summaryrefslogtreecommitdiffstats
path: root/src/util/hash_table.c
blob: 939c03c19ee403bdb224c02b056c8b95a0857293 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
/*
 * Copyright © 2009,2012 Intel Corporation
 * Copyright © 1988-2004 Keith Packard and Bart Massey.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Except as contained in this notice, the names of the authors
 * or their institutions shall not be used in advertising or
 * otherwise to promote the sale, use or other dealings in this
 * Software without prior written authorization from the
 * authors.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Keith Packard <keithp@keithp.com>
 */

/**
 * Implements an open-addressing, linear-reprobing hash table.
 *
 * For more information, see:
 *
 * http://cgit.freedesktop.org/~anholt/hash_table/tree/README
 */

#include <stdlib.h>
#include <string.h>
#include <assert.h>

#include "hash_table.h"
#include "ralloc.h"
#include "macros.h"
#include "u_memory.h"
#include "fast_urem_by_const.h"

#define XXH_INLINE_ALL
#include "xxhash.h"

/**
 * Magic number that gets stored outside of the struct hash_table.
 *
 * The hash table needs a particular pointer to be the marker for a key that
 * was deleted from the table, along with NULL for the "never allocated in the
 * table" marker.  Legacy GL allows any GLuint to be used as a GL object name,
 * and we use a 1:1 mapping from GLuints to key pointers, so we need to be
 * able to track a GLuint that happens to match the deleted key outside of
 * struct hash_table.  We tell the hash table to use "1" as the deleted key
 * value, so that we test the deleted-key-in-the-table path as best we can.
 */
#define DELETED_KEY_VALUE 1

static inline void *
uint_key(unsigned id)
{
   return (void *)(uintptr_t) id;
}

static const uint32_t deleted_key_value;

/**
 * From Knuth -- a good choice for hash/rehash values is p, p-2 where
 * p and p-2 are both prime.  These tables are sized to have an extra 10%
 * free to avoid exponential performance degradation as the hash table fills
 */
static const struct {
   uint32_t max_entries, size, rehash;
   uint64_t size_magic, rehash_magic;
} hash_sizes[] = {
#define ENTRY(max_entries, size, rehash) \
   { max_entries, size, rehash, \
      REMAINDER_MAGIC(size), REMAINDER_MAGIC(rehash) }

   ENTRY(2,            5,            3            ),
   ENTRY(4,            7,            5            ),
   ENTRY(8,            13,           11           ),
   ENTRY(16,           19,           17           ),
   ENTRY(32,           43,           41           ),
   ENTRY(64,           73,           71           ),
   ENTRY(128,          151,          149          ),
   ENTRY(256,          283,          281          ),
   ENTRY(512,          571,          569          ),
   ENTRY(1024,         1153,         1151         ),
   ENTRY(2048,         2269,         2267         ),
   ENTRY(4096,         4519,         4517         ),
   ENTRY(8192,         9013,         9011         ),
   ENTRY(16384,        18043,        18041        ),
   ENTRY(32768,        36109,        36107        ),
   ENTRY(65536,        72091,        72089        ),
   ENTRY(131072,       144409,       144407       ),
   ENTRY(262144,       288361,       288359       ),
   ENTRY(524288,       576883,       576881       ),
   ENTRY(1048576,      1153459,      1153457      ),
   ENTRY(2097152,      2307163,      2307161      ),
   ENTRY(4194304,      4613893,      4613891      ),
   ENTRY(8388608,      9227641,      9227639      ),
   ENTRY(16777216,     18455029,     18455027     ),
   ENTRY(33554432,     36911011,     36911009     ),
   ENTRY(67108864,     73819861,     73819859     ),
   ENTRY(134217728,    147639589,    147639587    ),
   ENTRY(268435456,    295279081,    295279079    ),
   ENTRY(536870912,    590559793,    590559791    ),
   ENTRY(1073741824,   1181116273,   1181116271   ),
   ENTRY(2147483648ul, 2362232233ul, 2362232231ul )
};

ASSERTED static inline bool
key_pointer_is_reserved(const struct hash_table *ht, const void *key)
{
   return key == NULL || key == ht->deleted_key;
}

static int
entry_is_free(const struct hash_entry *entry)
{
   return entry->key == NULL;
}

static int
entry_is_deleted(const struct hash_table *ht, struct hash_entry *entry)
{
   return entry->key == ht->deleted_key;
}

static int
entry_is_present(const struct hash_table *ht, struct hash_entry *entry)
{
   return entry->key != NULL && entry->key != ht->deleted_key;
}

bool
_mesa_hash_table_init(struct hash_table *ht,
                      void *mem_ctx,
                      uint32_t (*key_hash_function)(const void *key),
                      bool (*key_equals_function)(const void *a,
                                                  const void *b))
{
   ht->size_index = 0;
   ht->size = hash_sizes[ht->size_index].size;
   ht->rehash = hash_sizes[ht->size_index].rehash;
   ht->size_magic = hash_sizes[ht->size_index].size_magic;
   ht->rehash_magic = hash_sizes[ht->size_index].rehash_magic;
   ht->max_entries = hash_sizes[ht->size_index].max_entries;
   ht->key_hash_function = key_hash_function;
   ht->key_equals_function = key_equals_function;
   ht->table = rzalloc_array(mem_ctx, struct hash_entry, ht->size);
   ht->entries = 0;
   ht->deleted_entries = 0;
   ht->deleted_key = &deleted_key_value;

   return ht->table != NULL;
}

struct hash_table *
_mesa_hash_table_create(void *mem_ctx,
                        uint32_t (*key_hash_function)(const void *key),
                        bool (*key_equals_function)(const void *a,
                                                    const void *b))
{
   struct hash_table *ht;

   /* mem_ctx is used to allocate the hash table, but the hash table is used
    * to allocate all of the suballocations.
    */
   ht = ralloc(mem_ctx, struct hash_table);
   if (ht == NULL)
      return NULL;

   if (!_mesa_hash_table_init(ht, ht, key_hash_function, key_equals_function)) {
      ralloc_free(ht);
      return NULL;
   }

   return ht;
}

struct hash_table *
_mesa_hash_table_clone(struct hash_table *src, void *dst_mem_ctx)
{
   struct hash_table *ht;

   ht = ralloc(dst_mem_ctx, struct hash_table);
   if (ht == NULL)
      return NULL;

   memcpy(ht, src, sizeof(struct hash_table));

   ht->table = ralloc_array(ht, struct hash_entry, ht->size);
   if (ht->table == NULL) {
      ralloc_free(ht);
      return NULL;
   }

   memcpy(ht->table, src->table, ht->size * sizeof(struct hash_entry));

   return ht;
}

/**
 * Frees the given hash table.
 *
 * If delete_function is passed, it gets called on each entry present before
 * freeing.
 */
void
_mesa_hash_table_destroy(struct hash_table *ht,
                         void (*delete_function)(struct hash_entry *entry))
{
   if (!ht)
      return;

   if (delete_function) {
      hash_table_foreach(ht, entry) {
         delete_function(entry);
      }
   }
   ralloc_free(ht);
}

/**
 * Deletes all entries of the given hash table without deleting the table
 * itself or changing its structure.
 *
 * If delete_function is passed, it gets called on each entry present.
 */
void
_mesa_hash_table_clear(struct hash_table *ht,
                       void (*delete_function)(struct hash_entry *entry))
{
   struct hash_entry *entry;

   for (entry = ht->table; entry != ht->table + ht->size; entry++) {
      if (entry->key == NULL)
         continue;

      if (delete_function != NULL && entry->key != ht->deleted_key)
         delete_function(entry);

      entry->key = NULL;
   }

   ht->entries = 0;
   ht->deleted_entries = 0;
}

/** Sets the value of the key pointer used for deleted entries in the table.
 *
 * The assumption is that usually keys are actual pointers, so we use a
 * default value of a pointer to an arbitrary piece of storage in the library.
 * But in some cases a consumer wants to store some other sort of value in the
 * table, like a uint32_t, in which case that pointer may conflict with one of
 * their valid keys.  This lets that user select a safe value.
 *
 * This must be called before any keys are actually deleted from the table.
 */
void
_mesa_hash_table_set_deleted_key(struct hash_table *ht, const void *deleted_key)
{
   ht->deleted_key = deleted_key;
}

static struct hash_entry *
hash_table_search(struct hash_table *ht, uint32_t hash, const void *key)
{
   assert(!key_pointer_is_reserved(ht, key));

   uint32_t size = ht->size;
   uint32_t start_hash_address = util_fast_urem32(hash, size, ht->size_magic);
   uint32_t double_hash = 1 + util_fast_urem32(hash, ht->rehash,
                                               ht->rehash_magic);
   uint32_t hash_address = start_hash_address;

   do {
      struct hash_entry *entry = ht->table + hash_address;

      if (entry_is_free(entry)) {
         return NULL;
      } else if (entry_is_present(ht, entry) && entry->hash == hash) {
         if (ht->key_equals_function(key, entry->key)) {
            return entry;
         }
      }

      hash_address += double_hash;
      if (hash_address >= size)
         hash_address -= size;
   } while (hash_address != start_hash_address);

   return NULL;
}

/**
 * Finds a hash table entry with the given key and hash of that key.
 *
 * Returns NULL if no entry is found.  Note that the data pointer may be
 * modified by the user.
 */
struct hash_entry *
_mesa_hash_table_search(struct hash_table *ht, const void *key)
{
   assert(ht->key_hash_function);
   return hash_table_search(ht, ht->key_hash_function(key), key);
}

struct hash_entry *
_mesa_hash_table_search_pre_hashed(struct hash_table *ht, uint32_t hash,
                                  const void *key)
{
   assert(ht->key_hash_function == NULL || hash == ht->key_hash_function(key));
   return hash_table_search(ht, hash, key);
}

static struct hash_entry *
hash_table_insert(struct hash_table *ht, uint32_t hash,
                  const void *key, void *data);

static void
hash_table_insert_rehash(struct hash_table *ht, uint32_t hash,
                         const void *key, void *data)
{
   uint32_t size = ht->size;
   uint32_t start_hash_address = util_fast_urem32(hash, size, ht->size_magic);
   uint32_t double_hash = 1 + util_fast_urem32(hash, ht->rehash,
                                               ht->rehash_magic);
   uint32_t hash_address = start_hash_address;
   do {
      struct hash_entry *entry = ht->table + hash_address;

      if (likely(entry->key == NULL)) {
         entry->hash = hash;
         entry->key = key;
         entry->data = data;
         return;
      }

      hash_address += double_hash;
      if (hash_address >= size)
         hash_address -= size;
   } while (true);
}

static void
_mesa_hash_table_rehash(struct hash_table *ht, unsigned new_size_index)
{
   struct hash_table old_ht;
   struct hash_entry *table;

   if (new_size_index >= ARRAY_SIZE(hash_sizes))
      return;

   table = rzalloc_array(ralloc_parent(ht->table), struct hash_entry,
                         hash_sizes[new_size_index].size);
   if (table == NULL)
      return;

   old_ht = *ht;

   ht->table = table;
   ht->size_index = new_size_index;
   ht->size = hash_sizes[ht->size_index].size;
   ht->rehash = hash_sizes[ht->size_index].rehash;
   ht->size_magic = hash_sizes[ht->size_index].size_magic;
   ht->rehash_magic = hash_sizes[ht->size_index].rehash_magic;
   ht->max_entries = hash_sizes[ht->size_index].max_entries;
   ht->entries = 0;
   ht->deleted_entries = 0;

   hash_table_foreach(&old_ht, entry) {
      hash_table_insert_rehash(ht, entry->hash, entry->key, entry->data);
   }

   ht->entries = old_ht.entries;

   ralloc_free(old_ht.table);
}

static struct hash_entry *
hash_table_insert(struct hash_table *ht, uint32_t hash,
                  const void *key, void *data)
{
   struct hash_entry *available_entry = NULL;

   assert(!key_pointer_is_reserved(ht, key));

   if (ht->entries >= ht->max_entries) {
      _mesa_hash_table_rehash(ht, ht->size_index + 1);
   } else if (ht->deleted_entries + ht->entries >= ht->max_entries) {
      _mesa_hash_table_rehash(ht, ht->size_index);
   }

   uint32_t size = ht->size;
   uint32_t start_hash_address = util_fast_urem32(hash, size, ht->size_magic);
   uint32_t double_hash = 1 + util_fast_urem32(hash, ht->rehash,
                                               ht->rehash_magic);
   uint32_t hash_address = start_hash_address;
   do {
      struct hash_entry *entry = ht->table + hash_address;

      if (!entry_is_present(ht, entry)) {
         /* Stash the first available entry we find */
         if (available_entry == NULL)
            available_entry = entry;
         if (entry_is_free(entry))
            break;
      }

      /* Implement replacement when another insert happens
       * with a matching key.  This is a relatively common
       * feature of hash tables, with the alternative
       * generally being "insert the new value as well, and
       * return it first when the key is searched for".
       *
       * Note that the hash table doesn't have a delete
       * callback.  If freeing of old data pointers is
       * required to avoid memory leaks, perform a search
       * before inserting.
       */
      if (!entry_is_deleted(ht, entry) &&
          entry->hash == hash &&
          ht->key_equals_function(key, entry->key)) {
         entry->key = key;
         entry->data = data;
         return entry;
      }

      hash_address += double_hash;
      if (hash_address >= size)
         hash_address -= size;
   } while (hash_address != start_hash_address);

   if (available_entry) {
      if (entry_is_deleted(ht, available_entry))
         ht->deleted_entries--;
      available_entry->hash = hash;
      available_entry->key = key;
      available_entry->data = data;
      ht->entries++;
      return available_entry;
   }

   /* We could hit here if a required resize failed. An unchecked-malloc
    * application could ignore this result.
    */
   return NULL;
}

/**
 * Inserts the key with the given hash into the table.
 *
 * Note that insertion may rearrange the table on a resize or rehash,
 * so previously found hash_entries are no longer valid after this function.
 */
struct hash_entry *
_mesa_hash_table_insert(struct hash_table *ht, const void *key, void *data)
{
   assert(ht->key_hash_function);
   return hash_table_insert(ht, ht->key_hash_function(key), key, data);
}

struct hash_entry *
_mesa_hash_table_insert_pre_hashed(struct hash_table *ht, uint32_t hash,
                                   const void *key, void *data)
{
   assert(ht->key_hash_function == NULL || hash == ht->key_hash_function(key));
   return hash_table_insert(ht, hash, key, data);
}

/**
 * This function deletes the given hash table entry.
 *
 * Note that deletion doesn't otherwise modify the table, so an iteration over
 * the table deleting entries is safe.
 */
void
_mesa_hash_table_remove(struct hash_table *ht,
                        struct hash_entry *entry)
{
   if (!entry)
      return;

   entry->key = ht->deleted_key;
   ht->entries--;
   ht->deleted_entries++;
}

/**
 * Removes the entry with the corresponding key, if exists.
 */
void _mesa_hash_table_remove_key(struct hash_table *ht,
                                 const void *key)
{
   _mesa_hash_table_remove(ht, _mesa_hash_table_search(ht, key));
}

/**
 * This function is an iterator over the hash table.
 *
 * Pass in NULL for the first entry, as in the start of a for loop.  Note that
 * an iteration over the table is O(table_size) not O(entries).
 */
struct hash_entry *
_mesa_hash_table_next_entry(struct hash_table *ht,
                            struct hash_entry *entry)
{
   if (entry == NULL)
      entry = ht->table;
   else
      entry = entry + 1;

   for (; entry != ht->table + ht->size; entry++) {
      if (entry_is_present(ht, entry)) {
         return entry;
      }
   }

   return NULL;
}

/**
 * Returns a random entry from the hash table.
 *
 * This may be useful in implementing random replacement (as opposed
 * to just removing everything) in caches based on this hash table
 * implementation.  @predicate may be used to filter entries, or may
 * be set to NULL for no filtering.
 */
struct hash_entry *
_mesa_hash_table_random_entry(struct hash_table *ht,
                              bool (*predicate)(struct hash_entry *entry))
{
   struct hash_entry *entry;
   uint32_t i = rand() % ht->size;

   if (ht->entries == 0)
      return NULL;

   for (entry = ht->table + i; entry != ht->table + ht->size; entry++) {
      if (entry_is_present(ht, entry) &&
          (!predicate || predicate(entry))) {
         return entry;
      }
   }

   for (entry = ht->table; entry != ht->table + i; entry++) {
      if (entry_is_present(ht, entry) &&
          (!predicate || predicate(entry))) {
         return entry;
      }
   }

   return NULL;
}


uint32_t
_mesa_hash_data(const void *data, size_t size)
{
   return XXH32(data, size, 0);
}

uint32_t
_mesa_hash_int(const void *key)
{
   return XXH32(key, sizeof(int), 0);
}

uint32_t
_mesa_hash_uint(const void *key)
{
   return XXH32(key, sizeof(unsigned), 0);
}

uint32_t
_mesa_hash_u32(const void *key)
{
   return XXH32(key, 4, 0);
}

/** FNV-1a string hash implementation */
uint32_t
_mesa_hash_string(const void *_key)
{
   uint32_t hash = _mesa_fnv32_1a_offset_bias;
   const char *key = _key;

   while (*key != 0) {
      hash = _mesa_fnv32_1a_accumulate(hash, *key);
      key++;
   }

   return hash;
}

uint32_t
_mesa_hash_pointer(const void *pointer)
{
   uintptr_t num = (uintptr_t) pointer;
   return (uint32_t) ((num >> 2) ^ (num >> 6) ^ (num >> 10) ^ (num >> 14));
}

bool
_mesa_key_int_equal(const void *a, const void *b)
{
   return *((const int *)a) == *((const int *)b);
}

bool
_mesa_key_uint_equal(const void *a, const void *b)
{

   return *((const unsigned *)a) == *((const unsigned *)b);
}

bool
_mesa_key_u32_equal(const void *a, const void *b)
{
   return *((const uint32_t *)a) == *((const uint32_t *)b);
}

/**
 * String compare function for use as the comparison callback in
 * _mesa_hash_table_create().
 */
bool
_mesa_key_string_equal(const void *a, const void *b)
{
   return strcmp(a, b) == 0;
}

bool
_mesa_key_pointer_equal(const void *a, const void *b)
{
   return a == b;
}

/**
 * Helper to create a hash table with pointer keys.
 */
struct hash_table *
_mesa_pointer_hash_table_create(void *mem_ctx)
{
   return _mesa_hash_table_create(mem_ctx, _mesa_hash_pointer,
                                  _mesa_key_pointer_equal);
}

/**
 * Hash table wrapper which supports 64-bit keys.
 *
 * TODO: unify all hash table implementations.
 */

struct hash_key_u64 {
   uint64_t value;
};

static uint32_t
key_u64_hash(const void *key)
{
   return _mesa_hash_data(key, sizeof(struct hash_key_u64));
}

static bool
key_u64_equals(const void *a, const void *b)
{
   const struct hash_key_u64 *aa = a;
   const struct hash_key_u64 *bb = b;

   return aa->value == bb->value;
}

#define FREED_KEY_VALUE 0

struct hash_table_u64 *
_mesa_hash_table_u64_create(void *mem_ctx)
{
   STATIC_ASSERT(FREED_KEY_VALUE != DELETED_KEY_VALUE);
   struct hash_table_u64 *ht;

   ht = CALLOC_STRUCT(hash_table_u64);
   if (!ht)
      return NULL;

   if (sizeof(void *) == 8) {
      ht->table = _mesa_hash_table_create(mem_ctx, _mesa_hash_pointer,
                                          _mesa_key_pointer_equal);
   } else {
      ht->table = _mesa_hash_table_create(mem_ctx, key_u64_hash,
                                          key_u64_equals);
   }

   if (ht->table)
      _mesa_hash_table_set_deleted_key(ht->table, uint_key(DELETED_KEY_VALUE));

   return ht;
}

void
_mesa_hash_table_u64_clear(struct hash_table_u64 *ht,
                           void (*delete_function)(struct hash_entry *entry))
{
   if (!ht)
      return;

   if (ht->deleted_key_data) {
      if (delete_function) {
         struct hash_table *table = ht->table;
         struct hash_entry entry;

         /* Create a fake entry for the delete function. */
         if (sizeof(void *) == 8) {
            entry.hash = table->key_hash_function(table->deleted_key);
         } else {
            struct hash_key_u64 _key = { .value = (uintptr_t)table->deleted_key };
            entry.hash = table->key_hash_function(&_key);
         }
         entry.key = table->deleted_key;
         entry.data = ht->deleted_key_data;

         delete_function(&entry);
      }
      ht->deleted_key_data = NULL;
   }

   if (ht->freed_key_data) {
      if (delete_function) {
         struct hash_table *table = ht->table;
         struct hash_entry entry;

         /* Create a fake entry for the delete function. */
         if (sizeof(void *) == 8) {
            entry.hash = table->key_hash_function(uint_key(FREED_KEY_VALUE));
         } else {
            struct hash_key_u64 _key = { .value = (uintptr_t)FREED_KEY_VALUE };
            entry.hash = table->key_hash_function(&_key);
         }
         entry.key = uint_key(FREED_KEY_VALUE);
         entry.data = ht->freed_key_data;

         delete_function(&entry);
      }
      ht->freed_key_data = NULL;
   }

   _mesa_hash_table_clear(ht->table, delete_function);
}

void
_mesa_hash_table_u64_destroy(struct hash_table_u64 *ht,
                             void (*delete_function)(struct hash_entry *entry))
{
   if (!ht)
      return;

   _mesa_hash_table_u64_clear(ht, delete_function);
   _mesa_hash_table_destroy(ht->table, delete_function);
   free(ht);
}

void
_mesa_hash_table_u64_insert(struct hash_table_u64 *ht, uint64_t key,
                            void *data)
{
   if (key == FREED_KEY_VALUE) {
      ht->freed_key_data = data;
      return;
   }

   if (key == DELETED_KEY_VALUE) {
      ht->deleted_key_data = data;
      return;
   }

   if (sizeof(void *) == 8) {
      _mesa_hash_table_insert(ht->table, (void *)(uintptr_t)key, data);
   } else {
      struct hash_key_u64 *_key = CALLOC_STRUCT(hash_key_u64);

      if (!_key)
         return;
      _key->value = key;

      _mesa_hash_table_insert(ht->table, _key, data);
   }
}

static struct hash_entry *
hash_table_u64_search(struct hash_table_u64 *ht, uint64_t key)
{
   if (sizeof(void *) == 8) {
      return _mesa_hash_table_search(ht->table, (void *)(uintptr_t)key);
   } else {
      struct hash_key_u64 _key = { .value = key };
      return _mesa_hash_table_search(ht->table, &_key);
   }
}

void *
_mesa_hash_table_u64_search(struct hash_table_u64 *ht, uint64_t key)
{
   struct hash_entry *entry;

   if (key == FREED_KEY_VALUE)
      return ht->freed_key_data;

   if (key == DELETED_KEY_VALUE)
      return ht->deleted_key_data;

   entry = hash_table_u64_search(ht, key);
   if (!entry)
      return NULL;

   return entry->data;
}

void
_mesa_hash_table_u64_remove(struct hash_table_u64 *ht, uint64_t key)
{
   struct hash_entry *entry;

   if (key == FREED_KEY_VALUE) {
      ht->freed_key_data = NULL;
      return;
   }

   if (key == DELETED_KEY_VALUE) {
      ht->deleted_key_data = NULL;
      return;
   }

   entry = hash_table_u64_search(ht, key);
   if (!entry)
      return;

   if (sizeof(void *) == 8) {
      _mesa_hash_table_remove(ht->table, entry);
   } else {
      struct hash_key *_key = (struct hash_key *)entry->key;

      _mesa_hash_table_remove(ht->table, entry);
      free(_key);
   }
}