1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
|
/*
* Copyright (C) 2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "compiler.h"
#include "midgard_ops.h"
void mir_rewrite_index_src_single(midgard_instruction *ins, unsigned old, unsigned new)
{
for (unsigned i = 0; i < ARRAY_SIZE(ins->src); ++i) {
if (ins->src[i] == old)
ins->src[i] = new;
}
}
void mir_rewrite_index_dst_single(midgard_instruction *ins, unsigned old, unsigned new)
{
if (ins->dest == old)
ins->dest = new;
}
static void
mir_rewrite_index_src_single_swizzle(midgard_instruction *ins, unsigned old, unsigned new, unsigned *swizzle)
{
for (unsigned i = 0; i < ARRAY_SIZE(ins->src); ++i) {
if (ins->src[i] != old) continue;
ins->src[i] = new;
mir_compose_swizzle(ins->swizzle[i], swizzle, ins->swizzle[i]);
}
}
void
mir_rewrite_index_src(compiler_context *ctx, unsigned old, unsigned new)
{
mir_foreach_instr_global(ctx, ins) {
mir_rewrite_index_src_single(ins, old, new);
}
}
void
mir_rewrite_index_src_swizzle(compiler_context *ctx, unsigned old, unsigned new, unsigned *swizzle)
{
mir_foreach_instr_global(ctx, ins) {
mir_rewrite_index_src_single_swizzle(ins, old, new, swizzle);
}
}
void
mir_rewrite_index_dst(compiler_context *ctx, unsigned old, unsigned new)
{
mir_foreach_instr_global(ctx, ins) {
mir_rewrite_index_dst_single(ins, old, new);
}
/* Implicitly written before the shader */
if (ctx->blend_input == old)
ctx->blend_input = new;
}
void
mir_rewrite_index(compiler_context *ctx, unsigned old, unsigned new)
{
mir_rewrite_index_src(ctx, old, new);
mir_rewrite_index_dst(ctx, old, new);
}
unsigned
mir_use_count(compiler_context *ctx, unsigned value)
{
unsigned used_count = 0;
mir_foreach_instr_global(ctx, ins) {
if (mir_has_arg(ins, value))
++used_count;
}
return used_count;
}
/* Checks if a value is used only once (or totally dead), which is an important
* heuristic to figure out if certain optimizations are Worth It (TM) */
bool
mir_single_use(compiler_context *ctx, unsigned value)
{
/* We can replicate constants in places so who cares */
if (value == SSA_FIXED_REGISTER(REGISTER_CONSTANT))
return true;
return mir_use_count(ctx, value) <= 1;
}
bool
mir_nontrivial_mod(midgard_instruction *ins, unsigned i, bool check_swizzle)
{
bool is_int = midgard_is_integer_op(ins->alu.op);
if (is_int) {
if (ins->src_shift[i]) return true;
} else {
if (ins->src_neg[i]) return true;
if (ins->src_abs[i]) return true;
}
if (ins->dest_type != ins->src_types[i]) return true;
if (check_swizzle) {
for (unsigned c = 0; c < 16; ++c) {
if (!(ins->mask & (1 << c))) continue;
if (ins->swizzle[i][c] != c) return true;
}
}
return false;
}
bool
mir_nontrivial_outmod(midgard_instruction *ins)
{
bool is_int = midgard_is_integer_op(ins->alu.op);
unsigned mod = ins->alu.outmod;
if (ins->dest_type != ins->src_types[1])
return true;
if (is_int)
return mod != midgard_outmod_int_wrap;
else
return mod != midgard_outmod_none;
}
/* 128 / sz = exp2(log2(128 / sz))
* = exp2(log2(128) - log2(sz))
* = exp2(7 - log2(sz))
* = 1 << (7 - log2(sz))
*/
static unsigned
mir_components_for_bits(unsigned bits)
{
return 1 << (7 - util_logbase2(bits));
}
unsigned
mir_components_for_type(nir_alu_type T)
{
unsigned sz = nir_alu_type_get_type_size(T);
return mir_components_for_bits(sz);
}
uint16_t
mir_from_bytemask(uint16_t bytemask, unsigned bits)
{
unsigned value = 0;
unsigned count = bits / 8;
for (unsigned c = 0, d = 0; c < 16; c += count, ++d) {
bool a = (bytemask & (1 << c)) != 0;
for (unsigned q = c; q < count; ++q)
assert(((bytemask & (1 << q)) != 0) == a);
value |= (a << d);
}
return value;
}
/* Rounds up a bytemask to fill a given component count. Iterate each
* component, and check if any bytes in the component are masked on */
uint16_t
mir_round_bytemask_up(uint16_t mask, unsigned bits)
{
unsigned bytes = bits / 8;
unsigned maxmask = mask_of(bytes);
unsigned channels = mir_components_for_bits(bits);
for (unsigned c = 0; c < channels; ++c) {
unsigned submask = maxmask << (c * bytes);
if (mask & submask)
mask |= submask;
}
return mask;
}
/* Grabs the per-byte mask of an instruction (as opposed to per-component) */
uint16_t
mir_bytemask(midgard_instruction *ins)
{
unsigned type_size = nir_alu_type_get_type_size(ins->dest_type);
return pan_to_bytemask(type_size, ins->mask);
}
void
mir_set_bytemask(midgard_instruction *ins, uint16_t bytemask)
{
unsigned type_size = nir_alu_type_get_type_size(ins->dest_type);
ins->mask = mir_from_bytemask(bytemask, type_size);
}
/* Checks if we should use an upper destination override, rather than the lower
* one in the IR. Returns zero if no, returns the bytes to shift otherwise */
signed
mir_upper_override(midgard_instruction *ins, unsigned inst_size)
{
unsigned type_size = nir_alu_type_get_type_size(ins->dest_type);
/* If the sizes are the same, there's nothing to override */
if (type_size == inst_size)
return -1;
/* There are 16 bytes per vector, so there are (16/bytes)
* components per vector. So the magic half is half of
* (16/bytes), which simplifies to 8/bytes = 8 / (bits / 8) = 64 / bits
* */
unsigned threshold = mir_components_for_bits(type_size) >> 1;
/* How many components did we shift over? */
unsigned zeroes = __builtin_ctz(ins->mask);
/* Did we hit the threshold? */
return (zeroes >= threshold) ? threshold : 0;
}
/* Creates a mask of the components of a node read by an instruction, by
* analyzing the swizzle with respect to the instruction's mask. E.g.:
*
* fadd r0.xz, r1.yyyy, r2.zwyx
*
* will return a mask of Z/Y for r2
*/
static uint16_t
mir_bytemask_of_read_components_single(unsigned *swizzle, unsigned inmask, unsigned bits)
{
unsigned cmask = 0;
for (unsigned c = 0; c < MIR_VEC_COMPONENTS; ++c) {
if (!(inmask & (1 << c))) continue;
cmask |= (1 << swizzle[c]);
}
return pan_to_bytemask(bits, cmask);
}
uint16_t
mir_bytemask_of_read_components_index(midgard_instruction *ins, unsigned i)
{
/* Conditional branches read one 32-bit component = 4 bytes (TODO: multi branch??) */
if (ins->compact_branch && ins->branch.conditional && (i == 0))
return 0xF;
/* ALU ops act componentwise so we need to pay attention to
* their mask. Texture/ldst does not so we don't clamp source
* readmasks based on the writemask */
unsigned qmask = ~0;
/* Handle dot products and things */
if (ins->type == TAG_ALU_4 && !ins->compact_branch) {
unsigned props = alu_opcode_props[ins->alu.op].props;
unsigned channel_override = GET_CHANNEL_COUNT(props);
if (channel_override)
qmask = mask_of(channel_override);
else
qmask = ins->mask;
}
return mir_bytemask_of_read_components_single(ins->swizzle[i], qmask,
nir_alu_type_get_type_size(ins->src_types[i]));
}
uint16_t
mir_bytemask_of_read_components(midgard_instruction *ins, unsigned node)
{
uint16_t mask = 0;
if (node == ~0)
return 0;
mir_foreach_src(ins, i) {
if (ins->src[i] != node) continue;
mask |= mir_bytemask_of_read_components_index(ins, i);
}
return mask;
}
/* Register allocation occurs after instruction scheduling, which is fine until
* we start needing to spill registers and therefore insert instructions into
* an already-scheduled program. We don't have to be terribly efficient about
* this, since spilling is already slow. So just semantically we need to insert
* the instruction into a new bundle before/after the bundle of the instruction
* in question */
static midgard_bundle
mir_bundle_for_op(compiler_context *ctx, midgard_instruction ins)
{
midgard_instruction *u = mir_upload_ins(ctx, ins);
midgard_bundle bundle = {
.tag = ins.type,
.instruction_count = 1,
.instructions = { u },
};
if (bundle.tag == TAG_ALU_4) {
assert(OP_IS_MOVE(u->alu.op));
u->unit = UNIT_VMUL;
size_t bytes_emitted = sizeof(uint32_t) + sizeof(midgard_reg_info) + sizeof(midgard_vector_alu);
bundle.padding = ~(bytes_emitted - 1) & 0xF;
bundle.control = ins.type | u->unit;
}
return bundle;
}
static unsigned
mir_bundle_idx_for_ins(midgard_instruction *tag, midgard_block *block)
{
midgard_bundle *bundles =
(midgard_bundle *) block->bundles.data;
size_t count = (block->bundles.size / sizeof(midgard_bundle));
for (unsigned i = 0; i < count; ++i) {
for (unsigned j = 0; j < bundles[i].instruction_count; ++j) {
if (bundles[i].instructions[j] == tag)
return i;
}
}
mir_print_instruction(tag);
unreachable("Instruction not scheduled in block");
}
void
mir_insert_instruction_before_scheduled(
compiler_context *ctx,
midgard_block *block,
midgard_instruction *tag,
midgard_instruction ins)
{
unsigned before = mir_bundle_idx_for_ins(tag, block);
size_t count = util_dynarray_num_elements(&block->bundles, midgard_bundle);
UNUSED void *unused = util_dynarray_grow(&block->bundles, midgard_bundle, 1);
midgard_bundle *bundles = (midgard_bundle *) block->bundles.data;
memmove(bundles + before + 1, bundles + before, (count - before) * sizeof(midgard_bundle));
midgard_bundle *before_bundle = bundles + before + 1;
midgard_bundle new = mir_bundle_for_op(ctx, ins);
memcpy(bundles + before, &new, sizeof(new));
list_addtail(&new.instructions[0]->link, &before_bundle->instructions[0]->link);
block->quadword_count += midgard_tag_props[new.tag].size;
}
void
mir_insert_instruction_after_scheduled(
compiler_context *ctx,
midgard_block *block,
midgard_instruction *tag,
midgard_instruction ins)
{
/* We need to grow the bundles array to add our new bundle */
size_t count = util_dynarray_num_elements(&block->bundles, midgard_bundle);
UNUSED void *unused = util_dynarray_grow(&block->bundles, midgard_bundle, 1);
/* Find the bundle that we want to insert after */
unsigned after = mir_bundle_idx_for_ins(tag, block);
/* All the bundles after that one, we move ahead by one */
midgard_bundle *bundles = (midgard_bundle *) block->bundles.data;
memmove(bundles + after + 2, bundles + after + 1, (count - after - 1) * sizeof(midgard_bundle));
midgard_bundle *after_bundle = bundles + after;
midgard_bundle new = mir_bundle_for_op(ctx, ins);
memcpy(bundles + after + 1, &new, sizeof(new));
list_add(&new.instructions[0]->link, &after_bundle->instructions[after_bundle->instruction_count - 1]->link);
block->quadword_count += midgard_tag_props[new.tag].size;
}
/* Flip the first-two arguments of a (binary) op. Currently ALU
* only, no known uses for ldst/tex */
void
mir_flip(midgard_instruction *ins)
{
unsigned temp = ins->src[0];
ins->src[0] = ins->src[1];
ins->src[1] = temp;
assert(ins->type == TAG_ALU_4);
temp = ins->alu.src1;
ins->alu.src1 = ins->alu.src2;
ins->alu.src2 = temp;
temp = ins->src_types[0];
ins->src_types[0] = ins->src_types[1];
ins->src_types[1] = temp;
temp = ins->src_abs[0];
ins->src_abs[0] = ins->src_abs[1];
ins->src_abs[1] = temp;
temp = ins->src_neg[0];
ins->src_neg[0] = ins->src_neg[1];
ins->src_neg[1] = temp;
temp = ins->src_invert[0];
ins->src_invert[0] = ins->src_invert[1];
ins->src_invert[1] = temp;
unsigned temp_swizzle[16];
memcpy(temp_swizzle, ins->swizzle[0], sizeof(ins->swizzle[0]));
memcpy(ins->swizzle[0], ins->swizzle[1], sizeof(ins->swizzle[0]));
memcpy(ins->swizzle[1], temp_swizzle, sizeof(ins->swizzle[0]));
}
/* Before squashing, calculate ctx->temp_count just by observing the MIR */
void
mir_compute_temp_count(compiler_context *ctx)
{
if (ctx->temp_count)
return;
unsigned max_dest = 0;
mir_foreach_instr_global(ctx, ins) {
if (ins->dest < SSA_FIXED_MINIMUM)
max_dest = MAX2(max_dest, ins->dest + 1);
}
ctx->temp_count = max_dest;
}
|