1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
|
/*
* Copyright © 2009,2012 Intel Corporation
* Copyright © 1988-2004 Keith Packard and Bart Massey.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Except as contained in this notice, the names of the authors
* or their institutions shall not be used in advertising or
* otherwise to promote the sale, use or other dealings in this
* Software without prior written authorization from the
* authors.
*
* Authors:
* Eric Anholt <eric@anholt.net>
* Keith Packard <keithp@keithp.com>
*/
/**
* Implements an open-addressing, linear-reprobing hash table.
*
* For more information, see:
*
* http://cgit.freedesktop.org/~anholt/hash_table/tree/README
*/
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include "hash_table.h"
#include "ralloc.h"
#include "macros.h"
static const uint32_t deleted_key_value;
/**
* From Knuth -- a good choice for hash/rehash values is p, p-2 where
* p and p-2 are both prime. These tables are sized to have an extra 10%
* free to avoid exponential performance degradation as the hash table fills
*/
static const struct {
uint32_t max_entries, size, rehash;
} hash_sizes[] = {
{ 2, 5, 3 },
{ 4, 7, 5 },
{ 8, 13, 11 },
{ 16, 19, 17 },
{ 32, 43, 41 },
{ 64, 73, 71 },
{ 128, 151, 149 },
{ 256, 283, 281 },
{ 512, 571, 569 },
{ 1024, 1153, 1151 },
{ 2048, 2269, 2267 },
{ 4096, 4519, 4517 },
{ 8192, 9013, 9011 },
{ 16384, 18043, 18041 },
{ 32768, 36109, 36107 },
{ 65536, 72091, 72089 },
{ 131072, 144409, 144407 },
{ 262144, 288361, 288359 },
{ 524288, 576883, 576881 },
{ 1048576, 1153459, 1153457 },
{ 2097152, 2307163, 2307161 },
{ 4194304, 4613893, 4613891 },
{ 8388608, 9227641, 9227639 },
{ 16777216, 18455029, 18455027 },
{ 33554432, 36911011, 36911009 },
{ 67108864, 73819861, 73819859 },
{ 134217728, 147639589, 147639587 },
{ 268435456, 295279081, 295279079 },
{ 536870912, 590559793, 590559791 },
{ 1073741824, 1181116273, 1181116271},
{ 2147483648ul, 2362232233ul, 2362232231ul}
};
static int
entry_is_free(const struct hash_entry *entry)
{
return entry->key == NULL;
}
static int
entry_is_deleted(const struct hash_table *ht, struct hash_entry *entry)
{
return entry->key == ht->deleted_key;
}
static int
entry_is_present(const struct hash_table *ht, struct hash_entry *entry)
{
return entry->key != NULL && entry->key != ht->deleted_key;
}
struct hash_table *
_mesa_hash_table_create(void *mem_ctx,
uint32_t (*key_hash_function)(const void *key),
bool (*key_equals_function)(const void *a,
const void *b))
{
struct hash_table *ht;
ht = ralloc(mem_ctx, struct hash_table);
if (ht == NULL)
return NULL;
ht->size_index = 0;
ht->size = hash_sizes[ht->size_index].size;
ht->rehash = hash_sizes[ht->size_index].rehash;
ht->max_entries = hash_sizes[ht->size_index].max_entries;
ht->key_hash_function = key_hash_function;
ht->key_equals_function = key_equals_function;
ht->table = rzalloc_array(ht, struct hash_entry, ht->size);
ht->entries = 0;
ht->deleted_entries = 0;
ht->deleted_key = &deleted_key_value;
if (ht->table == NULL) {
ralloc_free(ht);
return NULL;
}
return ht;
}
/**
* Frees the given hash table.
*
* If delete_function is passed, it gets called on each entry present before
* freeing.
*/
void
_mesa_hash_table_destroy(struct hash_table *ht,
void (*delete_function)(struct hash_entry *entry))
{
if (!ht)
return;
if (delete_function) {
struct hash_entry *entry;
hash_table_foreach(ht, entry) {
delete_function(entry);
}
}
ralloc_free(ht);
}
/** Sets the value of the key pointer used for deleted entries in the table.
*
* The assumption is that usually keys are actual pointers, so we use a
* default value of a pointer to an arbitrary piece of storage in the library.
* But in some cases a consumer wants to store some other sort of value in the
* table, like a uint32_t, in which case that pointer may conflict with one of
* their valid keys. This lets that user select a safe value.
*
* This must be called before any keys are actually deleted from the table.
*/
void
_mesa_hash_table_set_deleted_key(struct hash_table *ht, const void *deleted_key)
{
ht->deleted_key = deleted_key;
}
static struct hash_entry *
hash_table_search(struct hash_table *ht, uint32_t hash, const void *key)
{
uint32_t start_hash_address = hash % ht->size;
uint32_t hash_address = start_hash_address;
do {
uint32_t double_hash;
struct hash_entry *entry = ht->table + hash_address;
if (entry_is_free(entry)) {
return NULL;
} else if (entry_is_present(ht, entry) && entry->hash == hash) {
if (ht->key_equals_function(key, entry->key)) {
return entry;
}
}
double_hash = 1 + hash % ht->rehash;
hash_address = (hash_address + double_hash) % ht->size;
} while (hash_address != start_hash_address);
return NULL;
}
/**
* Finds a hash table entry with the given key and hash of that key.
*
* Returns NULL if no entry is found. Note that the data pointer may be
* modified by the user.
*/
struct hash_entry *
_mesa_hash_table_search(struct hash_table *ht, const void *key)
{
assert(ht->key_hash_function);
return hash_table_search(ht, ht->key_hash_function(key), key);
}
struct hash_entry *
_mesa_hash_table_search_pre_hashed(struct hash_table *ht, uint32_t hash,
const void *key)
{
assert(ht->key_hash_function == NULL || hash == ht->key_hash_function(key));
return hash_table_search(ht, hash, key);
}
static struct hash_entry *
hash_table_insert(struct hash_table *ht, uint32_t hash,
const void *key, void *data);
static void
_mesa_hash_table_rehash(struct hash_table *ht, int new_size_index)
{
struct hash_table old_ht;
struct hash_entry *table, *entry;
if (new_size_index >= ARRAY_SIZE(hash_sizes))
return;
table = rzalloc_array(ht, struct hash_entry,
hash_sizes[new_size_index].size);
if (table == NULL)
return;
old_ht = *ht;
ht->table = table;
ht->size_index = new_size_index;
ht->size = hash_sizes[ht->size_index].size;
ht->rehash = hash_sizes[ht->size_index].rehash;
ht->max_entries = hash_sizes[ht->size_index].max_entries;
ht->entries = 0;
ht->deleted_entries = 0;
hash_table_foreach(&old_ht, entry) {
hash_table_insert(ht, entry->hash, entry->key, entry->data);
}
ralloc_free(old_ht.table);
}
static struct hash_entry *
hash_table_insert(struct hash_table *ht, uint32_t hash,
const void *key, void *data)
{
uint32_t start_hash_address, hash_address;
if (ht->entries >= ht->max_entries) {
_mesa_hash_table_rehash(ht, ht->size_index + 1);
} else if (ht->deleted_entries + ht->entries >= ht->max_entries) {
_mesa_hash_table_rehash(ht, ht->size_index);
}
start_hash_address = hash % ht->size;
hash_address = start_hash_address;
do {
struct hash_entry *entry = ht->table + hash_address;
uint32_t double_hash;
if (!entry_is_present(ht, entry)) {
if (entry_is_deleted(ht, entry))
ht->deleted_entries--;
entry->hash = hash;
entry->key = key;
entry->data = data;
ht->entries++;
return entry;
}
/* Implement replacement when another insert happens
* with a matching key. This is a relatively common
* feature of hash tables, with the alternative
* generally being "insert the new value as well, and
* return it first when the key is searched for".
*
* Note that the hash table doesn't have a delete
* callback. If freeing of old data pointers is
* required to avoid memory leaks, perform a search
* before inserting.
*/
if (entry->hash == hash &&
ht->key_equals_function(key, entry->key)) {
entry->key = key;
entry->data = data;
return entry;
}
double_hash = 1 + hash % ht->rehash;
hash_address = (hash_address + double_hash) % ht->size;
} while (hash_address != start_hash_address);
/* We could hit here if a required resize failed. An unchecked-malloc
* application could ignore this result.
*/
return NULL;
}
/**
* Inserts the key with the given hash into the table.
*
* Note that insertion may rearrange the table on a resize or rehash,
* so previously found hash_entries are no longer valid after this function.
*/
struct hash_entry *
_mesa_hash_table_insert(struct hash_table *ht, const void *key, void *data)
{
assert(ht->key_hash_function);
return hash_table_insert(ht, ht->key_hash_function(key), key, data);
}
struct hash_entry *
_mesa_hash_table_insert_with_hash(struct hash_table *ht, uint32_t hash,
const void *key, void *data)
{
assert(ht->key_hash_function == NULL || hash == ht->key_hash_function(key));
return hash_table_insert(ht, hash, key, data);
}
/**
* This function deletes the given hash table entry.
*
* Note that deletion doesn't otherwise modify the table, so an iteration over
* the table deleting entries is safe.
*/
void
_mesa_hash_table_remove(struct hash_table *ht,
struct hash_entry *entry)
{
if (!entry)
return;
entry->key = ht->deleted_key;
ht->entries--;
ht->deleted_entries++;
}
/**
* This function is an iterator over the hash table.
*
* Pass in NULL for the first entry, as in the start of a for loop. Note that
* an iteration over the table is O(table_size) not O(entries).
*/
struct hash_entry *
_mesa_hash_table_next_entry(struct hash_table *ht,
struct hash_entry *entry)
{
if (entry == NULL)
entry = ht->table;
else
entry = entry + 1;
for (; entry != ht->table + ht->size; entry++) {
if (entry_is_present(ht, entry)) {
return entry;
}
}
return NULL;
}
/**
* Returns a random entry from the hash table.
*
* This may be useful in implementing random replacement (as opposed
* to just removing everything) in caches based on this hash table
* implementation. @predicate may be used to filter entries, or may
* be set to NULL for no filtering.
*/
struct hash_entry *
_mesa_hash_table_random_entry(struct hash_table *ht,
bool (*predicate)(struct hash_entry *entry))
{
struct hash_entry *entry;
uint32_t i = rand() % ht->size;
if (ht->entries == 0)
return NULL;
for (entry = ht->table + i; entry != ht->table + ht->size; entry++) {
if (entry_is_present(ht, entry) &&
(!predicate || predicate(entry))) {
return entry;
}
}
for (entry = ht->table; entry != ht->table + i; entry++) {
if (entry_is_present(ht, entry) &&
(!predicate || predicate(entry))) {
return entry;
}
}
return NULL;
}
/**
* Quick FNV-1a hash implementation based on:
* http://www.isthe.com/chongo/tech/comp/fnv/
*
* FNV-1a is not be the best hash out there -- Jenkins's lookup3 is supposed
* to be quite good, and it probably beats FNV. But FNV has the advantage
* that it involves almost no code. For an improvement on both, see Paul
* Hsieh's http://www.azillionmonkeys.com/qed/hash.html
*/
uint32_t
_mesa_hash_data(const void *data, size_t size)
{
uint32_t hash = 2166136261ul;
const uint8_t *bytes = data;
while (size-- != 0) {
hash ^= *bytes;
hash = hash * 0x01000193;
bytes++;
}
return hash;
}
/** FNV-1a string hash implementation */
uint32_t
_mesa_hash_string(const char *key)
{
uint32_t hash = 2166136261ul;
while (*key != 0) {
hash ^= *key;
hash = hash * 0x01000193;
key++;
}
return hash;
}
/**
* String compare function for use as the comparison callback in
* _mesa_hash_table_create().
*/
bool
_mesa_key_string_equal(const void *a, const void *b)
{
return strcmp(a, b) == 0;
}
bool
_mesa_key_pointer_equal(const void *a, const void *b)
{
return a == b;
}
|