summaryrefslogtreecommitdiffstats
path: root/src/vulkan/anv_cmd_buffer.c
blob: 6dedc3f335f3f5436182d3b9bde44ba96e5b5ae7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
/*
 * Copyright © 2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */

#include <assert.h>
#include <stdbool.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>

#include "anv_private.h"

/** \file anv_cmd_buffer.c
 *
 * This file contains all of the stuff for emitting commands into a command
 * buffer.  This includes implementations of most of the vkCmd*
 * entrypoints.  This file is concerned entirely with state emission and
 * not with the command buffer data structure itself.  As far as this file
 * is concerned, most of anv_cmd_buffer is magic.
 */

/* TODO: These are taken from GLES.  We should check the Vulkan spec */
const struct anv_dynamic_state default_dynamic_state = {
   .viewport = {
      .count = 0,
   },
   .scissor = {
      .count = 0,
   },
   .line_width = 1.0f,
   .depth_bias = {
      .bias = 0.0f,
      .clamp = 0.0f,
      .slope_scaled = 0.0f,
   },
   .blend_constants = { 0.0f, 0.0f, 0.0f, 0.0f },
   .depth_bounds = {
      .min = 0.0f,
      .max = 1.0f,
   },
   .stencil_compare_mask = {
      .front = ~0u,
      .back = ~0u,
   },
   .stencil_write_mask = {
      .front = ~0u,
      .back = ~0u,
   },
   .stencil_reference = {
      .front = 0u,
      .back = 0u,
   },
};

void
anv_dynamic_state_copy(struct anv_dynamic_state *dest,
                       const struct anv_dynamic_state *src,
                       uint32_t copy_mask)
{
   if (copy_mask & (1 << VK_DYNAMIC_STATE_VIEWPORT)) {
      dest->viewport.count = src->viewport.count;
      typed_memcpy(dest->viewport.viewports, src->viewport.viewports,
                   src->viewport.count);
   }

   if (copy_mask & (1 << VK_DYNAMIC_STATE_SCISSOR)) {
      dest->scissor.count = src->scissor.count;
      typed_memcpy(dest->scissor.scissors, src->scissor.scissors,
                   src->scissor.count);
   }

   if (copy_mask & (1 << VK_DYNAMIC_STATE_LINE_WIDTH))
      dest->line_width = src->line_width;

   if (copy_mask & (1 << VK_DYNAMIC_STATE_DEPTH_BIAS))
      dest->depth_bias = src->depth_bias;

   if (copy_mask & (1 << VK_DYNAMIC_STATE_BLEND_CONSTANTS))
      typed_memcpy(dest->blend_constants, src->blend_constants, 4);

   if (copy_mask & (1 << VK_DYNAMIC_STATE_DEPTH_BOUNDS))
      dest->depth_bounds = src->depth_bounds;

   if (copy_mask & (1 << VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK))
      dest->stencil_compare_mask = src->stencil_compare_mask;

   if (copy_mask & (1 << VK_DYNAMIC_STATE_STENCIL_WRITE_MASK))
      dest->stencil_write_mask = src->stencil_write_mask;

   if (copy_mask & (1 << VK_DYNAMIC_STATE_STENCIL_REFERENCE))
      dest->stencil_reference = src->stencil_reference;
}

static void
anv_cmd_state_init(struct anv_cmd_state *state)
{
   memset(&state->descriptors, 0, sizeof(state->descriptors));
   memset(&state->push_constants, 0, sizeof(state->push_constants));

   state->dirty = ~0;
   state->vb_dirty = 0;
   state->descriptors_dirty = 0;
   state->push_constants_dirty = 0;
   state->pipeline = NULL;
   state->restart_index = UINT32_MAX;
   state->dynamic = default_dynamic_state;

   state->gen7.index_buffer = NULL;
}

static VkResult
anv_cmd_buffer_ensure_push_constants_size(struct anv_cmd_buffer *cmd_buffer,
                                          VkShaderStage stage, uint32_t size)
{
   struct anv_push_constants **ptr = &cmd_buffer->state.push_constants[stage];

   if (*ptr == NULL) {
      *ptr = anv_device_alloc(cmd_buffer->device, size, 8,
                              VK_SYSTEM_ALLOC_TYPE_INTERNAL);
      if (*ptr == NULL)
         return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
      (*ptr)->size = size;
   } else if ((*ptr)->size < size) {
      void *new_data = anv_device_alloc(cmd_buffer->device, size, 8,
                                        VK_SYSTEM_ALLOC_TYPE_INTERNAL);
      if (new_data == NULL)
         return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);

      memcpy(new_data, *ptr, (*ptr)->size);
      anv_device_free(cmd_buffer->device, *ptr);

      *ptr = new_data;
      (*ptr)->size = size;
   }

   return VK_SUCCESS;
}

#define anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, stage, field) \
   anv_cmd_buffer_ensure_push_constants_size(cmd_buffer, stage, \
      (offsetof(struct anv_push_constants, field) + \
       sizeof(cmd_buffer->state.push_constants[0]->field)))

VkResult anv_CreateCommandBuffer(
    VkDevice                                    _device,
    const VkCmdBufferCreateInfo*                pCreateInfo,
    VkCmdBuffer*                                pCmdBuffer)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   ANV_FROM_HANDLE(anv_cmd_pool, pool, pCreateInfo->cmdPool);
   struct anv_cmd_buffer *cmd_buffer;
   VkResult result;

   cmd_buffer = anv_device_alloc(device, sizeof(*cmd_buffer), 8,
                                 VK_SYSTEM_ALLOC_TYPE_API_OBJECT);
   if (cmd_buffer == NULL)
      return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);

   cmd_buffer->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
   cmd_buffer->device = device;

   result = anv_cmd_buffer_init_batch_bo_chain(cmd_buffer);
   if (result != VK_SUCCESS)
      goto fail;

   anv_state_stream_init(&cmd_buffer->surface_state_stream,
                         &device->surface_state_block_pool);
   anv_state_stream_init(&cmd_buffer->dynamic_state_stream,
                         &device->dynamic_state_block_pool);

   cmd_buffer->level = pCreateInfo->level;
   cmd_buffer->opt_flags = 0;

   anv_cmd_state_init(&cmd_buffer->state);

   if (pool) {
      list_addtail(&cmd_buffer->pool_link, &pool->cmd_buffers);
   } else {
      /* Init the pool_link so we can safefly call list_del when we destroy
       * the command buffer
       */
      list_inithead(&cmd_buffer->pool_link);
   }

   *pCmdBuffer = anv_cmd_buffer_to_handle(cmd_buffer);

   return VK_SUCCESS;

 fail: anv_device_free(device, cmd_buffer);

   return result;
}

void anv_DestroyCommandBuffer(
    VkDevice                                    _device,
    VkCmdBuffer                                 _cmd_buffer)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, _cmd_buffer);

   list_del(&cmd_buffer->pool_link);

   anv_cmd_buffer_fini_batch_bo_chain(cmd_buffer);

   anv_state_stream_finish(&cmd_buffer->surface_state_stream);
   anv_state_stream_finish(&cmd_buffer->dynamic_state_stream);
   anv_device_free(device, cmd_buffer);
}

VkResult anv_ResetCommandBuffer(
    VkCmdBuffer                                 cmdBuffer,
    VkCmdBufferResetFlags                       flags)
{
   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmdBuffer);

   anv_cmd_buffer_reset_batch_bo_chain(cmd_buffer);

   anv_cmd_state_init(&cmd_buffer->state);

   return VK_SUCCESS;
}

void
anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer)
{
   switch (cmd_buffer->device->info.gen) {
   case 7:
      if (cmd_buffer->device->info.is_haswell)
         return gen7_cmd_buffer_emit_state_base_address(cmd_buffer);
      else
         return gen7_cmd_buffer_emit_state_base_address(cmd_buffer);
   case 8:
      return gen8_cmd_buffer_emit_state_base_address(cmd_buffer);
   default:
      unreachable("unsupported gen\n");
   }
}

VkResult anv_BeginCommandBuffer(
    VkCmdBuffer                                 cmdBuffer,
    const VkCmdBufferBeginInfo*                 pBeginInfo)
{
   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmdBuffer);

   anv_cmd_buffer_reset_batch_bo_chain(cmd_buffer);

   cmd_buffer->opt_flags = pBeginInfo->flags;

   if (cmd_buffer->level == VK_CMD_BUFFER_LEVEL_SECONDARY) {
      cmd_buffer->state.framebuffer =
         anv_framebuffer_from_handle(pBeginInfo->framebuffer);
      cmd_buffer->state.pass =
         anv_render_pass_from_handle(pBeginInfo->renderPass);

      struct anv_subpass *subpass =
         &cmd_buffer->state.pass->subpasses[pBeginInfo->subpass];

      anv_cmd_buffer_begin_subpass(cmd_buffer, subpass);
   }

   anv_cmd_buffer_emit_state_base_address(cmd_buffer);
   cmd_buffer->state.current_pipeline = UINT32_MAX;

   return VK_SUCCESS;
}

VkResult anv_EndCommandBuffer(
    VkCmdBuffer                                 cmdBuffer)
{
   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmdBuffer);
   struct anv_device *device = cmd_buffer->device;

   anv_cmd_buffer_end_batch_buffer(cmd_buffer);

   if (cmd_buffer->level == VK_CMD_BUFFER_LEVEL_PRIMARY) {
      /* The algorithm used to compute the validate list is not threadsafe as
       * it uses the bo->index field.  We have to lock the device around it.
       * Fortunately, the chances for contention here are probably very low.
       */
      pthread_mutex_lock(&device->mutex);
      anv_cmd_buffer_prepare_execbuf(cmd_buffer);
      pthread_mutex_unlock(&device->mutex);
   }

   return VK_SUCCESS;
}

void anv_CmdBindPipeline(
    VkCmdBuffer                                 cmdBuffer,
    VkPipelineBindPoint                         pipelineBindPoint,
    VkPipeline                                  _pipeline)
{
   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmdBuffer);
   ANV_FROM_HANDLE(anv_pipeline, pipeline, _pipeline);

   switch (pipelineBindPoint) {
   case VK_PIPELINE_BIND_POINT_COMPUTE:
      cmd_buffer->state.compute_pipeline = pipeline;
      cmd_buffer->state.compute_dirty |= ANV_CMD_DIRTY_PIPELINE;
      cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
      break;

   case VK_PIPELINE_BIND_POINT_GRAPHICS:
      cmd_buffer->state.pipeline = pipeline;
      cmd_buffer->state.vb_dirty |= pipeline->vb_used;
      cmd_buffer->state.dirty |= ANV_CMD_DIRTY_PIPELINE;
      cmd_buffer->state.push_constants_dirty |= pipeline->active_stages;

      /* Apply the dynamic state from the pipeline */
      cmd_buffer->state.dirty |= pipeline->dynamic_state_mask;
      anv_dynamic_state_copy(&cmd_buffer->state.dynamic,
                             &pipeline->dynamic_state,
                             pipeline->dynamic_state_mask);
      break;

   default:
      assert(!"invalid bind point");
      break;
   }
}

void anv_CmdSetViewport(
    VkCmdBuffer                                 cmdBuffer,
    uint32_t                                    viewportCount,
    const VkViewport*                           pViewports)
{
   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmdBuffer);

   cmd_buffer->state.dynamic.viewport.count = viewportCount;
   memcpy(cmd_buffer->state.dynamic.viewport.viewports,
          pViewports, viewportCount * sizeof(*pViewports));

   cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_VIEWPORT;
}

void anv_CmdSetScissor(
    VkCmdBuffer                                 cmdBuffer,
    uint32_t                                    scissorCount,
    const VkRect2D*                             pScissors)
{
   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmdBuffer);

   cmd_buffer->state.dynamic.scissor.count = scissorCount;
   memcpy(cmd_buffer->state.dynamic.scissor.scissors,
          pScissors, scissorCount * sizeof(*pScissors));

   cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_SCISSOR;
}

void anv_CmdSetLineWidth(
    VkCmdBuffer                                 cmdBuffer,
    float                                       lineWidth)
{
   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmdBuffer);

   cmd_buffer->state.dynamic.line_width = lineWidth;
   cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH;
}

void anv_CmdSetDepthBias(
    VkCmdBuffer                                 cmdBuffer,
    float                                       depthBias,
    float                                       depthBiasClamp,
    float                                       slopeScaledDepthBias)
{
   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmdBuffer);

   cmd_buffer->state.dynamic.depth_bias.bias = depthBias;
   cmd_buffer->state.dynamic.depth_bias.clamp = depthBiasClamp;
   cmd_buffer->state.dynamic.depth_bias.slope_scaled = slopeScaledDepthBias;

   cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS;
}

void anv_CmdSetBlendConstants(
    VkCmdBuffer                                 cmdBuffer,
    const float                                 blendConst[4])
{
   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmdBuffer);

   memcpy(cmd_buffer->state.dynamic.blend_constants,
          blendConst, sizeof(float) * 4);

   cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS;
}

void anv_CmdSetDepthBounds(
    VkCmdBuffer                                 cmdBuffer,
    float                                       minDepthBounds,
    float                                       maxDepthBounds)
{
   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmdBuffer);

   cmd_buffer->state.dynamic.depth_bounds.min = minDepthBounds;
   cmd_buffer->state.dynamic.depth_bounds.max = maxDepthBounds;

   cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS;
}

void anv_CmdSetStencilCompareMask(
    VkCmdBuffer                                 cmdBuffer,
    VkStencilFaceFlags                          faceMask,
    uint32_t                                    stencilCompareMask)
{
   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmdBuffer);

   if (faceMask & VK_STENCIL_FACE_FRONT_BIT)
      cmd_buffer->state.dynamic.stencil_compare_mask.front = stencilCompareMask;
   if (faceMask & VK_STENCIL_FACE_BACK_BIT)
      cmd_buffer->state.dynamic.stencil_compare_mask.back = stencilCompareMask;

   cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK;
}

void anv_CmdSetStencilWriteMask(
    VkCmdBuffer                                 cmdBuffer,
    VkStencilFaceFlags                          faceMask,
    uint32_t                                    stencilWriteMask)
{
   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmdBuffer);

   if (faceMask & VK_STENCIL_FACE_FRONT_BIT)
      cmd_buffer->state.dynamic.stencil_write_mask.front = stencilWriteMask;
   if (faceMask & VK_STENCIL_FACE_BACK_BIT)
      cmd_buffer->state.dynamic.stencil_write_mask.back = stencilWriteMask;

   cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK;
}

void anv_CmdSetStencilReference(
    VkCmdBuffer                                 cmdBuffer,
    VkStencilFaceFlags                          faceMask,
    uint32_t                                    stencilReference)
{
   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmdBuffer);

   if (faceMask & VK_STENCIL_FACE_FRONT_BIT)
      cmd_buffer->state.dynamic.stencil_reference.front = stencilReference;
   if (faceMask & VK_STENCIL_FACE_BACK_BIT)
      cmd_buffer->state.dynamic.stencil_reference.back = stencilReference;

   cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE;
}

void anv_CmdBindDescriptorSets(
    VkCmdBuffer                                 cmdBuffer,
    VkPipelineBindPoint                         pipelineBindPoint,
    VkPipelineLayout                            _layout,
    uint32_t                                    firstSet,
    uint32_t                                    setCount,
    const VkDescriptorSet*                      pDescriptorSets,
    uint32_t                                    dynamicOffsetCount,
    const uint32_t*                             pDynamicOffsets)
{
   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmdBuffer);
   ANV_FROM_HANDLE(anv_pipeline_layout, layout, _layout);
   struct anv_descriptor_set_layout *set_layout;

   assert(firstSet + setCount < MAX_SETS);

   uint32_t dynamic_slot = 0;
   for (uint32_t i = 0; i < setCount; i++) {
      ANV_FROM_HANDLE(anv_descriptor_set, set, pDescriptorSets[i]);
      set_layout = layout->set[firstSet + i].layout;

      if (cmd_buffer->state.descriptors[firstSet + i] != set) {
         cmd_buffer->state.descriptors[firstSet + i] = set;
         cmd_buffer->state.descriptors_dirty |= set_layout->shader_stages;
      }

      if (set_layout->dynamic_offset_count > 0) {
         VkShaderStage s;
         for_each_bit(s, set_layout->shader_stages) {
            anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, s, dynamic);

            struct anv_push_constants *push =
               cmd_buffer->state.push_constants[s];

            unsigned d = layout->set[firstSet + i].dynamic_offset_start;
            const uint32_t *offsets = pDynamicOffsets + dynamic_slot;
            struct anv_descriptor *desc = set->descriptors;

            for (unsigned b = 0; b < set_layout->binding_count; b++) {
               if (set_layout->binding[b].dynamic_offset_index < 0)
                  continue;

               unsigned array_size = set_layout->binding[b].array_size;
               for (unsigned j = 0; j < array_size; j++) {
                  push->dynamic[d].offset = *(offsets++);
                  push->dynamic[d].range = (desc++)->range;
                  d++;
               }
            }
         }
         cmd_buffer->state.push_constants_dirty |= set_layout->shader_stages;
      }
   }
}

void anv_CmdBindVertexBuffers(
    VkCmdBuffer                                 cmdBuffer,
    uint32_t                                    startBinding,
    uint32_t                                    bindingCount,
    const VkBuffer*                             pBuffers,
    const VkDeviceSize*                         pOffsets)
{
   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmdBuffer);
   struct anv_vertex_binding *vb = cmd_buffer->state.vertex_bindings;

   /* We have to defer setting up vertex buffer since we need the buffer
    * stride from the pipeline. */

   assert(startBinding + bindingCount < MAX_VBS);
   for (uint32_t i = 0; i < bindingCount; i++) {
      vb[startBinding + i].buffer = anv_buffer_from_handle(pBuffers[i]);
      vb[startBinding + i].offset = pOffsets[i];
      cmd_buffer->state.vb_dirty |= 1 << (startBinding + i);
   }
}

static void
add_surface_state_reloc(struct anv_cmd_buffer *cmd_buffer,
                        struct anv_state state, struct anv_bo *bo, uint32_t offset)
{
   /* The address goes in SURFACE_STATE dword 1 for gens < 8 and dwords 8 and
    * 9 for gen8+.  We only write the first dword for gen8+ here and rely on
    * the initial state to set the high bits to 0. */

   const uint32_t dword = cmd_buffer->device->info.gen < 8 ? 1 : 8;

   anv_reloc_list_add(&cmd_buffer->surface_relocs, cmd_buffer->device,
                      state.offset + dword * 4, bo, offset);
}

static void
fill_descriptor_buffer_surface_state(struct anv_device *device, void *state,
                                     VkShaderStage stage, VkDescriptorType type,
                                     uint32_t offset, uint32_t range)
{
   VkFormat format;
   uint32_t stride;

   switch (type) {
   case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
   case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
      if (anv_is_scalar_shader_stage(device->instance->physicalDevice.compiler,
                                     stage)) {
         stride = 4;
      } else {
         stride = 16;
      }
      format = VK_FORMAT_R32G32B32A32_SFLOAT;
      break;

   case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
   case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
      stride = 1;
      format = VK_FORMAT_UNDEFINED;
      break;

   default:
      unreachable("Invalid descriptor type");
   }

   anv_fill_buffer_surface_state(device, state,
                                 anv_format_for_vk_format(format),
                                 offset, range, stride);
}

VkResult
anv_cmd_buffer_emit_binding_table(struct anv_cmd_buffer *cmd_buffer,
                                  VkShaderStage stage, struct anv_state *bt_state)
{
   struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
   struct anv_subpass *subpass = cmd_buffer->state.subpass;
   struct anv_pipeline_layout *layout;
   uint32_t color_count, bias, state_offset;

   if (stage == VK_SHADER_STAGE_COMPUTE)
      layout = cmd_buffer->state.compute_pipeline->layout;
   else
      layout = cmd_buffer->state.pipeline->layout;

   if (stage == VK_SHADER_STAGE_FRAGMENT) {
      bias = MAX_RTS;
      color_count = subpass->color_count;
   } else {
      bias = 0;
      color_count = 0;
   }

   /* This is a little awkward: layout can be NULL but we still have to
    * allocate and set a binding table for the PS stage for render
    * targets. */
   uint32_t surface_count = layout ? layout->stage[stage].surface_count : 0;

   if (color_count + surface_count == 0)
      return VK_SUCCESS;

   *bt_state = anv_cmd_buffer_alloc_binding_table(cmd_buffer,
                                                  bias + surface_count,
                                                  &state_offset);
   uint32_t *bt_map = bt_state->map;

   if (bt_state->map == NULL)
      return VK_ERROR_OUT_OF_DEVICE_MEMORY;

   for (uint32_t a = 0; a < color_count; a++) {
      const struct anv_image_view *iview =
         fb->attachments[subpass->color_attachments[a]];

      bt_map[a] = iview->color_rt_surface_state.offset + state_offset;
      add_surface_state_reloc(cmd_buffer, iview->color_rt_surface_state,
                              iview->bo, iview->offset);
   }

   if (layout == NULL)
      return VK_SUCCESS;

   for (uint32_t s = 0; s < layout->stage[stage].surface_count; s++) {
      struct anv_pipeline_binding *binding =
         &layout->stage[stage].surface_to_descriptor[s];
      struct anv_descriptor_set *set =
         cmd_buffer->state.descriptors[binding->set];
      struct anv_descriptor *desc = &set->descriptors[binding->offset];

      struct anv_state surface_state;
      struct anv_bo *bo;
      uint32_t bo_offset;

      switch (desc->type) {
      case VK_DESCRIPTOR_TYPE_SAMPLER:
         /* Nothing for us to do here */
         continue;

      case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
      case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
      case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
      case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: {
         bo = desc->buffer->bo;
         bo_offset = desc->buffer->offset + desc->offset;

         surface_state =
            anv_cmd_buffer_alloc_surface_state(cmd_buffer);

         fill_descriptor_buffer_surface_state(cmd_buffer->device,
                                              surface_state.map,
                                              stage, desc->type,
                                              bo_offset, desc->range);
         break;
      }

      case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
      case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
      case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
         surface_state = desc->image_view->nonrt_surface_state;
         bo = desc->image_view->bo;
         bo_offset = desc->image_view->offset;
         break;

      case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
      case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
      case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
         assert(!"Unsupported descriptor type");
         break;

      default:
         assert(!"Invalid descriptor type");
         continue;
      }

      bt_map[bias + s] = surface_state.offset + state_offset;
      add_surface_state_reloc(cmd_buffer, surface_state, bo, bo_offset);
   }

   return VK_SUCCESS;
}

VkResult
anv_cmd_buffer_emit_samplers(struct anv_cmd_buffer *cmd_buffer,
                             VkShaderStage stage, struct anv_state *state)
{
   struct anv_pipeline_layout *layout;
   uint32_t sampler_count;

   if (stage == VK_SHADER_STAGE_COMPUTE)
      layout = cmd_buffer->state.compute_pipeline->layout;
   else
      layout = cmd_buffer->state.pipeline->layout;

   sampler_count = layout ? layout->stage[stage].sampler_count : 0;
   if (sampler_count == 0)
      return VK_SUCCESS;

   uint32_t size = sampler_count * 16;
   *state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, size, 32);

   if (state->map == NULL)
      return VK_ERROR_OUT_OF_DEVICE_MEMORY;

   for (uint32_t s = 0; s < layout->stage[stage].sampler_count; s++) {
      struct anv_pipeline_binding *binding =
         &layout->stage[stage].sampler_to_descriptor[s];
      struct anv_descriptor_set *set =
         cmd_buffer->state.descriptors[binding->set];
      struct anv_descriptor *desc = &set->descriptors[binding->offset];

      if (desc->type != VK_DESCRIPTOR_TYPE_SAMPLER &&
          desc->type != VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
         continue;

      struct anv_sampler *sampler = desc->sampler;

      /* This can happen if we have an unfilled slot since TYPE_SAMPLER
       * happens to be zero.
       */
      if (sampler == NULL)
         continue;

      memcpy(state->map + (s * 16),
             sampler->state, sizeof(sampler->state));
   }

   return VK_SUCCESS;
}

struct anv_state
anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
                             uint32_t *a, uint32_t dwords, uint32_t alignment)
{
   struct anv_state state;

   state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer,
                                              dwords * 4, alignment);
   memcpy(state.map, a, dwords * 4);

   VG(VALGRIND_CHECK_MEM_IS_DEFINED(state.map, dwords * 4));

   return state;
}

struct anv_state
anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
                             uint32_t *a, uint32_t *b,
                             uint32_t dwords, uint32_t alignment)
{
   struct anv_state state;
   uint32_t *p;

   state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer,
                                              dwords * 4, alignment);
   p = state.map;
   for (uint32_t i = 0; i < dwords; i++)
      p[i] = a[i] | b[i];

   VG(VALGRIND_CHECK_MEM_IS_DEFINED(p, dwords * 4));

   return state;
}

void
anv_cmd_buffer_begin_subpass(struct anv_cmd_buffer *cmd_buffer,
                             struct anv_subpass *subpass)
{
   switch (cmd_buffer->device->info.gen) {
   case 7:
      gen7_cmd_buffer_begin_subpass(cmd_buffer, subpass);
      break;
   case 8:
      gen8_cmd_buffer_begin_subpass(cmd_buffer, subpass);
      break;
   default:
      unreachable("unsupported gen\n");
   }
}

void anv_CmdSetEvent(
    VkCmdBuffer                                 cmdBuffer,
    VkEvent                                     event,
    VkPipelineStageFlags                        stageMask)
{
   stub();
}

void anv_CmdResetEvent(
    VkCmdBuffer                                 cmdBuffer,
    VkEvent                                     event,
    VkPipelineStageFlags                        stageMask)
{
   stub();
}

void anv_CmdWaitEvents(
    VkCmdBuffer                                 cmdBuffer,
    uint32_t                                    eventCount,
    const VkEvent*                              pEvents,
    VkPipelineStageFlags                        srcStageMask,
    VkPipelineStageFlags                        destStageMask,
    uint32_t                                    memBarrierCount,
    const void* const*                          ppMemBarriers)
{
   stub();
}

struct anv_state
anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
                              VkShaderStage stage)
{
   struct anv_push_constants *data =
      cmd_buffer->state.push_constants[stage];
   struct brw_stage_prog_data *prog_data =
      cmd_buffer->state.pipeline->prog_data[stage];

   /* If we don't actually have any push constants, bail. */
   if (data == NULL || prog_data->nr_params == 0)
      return (struct anv_state) { .offset = 0 };

   struct anv_state state =
      anv_cmd_buffer_alloc_dynamic_state(cmd_buffer,
                                         prog_data->nr_params * sizeof(float),
                                         32 /* bottom 5 bits MBZ */);

   /* Walk through the param array and fill the buffer with data */
   uint32_t *u32_map = state.map;
   for (unsigned i = 0; i < prog_data->nr_params; i++) {
      uint32_t offset = (uintptr_t)prog_data->param[i];
      u32_map[i] = *(uint32_t *)((uint8_t *)data + offset);
   }

   return state;
}

void anv_CmdPushConstants(
    VkCmdBuffer                                 cmdBuffer,
    VkPipelineLayout                            layout,
    VkShaderStageFlags                          stageFlags,
    uint32_t                                    start,
    uint32_t                                    length,
    const void*                                 values)
{
   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, cmdBuffer);
   VkShaderStage stage;

   for_each_bit(stage, stageFlags) {
      anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, stage, client_data);

      memcpy(cmd_buffer->state.push_constants[stage]->client_data + start,
             values, length);
   }

   cmd_buffer->state.push_constants_dirty |= stageFlags;
}

void anv_CmdExecuteCommands(
    VkCmdBuffer                                 cmdBuffer,
    uint32_t                                    cmdBuffersCount,
    const VkCmdBuffer*                          pCmdBuffers)
{
   ANV_FROM_HANDLE(anv_cmd_buffer, primary, cmdBuffer);

   assert(primary->level == VK_CMD_BUFFER_LEVEL_PRIMARY);

   anv_assert(primary->state.subpass == &primary->state.pass->subpasses[0]);

   for (uint32_t i = 0; i < cmdBuffersCount; i++) {
      ANV_FROM_HANDLE(anv_cmd_buffer, secondary, pCmdBuffers[i]);

      assert(secondary->level == VK_CMD_BUFFER_LEVEL_SECONDARY);

      anv_cmd_buffer_add_secondary(primary, secondary);
   }
}

VkResult anv_CreateCommandPool(
    VkDevice                                    _device,
    const VkCmdPoolCreateInfo*                  pCreateInfo,
    VkCmdPool*                                  pCmdPool)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   struct anv_cmd_pool *pool;

   pool = anv_device_alloc(device, sizeof(*pool), 8,
                           VK_SYSTEM_ALLOC_TYPE_API_OBJECT);
   if (pool == NULL)
      return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);

   list_inithead(&pool->cmd_buffers);

   *pCmdPool = anv_cmd_pool_to_handle(pool);

   return VK_SUCCESS;
}

void anv_DestroyCommandPool(
    VkDevice                                    _device,
    VkCmdPool                                   cmdPool)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   ANV_FROM_HANDLE(anv_cmd_pool, pool, cmdPool);

   anv_ResetCommandPool(_device, cmdPool, 0);

   anv_device_free(device, pool);
}

VkResult anv_ResetCommandPool(
    VkDevice                                    device,
    VkCmdPool                                   cmdPool,
    VkCmdPoolResetFlags                         flags)
{
   ANV_FROM_HANDLE(anv_cmd_pool, pool, cmdPool);

   list_for_each_entry_safe(struct anv_cmd_buffer, cmd_buffer,
                            &pool->cmd_buffers, pool_link) {
      anv_DestroyCommandBuffer(device, anv_cmd_buffer_to_handle(cmd_buffer));
   }

   return VK_SUCCESS;
}

/**
 * Return NULL if the current subpass has no depthstencil attachment.
 */
const struct anv_image_view *
anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer)
{
   const struct anv_subpass *subpass = cmd_buffer->state.subpass;
   const struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;

   if (subpass->depth_stencil_attachment == VK_ATTACHMENT_UNUSED)
      return NULL;

   const struct anv_image_view *iview =
      fb->attachments[subpass->depth_stencil_attachment];

   assert(anv_format_is_depth_or_stencil(iview->format));

   return iview;
}