "tess evaluation" },
   { GL_GEOMETRY_SHADER, MESA_SHADER_GEOMETRY, "geometry" },
   { GL_FRAGMENT_SHADER, MESA_SHADER_FRAGMENT, "fragment" },
   { GL_COMPUTE_SHADER, MESA_SHADER_COMPUTE, "compute" },
};

struct spirv_header{
   uint32_t magic;
   uint32_t version;
   uint32_t gen_magic;
};

static void
setup_nir_io(struct gl_shader *mesa_shader,
             nir_shader *shader)
{
   struct gl_program *prog = mesa_shader->Program;
   foreach_list_typed(nir_variable, var, node, &shader->inputs) {
      prog->InputsRead |= BITFIELD64_BIT(var->data.location);
      if (shader->stage == MESA_SHADER_FRAGMENT) {
         struct gl_fragment_program *fprog = (struct gl_fragment_program *)prog;

         fprog->InterpQualifier[var->data.location] =
            (glsl_interp_qualifier)var->data.interpolation;
         if (var->data.centroid)
            fprog->IsCentroid |= BITFIELD64_BIT(var->data.location);
         if (var->data.sample)
            fprog->IsSample |= BITFIELD64_BIT(var->data.location);
      }
   }

   foreach_list_typed(nir_variable, var, node, &shader->outputs) {
      prog->OutputsWritten |= BITFIELD64_BIT(var->data.location);
   }

   shader->info.system_values_read = 0;
   foreach_list_typed(nir_variable, var, node, &shader->system_values) {
      shader->info.system_values_read |= BITFIELD64_BIT(var->data.location);
   }

   shader->info.inputs_read = prog->InputsRead;
   shader->info.outputs_written = prog->OutputsWritten;
}

static void
anv_compile_shader_spirv(struct anv_compiler *compiler,
                         struct gl_shader_program *program,
                         struct anv_pipeline *pipeline, uint32_t stage)
{
   struct brw_context *brw = compiler->brw;
   struct anv_shader *shader = pipeline->shaders[stage];
   struct gl_shader *mesa_shader;
   int name = 0;

   mesa_shader = brw_new_shader(&brw->ctx, name, stage_info[stage].token);
   fail_if(mesa_shader == NULL,
           "failed to create %s shader\n", stage_info[stage].name);

#define CREATE_PROGRAM(stage) \
   &ralloc(mesa_shader, struct brw_##stage##_program)->program.Base

   bool is_scalar;
   struct gl_program *prog;
   switch (stage) {
   case VK_SHADER_STAGE_VERTEX:
      prog = CREATE_PROGRAM(vertex);
      is_scalar = compiler->screen->compiler->scalar_vs;
      break;
   case VK_SHADER_STAGE_GEOMETRY:
      prog = CREATE_PROGRAM(geometry);
      is_scalar = false;
      break;
   case VK_SHADER_STAGE_FRAGMENT:
      prog = CREATE_PROGRAM(fragment);
      is_scalar = true;
      break;
   case VK_SHADER_STAGE_COMPUTE:
      prog = CREATE_PROGRAM(compute);
      is_scalar = true;
      break;
   default:
      unreachable("Unsupported shader stage");
   }
   _mesa_init_gl_program(prog, 0, 0);
   _mesa_reference_program(&brw->ctx, &mesa_shader->Program, prog);

   mesa_shader->Program->Parameters =
      rzalloc(mesa_shader, struct gl_program_parameter_list);

   mesa_shader->Type = stage_info[stage].token;
   mesa_shader->Stage = stage_info[stage].stage;

   struct gl_shader_compiler_options *glsl_options =
      &compiler->screen->compiler->glsl_compiler_options[stage_info[stage].stage];

   if (shader->module->nir) {
      /* Some things such as our meta clear/blit code will give us a NIR
       * shader directly.  In that case, we just ignore the SPIR-V entirely
       * and just use the NIR shader */
      mesa_shader->Program->nir = shader->module->nir;
      mesa_shader->Program->nir->options = glsl_options->NirOptions;
   } else {
      uint32_t *spirv = (uint32_t *) shader->module->data;
      assert(spirv[0] == SPIR_V_MAGIC_NUMBER);
      assert(shader->module->size % 4 == 0);

      mesa_shader->Program->nir =
         spirv_to_nir(spirv, shader->module->size / 4,
                      stage_info[stage].stage, glsl_options->NirOptions);
   }
   nir_validate_shader(mesa_shader->Program->nir);

   setup_nir_io(mesa_shader, mesa_shader->Program->nir);

   brw_process_nir(mesa_shader->Program->nir,
                   compiler->screen->devinfo,
                   NULL, mesa_shader->Stage, is_scalar);

   mesa_shader->num_uniform_components =
      mesa_shader->Program->nir->num_uniforms;

   fail_if(mesa_shader->Program->nir == NULL,
           "failed to translate SPIR-V to NIR\n");

   _mesa_reference_shader(&brw->ctx, &program->Shaders[program->NumShaders],
                          mesa_shader);
   program->NumShaders++;
}

static void
add_compiled_stage(struct anv_pipeline *pipeline, uint32_t stage,
                   struct brw_stage_prog_data *prog_data)
{
   struct brw_device_info *devinfo = &pipeline->device->info;
   uint32_t max_threads[] = {
      [VK_SHADER_STAGE_VERTEX]                  = devinfo->max_vs_threads,
      [VK_SHADER_STAGE_TESS_CONTROL]            = 0,
      [VK_SHADER_STAGE_TESS_EVALUATION]         = 0,
      [VK_SHADER_STAGE_GEOMETRY]                = devinfo->max_gs_threads,
      [VK_SHADER_STAGE_FRAGMENT]                = devinfo->max_wm_threads,
      [VK_SHADER_STAGE_COMPUTE]                 = devinfo->max_cs_threads,
   };

   pipeline->prog_data[stage] = prog_data;
   pipeline->active_stages |= 1 << stage;
   pipeline->scratch_start[stage] = pipeline->total_scratch;
   pipeline->total_scratch =
      align_u32(pipeline->total_scratch, 1024) +
      prog_data->total_scratch * max_threads[stage];
}

int
anv_compiler_run(struct anv_compiler *compiler, struct anv_pipeline *pipeline)
{
   struct gl_shader_program *program;
   int name = 0;
   struct brw_context *brw = compiler->brw;

   pipeline->writes_point_size = false;

   /* When we free the pipeline, we detect stages based on the NULL status
    * of various prog_data pointers.  Make them NULL by default.
    */
   memset(pipeline->prog_data, 0, sizeof(pipeline->prog_data));
   memset(pipeline->scratch_start, 0, sizeof(pipeline->scratch_start));

   brw->use_rep_send = pipeline->use_repclear;
   brw->no_simd8 = pipeline->use_repclear;

   program = _mesa_new_shader_program(name);
   program->Shaders = (struct gl_shader **)
      calloc(VK_SHADER_STAGE_NUM, sizeof(struct gl_shader *));
   fail_if(program == NULL || program->Shaders == NULL,
           "failed to create program\n");

   for (unsigned i = 0; i < VK_SHADER_STAGE_NUM; i++) {
      if (pipeline->shaders[i])
         anv_compile_shader_spirv(compiler, program, pipeline, i);
   }

   for (unsigned i = 0; i < program->NumShaders; i++) {
      struct gl_shader *shader = program->Shaders[i];
      program->_LinkedShaders[shader->Stage] = shader;
   }

   bool success;
   pipeline->active_stages = 0;
   pipeline->total_scratch = 0;

   if (pipeline->shaders[VK_SHADER_STAGE_VERTEX]) {
      struct brw_vs_prog_key vs_key;
      struct gl_vertex_program *vp = (struct gl_vertex_program *)
         program->_LinkedShaders[MESA_SHADER_VERTEX]->Program;
      struct brw_vertex_program *bvp = brw_vertex_program(vp);

      brw_vs_populate_key(brw, bvp, &vs_key);

      success = really_do_vs_prog(brw, program, bvp, &vs_key, pipeline);
      fail_if(!success, "do_wm_prog failed\n");
      add_compiled_stage(pipeline, VK_SHADER_STAGE_VERTEX,
                         &pipeline->vs_prog_data.base.base);

      if (vp->Base.OutputsWritten & VARYING_SLOT_PSIZ)
         pipeline->writes_point_size = true;
   } else {
      memset(&pipeline->vs_prog_data, 0, sizeof(pipeline->vs_prog_data));
      pipeline->vs_simd8 = NO_KERNEL;
      pipeline->vs_vec4 = NO_KERNEL;
   }


   if (pipeline->shaders[VK_SHADER_STAGE_GEOMETRY]) {
      struct brw_gs_prog_key gs_key;
      struct gl_geometry_program *gp = (struct gl_geometry_program *)
         program->_LinkedShaders[MESA_SHADER_GEOMETRY]->Program;
      struct brw_geometry_program *bgp = brw_geometry_program(gp);

      success = anv_codegen_gs_prog(brw, program, bgp, &gs_key, pipeline);
      fail_if(!success, "do_gs_prog failed\n");
      add_compiled_stage(pipeline, VK_SHADER_STAGE_GEOMETRY,
                         &pipeline->gs_prog_data.base.base);

      if (gp->Base.OutputsWritten & VARYING_SLOT_PSIZ)
         pipeline->writes_point_size = true;
   } else {
      pipeline->gs_vec4 = NO_KERNEL;
   }

   if (pipeline->shaders[VK_SHADER_STAGE_FRAGMENT]) {
      struct brw_wm_prog_key wm_key;
      struct gl_fragment_program *fp = (struct gl_fragment_program *)
         program->_LinkedShaders[MESA_SHADER_FRAGMENT]->Program;
      struct brw_fragment_program *bfp = brw_fragment_program(fp);

      brw_wm_populate_key(brw, bfp, &wm_key);

      success = really_do_wm_prog(brw, program, bfp, &wm_key, pipeline);
      fail_if(!success, "do_wm_prog failed\n");
      add_compiled_stage(pipeline, VK_SHADER_STAGE_FRAGMENT,
                         &pipeline->wm_prog_data.base);
   }

   if (pipeline->shaders[VK_SHADER_STAGE_COMPUTE]) {
      struct brw_cs_prog_key cs_key;
      struct gl_compute_program *cp = (struct gl_compute_program *)
         program->_LinkedShaders[MESA_SHADER_COMPUTE]->Program;
      struct brw_compute_program *bcp = brw_compute_program(cp);

      brw_cs_populate_key(brw, bcp, &cs_key);

      success = brw_codegen_cs_prog(brw, program, bcp, &cs_key, pipeline);
      fail_if(!success, "brw_codegen_cs_prog failed\n");
      add_compiled_stage(pipeline, VK_SHADER_STAGE_COMPUTE,
                         &pipeline->cs_prog_data.base);
   }

   _mesa_delete_shader_program(&brw->ctx, program);

   struct anv_device *device = compiler->device;
   while (device->scratch_block_pool.bo.size < pipeline->total_scratch)
      anv_block_pool_alloc(&device->scratch_block_pool);

   gen7_compute_urb_partition(pipeline);

   return 0;
}

/* This badly named function frees the struct anv_pipeline data that the compiler
 * allocates.  Currently just the prog_data structs.
 */
void
anv_compiler_free(struct anv_pipeline *pipeline)
{
   for (uint32_t stage = 0; stage < VK_SHADER_STAGE_NUM; stage++) {
      if (pipeline->prog_data[stage]) {
         /* We only ever set up the params array because we don't do
          * non-UBO pull constants
          */
         anv_device_free(pipeline->device, pipeline->prog_data[stage]->param);
      }
   }
}

}