summaryrefslogtreecommitdiffstats
path: root/src/vulkan/anv_allocator.c
blob: 121ce0392506cb50078ba0831cec1332654d69bd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
/*
 * Copyright © 2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */

#define _DEFAULT_SOURCE

#include <stdint.h>
#include <stdlib.h>
#include <unistd.h>
#include <values.h>
#include <assert.h>
#include <linux/futex.h>
#include <linux/memfd.h>
#include <sys/time.h>
#include <sys/mman.h>
#include <sys/syscall.h>

#include "anv_private.h"

#ifdef HAVE_VALGRIND
#define VG_NOACCESS_READ(__ptr) ({                       \
   VALGRIND_MAKE_MEM_DEFINED((__ptr), sizeof(*(__ptr))); \
   __typeof(*(__ptr)) __val = *(__ptr);                  \
   VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr)));\
   __val;                                                \
})
#define VG_NOACCESS_WRITE(__ptr, __val) ({                  \
   VALGRIND_MAKE_MEM_UNDEFINED((__ptr), sizeof(*(__ptr)));  \
   *(__ptr) = (__val);                                      \
   VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr)));   \
})
#else
#define VG_NOACCESS_READ(__ptr) (*(__ptr))
#define VG_NOACCESS_WRITE(__ptr, __val) (*(__ptr) = (__val))
#endif

/* Design goals:
 *
 *  - Lock free (except when resizing underlying bos)
 *
 *  - Constant time allocation with typically only one atomic
 *
 *  - Multiple allocation sizes without fragmentation
 *
 *  - Can grow while keeping addresses and offset of contents stable
 *
 *  - All allocations within one bo so we can point one of the
 *    STATE_BASE_ADDRESS pointers at it.
 *
 * The overall design is a two-level allocator: top level is a fixed size, big
 * block (8k) allocator, which operates out of a bo.  Allocation is done by
 * either pulling a block from the free list or growing the used range of the
 * bo.  Growing the range may run out of space in the bo which we then need to
 * grow.  Growing the bo is tricky in a multi-threaded, lockless environment:
 * we need to keep all pointers and contents in the old map valid.  GEM bos in
 * general can't grow, but we use a trick: we create a memfd and use ftruncate
 * to grow it as necessary.  We mmap the new size and then create a gem bo for
 * it using the new gem userptr ioctl.  Without heavy-handed locking around
 * our allocation fast-path, there isn't really a way to munmap the old mmap,
 * so we just keep it around until garbage collection time.  While the block
 * allocator is lockless for normal operations, we block other threads trying
 * to allocate while we're growing the map.  It sholdn't happen often, and
 * growing is fast anyway.
 *
 * At the next level we can use various sub-allocators.  The state pool is a
 * pool of smaller, fixed size objects, which operates much like the block
 * pool.  It uses a free list for freeing objects, but when it runs out of
 * space it just allocates a new block from the block pool.  This allocator is
 * intended for longer lived state objects such as SURFACE_STATE and most
 * other persistent state objects in the API.  We may need to track more info
 * with these object and a pointer back to the CPU object (eg VkImage).  In
 * those cases we just allocate a slightly bigger object and put the extra
 * state after the GPU state object.
 *
 * The state stream allocator works similar to how the i965 DRI driver streams
 * all its state.  Even with Vulkan, we need to emit transient state (whether
 * surface state base or dynamic state base), and for that we can just get a
 * block and fill it up.  These cases are local to a command buffer and the
 * sub-allocator need not be thread safe.  The streaming allocator gets a new
 * block when it runs out of space and chains them together so they can be
 * easily freed.
 */

/* Allocations are always at least 64 byte aligned, so 1 is an invalid value.
 * We use it to indicate the free list is empty. */
#define EMPTY 1

struct anv_mmap_cleanup {
   void *map;
   size_t size;
   uint32_t gem_handle;
};

#define ANV_MMAP_CLEANUP_INIT ((struct anv_mmap_cleanup){0})

static inline long
sys_futex(void *addr1, int op, int val1,
          struct timespec *timeout, void *addr2, int val3)
{
   return syscall(SYS_futex, addr1, op, val1, timeout, addr2, val3);
}

static inline int
futex_wake(uint32_t *addr, int count)
{
   return sys_futex(addr, FUTEX_WAKE, count, NULL, NULL, 0);
}

static inline int
futex_wait(uint32_t *addr, int32_t value)
{
   return sys_futex(addr, FUTEX_WAIT, value, NULL, NULL, 0);
}

static inline int
memfd_create(const char *name, unsigned int flags)
{
   return syscall(SYS_memfd_create, name, flags);
}

static inline uint32_t
ilog2_round_up(uint32_t value)
{
   assert(value != 0);
   return 32 - __builtin_clz(value - 1);
}

static inline uint32_t
round_to_power_of_two(uint32_t value)
{
   return 1 << ilog2_round_up(value);
}

static bool
anv_free_list_pop(union anv_free_list *list, void **map, uint32_t *offset)
{
   union anv_free_list current, new, old;

   current.u64 = list->u64;
   while (current.offset != EMPTY) {
      /* We have to add a memory barrier here so that the list head (and
       * offset) gets read before we read the map pointer.  This way we
       * know that the map pointer is valid for the given offset at the
       * point where we read it.
       */
      __sync_synchronize();

      uint32_t *next_ptr = *map + current.offset;
      new.offset = VG_NOACCESS_READ(next_ptr);
      new.count = current.count + 1;
      old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64);
      if (old.u64 == current.u64) {
         *offset = current.offset;
         return true;
      }
      current = old;
   }

   return false;
}

static void
anv_free_list_push(union anv_free_list *list, void *map, uint32_t offset)
{
   union anv_free_list current, old, new;
   uint32_t *next_ptr = map + offset;

   old = *list;
   do {
      current = old;
      VG_NOACCESS_WRITE(next_ptr, current.offset);
      new.offset = offset;
      new.count = current.count + 1;
      old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64);
   } while (old.u64 != current.u64);
}

/* All pointers in the ptr_free_list are assumed to be page-aligned.  This
 * means that the bottom 12 bits should all be zero.
 */
#define PFL_COUNT(x) ((uintptr_t)(x) & 0xfff)
#define PFL_PTR(x) ((void *)((uintptr_t)(x) & ~0xfff))
#define PFL_PACK(ptr, count) ({           \
   assert(((uintptr_t)(ptr) & 0xfff) == 0); \
   (void *)((uintptr_t)(ptr) | (uintptr_t)((count) & 0xfff)); \
})

static bool
anv_ptr_free_list_pop(void **list, void **elem)
{
   void *current = *list;
   while (PFL_PTR(current) != NULL) {
      void **next_ptr = PFL_PTR(current);
      void *new_ptr = VG_NOACCESS_READ(next_ptr);
      unsigned new_count = PFL_COUNT(current) + 1;
      void *new = PFL_PACK(new_ptr, new_count);
      void *old = __sync_val_compare_and_swap(list, current, new);
      if (old == current) {
         *elem = PFL_PTR(current);
         return true;
      }
      current = old;
   }

   return false;
}

static void
anv_ptr_free_list_push(void **list, void *elem)
{
   void *old, *current;
   void **next_ptr = elem;

   old = *list;
   do {
      current = old;
      VG_NOACCESS_WRITE(next_ptr, PFL_PTR(current));
      unsigned new_count = PFL_COUNT(current) + 1;
      void *new = PFL_PACK(elem, new_count);
      old = __sync_val_compare_and_swap(list, current, new);
   } while (old != current);
}

static uint32_t
anv_block_pool_grow(struct anv_block_pool *pool, uint32_t old_size);

void
anv_block_pool_init(struct anv_block_pool *pool,
                    struct anv_device *device, uint32_t block_size)
{
   assert(util_is_power_of_two(block_size));

   pool->device = device;
   pool->bo.gem_handle = 0;
   pool->bo.offset = 0;
   pool->block_size = block_size;
   pool->free_list = ANV_FREE_LIST_EMPTY;
   anv_vector_init(&pool->mmap_cleanups,
                   round_to_power_of_two(sizeof(struct anv_mmap_cleanup)), 128);

   /* Immediately grow the pool so we'll have a backing bo. */
   pool->state.next = 0;
   pool->state.end = anv_block_pool_grow(pool, 0);
}

void
anv_block_pool_finish(struct anv_block_pool *pool)
{
   struct anv_mmap_cleanup *cleanup;

   anv_vector_foreach(cleanup, &pool->mmap_cleanups) {
      if (cleanup->map)
         munmap(cleanup->map, cleanup->size);
      if (cleanup->gem_handle)
         anv_gem_close(pool->device, cleanup->gem_handle);
   }

   anv_vector_finish(&pool->mmap_cleanups);

   close(pool->fd);
}

static uint32_t
anv_block_pool_grow(struct anv_block_pool *pool, uint32_t old_size)
{
   size_t size;
   void *map;
   int gem_handle;
   struct anv_mmap_cleanup *cleanup;

   if (old_size == 0) {
      size = 32 * pool->block_size;
   } else {
      size = old_size * 2;
   }

   cleanup = anv_vector_add(&pool->mmap_cleanups);
   if (!cleanup)
      return 0;
   *cleanup = ANV_MMAP_CLEANUP_INIT;

   if (old_size == 0)
      pool->fd = memfd_create("block pool", MFD_CLOEXEC);

   if (pool->fd == -1)
      return 0;

   if (ftruncate(pool->fd, size) == -1)
      return 0;

   /* First try to see if mremap can grow the map in place. */
   map = MAP_FAILED;
   if (old_size > 0)
      map = mremap(pool->map, old_size, size, 0);
   if (map == MAP_FAILED) {
      /* Just leak the old map until we destroy the pool.  We can't munmap it
       * without races or imposing locking on the block allocate fast path. On
       * the whole the leaked maps adds up to less than the size of the
       * current map.  MAP_POPULATE seems like the right thing to do, but we
       * should try to get some numbers.
       */
      map = mmap(NULL, size, PROT_READ | PROT_WRITE,
                 MAP_SHARED | MAP_POPULATE, pool->fd, 0);
      cleanup->map = map;
      cleanup->size = size;
   }
   if (map == MAP_FAILED)
      return 0;

   gem_handle = anv_gem_userptr(pool->device, map, size);
   if (gem_handle == 0)
      return 0;
   cleanup->gem_handle = gem_handle;

   /* Now that we successfull allocated everything, we can write the new
    * values back into pool. */
   pool->map = map;
   pool->bo.gem_handle = gem_handle;
   pool->bo.size = size;
   pool->bo.map = map;
   pool->bo.index = 0;

   return size;
}

uint32_t
anv_block_pool_alloc(struct anv_block_pool *pool)
{
   uint32_t offset;
   struct anv_block_state state, old, new;

   /* Try free list first. */
   if (anv_free_list_pop(&pool->free_list, &pool->map, &offset)) {
      assert(pool->map);
      return offset;
   }

 restart:
   state.u64 = __sync_fetch_and_add(&pool->state.u64, pool->block_size);
   if (state.next < state.end) {
      assert(pool->map);
      return state.next;
   } else if (state.next == state.end) {
      /* We allocated the first block outside the pool, we have to grow it.
       * pool->next_block acts a mutex: threads who try to allocate now will
       * get block indexes above the current limit and hit futex_wait
       * below. */
      new.next = state.next + pool->block_size;
      new.end = anv_block_pool_grow(pool, state.end);
      assert(new.end > 0);
      old.u64 = __sync_lock_test_and_set(&pool->state.u64, new.u64);
      if (old.next != state.next)
         futex_wake(&pool->state.end, INT_MAX);
      return state.next;
   } else {
      futex_wait(&pool->state.end, state.end);
      goto restart;
   }
}

void
anv_block_pool_free(struct anv_block_pool *pool, uint32_t offset)
{
   anv_free_list_push(&pool->free_list, pool->map, offset);
}

static void
anv_fixed_size_state_pool_init(struct anv_fixed_size_state_pool *pool,
                               size_t state_size)
{
   /* At least a cache line and must divide the block size. */
   assert(state_size >= 64 && util_is_power_of_two(state_size));

   pool->state_size = state_size;
   pool->free_list = ANV_FREE_LIST_EMPTY;
   pool->block.next = 0;
   pool->block.end = 0;
}

static uint32_t
anv_fixed_size_state_pool_alloc(struct anv_fixed_size_state_pool *pool,
                                struct anv_block_pool *block_pool)
{
   uint32_t offset;
   struct anv_block_state block, old, new;

   /* Try free list first. */
   if (anv_free_list_pop(&pool->free_list, &block_pool->map, &offset))
      return offset;

   /* If free list was empty (or somebody raced us and took the items) we
    * allocate a new item from the end of the block */
 restart:
   block.u64 = __sync_fetch_and_add(&pool->block.u64, pool->state_size);

   if (block.next < block.end) {
      return block.next;
   } else if (block.next == block.end) {
      offset = anv_block_pool_alloc(block_pool);
      new.next = offset + pool->state_size;
      new.end = offset + block_pool->block_size;
      old.u64 = __sync_lock_test_and_set(&pool->block.u64, new.u64);
      if (old.next != block.next)
         futex_wake(&pool->block.end, INT_MAX);
      return offset;
   } else {
      futex_wait(&pool->block.end, block.end);
      goto restart;
   }
}

static void
anv_fixed_size_state_pool_free(struct anv_fixed_size_state_pool *pool,
                               struct anv_block_pool *block_pool,
                               uint32_t offset)
{
   anv_free_list_push(&pool->free_list, block_pool->map, offset);
}

void
anv_state_pool_init(struct anv_state_pool *pool,
                    struct anv_block_pool *block_pool)
{
   pool->block_pool = block_pool;
   for (unsigned i = 0; i < ANV_STATE_BUCKETS; i++) {
      size_t size = 1 << (ANV_MIN_STATE_SIZE_LOG2 + i);
      anv_fixed_size_state_pool_init(&pool->buckets[i], size);
   }
   VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false));
}

void
anv_state_pool_finish(struct anv_state_pool *pool)
{
   VG(VALGRIND_DESTROY_MEMPOOL(pool));
}

struct anv_state
anv_state_pool_alloc(struct anv_state_pool *pool, size_t size, size_t align)
{
   unsigned size_log2 = ilog2_round_up(size < align ? align : size);
   assert(size_log2 <= ANV_MAX_STATE_SIZE_LOG2);
   if (size_log2 < ANV_MIN_STATE_SIZE_LOG2)
      size_log2 = ANV_MIN_STATE_SIZE_LOG2;
   unsigned bucket = size_log2 - ANV_MIN_STATE_SIZE_LOG2;

   struct anv_state state;
   state.alloc_size = 1 << size_log2;
   state.offset = anv_fixed_size_state_pool_alloc(&pool->buckets[bucket],
                                                  pool->block_pool);
   state.map = pool->block_pool->map + state.offset;
   VG(VALGRIND_MEMPOOL_ALLOC(pool, state.map, size));
   return state;
}

void
anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state)
{
   assert(util_is_power_of_two(state.alloc_size));
   unsigned size_log2 = ilog2_round_up(state.alloc_size);
   assert(size_log2 >= ANV_MIN_STATE_SIZE_LOG2 &&
          size_log2 <= ANV_MAX_STATE_SIZE_LOG2);
   unsigned bucket = size_log2 - ANV_MIN_STATE_SIZE_LOG2;

   VG(VALGRIND_MEMPOOL_FREE(pool, state.map));
   anv_fixed_size_state_pool_free(&pool->buckets[bucket],
                                  pool->block_pool, state.offset);
}

#define NULL_BLOCK 1
struct stream_block {
   uint32_t next;

   /* The map for the BO at the time the block was givne to us */
   void *current_map;

#ifdef HAVE_VALGRIND
   void *_vg_ptr;
#endif
};

/* The state stream allocator is a one-shot, single threaded allocator for
 * variable sized blocks.  We use it for allocating dynamic state.
 */
void
anv_state_stream_init(struct anv_state_stream *stream,
                      struct anv_block_pool *block_pool)
{
   stream->block_pool = block_pool;
   stream->next = 0;
   stream->end = 0;
   stream->current_block = NULL_BLOCK;

   VG(VALGRIND_CREATE_MEMPOOL(stream, 0, false));
}

void
anv_state_stream_finish(struct anv_state_stream *stream)
{
   struct stream_block *sb;
   uint32_t block, next_block;

   block = stream->current_block;
   while (block != NULL_BLOCK) {
      sb = stream->block_pool->map + block;
      next_block = VG_NOACCESS_READ(&sb->next);
      VG(VALGRIND_MEMPOOL_FREE(stream, VG_NOACCESS_READ(&sb->_vg_ptr)));
      anv_block_pool_free(stream->block_pool, block);
      block = next_block;
   }

   VG(VALGRIND_DESTROY_MEMPOOL(stream));
}

struct anv_state
anv_state_stream_alloc(struct anv_state_stream *stream,
                       uint32_t size, uint32_t alignment)
{
   struct stream_block *sb;
   struct anv_state state;
   uint32_t block;

   state.offset = align_u32(stream->next, alignment);
   if (state.offset + size > stream->end) {
      block = anv_block_pool_alloc(stream->block_pool);
      void *current_map = stream->block_pool->map;
      sb = current_map + block;
      VG_NOACCESS_WRITE(&sb->current_map, current_map);
      VG_NOACCESS_WRITE(&sb->next, stream->current_block);
      VG(VG_NOACCESS_WRITE(&sb->_vg_ptr, 0));
      stream->current_block = block;
      stream->next = block + sizeof(*sb);
      stream->end = block + stream->block_pool->block_size;
      state.offset = align_u32(stream->next, alignment);
      assert(state.offset + size <= stream->end);
   }

   sb = stream->block_pool->map + stream->current_block;
   void *current_map = VG_NOACCESS_READ(&sb->current_map);

   state.map = current_map + state.offset;
   state.alloc_size = size;

#ifdef HAVE_VALGRIND
   void *vg_ptr = VG_NOACCESS_READ(&sb->_vg_ptr);
   if (vg_ptr == NULL) {
      vg_ptr = state.map;
      VG_NOACCESS_WRITE(&sb->_vg_ptr, vg_ptr);
      VALGRIND_MEMPOOL_ALLOC(stream, vg_ptr, size);
   } else {
      ptrdiff_t vg_offset = vg_ptr - current_map;
      assert(vg_offset >= stream->current_block &&
             vg_offset < stream->end);
      VALGRIND_MEMPOOL_CHANGE(stream, vg_ptr, vg_ptr,
                              (state.offset + size) - vg_offset);
   }
#endif

   stream->next = state.offset + size;

   return state;
}

struct bo_pool_bo_link {
   struct bo_pool_bo_link *next;
   struct anv_bo bo;
};

void
anv_bo_pool_init(struct anv_bo_pool *pool,
                 struct anv_device *device, uint32_t bo_size)
{
   pool->device = device;
   pool->bo_size = bo_size;
   pool->free_list = NULL;

   VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false));
}

void
anv_bo_pool_finish(struct anv_bo_pool *pool)
{
   struct bo_pool_bo_link *link = PFL_PTR(pool->free_list);
   while (link != NULL) {
      struct bo_pool_bo_link link_copy = VG_NOACCESS_READ(link);

      anv_gem_munmap(link_copy.bo.map, pool->bo_size);
      anv_gem_close(pool->device, link_copy.bo.gem_handle);
      link = link_copy.next;
   }

   VG(VALGRIND_DESTROY_MEMPOOL(pool));
}

VkResult
anv_bo_pool_alloc(struct anv_bo_pool *pool, struct anv_bo *bo)
{
   VkResult result;

   void *next_free_void;
   if (anv_ptr_free_list_pop(&pool->free_list, &next_free_void)) {
      struct bo_pool_bo_link *next_free = next_free_void;
      *bo = VG_NOACCESS_READ(&next_free->bo);
      assert(bo->map == next_free);
      assert(bo->size == pool->bo_size);

      VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, pool->bo_size));

      return VK_SUCCESS;
   }

   struct anv_bo new_bo;

   result = anv_bo_init_new(&new_bo, pool->device, pool->bo_size);
   if (result != VK_SUCCESS)
      return result;

   assert(new_bo.size == pool->bo_size);

   new_bo.map = anv_gem_mmap(pool->device, new_bo.gem_handle, 0, pool->bo_size);
   if (new_bo.map == NULL) {
      anv_gem_close(pool->device, new_bo.gem_handle);
      return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
   }

   *bo = new_bo;

   VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, pool->bo_size));

   return VK_SUCCESS;
}

void
anv_bo_pool_free(struct anv_bo_pool *pool, const struct anv_bo *bo)
{
   struct bo_pool_bo_link *link = bo->map;
   link->bo = *bo;

   VG(VALGRIND_MEMPOOL_FREE(pool, bo->map));
   anv_ptr_free_list_push(&pool->free_list, link);
}