1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
|
/**************************************************************************
*
* Copyright 2008 VMware, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
#ifndef BITSCAN_H
#define BITSCAN_H
#include <assert.h>
#include <stdint.h>
#include <stdbool.h>
#include <string.h>
#if defined(_MSC_VER)
#include <intrin.h>
#endif
#if defined(__POPCNT__)
#include <popcntintrin.h>
#endif
#include "c99_compat.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* Find first bit set in word. Least significant bit is 1.
* Return 0 if no bits set.
*/
#ifdef HAVE___BUILTIN_FFS
#define ffs __builtin_ffs
#elif defined(_MSC_VER) && (_M_IX86 || _M_ARM || _M_AMD64 || _M_IA64)
static inline
int ffs(int i)
{
unsigned long index;
if (_BitScanForward(&index, i))
return index + 1;
else
return 0;
}
#else
extern
int ffs(int i);
#endif
#ifdef HAVE___BUILTIN_FFSLL
#define ffsll __builtin_ffsll
#elif defined(_MSC_VER) && (_M_AMD64 || _M_ARM || _M_IA64)
static inline int
ffsll(long long int i)
{
unsigned long index;
if (_BitScanForward64(&index, i))
return index + 1;
else
return 0;
}
#else
extern int
ffsll(long long int val);
#endif
/* Destructively loop over all of the bits in a mask as in:
*
* while (mymask) {
* int i = u_bit_scan(&mymask);
* ... process element i
* }
*
*/
static inline int
u_bit_scan(unsigned *mask)
{
const int i = ffs(*mask) - 1;
*mask ^= (1u << i);
return i;
}
static inline int
u_bit_scan64(uint64_t *mask)
{
const int i = ffsll(*mask) - 1;
*mask ^= (((uint64_t)1) << i);
return i;
}
/* Determine if an unsigned value is a power of two.
*
* \note
* Zero is treated as a power of two.
*/
static inline bool
util_is_power_of_two_or_zero(unsigned v)
{
return (v & (v - 1)) == 0;
}
/* Determine if an uint64_t value is a power of two.
*
* \note
* Zero is treated as a power of two.
*/
static inline bool
util_is_power_of_two_or_zero64(uint64_t v)
{
return (v & (v - 1)) == 0;
}
/* Determine if an unsigned value is a power of two.
*
* \note
* Zero is \b not treated as a power of two.
*/
static inline bool
util_is_power_of_two_nonzero(unsigned v)
{
/* __POPCNT__ is different from HAVE___BUILTIN_POPCOUNT. The latter
* indicates the existence of the __builtin_popcount function. The former
* indicates that _mm_popcnt_u32 exists and is a native instruction.
*
* The other alternative is to use SSE 4.2 compile-time flags. This has
* two drawbacks. First, there is currently no build infrastructure for
* SSE 4.2 (only 4.1), so that would have to be added. Second, some AMD
* CPUs support POPCNT but not SSE 4.2 (e.g., Barcelona).
*/
#ifdef __POPCNT__
return _mm_popcnt_u32(v) == 1;
#else
return v != 0 && (v & (v - 1)) == 0;
#endif
}
/* For looping over a bitmask when you want to loop over consecutive bits
* manually, for example:
*
* while (mask) {
* int start, count, i;
*
* u_bit_scan_consecutive_range(&mask, &start, &count);
*
* for (i = 0; i < count; i++)
* ... process element (start+i)
* }
*/
static inline void
u_bit_scan_consecutive_range(unsigned *mask, int *start, int *count)
{
if (*mask == 0xffffffff) {
*start = 0;
*count = 32;
*mask = 0;
return;
}
*start = ffs(*mask) - 1;
*count = ffs(~(*mask >> *start)) - 1;
*mask &= ~(((1u << *count) - 1) << *start);
}
static inline void
u_bit_scan_consecutive_range64(uint64_t *mask, int *start, int *count)
{
if (*mask == ~0ull) {
*start = 0;
*count = 64;
*mask = 0;
return;
}
*start = ffsll(*mask) - 1;
*count = ffsll(~(*mask >> *start)) - 1;
*mask &= ~(((((uint64_t)1) << *count) - 1) << *start);
}
/**
* Find last bit set in a word. The least significant bit is 1.
* Return 0 if no bits are set.
* Essentially ffs() in the reverse direction.
*/
static inline unsigned
util_last_bit(unsigned u)
{
#if defined(HAVE___BUILTIN_CLZ)
return u == 0 ? 0 : 32 - __builtin_clz(u);
#elif defined(_MSC_VER) && (_M_IX86 || _M_ARM || _M_AMD64 || _M_IA64)
unsigned long index;
if (_BitScanReverse(&index, u))
return index + 1;
else
return 0;
#else
unsigned r = 0;
while (u) {
r++;
u >>= 1;
}
return r;
#endif
}
/**
* Find last bit set in a word. The least significant bit is 1.
* Return 0 if no bits are set.
* Essentially ffsll() in the reverse direction.
*/
static inline unsigned
util_last_bit64(uint64_t u)
{
#if defined(HAVE___BUILTIN_CLZLL)
return u == 0 ? 0 : 64 - __builtin_clzll(u);
#elif defined(_MSC_VER) && (_M_AMD64 || _M_ARM || _M_IA64)
unsigned long index;
if (_BitScanReverse64(&index, u))
return index + 1;
else
return 0;
#else
unsigned r = 0;
while (u) {
r++;
u >>= 1;
}
return r;
#endif
}
/**
* Find last bit in a word that does not match the sign bit. The least
* significant bit is 1.
* Return 0 if no bits are set.
*/
static inline unsigned
util_last_bit_signed(int i)
{
if (i >= 0)
return util_last_bit(i);
else
return util_last_bit(~(unsigned)i);
}
/* Returns a bitfield in which the first count bits starting at start are
* set.
*/
static inline unsigned
u_bit_consecutive(unsigned start, unsigned count)
{
assert(start + count <= 32);
if (count == 32)
return ~0;
return ((1u << count) - 1) << start;
}
static inline uint64_t
u_bit_consecutive64(unsigned start, unsigned count)
{
assert(start + count <= 64);
if (count == 64)
return ~(uint64_t)0;
return (((uint64_t)1 << count) - 1) << start;
}
/**
* Return number of bits set in n.
*/
static inline unsigned
util_bitcount(unsigned n)
{
#if defined(HAVE___BUILTIN_POPCOUNT)
return __builtin_popcount(n);
#else
/* K&R classic bitcount.
*
* For each iteration, clear the LSB from the bitfield.
* Requires only one iteration per set bit, instead of
* one iteration per bit less than highest set bit.
*/
unsigned bits;
for (bits = 0; n; bits++) {
n &= n - 1;
}
return bits;
#endif
}
static inline unsigned
util_bitcount64(uint64_t n)
{
#ifdef HAVE___BUILTIN_POPCOUNTLL
return __builtin_popcountll(n);
#else
return util_bitcount(n) + util_bitcount(n >> 32);
#endif
}
#ifdef __cplusplus
}
#endif
#endif /* BITSCAN_H */
|