1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
|
/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*
*/
/** @file register_allocate.c
*
* Graph-coloring register allocator.
*
* The basic idea of graph coloring is to make a node in a graph for
* every thing that needs a register (color) number assigned, and make
* edges in the graph between nodes that interfere (can't be allocated
* to the same register at the same time).
*
* During the "simplify" process, any any node with fewer edges than
* there are registers means that that edge can get assigned a
* register regardless of what its neighbors choose, so that node is
* pushed on a stack and removed (with its edges) from the graph.
* That likely causes other nodes to become trivially colorable as well.
*
* Then during the "select" process, nodes are popped off of that
* stack, their edges restored, and assigned a color different from
* their neighbors. Because they were pushed on the stack only when
* they were trivially colorable, any color chosen won't interfere
* with the registers to be popped later.
*
* The downside to most graph coloring is that real hardware often has
* limitations, like registers that need to be allocated to a node in
* pairs, or aligned on some boundary. This implementation follows
* the paper "Retargetable Graph-Coloring Register Allocation for
* Irregular Architectures" by Johan Runeson and Sven-Olof Nyström.
*
* In this system, there are register classes each containing various
* registers, and registers may interfere with other registers. For
* example, one might have a class of base registers, and a class of
* aligned register pairs that would each interfere with their pair of
* the base registers. Each node has a register class it needs to be
* assigned to. Define p(B) to be the size of register class B, and
* q(B,C) to be the number of registers in B that the worst choice
* register in C could conflict with. Then, this system replaces the
* basic graph coloring test of "fewer edges from this node than there
* are registers" with "For this node of class B, the sum of q(B,C)
* for each neighbor node of class C is less than pB".
*
* A nice feature of the pq test is that q(B,C) can be computed once
* up front and stored in a 2-dimensional array, so that the cost of
* coloring a node is constant with the number of registers. We do
* this during ra_set_finalize().
*/
#include <stdbool.h>
#include "ralloc.h"
#include "main/imports.h"
#include "main/macros.h"
#include "util/bitset.h"
#include "register_allocate.h"
#define NO_REG ~0U
struct ra_reg {
BITSET_WORD *conflicts;
unsigned int *conflict_list;
unsigned int conflict_list_size;
unsigned int num_conflicts;
};
struct ra_regs {
struct ra_reg *regs;
unsigned int count;
struct ra_class **classes;
unsigned int class_count;
bool round_robin;
};
struct ra_class {
/**
* Bitset indicating which registers belong to this class.
*
* (If bit N is set, then register N belongs to this class.)
*/
BITSET_WORD *regs;
/**
* p(B) in Runeson/Nyström paper.
*
* This is "how many regs are in the set."
*/
unsigned int p;
/**
* q(B,C) (indexed by C, B is this register class) in
* Runeson/Nyström paper. This is "how many registers of B could
* the worst choice register from C conflict with".
*/
unsigned int *q;
};
struct ra_node {
/** @{
*
* List of which nodes this node interferes with. This should be
* symmetric with the other node.
*/
BITSET_WORD *adjacency;
unsigned int *adjacency_list;
unsigned int adjacency_list_size;
unsigned int adjacency_count;
/** @} */
unsigned int class;
/* Client-assigned register, if assigned, or NO_REG. */
unsigned int forced_reg;
/* Register, if assigned, or NO_REG. */
unsigned int reg;
/**
* The q total, as defined in the Runeson/Nyström paper, for all the
* interfering nodes not in the stack.
*/
unsigned int q_total;
/* For an implementation that needs register spilling, this is the
* approximate cost of spilling this node.
*/
float spill_cost;
/* Temporary data for the algorithm to scratch around in */
struct {
/**
* Temporary version of q_total which we decrement as things are placed
* into the stack.
*/
unsigned int q_total;
} tmp;
};
struct ra_graph {
struct ra_regs *regs;
/**
* the variables that need register allocation.
*/
struct ra_node *nodes;
unsigned int count; /**< count of nodes. */
unsigned int alloc; /**< count of nodes allocated. */
unsigned int (*select_reg_callback)(struct ra_graph *g, BITSET_WORD *regs,
void *data);
void *select_reg_callback_data;
/* Temporary data for the algorithm to scratch around in */
struct {
unsigned int *stack;
unsigned int stack_count;
/** Bit-set indicating, for each register, if it's in the stack */
BITSET_WORD *in_stack;
/** Bit-set indicating, for each register, if it pre-assigned */
BITSET_WORD *reg_assigned;
/** Bit-set indicating, for each register, the value of the pq test */
BITSET_WORD *pq_test;
/** For each BITSET_WORD, the minimum q value or ~0 if unknown */
unsigned int *min_q_total;
/*
* * For each BITSET_WORD, the node with the minimum q_total if
* min_q_total[i] != ~0.
*/
unsigned int *min_q_node;
/**
* Tracks the start of the set of optimistically-colored registers in the
* stack.
*/
unsigned int stack_optimistic_start;
} tmp;
};
/**
* Creates a set of registers for the allocator.
*
* mem_ctx is a ralloc context for the allocator. The reg set may be freed
* using ralloc_free().
*/
struct ra_regs *
ra_alloc_reg_set(void *mem_ctx, unsigned int count, bool need_conflict_lists)
{
unsigned int i;
struct ra_regs *regs;
regs = rzalloc(mem_ctx, struct ra_regs);
regs->count = count;
regs->regs = rzalloc_array(regs, struct ra_reg, count);
for (i = 0; i < count; i++) {
regs->regs[i].conflicts = rzalloc_array(regs->regs, BITSET_WORD,
BITSET_WORDS(count));
BITSET_SET(regs->regs[i].conflicts, i);
if (need_conflict_lists) {
regs->regs[i].conflict_list = ralloc_array(regs->regs,
unsigned int, 4);
regs->regs[i].conflict_list_size = 4;
regs->regs[i].conflict_list[0] = i;
} else {
regs->regs[i].conflict_list = NULL;
regs->regs[i].conflict_list_size = 0;
}
regs->regs[i].num_conflicts = 1;
}
return regs;
}
/**
* The register allocator by default prefers to allocate low register numbers,
* since it was written for hardware (gen4/5 Intel) that is limited in its
* multithreadedness by the number of registers used in a given shader.
*
* However, for hardware without that restriction, densely packed register
* allocation can put serious constraints on instruction scheduling. This
* function tells the allocator to rotate around the registers if possible as
* it allocates the nodes.
*/
void
ra_set_allocate_round_robin(struct ra_regs *regs)
{
regs->round_robin = true;
}
static void
ra_add_conflict_list(struct ra_regs *regs, unsigned int r1, unsigned int r2)
{
struct ra_reg *reg1 = ®s->regs[r1];
if (reg1->conflict_list) {
if (reg1->conflict_list_size == reg1->num_conflicts) {
reg1->conflict_list_size *= 2;
reg1->conflict_list = reralloc(regs->regs, reg1->conflict_list,
unsigned int, reg1->conflict_list_size);
}
reg1->conflict_list[reg1->num_conflicts++] = r2;
}
BITSET_SET(reg1->conflicts, r2);
}
void
ra_add_reg_conflict(struct ra_regs *regs, unsigned int r1, unsigned int r2)
{
if (!BITSET_TEST(regs->regs[r1].conflicts, r2)) {
ra_add_conflict_list(regs, r1, r2);
ra_add_conflict_list(regs, r2, r1);
}
}
/**
* Adds a conflict between base_reg and reg, and also between reg and
* anything that base_reg conflicts with.
*
* This can simplify code for setting up multiple register classes
* which are aggregates of some base hardware registers, compared to
* explicitly using ra_add_reg_conflict.
*/
void
ra_add_transitive_reg_conflict(struct ra_regs *regs,
unsigned int base_reg, unsigned int reg)
{
unsigned int i;
ra_add_reg_conflict(regs, reg, base_reg);
for (i = 0; i < regs->regs[base_reg].num_conflicts; i++) {
ra_add_reg_conflict(regs, reg, regs->regs[base_reg].conflict_list[i]);
}
}
/**
* Makes every conflict on the given register transitive. In other words,
* every register that conflicts with r will now conflict with every other
* register conflicting with r.
*
* This can simplify code for setting up multiple register classes
* which are aggregates of some base hardware registers, compared to
* explicitly using ra_add_reg_conflict.
*/
void
ra_make_reg_conflicts_transitive(struct ra_regs *regs, unsigned int r)
{
struct ra_reg *reg = ®s->regs[r];
BITSET_WORD tmp;
int c;
BITSET_FOREACH_SET(c, tmp, reg->conflicts, regs->count) {
struct ra_reg *other = ®s->regs[c];
unsigned i;
for (i = 0; i < BITSET_WORDS(regs->count); i++)
other->conflicts[i] |= reg->conflicts[i];
}
}
unsigned int
ra_alloc_reg_class(struct ra_regs *regs)
{
struct ra_class *class;
regs->classes = reralloc(regs->regs, regs->classes, struct ra_class *,
regs->class_count + 1);
class = rzalloc(regs, struct ra_class);
regs->classes[regs->class_count] = class;
class->regs = rzalloc_array(class, BITSET_WORD, BITSET_WORDS(regs->count));
return regs->class_count++;
}
void
ra_class_add_reg(struct ra_regs *regs, unsigned int c, unsigned int r)
{
struct ra_class *class = regs->classes[c];
BITSET_SET(class->regs, r);
class->p++;
}
/**
* Returns true if the register belongs to the given class.
*/
static bool
reg_belongs_to_class(unsigned int r, struct ra_class *c)
{
return BITSET_TEST(c->regs, r);
}
/**
* Must be called after all conflicts and register classes have been
* set up and before the register set is used for allocation.
* To avoid costly q value computation, use the q_values paramater
* to pass precomputed q values to this function.
*/
void
ra_set_finalize(struct ra_regs *regs, unsigned int **q_values)
{
unsigned int b, c;
for (b = 0; b < regs->class_count; b++) {
regs->classes[b]->q = ralloc_array(regs, unsigned int, regs->class_count);
}
if (q_values) {
for (b = 0; b < regs->class_count; b++) {
for (c = 0; c < regs->class_count; c++) {
regs->classes[b]->q[c] = q_values[b][c];
}
}
} else {
/* Compute, for each class B and C, how many regs of B an
* allocation to C could conflict with.
*/
for (b = 0; b < regs->class_count; b++) {
for (c = 0; c < regs->class_count; c++) {
unsigned int rc;
int max_conflicts = 0;
for (rc = 0; rc < regs->count; rc++) {
int conflicts = 0;
unsigned int i;
if (!reg_belongs_to_class(rc, regs->classes[c]))
continue;
for (i = 0; i < regs->regs[rc].num_conflicts; i++) {
unsigned int rb = regs->regs[rc].conflict_list[i];
if (reg_belongs_to_class(rb, regs->classes[b]))
conflicts++;
}
max_conflicts = MAX2(max_conflicts, conflicts);
}
regs->classes[b]->q[c] = max_conflicts;
}
}
}
for (b = 0; b < regs->count; b++) {
ralloc_free(regs->regs[b].conflict_list);
regs->regs[b].conflict_list = NULL;
}
}
static void
ra_add_node_adjacency(struct ra_graph *g, unsigned int n1, unsigned int n2)
{
BITSET_SET(g->nodes[n1].adjacency, n2);
assert(n1 != n2);
int n1_class = g->nodes[n1].class;
int n2_class = g->nodes[n2].class;
g->nodes[n1].q_total += g->regs->classes[n1_class]->q[n2_class];
if (g->nodes[n1].adjacency_count >=
g->nodes[n1].adjacency_list_size) {
g->nodes[n1].adjacency_list_size *= 2;
g->nodes[n1].adjacency_list = reralloc(g, g->nodes[n1].adjacency_list,
unsigned int,
g->nodes[n1].adjacency_list_size);
}
g->nodes[n1].adjacency_list[g->nodes[n1].adjacency_count] = n2;
g->nodes[n1].adjacency_count++;
}
static void
ra_node_remove_adjacency(struct ra_graph *g, unsigned int n1, unsigned int n2)
{
BITSET_CLEAR(g->nodes[n1].adjacency, n2);
assert(n1 != n2);
int n1_class = g->nodes[n1].class;
int n2_class = g->nodes[n2].class;
g->nodes[n1].q_total -= g->regs->classes[n1_class]->q[n2_class];
unsigned int i;
for (i = 0; i < g->nodes[n1].adjacency_count; i++) {
if (g->nodes[n1].adjacency_list[i] == n2) {
memmove(&g->nodes[n1].adjacency_list[i],
&g->nodes[n1].adjacency_list[i + 1],
(g->nodes[n1].adjacency_count - i - 1) *
sizeof(g->nodes[n1].adjacency_list[0]));
break;
}
}
assert(i < g->nodes[n1].adjacency_count);
g->nodes[n1].adjacency_count--;
}
static void
ra_realloc_interference_graph(struct ra_graph *g, unsigned int alloc)
{
if (alloc <= g->alloc)
return;
/* If we always have a whole number of BITSET_WORDs, it makes it much
* easier to memset the top of the growing bitsets.
*/
assert(g->alloc % BITSET_WORDBITS == 0);
alloc = ALIGN(alloc, BITSET_WORDBITS);
g->nodes = reralloc(g, g->nodes, struct ra_node, alloc);
unsigned g_bitset_count = BITSET_WORDS(g->alloc);
unsigned bitset_count = BITSET_WORDS(alloc);
/* For nodes already in the graph, we just have to grow the adjacency set */
for (unsigned i = 0; i < g->alloc; i++) {
assert(g->nodes[i].adjacency != NULL);
g->nodes[i].adjacency = rerzalloc(g, g->nodes[i].adjacency, BITSET_WORD,
g_bitset_count, bitset_count);
}
/* For new nodes, we have to fully initialize them */
for (unsigned i = g->alloc; i < alloc; i++) {
memset(&g->nodes[i], 0, sizeof(g->nodes[i]));
g->nodes[i].adjacency = rzalloc_array(g, BITSET_WORD, bitset_count);
g->nodes[i].adjacency_list_size = 4;
g->nodes[i].adjacency_list =
ralloc_array(g, unsigned int, g->nodes[i].adjacency_list_size);
g->nodes[i].adjacency_count = 0;
g->nodes[i].q_total = 0;
g->nodes[i].forced_reg = NO_REG;
g->nodes[i].reg = NO_REG;
}
/* These are scratch values and don't need to be zeroed. We'll clear them
* as part of ra_select() setup.
*/
g->tmp.stack = reralloc(g, g->tmp.stack, unsigned int, alloc);
g->tmp.in_stack = reralloc(g, g->tmp.in_stack, BITSET_WORD, bitset_count);
g->tmp.reg_assigned = reralloc(g, g->tmp.reg_assigned, BITSET_WORD,
bitset_count);
g->tmp.pq_test = reralloc(g, g->tmp.pq_test, BITSET_WORD, bitset_count);
g->tmp.min_q_total = reralloc(g, g->tmp.min_q_total, unsigned int,
bitset_count);
g->tmp.min_q_node = reralloc(g, g->tmp.min_q_node, unsigned int,
bitset_count);
g->alloc = alloc;
}
struct ra_graph *
ra_alloc_interference_graph(struct ra_regs *regs, unsigned int count)
{
struct ra_graph *g;
g = rzalloc(NULL, struct ra_graph);
g->regs = regs;
g->count = count;
ra_realloc_interference_graph(g, count);
return g;
}
void
ra_resize_interference_graph(struct ra_graph *g, unsigned int count)
{
g->count = count;
if (count > g->alloc)
ra_realloc_interference_graph(g, g->alloc * 2);
}
void ra_set_select_reg_callback(struct ra_graph *g,
unsigned int (*callback)(struct ra_graph *g,
BITSET_WORD *regs,
void *data),
void *data)
{
g->select_reg_callback = callback;
g->select_reg_callback_data = data;
}
void
ra_set_node_class(struct ra_graph *g,
unsigned int n, unsigned int class)
{
g->nodes[n].class = class;
}
unsigned int
ra_get_node_class(struct ra_graph *g,
unsigned int n)
{
return g->nodes[n].class;
}
unsigned int
ra_add_node(struct ra_graph *g, unsigned int class)
{
unsigned int n = g->count;
ra_resize_interference_graph(g, g->count + 1);
ra_set_node_class(g, n, class);
return n;
}
void
ra_add_node_interference(struct ra_graph *g,
unsigned int n1, unsigned int n2)
{
assert(n1 < g->count && n2 < g->count);
if (n1 != n2 && !BITSET_TEST(g->nodes[n1].adjacency, n2)) {
ra_add_node_adjacency(g, n1, n2);
ra_add_node_adjacency(g, n2, n1);
}
}
void
ra_reset_node_interference(struct ra_graph *g, unsigned int n)
{
for (unsigned int i = 0; i < g->nodes[n].adjacency_count; i++)
ra_node_remove_adjacency(g, g->nodes[n].adjacency_list[i], n);
memset(g->nodes[n].adjacency, 0,
BITSET_WORDS(g->count) * sizeof(BITSET_WORD));
g->nodes[n].adjacency_count = 0;
}
static void
update_pq_info(struct ra_graph *g, unsigned int n)
{
int i = n / BITSET_WORDBITS;
int n_class = g->nodes[n].class;
if (g->nodes[n].tmp.q_total < g->regs->classes[n_class]->p) {
BITSET_SET(g->tmp.pq_test, n);
} else if (g->tmp.min_q_total[i] != UINT_MAX) {
/* Only update min_q_total and min_q_node if min_q_total != UINT_MAX so
* that we don't update while we have stale data and accidentally mark
* it as non-stale. Also, in order to remain consistent with the old
* naive implementation of the algorithm, we do a lexicographical sort
* to ensure that we always choose the node with the highest node index.
*/
if (g->nodes[n].tmp.q_total < g->tmp.min_q_total[i] ||
(g->nodes[n].tmp.q_total == g->tmp.min_q_total[i] &&
n > g->tmp.min_q_node[i])) {
g->tmp.min_q_total[i] = g->nodes[n].tmp.q_total;
g->tmp.min_q_node[i] = n;
}
}
}
static void
add_node_to_stack(struct ra_graph *g, unsigned int n)
{
unsigned int i;
int n_class = g->nodes[n].class;
assert(!BITSET_TEST(g->tmp.in_stack, n));
for (i = 0; i < g->nodes[n].adjacency_count; i++) {
unsigned int n2 = g->nodes[n].adjacency_list[i];
unsigned int n2_class = g->nodes[n2].class;
if (!BITSET_TEST(g->tmp.in_stack, n2) &&
!BITSET_TEST(g->tmp.reg_assigned, n2)) {
assert(g->nodes[n2].tmp.q_total >= g->regs->classes[n2_class]->q[n_class]);
g->nodes[n2].tmp.q_total -= g->regs->classes[n2_class]->q[n_class];
update_pq_info(g, n2);
}
}
g->tmp.stack[g->tmp.stack_count] = n;
g->tmp.stack_count++;
BITSET_SET(g->tmp.in_stack, n);
/* Flag the min_q_total for n's block as dirty so it gets recalculated */
g->tmp.min_q_total[n / BITSET_WORDBITS] = UINT_MAX;
}
/**
* Simplifies the interference graph by pushing all
* trivially-colorable nodes into a stack of nodes to be colored,
* removing them from the graph, and rinsing and repeating.
*
* If we encounter a case where we can't push any nodes on the stack, then
* we optimistically choose a node and push it on the stack. We heuristically
* push the node with the lowest total q value, since it has the fewest
* neighbors and therefore is most likely to be allocated.
*/
static void
ra_simplify(struct ra_graph *g)
{
bool progress = true;
unsigned int stack_optimistic_start = UINT_MAX;
/* Figure out the high bit and bit mask for the first iteration of a loop
* over BITSET_WORDs.
*/
const unsigned int top_word_high_bit = (g->count - 1) % BITSET_WORDBITS;
/* Do a quick pre-pass to set things up */
g->tmp.stack_count = 0;
for (int i = BITSET_WORDS(g->count) - 1, high_bit = top_word_high_bit;
i >= 0; i--, high_bit = BITSET_WORDBITS - 1) {
g->tmp.in_stack[i] = 0;
g->tmp.reg_assigned[i] = 0;
g->tmp.pq_test[i] = 0;
g->tmp.min_q_total[i] = UINT_MAX;
g->tmp.min_q_node[i] = UINT_MAX;
for (int j = high_bit; j >= 0; j--) {
unsigned int n = i * BITSET_WORDBITS + j;
g->nodes[n].reg = g->nodes[n].forced_reg;
g->nodes[n].tmp.q_total = g->nodes[n].q_total;
if (g->nodes[n].reg != NO_REG)
g->tmp.reg_assigned[i] |= BITSET_BIT(j);
update_pq_info(g, n);
}
}
while (progress) {
unsigned int min_q_total = UINT_MAX;
unsigned int min_q_node = UINT_MAX;
progress = false;
for (int i = BITSET_WORDS(g->count) - 1, high_bit = top_word_high_bit;
i >= 0; i--, high_bit = BITSET_WORDBITS - 1) {
BITSET_WORD mask = ~(BITSET_WORD)0 >> (31 - high_bit);
BITSET_WORD skip = g->tmp.in_stack[i] | g->tmp.reg_assigned[i];
if (skip == mask)
continue;
BITSET_WORD pq = g->tmp.pq_test[i] & ~skip;
if (pq) {
/* In this case, we have stuff we can immediately take off the
* stack. This also means that we're guaranteed to make progress
* and we don't need to bother updating lowest_q_total because we
* know we're going to loop again before attempting to do anything
* optimistic.
*/
for (int j = high_bit; j >= 0; j--) {
if (pq & BITSET_BIT(j)) {
unsigned int n = i * BITSET_WORDBITS + j;
assert(n < g->count);
add_node_to_stack(g, n);
/* add_node_to_stack() may update pq_test for this word so
* we need to update our local copy.
*/
pq = g->tmp.pq_test[i] & ~skip;
progress = true;
}
}
} else if (!progress) {
if (g->tmp.min_q_total[i] == UINT_MAX) {
/* The min_q_total and min_q_node are dirty because we added
* one of these nodes to the stack. It needs to be
* recalculated.
*/
for (int j = high_bit; j >= 0; j--) {
if (skip & BITSET_BIT(j))
continue;
unsigned int n = i * BITSET_WORDBITS + j;
assert(n < g->count);
if (g->nodes[n].tmp.q_total < g->tmp.min_q_total[i]) {
g->tmp.min_q_total[i] = g->nodes[n].tmp.q_total;
g->tmp.min_q_node[i] = n;
}
}
}
if (g->tmp.min_q_total[i] < min_q_total) {
min_q_node = g->tmp.min_q_node[i];
min_q_total = g->tmp.min_q_total[i];
}
}
}
if (!progress && min_q_total != UINT_MAX) {
if (stack_optimistic_start == UINT_MAX)
stack_optimistic_start = g->tmp.stack_count;
add_node_to_stack(g, min_q_node);
progress = true;
}
}
g->tmp.stack_optimistic_start = stack_optimistic_start;
}
static bool
ra_any_neighbors_conflict(struct ra_graph *g, unsigned int n, unsigned int r)
{
unsigned int i;
for (i = 0; i < g->nodes[n].adjacency_count; i++) {
unsigned int n2 = g->nodes[n].adjacency_list[i];
if (!BITSET_TEST(g->tmp.in_stack, n2) &&
BITSET_TEST(g->regs->regs[r].conflicts, g->nodes[n2].reg)) {
return true;
}
}
return false;
}
/* Computes a bitfield of what regs are available for a given register
* selection.
*
* This lets drivers implement a more complicated policy than our simple first
* or round robin policies (which don't require knowing the whole bitset)
*/
static bool
ra_compute_available_regs(struct ra_graph *g, unsigned int n, BITSET_WORD *regs)
{
struct ra_class *c = g->regs->classes[g->nodes[n].class];
/* Populate with the set of regs that are in the node's class. */
memcpy(regs, c->regs, BITSET_WORDS(g->regs->count) * sizeof(BITSET_WORD));
/* Remove any regs that conflict with nodes that we're adjacent to and have
* already colored.
*/
for (int i = 0; i < g->nodes[n].adjacency_count; i++) {
unsigned int n2 = g->nodes[n].adjacency_list[i];
unsigned int r = g->nodes[n2].reg;
if (!BITSET_TEST(g->tmp.in_stack, n2)) {
for (int j = 0; j < BITSET_WORDS(g->regs->count); j++)
regs[j] &= ~g->regs->regs[r].conflicts[j];
}
}
for (int i = 0; i < BITSET_WORDS(g->regs->count); i++) {
if (regs[i])
return true;
}
return false;
}
/**
* Pops nodes from the stack back into the graph, coloring them with
* registers as they go.
*
* If all nodes were trivially colorable, then this must succeed. If
* not (optimistic coloring), then it may return false;
*/
static bool
ra_select(struct ra_graph *g)
{
int start_search_reg = 0;
BITSET_WORD *select_regs = NULL;
if (g->select_reg_callback)
select_regs = malloc(BITSET_WORDS(g->regs->count) * sizeof(BITSET_WORD));
while (g->tmp.stack_count != 0) {
unsigned int ri;
unsigned int r = -1;
int n = g->tmp.stack[g->tmp.stack_count - 1];
struct ra_class *c = g->regs->classes[g->nodes[n].class];
/* set this to false even if we return here so that
* ra_get_best_spill_node() considers this node later.
*/
BITSET_CLEAR(g->tmp.in_stack, n);
if (g->select_reg_callback) {
if (!ra_compute_available_regs(g, n, select_regs)) {
free(select_regs);
return false;
}
r = g->select_reg_callback(g, select_regs, g->select_reg_callback_data);
} else {
/* Find the lowest-numbered reg which is not used by a member
* of the graph adjacent to us.
*/
for (ri = 0; ri < g->regs->count; ri++) {
r = (start_search_reg + ri) % g->regs->count;
if (!reg_belongs_to_class(r, c))
continue;
if (!ra_any_neighbors_conflict(g, n, r))
break;
}
if (ri >= g->regs->count)
return false;
}
g->nodes[n].reg = r;
g->tmp.stack_count--;
/* Rotate the starting point except for any nodes above the lowest
* optimistically colorable node. The likelihood that we will succeed
* at allocating optimistically colorable nodes is highly dependent on
* the way that the previous nodes popped off the stack are laid out.
* The round-robin strategy increases the fragmentation of the register
* file and decreases the number of nearby nodes assigned to the same
* color, what increases the likelihood of spilling with respect to the
* dense packing strategy.
*/
if (g->regs->round_robin &&
g->tmp.stack_count - 1 <= g->tmp.stack_optimistic_start)
start_search_reg = r + 1;
}
free(select_regs);
return true;
}
bool
ra_allocate(struct ra_graph *g)
{
ra_simplify(g);
return ra_select(g);
}
unsigned int
ra_get_node_reg(struct ra_graph *g, unsigned int n)
{
if (g->nodes[n].forced_reg != NO_REG)
return g->nodes[n].forced_reg;
else
return g->nodes[n].reg;
}
/**
* Forces a node to a specific register. This can be used to avoid
* creating a register class containing one node when handling data
* that must live in a fixed location and is known to not conflict
* with other forced register assignment (as is common with shader
* input data). These nodes do not end up in the stack during
* ra_simplify(), and thus at ra_select() time it is as if they were
* the first popped off the stack and assigned their fixed locations.
* Nodes that use this function do not need to be assigned a register
* class.
*
* Must be called before ra_simplify().
*/
void
ra_set_node_reg(struct ra_graph *g, unsigned int n, unsigned int reg)
{
g->nodes[n].forced_reg = reg;
}
static float
ra_get_spill_benefit(struct ra_graph *g, unsigned int n)
{
unsigned int j;
float benefit = 0;
int n_class = g->nodes[n].class;
/* Define the benefit of eliminating an interference between n, n2
* through spilling as q(C, B) / p(C). This is similar to the
* "count number of edges" approach of traditional graph coloring,
* but takes classes into account.
*/
for (j = 0; j < g->nodes[n].adjacency_count; j++) {
unsigned int n2 = g->nodes[n].adjacency_list[j];
unsigned int n2_class = g->nodes[n2].class;
benefit += ((float)g->regs->classes[n_class]->q[n2_class] /
g->regs->classes[n_class]->p);
}
return benefit;
}
/**
* Returns a node number to be spilled according to the cost/benefit using
* the pq test, or -1 if there are no spillable nodes.
*/
int
ra_get_best_spill_node(struct ra_graph *g)
{
unsigned int best_node = -1;
float best_benefit = 0.0;
unsigned int n;
/* Consider any nodes that we colored successfully or the node we failed to
* color for spilling. When we failed to color a node in ra_select(), we
* only considered these nodes, so spilling any other ones would not result
* in us making progress.
*/
for (n = 0; n < g->count; n++) {
float cost = g->nodes[n].spill_cost;
float benefit;
if (cost <= 0.0f)
continue;
if (BITSET_TEST(g->tmp.in_stack, n))
continue;
benefit = ra_get_spill_benefit(g, n);
if (benefit / cost > best_benefit) {
best_benefit = benefit / cost;
best_node = n;
}
}
return best_node;
}
/**
* Only nodes with a spill cost set (cost != 0.0) will be considered
* for register spilling.
*/
void
ra_set_node_spill_cost(struct ra_graph *g, unsigned int n, float cost)
{
g->nodes[n].spill_cost = cost;
}
|