1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
|
/*
* Copyright (C) 2018-2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "compiler.h"
#include "midgard_ops.h"
#include "util/u_memory.h"
#include "util/register_allocate.h"
/* Create a mask of accessed components from a swizzle to figure out vector
* dependencies */
static unsigned
swizzle_to_access_mask(unsigned swizzle)
{
unsigned component_mask = 0;
for (int i = 0; i < 4; ++i) {
unsigned c = (swizzle >> (2 * i)) & 3;
component_mask |= (1 << c);
}
return component_mask;
}
/* Does the mask cover more than a scalar? */
static bool
is_single_component_mask(unsigned mask)
{
int components = 0;
for (int c = 0; c < 8; ++c) {
if (mask & (1 << c))
components++;
}
return components == 1;
}
/* Checks for an SSA data hazard between two adjacent instructions, keeping in
* mind that we are a vector architecture and we can write to different
* components simultaneously */
static bool
can_run_concurrent_ssa(midgard_instruction *first, midgard_instruction *second)
{
/* Each instruction reads some registers and writes to a register. See
* where the first writes */
/* Figure out where exactly we wrote to */
int source = first->ssa_args.dest;
int source_mask = first->mask;
/* As long as the second doesn't read from the first, we're okay */
if (second->ssa_args.src0 == source) {
if (first->type == TAG_ALU_4) {
/* Figure out which components we just read from */
int q = second->alu.src1;
midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
/* Check if there are components in common, and fail if so */
if (swizzle_to_access_mask(m->swizzle) & source_mask)
return false;
} else
return false;
}
if (second->ssa_args.src1 == source)
return false;
/* Otherwise, it's safe in that regard. Another data hazard is both
* writing to the same place, of course */
if (second->ssa_args.dest == source) {
/* ...but only if the components overlap */
if (second->mask & source_mask)
return false;
}
/* ...That's it */
return true;
}
static bool
midgard_has_hazard(
midgard_instruction **segment, unsigned segment_size,
midgard_instruction *ains)
{
for (int s = 0; s < segment_size; ++s)
if (!can_run_concurrent_ssa(segment[s], ains))
return true;
return false;
}
/* Schedules, but does not emit, a single basic block. After scheduling, the
* final tag and size of the block are known, which are necessary for branching
* */
static midgard_bundle
schedule_bundle(compiler_context *ctx, midgard_block *block, midgard_instruction *ins, int *skip)
{
int instructions_emitted = 0, packed_idx = 0;
midgard_bundle bundle = { 0 };
uint8_t tag = ins->type;
/* Default to the instruction's tag */
bundle.tag = tag;
switch (ins->type) {
case TAG_ALU_4: {
uint32_t control = 0;
size_t bytes_emitted = sizeof(control);
/* TODO: Constant combining */
int index = 0, last_unit = 0;
/* Previous instructions, for the purpose of parallelism */
midgard_instruction *segment[4] = {0};
int segment_size = 0;
instructions_emitted = -1;
midgard_instruction *pins = ins;
unsigned constant_count = 0;
for (;;) {
midgard_instruction *ains = pins;
/* Advance instruction pointer */
if (index) {
ains = mir_next_op(pins);
pins = ains;
}
/* Out-of-work condition */
if ((struct list_head *) ains == &block->instructions)
break;
/* Ensure that the chain can continue */
if (ains->type != TAG_ALU_4) break;
/* If there's already something in the bundle and we
* have weird scheduler constraints, break now */
if (ains->precede_break && index) break;
/* According to the presentation "The ARM
* Mali-T880 Mobile GPU" from HotChips 27,
* there are two pipeline stages. Branching
* position determined experimentally. Lines
* are executed in parallel:
*
* [ VMUL ] [ SADD ]
* [ VADD ] [ SMUL ] [ LUT ] [ BRANCH ]
*
* Verify that there are no ordering dependencies here.
*
* TODO: Allow for parallelism!!!
*/
/* Pick a unit for it if it doesn't force a particular unit */
int unit = ains->unit;
if (!unit) {
int op = ains->alu.op;
int units = alu_opcode_props[op].props;
bool scalarable = units & UNITS_SCALAR;
bool could_scalar = is_single_component_mask(ains->mask);
/* Only 16/32-bit can run on a scalar unit */
could_scalar &= ains->alu.reg_mode != midgard_reg_mode_8;
could_scalar &= ains->alu.reg_mode != midgard_reg_mode_64;
could_scalar &= ains->alu.dest_override == midgard_dest_override_none;
if (ains->alu.reg_mode == midgard_reg_mode_16) {
/* If we're running in 16-bit mode, we
* can't have any 8-bit sources on the
* scalar unit (since the scalar unit
* doesn't understand 8-bit) */
midgard_vector_alu_src s1 =
vector_alu_from_unsigned(ains->alu.src1);
could_scalar &= !s1.half;
if (!ains->ssa_args.inline_constant) {
midgard_vector_alu_src s2 =
vector_alu_from_unsigned(ains->alu.src2);
could_scalar &= !s2.half;
}
}
bool scalar = could_scalar && scalarable;
/* TODO: Check ahead-of-time for other scalar
* hazards that otherwise get aborted out */
if (scalar)
assert(units & UNITS_SCALAR);
if (!scalar) {
if (last_unit >= UNIT_VADD) {
if (units & UNIT_VLUT)
unit = UNIT_VLUT;
else
break;
} else {
if ((units & UNIT_VMUL) && last_unit < UNIT_VMUL)
unit = UNIT_VMUL;
else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
unit = UNIT_VADD;
else if (units & UNIT_VLUT)
unit = UNIT_VLUT;
else
break;
}
} else {
if (last_unit >= UNIT_VADD) {
if ((units & UNIT_SMUL) && !(control & UNIT_SMUL))
unit = UNIT_SMUL;
else if (units & UNIT_VLUT)
unit = UNIT_VLUT;
else
break;
} else {
if ((units & UNIT_SADD) && !(control & UNIT_SADD) && !midgard_has_hazard(segment, segment_size, ains))
unit = UNIT_SADD;
else if (units & UNIT_SMUL)
unit = ((units & UNIT_VMUL) && !(control & UNIT_VMUL)) ? UNIT_VMUL : UNIT_SMUL;
else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
unit = UNIT_VADD;
else
break;
}
}
assert(unit & units);
}
/* Late unit check, this time for encoding (not parallelism) */
if (unit <= last_unit) break;
/* Clear the segment */
if (last_unit < UNIT_VADD && unit >= UNIT_VADD)
segment_size = 0;
if (midgard_has_hazard(segment, segment_size, ains))
break;
/* We're good to go -- emit the instruction */
ains->unit = unit;
segment[segment_size++] = ains;
/* We try to reuse constants if possible, by adjusting
* the swizzle */
if (ains->has_blend_constant) {
/* Everything conflicts with the blend constant */
if (bundle.has_embedded_constants)
break;
bundle.has_blend_constant = 1;
bundle.has_embedded_constants = 1;
} else if (ains->has_constants && ains->alu.reg_mode == midgard_reg_mode_16) {
/* TODO: DRY with the analysis pass */
if (bundle.has_blend_constant)
break;
if (constant_count)
break;
/* TODO: Fix packing XXX */
uint16_t *bundles = (uint16_t *) bundle.constants;
uint32_t *constants = (uint32_t *) ains->constants;
/* Copy them wholesale */
for (unsigned i = 0; i < 4; ++i)
bundles[i] = constants[i];
bundle.has_embedded_constants = true;
constant_count = 4;
} else if (ains->has_constants) {
/* By definition, blend constants conflict with
* everything, so if there are already
* constants we break the bundle *now* */
if (bundle.has_blend_constant)
break;
/* For anything but blend constants, we can do
* proper analysis, however */
/* TODO: Mask by which are used */
uint32_t *constants = (uint32_t *) ains->constants;
uint32_t *bundles = (uint32_t *) bundle.constants;
uint32_t indices[4] = { 0 };
bool break_bundle = false;
for (unsigned i = 0; i < 4; ++i) {
uint32_t cons = constants[i];
bool constant_found = false;
/* Search for the constant */
for (unsigned j = 0; j < constant_count; ++j) {
if (bundles[j] != cons)
continue;
/* We found it, reuse */
indices[i] = j;
constant_found = true;
break;
}
if (constant_found)
continue;
/* We didn't find it, so allocate it */
unsigned idx = constant_count++;
if (idx >= 4) {
/* Uh-oh, out of space */
break_bundle = true;
break;
}
/* We have space, copy it in! */
bundles[idx] = cons;
indices[i] = idx;
}
if (break_bundle)
break;
/* Cool, we have it in. So use indices as a
* swizzle */
unsigned swizzle = SWIZZLE_FROM_ARRAY(indices);
unsigned r_constant = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
if (ains->ssa_args.src0 == r_constant)
ains->alu.src1 = vector_alu_apply_swizzle(ains->alu.src1, swizzle);
if (ains->ssa_args.src1 == r_constant)
ains->alu.src2 = vector_alu_apply_swizzle(ains->alu.src2, swizzle);
bundle.has_embedded_constants = true;
}
if (ains->unit & UNITS_ANY_VECTOR) {
bytes_emitted += sizeof(midgard_reg_info);
bytes_emitted += sizeof(midgard_vector_alu);
} else if (ains->compact_branch) {
/* All of r0 has to be written out along with
* the branch writeout */
if (ains->writeout) {
/* The rules for when "bare" writeout
* is safe are when all components are
* r0 are written out in the final
* bundle, earlier than VLUT, where any
* register dependencies of r0 are from
* an earlier bundle. We can't verify
* this before RA, so we don't try. */
if (index != 0)
break;
/* Inject a move */
midgard_instruction ins = v_mov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
ins.unit = UNIT_VMUL;
control |= ins.unit;
/* TODO don't leak */
midgard_instruction *move =
mem_dup(&ins, sizeof(midgard_instruction));
bytes_emitted += sizeof(midgard_reg_info);
bytes_emitted += sizeof(midgard_vector_alu);
bundle.instructions[packed_idx++] = move;
}
if (ains->unit == ALU_ENAB_BRANCH) {
bytes_emitted += sizeof(midgard_branch_extended);
} else {
bytes_emitted += sizeof(ains->br_compact);
}
} else {
bytes_emitted += sizeof(midgard_reg_info);
bytes_emitted += sizeof(midgard_scalar_alu);
}
/* Defer marking until after writing to allow for break */
control |= ains->unit;
last_unit = ains->unit;
++instructions_emitted;
++index;
}
int padding = 0;
/* Pad ALU op to nearest word */
if (bytes_emitted & 15) {
padding = 16 - (bytes_emitted & 15);
bytes_emitted += padding;
}
/* Constants must always be quadwords */
if (bundle.has_embedded_constants)
bytes_emitted += 16;
/* Size ALU instruction for tag */
bundle.tag = (TAG_ALU_4) + (bytes_emitted / 16) - 1;
bundle.padding = padding;
bundle.control = bundle.tag | control;
break;
}
case TAG_LOAD_STORE_4: {
/* Load store instructions have two words at once. If
* we only have one queued up, we need to NOP pad.
* Otherwise, we store both in succession to save space
* and cycles -- letting them go in parallel -- skip
* the next. The usefulness of this optimisation is
* greatly dependent on the quality of the instruction
* scheduler.
*/
midgard_instruction *next_op = mir_next_op(ins);
if ((struct list_head *) next_op != &block->instructions && next_op->type == TAG_LOAD_STORE_4) {
/* TODO: Concurrency check */
instructions_emitted++;
}
break;
}
case TAG_TEXTURE_4: {
/* Which tag we use depends on the shader stage */
bool in_frag = ctx->stage == MESA_SHADER_FRAGMENT;
bundle.tag = in_frag ? TAG_TEXTURE_4 : TAG_TEXTURE_4_VTX;
break;
}
default:
unreachable("Unknown tag");
break;
}
/* Copy the instructions into the bundle */
bundle.instruction_count = instructions_emitted + 1 + packed_idx;
midgard_instruction *uins = ins;
for (; packed_idx < bundle.instruction_count; ++packed_idx) {
bundle.instructions[packed_idx] = uins;
uins = mir_next_op(uins);
}
*skip = instructions_emitted;
return bundle;
}
/* Schedule a single block by iterating its instruction to create bundles.
* While we go, tally about the bundle sizes to compute the block size. */
static void
schedule_block(compiler_context *ctx, midgard_block *block)
{
util_dynarray_init(&block->bundles, NULL);
block->quadword_count = 0;
mir_foreach_instr_in_block(block, ins) {
int skip;
midgard_bundle bundle = schedule_bundle(ctx, block, ins, &skip);
util_dynarray_append(&block->bundles, midgard_bundle, bundle);
if (bundle.has_blend_constant) {
/* TODO: Multiblock? */
int quadwords_within_block = block->quadword_count + quadword_size(bundle.tag) - 1;
ctx->blend_constant_offset = quadwords_within_block * 0x10;
}
while(skip--)
ins = mir_next_op(ins);
block->quadword_count += quadword_size(bundle.tag);
}
block->is_scheduled = true;
}
/* The following passes reorder MIR instructions to enable better scheduling */
static void
midgard_pair_load_store(compiler_context *ctx, midgard_block *block)
{
mir_foreach_instr_in_block_safe(block, ins) {
if (ins->type != TAG_LOAD_STORE_4) continue;
/* We've found a load/store op. Check if next is also load/store. */
midgard_instruction *next_op = mir_next_op(ins);
if (&next_op->link != &block->instructions) {
if (next_op->type == TAG_LOAD_STORE_4) {
/* If so, we're done since we're a pair */
ins = mir_next_op(ins);
continue;
}
/* Maximum search distance to pair, to avoid register pressure disasters */
int search_distance = 8;
/* Otherwise, we have an orphaned load/store -- search for another load */
mir_foreach_instr_in_block_from(block, c, mir_next_op(ins)) {
/* Terminate search if necessary */
if (!(search_distance--)) break;
if (c->type != TAG_LOAD_STORE_4) continue;
/* Stores cannot be reordered, since they have
* dependencies. For the same reason, indirect
* loads cannot be reordered as their index is
* loaded in r27.w */
if (OP_IS_STORE(c->load_store.op)) continue;
/* It appears the 0x800 bit is set whenever a
* load is direct, unset when it is indirect.
* Skip indirect loads. */
if (!(c->load_store.unknown & 0x800)) continue;
/* We found one! Move it up to pair and remove it from the old location */
mir_insert_instruction_before(ins, *c);
mir_remove_instruction(c);
break;
}
}
}
}
/* When we're 'squeezing down' the values in the IR, we maintain a hash
* as such */
static unsigned
find_or_allocate_temp(compiler_context *ctx, unsigned hash)
{
if ((hash < 0) || (hash >= SSA_FIXED_MINIMUM))
return hash;
unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(
ctx->hash_to_temp, hash + 1);
if (temp)
return temp - 1;
/* If no temp is find, allocate one */
temp = ctx->temp_count++;
ctx->max_hash = MAX2(ctx->max_hash, hash);
_mesa_hash_table_u64_insert(ctx->hash_to_temp,
hash + 1, (void *) ((uintptr_t) temp + 1));
return temp;
}
/* Reassigns numbering to get rid of gaps in the indices */
static void
mir_squeeze_index(compiler_context *ctx)
{
/* Reset */
ctx->temp_count = 0;
/* TODO don't leak old hash_to_temp */
ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
mir_foreach_instr_global(ctx, ins) {
if (ins->compact_branch) continue;
ins->ssa_args.dest = find_or_allocate_temp(ctx, ins->ssa_args.dest);
ins->ssa_args.src0 = find_or_allocate_temp(ctx, ins->ssa_args.src0);
if (!ins->ssa_args.inline_constant)
ins->ssa_args.src1 = find_or_allocate_temp(ctx, ins->ssa_args.src1);
}
}
static midgard_instruction
v_load_store_scratch(
unsigned srcdest,
unsigned index,
bool is_store,
unsigned mask)
{
/* We index by 32-bit vec4s */
unsigned byte = (index * 4 * 4);
midgard_instruction ins = {
.type = TAG_LOAD_STORE_4,
.mask = mask,
.ssa_args = {
.dest = -1,
.src0 = -1,
.src1 = -1
},
.load_store = {
.op = is_store ? midgard_op_st_int4 : midgard_op_ld_int4,
.swizzle = SWIZZLE_XYZW,
/* For register spilling - to thread local storage */
.unknown = 0x1EEA,
/* Splattered across, TODO combine logically */
.varying_parameters = (byte & 0x1FF) << 1,
.address = (byte >> 9)
}
};
if (is_store) {
/* r0 = r26, r1 = r27 */
assert(srcdest == SSA_FIXED_REGISTER(26) || srcdest == SSA_FIXED_REGISTER(27));
ins.ssa_args.src0 = (srcdest == SSA_FIXED_REGISTER(27)) ? SSA_FIXED_REGISTER(1) : SSA_FIXED_REGISTER(0);
} else {
ins.ssa_args.dest = srcdest;
}
return ins;
}
void
schedule_program(compiler_context *ctx)
{
struct ra_graph *g = NULL;
bool spilled = false;
int iter_count = 1000; /* max iterations */
/* Number of 128-bit slots in memory we've spilled into */
unsigned spill_count = 0;
midgard_promote_uniforms(ctx, 8);
mir_foreach_block(ctx, block) {
midgard_pair_load_store(ctx, block);
}
do {
/* If we spill, find the best spill node and spill it */
unsigned spill_index = ctx->temp_count;
if (g && spilled) {
/* All nodes are equal in spill cost, but we can't
* spill nodes written to from an unspill */
for (unsigned i = 0; i < ctx->temp_count; ++i) {
ra_set_node_spill_cost(g, i, 1.0);
}
mir_foreach_instr_global(ctx, ins) {
if (ins->type != TAG_LOAD_STORE_4) continue;
if (ins->load_store.op != midgard_op_ld_int4) continue;
if (ins->load_store.unknown != 0x1EEA) continue;
ra_set_node_spill_cost(g, ins->ssa_args.dest, -1.0);
}
int spill_node = ra_get_best_spill_node(g);
if (spill_node < 0) {
mir_print_shader(ctx);
assert(0);
}
/* Allocate TLS slot */
unsigned spill_slot = spill_count++;
/* Replace all stores to the spilled node with stores
* to TLS */
mir_foreach_instr_global_safe(ctx, ins) {
if (ins->compact_branch) continue;
if (ins->ssa_args.dest != spill_node) continue;
ins->ssa_args.dest = SSA_FIXED_REGISTER(26);
midgard_instruction st = v_load_store_scratch(ins->ssa_args.dest, spill_slot, true, ins->mask);
mir_insert_instruction_before(mir_next_op(ins), st);
}
/* Insert a load from TLS before the first consecutive
* use of the node, rewriting to use spilled indices to
* break up the live range */
mir_foreach_block(ctx, block) {
bool consecutive_skip = false;
unsigned consecutive_index = 0;
mir_foreach_instr_in_block(block, ins) {
if (ins->compact_branch) continue;
if (!mir_has_arg(ins, spill_node)) {
consecutive_skip = false;
continue;
}
if (consecutive_skip) {
/* Rewrite */
mir_rewrite_index_src_single(ins, spill_node, consecutive_index);
continue;
}
consecutive_index = ++spill_index;
midgard_instruction st = v_load_store_scratch(consecutive_index, spill_slot, false, 0xF);
midgard_instruction *before = ins;
/* For a csel, go back one more not to break up the bundle */
if (ins->type == TAG_ALU_4 && OP_IS_CSEL(ins->alu.op))
before = mir_prev_op(before);
mir_insert_instruction_before(before, st);
// consecutive_skip = true;
/* Rewrite to use */
mir_rewrite_index_src_single(ins, spill_node, consecutive_index);
}
}
}
mir_squeeze_index(ctx);
g = NULL;
g = allocate_registers(ctx, &spilled);
} while(spilled && ((iter_count--) > 0));
/* After RA finishes, we schedule all at once */
mir_foreach_block(ctx, block) {
schedule_block(ctx, block);
}
/* Finally, we create pipeline registers as a peephole pass after
* scheduling. This isn't totally optimal, since there are cases where
* the usage of pipeline registers can eliminate spills, but it does
* save some power */
mir_create_pipeline_registers(ctx);
if (iter_count <= 0) {
fprintf(stderr, "panfrost: Gave up allocating registers, rendering will be incomplete\n");
assert(0);
}
/* Report spilling information. spill_count is in 128-bit slots (vec4 x
* fp32), but tls_size is in bytes, so multiply by 16 */
ctx->tls_size = spill_count * 16;
install_registers(ctx, g);
}
|