summaryrefslogtreecommitdiffstats
path: root/src/panfrost/midgard/midgard_ra.c
blob: 11bef79a42c6c8d6c4e9f49b36d0efeec2ef81c5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
/*
 * Copyright (C) 2018-2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
 * Copyright (C) 2019 Collabora, Ltd.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include "compiler.h"
#include "midgard_ops.h"
#include "util/register_allocate.h"
#include "util/u_math.h"
#include "util/u_memory.h"

/* For work registers, we can subdivide in various ways. So we create
 * classes for the various sizes and conflict accordingly, keeping in
 * mind that physical registers are divided along 128-bit boundaries.
 * The important part is that 128-bit boundaries are not crossed.
 *
 * For each 128-bit register, we can subdivide to 32-bits 10 ways
 *
 * vec4: xyzw
 * vec3: xyz, yzw
 * vec2: xy, yz, zw,
 * vec1: x, y, z, w
 *
 * For each 64-bit register, we can subdivide similarly to 16-bit
 * (TODO: half-float RA, not that we support fp16 yet)
 */

#define WORK_STRIDE 10

/* We have overlapping register classes for special registers, handled via
 * shadows */

#define SHADOW_R0  17
#define SHADOW_R28 18
#define SHADOW_R29 19

/* Prepacked masks/swizzles for virtual register types */
static unsigned reg_type_to_mask[WORK_STRIDE] = {
        0xF,                                    /* xyzw */
        0x7, 0x7 << 1,                          /* xyz */
                 0x3, 0x3 << 1, 0x3 << 2,                /* xy */
                 0x1, 0x1 << 1, 0x1 << 2, 0x1 << 3       /* x */
};

static unsigned reg_type_to_swizzle[WORK_STRIDE] = {
        SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),

        SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
        SWIZZLE(COMPONENT_Y, COMPONENT_Z, COMPONENT_W, COMPONENT_W),

        SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
        SWIZZLE(COMPONENT_Y, COMPONENT_Z, COMPONENT_Z, COMPONENT_W),
        SWIZZLE(COMPONENT_Z, COMPONENT_W, COMPONENT_Z, COMPONENT_W),

        SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
        SWIZZLE(COMPONENT_Y, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
        SWIZZLE(COMPONENT_Z, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
        SWIZZLE(COMPONENT_W, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
};

struct phys_reg {
        unsigned reg;
        unsigned mask;
        unsigned swizzle;
};

/* Given the mask/swizzle of both the register and the original source,
 * compose to find the actual mask/swizzle to give the hardware */

static unsigned
compose_writemask(unsigned mask, struct phys_reg reg)
{
        /* Note: the reg mask is guaranteed to be contiguous. So we shift
         * into the X place, compose via a simple AND, and shift back */

        unsigned shift = __builtin_ctz(reg.mask);
        return ((reg.mask >> shift) & mask) << shift;
}

static unsigned
compose_swizzle(unsigned swizzle, unsigned mask,
                struct phys_reg reg, struct phys_reg dst)
{
        unsigned out = pan_compose_swizzle(swizzle, reg.swizzle);

        /* Based on the register mask, we need to adjust over. E.g if we're
         * writing to yz, a base swizzle of xy__ becomes _xy_. Save the
         * original first component (x). But to prevent duplicate shifting
         * (only applies to ALU -- mask param is set to xyzw out on L/S to
         * prevent changes), we have to account for the shift inherent to the
         * original writemask */

        unsigned rep = out & 0x3;
        unsigned shift = __builtin_ctz(dst.mask) - __builtin_ctz(mask);
        unsigned shifted = out << (2*shift);

        /* ..but we fill in the gaps so it appears to replicate */

        for (unsigned s = 0; s < shift; ++s)
                shifted |= rep << (2*s);

        return shifted;
}

/* Helper to return the default phys_reg for a given register */

static struct phys_reg
default_phys_reg(int reg)
{
        struct phys_reg r = {
                .reg = reg,
                .mask = 0xF, /* xyzw */
                .swizzle = 0xE4 /* xyzw */
        };

        return r;
}

/* Determine which physical register, swizzle, and mask a virtual
 * register corresponds to */

static struct phys_reg
index_to_reg(compiler_context *ctx, struct ra_graph *g, unsigned reg)
{
        /* Check for special cases */
        if (reg == ~0)
                return default_phys_reg(REGISTER_UNUSED);
        else if (reg >= SSA_FIXED_MINIMUM)
                return default_phys_reg(SSA_REG_FROM_FIXED(reg));
        else if (!g)
                return default_phys_reg(REGISTER_UNUSED);

        /* Special cases aside, we pick the underlying register */
        int virt = ra_get_node_reg(g, reg);

        /* Divide out the register and classification */
        int phys = virt / WORK_STRIDE;
        int type = virt % WORK_STRIDE;

        /* Apply shadow registers */

        if (phys >= SHADOW_R28 && phys <= SHADOW_R29)
                phys += 28 - SHADOW_R28;
        else if (phys == SHADOW_R0)
                phys = 0;

        struct phys_reg r = {
                .reg = phys,
                .mask = reg_type_to_mask[type],
                .swizzle = reg_type_to_swizzle[type]
        };

        /* Report that we actually use this register, and return it */

        if (phys < 16)
                ctx->work_registers = MAX2(ctx->work_registers, phys);

        return r;
}

/* This routine creates a register set. Should be called infrequently since
 * it's slow and can be cached. For legibility, variables are named in terms of
 * work registers, although it is also used to create the register set for
 * special register allocation */

static void
add_shadow_conflicts (struct ra_regs *regs, unsigned base, unsigned shadow, unsigned shadow_count)
{
        for (unsigned a = 0; a < WORK_STRIDE; ++a) {
                unsigned reg_a = (WORK_STRIDE * base) + a;

                for (unsigned b = 0; b < shadow_count; ++b) {
                        unsigned reg_b = (WORK_STRIDE * shadow) + b;

                        ra_add_reg_conflict(regs, reg_a, reg_b);
                        ra_add_reg_conflict(regs, reg_b, reg_a);
                }
        }
}

static struct ra_regs *
create_register_set(unsigned work_count, unsigned *classes)
{
        int virtual_count = 32 * WORK_STRIDE;

        /* First, initialize the RA */
        struct ra_regs *regs = ra_alloc_reg_set(NULL, virtual_count, true);

        for (unsigned c = 0; c < (NR_REG_CLASSES - 1); ++c) {
                int work_vec4 = ra_alloc_reg_class(regs);
                int work_vec3 = ra_alloc_reg_class(regs);
                int work_vec2 = ra_alloc_reg_class(regs);
                int work_vec1 = ra_alloc_reg_class(regs);

                classes[4*c + 0] = work_vec1;
                classes[4*c + 1] = work_vec2;
                classes[4*c + 2] = work_vec3;
                classes[4*c + 3] = work_vec4;

                /* Special register classes have other register counts */
                unsigned count =
                        (c == REG_CLASS_WORK)   ? work_count : 2;

                unsigned first_reg =
                        (c == REG_CLASS_LDST)   ? 26 :
                        (c == REG_CLASS_TEXR)   ? 28 :
                        (c == REG_CLASS_TEXW)   ? SHADOW_R28 :
                        0;

                /* Add the full set of work registers */
                for (unsigned i = first_reg; i < (first_reg + count); ++i) {
                        int base = WORK_STRIDE * i;

                        /* Build a full set of subdivisions */
                        ra_class_add_reg(regs, work_vec4, base);
                        ra_class_add_reg(regs, work_vec3, base + 1);
                        ra_class_add_reg(regs, work_vec3, base + 2);
                        ra_class_add_reg(regs, work_vec2, base + 3);
                        ra_class_add_reg(regs, work_vec2, base + 4);
                        ra_class_add_reg(regs, work_vec2, base + 5);
                        ra_class_add_reg(regs, work_vec1, base + 6);
                        ra_class_add_reg(regs, work_vec1, base + 7);
                        ra_class_add_reg(regs, work_vec1, base + 8);
                        ra_class_add_reg(regs, work_vec1, base + 9);

                        for (unsigned a = 0; a < 10; ++a) {
                                unsigned mask1 = reg_type_to_mask[a];

                                for (unsigned b = 0; b < 10; ++b) {
                                        unsigned mask2 = reg_type_to_mask[b];

                                        if (mask1 & mask2)
                                                ra_add_reg_conflict(regs,
                                                                    base + a, base + b);
                                }
                        }
                }
        }

        int fragc = ra_alloc_reg_class(regs);

        classes[4*REG_CLASS_FRAGC + 0] = fragc;
        classes[4*REG_CLASS_FRAGC + 1] = fragc;
        classes[4*REG_CLASS_FRAGC + 2] = fragc;
        classes[4*REG_CLASS_FRAGC + 3] = fragc;
        ra_class_add_reg(regs, fragc, WORK_STRIDE * SHADOW_R0);

        /* We have duplicate classes */
        add_shadow_conflicts(regs,  0, SHADOW_R0,  1);
        add_shadow_conflicts(regs, 28, SHADOW_R28, WORK_STRIDE);
        add_shadow_conflicts(regs, 29, SHADOW_R29, WORK_STRIDE);

        /* We're done setting up */
        ra_set_finalize(regs, NULL);

        return regs;
}

/* This routine gets a precomputed register set off the screen if it's able, or
 * otherwise it computes one on the fly */

static struct ra_regs *
get_register_set(struct midgard_screen *screen, unsigned work_count, unsigned **classes)
{
        /* Bounds check */
        assert(work_count >= 8);
        assert(work_count <= 16);

        /* Compute index */
        unsigned index = work_count - 8;

        /* Find the reg set */
        struct ra_regs *cached = screen->regs[index];

        if (cached) {
                assert(screen->reg_classes[index]);
                *classes = screen->reg_classes[index];
                return cached;
        }

        /* Otherwise, create one */
        struct ra_regs *created = create_register_set(work_count, screen->reg_classes[index]);

        /* Cache it and use it */
        screen->regs[index] = created;

        *classes = screen->reg_classes[index];
        return created;
}

/* Assign a (special) class, ensuring that it is compatible with whatever class
 * was already set */

static void
set_class(unsigned *classes, unsigned node, unsigned class)
{
        /* Check that we're even a node */
        if (node >= SSA_FIXED_MINIMUM)
                return;

        /* First 4 are work, next 4 are load/store.. */
        unsigned current_class = classes[node] >> 2;

        /* Nothing to do */
        if (class == current_class)
                return;

        /* If we're changing, we haven't assigned a special class */
        assert(current_class == REG_CLASS_WORK);

        classes[node] &= 0x3;
        classes[node] |= (class << 2);
}

static void
force_vec4(unsigned *classes, unsigned node)
{
        if (node >= SSA_FIXED_MINIMUM)
                return;

        /* Force vec4 = 3 */
        classes[node] |= 0x3;
}

/* Special register classes impose special constraints on who can read their
 * values, so check that */

static bool
check_read_class(unsigned *classes, unsigned tag, unsigned node)
{
        /* Non-nodes are implicitly ok */
        if (node >= SSA_FIXED_MINIMUM)
                return true;

        unsigned current_class = classes[node] >> 2;

        switch (current_class) {
        case REG_CLASS_LDST:
                return (tag == TAG_LOAD_STORE_4);
        case REG_CLASS_TEXR:
                return (tag == TAG_TEXTURE_4);
        case REG_CLASS_TEXW:
                return (tag != TAG_LOAD_STORE_4);
        case REG_CLASS_WORK:
                return IS_ALU(tag);
        default:
                unreachable("Invalid class");
        }
}

static bool
check_write_class(unsigned *classes, unsigned tag, unsigned node)
{
        /* Non-nodes are implicitly ok */
        if (node >= SSA_FIXED_MINIMUM)
                return true;

        unsigned current_class = classes[node] >> 2;

        switch (current_class) {
        case REG_CLASS_TEXR:
                return true;
        case REG_CLASS_TEXW:
                return (tag == TAG_TEXTURE_4);
        case REG_CLASS_LDST:
        case REG_CLASS_WORK:
                return IS_ALU(tag) || (tag == TAG_LOAD_STORE_4);
        default:
                unreachable("Invalid class");
        }
}

/* Prepass before RA to ensure special class restrictions are met. The idea is
 * to create a bit field of types of instructions that read a particular index.
 * Later, we'll add moves as appropriate and rewrite to specialize by type. */

static void
mark_node_class (unsigned *bitfield, unsigned node)
{
        if (node < SSA_FIXED_MINIMUM)
                BITSET_SET(bitfield, node);
}

void
mir_lower_special_reads(compiler_context *ctx)
{
        size_t sz = BITSET_WORDS(ctx->temp_count) * sizeof(BITSET_WORD);

        /* Bitfields for the various types of registers we could have. aluw can
         * be written by either ALU or load/store */

        unsigned *alur = calloc(sz, 1);
        unsigned *aluw = calloc(sz, 1);
        unsigned *brar = calloc(sz, 1);
        unsigned *ldst = calloc(sz, 1);
        unsigned *texr = calloc(sz, 1);
        unsigned *texw = calloc(sz, 1);

        /* Pass #1 is analysis, a linear scan to fill out the bitfields */

        mir_foreach_instr_global(ctx, ins) {
                switch (ins->type) {
                case TAG_ALU_4:
                        mark_node_class(aluw, ins->dest);
                        mark_node_class(alur, ins->src[0]);
                        mark_node_class(alur, ins->src[1]);
                        mark_node_class(alur, ins->src[2]);

                        if (ins->compact_branch && ins->writeout)
                                mark_node_class(brar, ins->src[0]);

                        break;

                case TAG_LOAD_STORE_4:
                        mark_node_class(aluw, ins->dest);
                        mark_node_class(ldst, ins->src[0]);
                        mark_node_class(ldst, ins->src[1]);
                        mark_node_class(ldst, ins->src[2]);
                        break;

                case TAG_TEXTURE_4:
                        mark_node_class(texr, ins->src[0]);
                        mark_node_class(texr, ins->src[1]);
                        mark_node_class(texr, ins->src[2]);
                        mark_node_class(texw, ins->dest);
                        break;
                }
        }

        /* Pass #2 is lowering now that we've analyzed all the classes.
         * Conceptually, if an index is only marked for a single type of use,
         * there is nothing to lower. If it is marked for different uses, we
         * split up based on the number of types of uses. To do so, we divide
         * into N distinct classes of use (where N>1 by definition), emit N-1
         * moves from the index to copies of the index, and finally rewrite N-1
         * of the types of uses to use the corresponding move */

        unsigned spill_idx = ctx->temp_count;

        for (unsigned i = 0; i < ctx->temp_count; ++i) {
                bool is_alur = BITSET_TEST(alur, i);
                bool is_aluw = BITSET_TEST(aluw, i);
                bool is_brar = BITSET_TEST(brar, i);
                bool is_ldst = BITSET_TEST(ldst, i);
                bool is_texr = BITSET_TEST(texr, i);
                bool is_texw = BITSET_TEST(texw, i);

                /* Analyse to check how many distinct uses there are. ALU ops
                 * (alur) can read the results of the texture pipeline (texw)
                 * but not ldst or texr. Load/store ops (ldst) cannot read
                 * anything but load/store inputs. Texture pipeline cannot read
                 * anything but texture inputs. TODO: Simplify.  */

                bool collision =
                        (is_alur && (is_ldst || is_texr)) ||
                        (is_ldst && (is_alur || is_texr || is_texw)) ||
                        (is_texr && (is_alur || is_ldst || is_texw)) ||
                        (is_texw && (is_aluw || is_ldst || is_texr)) ||
                        (is_brar && is_texw);
        
                if (!collision)
                        continue;

                /* Use the index as-is as the work copy. Emit copies for
                 * special uses */

                unsigned classes[] = { TAG_LOAD_STORE_4, TAG_TEXTURE_4, TAG_TEXTURE_4, TAG_ALU_4};
                bool collisions[] = { is_ldst, is_texr, is_texw && is_aluw, is_brar };

                for (unsigned j = 0; j < ARRAY_SIZE(collisions); ++j) {
                        if (!collisions[j]) continue;

                        /* When the hazard is from reading, we move and rewrite
                         * sources (typical case). When it's from writing, we
                         * flip the move and rewrite destinations (obscure,
                         * only from control flow -- impossible in SSA) */

                        bool hazard_write = (j == 2);

                        unsigned idx = spill_idx++;

                        midgard_instruction m = hazard_write ?
                                v_mov(idx, blank_alu_src, i) :
                                v_mov(i, blank_alu_src, idx);

                        /* Insert move before each read/write, depending on the
                         * hazard we're trying to account for */

                        mir_foreach_instr_global_safe(ctx, pre_use) {
                                if (pre_use->type != classes[j])
                                        continue;

                                if (hazard_write) {
                                        if (pre_use->dest != i)
                                                continue;
                                } else {
                                        if (!mir_has_arg(pre_use, i))
                                                continue;
                                }

                                if (hazard_write) {
                                        midgard_instruction *use = mir_next_op(pre_use);
                                        assert(use);
                                        mir_insert_instruction_before(ctx, use, m);
                                        mir_rewrite_index_dst_single(pre_use, i, idx);
                                } else {
                                        idx = spill_idx++;
                                        m = v_mov(i, blank_alu_src, idx);
                                        m.mask = mir_mask_of_read_components(pre_use, i);
                                        mir_insert_instruction_before(ctx, pre_use, m);
                                        mir_rewrite_index_src_single(pre_use, i, idx);
                                }
                        }
                }
        }

        free(alur);
        free(aluw);
        free(brar);
        free(ldst);
        free(texr);
        free(texw);
}

/* Routines for liveness analysis */

static void
liveness_gen(uint8_t *live, unsigned node, unsigned max, unsigned mask)
{
        if (node >= max)
                return;

        live[node] |= mask;
}

static void
liveness_kill(uint8_t *live, unsigned node, unsigned max, unsigned mask)
{
        if (node >= max)
                return;

        live[node] &= ~mask;
}

/* Updates live_in for a single instruction */

static void
liveness_ins_update(uint8_t *live, midgard_instruction *ins, unsigned max)
{
        /* live_in[s] = GEN[s] + (live_out[s] - KILL[s]) */

        liveness_kill(live, ins->dest, max, ins->mask);

        mir_foreach_src(ins, src) {
                unsigned node = ins->src[src];
                unsigned mask = mir_mask_of_read_components(ins, node);

                liveness_gen(live, node, max, mask);
        }
}

/* live_out[s] = sum { p in succ[s] } ( live_in[p] ) */

static void
liveness_block_live_out(compiler_context *ctx, midgard_block *blk)
{
        mir_foreach_successor(blk, succ) {
                for (unsigned i = 0; i < ctx->temp_count; ++i)
                        blk->live_out[i] |= succ->live_in[i];
        }
}

/* Liveness analysis is a backwards-may dataflow analysis pass. Within a block,
 * we compute live_out from live_in. The intrablock pass is linear-time. It
 * returns whether progress was made. */

static bool
liveness_block_update(compiler_context *ctx, midgard_block *blk)
{
        bool progress = false;

        liveness_block_live_out(ctx, blk);

        uint8_t *live = mem_dup(blk->live_out, ctx->temp_count);

        mir_foreach_instr_in_block_rev(blk, ins)
                liveness_ins_update(live, ins, ctx->temp_count);

        /* To figure out progress, diff live_in */

        for (unsigned i = 0; (i < ctx->temp_count) && !progress; ++i)
                progress |= (blk->live_in[i] != live[i]);

        free(blk->live_in);
        blk->live_in = live;

        return progress;
}

/* Globally, liveness analysis uses a fixed-point algorithm based on a
 * worklist. We initialize a work list with the exit block. We iterate the work
 * list to compute live_in from live_out for each block on the work list,
 * adding the predecessors of the block to the work list if we made progress.
 */

static void
mir_compute_liveness(
                compiler_context *ctx,
                struct ra_graph *g)
{
        /* List of midgard_block */
        struct set *work_list;

        work_list = _mesa_set_create(ctx,
                        _mesa_hash_pointer,
                        _mesa_key_pointer_equal);

        /* Allocate */

        mir_foreach_block(ctx, block) {
                block->live_in = calloc(ctx->temp_count, 1);
                block->live_out = calloc(ctx->temp_count, 1);
        }

        /* Initialize the work list with the exit block */
        struct set_entry *cur;

        midgard_block *exit = mir_exit_block(ctx);
        cur = _mesa_set_add(work_list, exit);

        /* Iterate the work list */

        do {
                /* Pop off a block */
                midgard_block *blk = (struct midgard_block *) cur->key;
                _mesa_set_remove(work_list, cur);

                /* Update its liveness information */
                bool progress = liveness_block_update(ctx, blk);

                /* If we made progress, we need to process the predecessors */

                if (progress || (blk == exit)) {
                        mir_foreach_predecessor(blk, pred)
                                _mesa_set_add(work_list, pred);
                }
        } while((cur = _mesa_set_next_entry(work_list, NULL)) != NULL);

        /* Now that every block has live_in/live_out computed, we can determine
         * interference by walking each block linearly. Take live_out at the
         * end of each block and walk the block backwards. */

        mir_foreach_block(ctx, blk) {
                uint8_t *live = calloc(ctx->temp_count, 1);

                mir_foreach_successor(blk, succ) {
                        for (unsigned i = 0; i < ctx->temp_count; ++i)
                                live[i] |= succ->live_in[i];
                }

                mir_foreach_instr_in_block_rev(blk, ins) {
                        /* Mark all registers live after the instruction as
                         * interfering with the destination */

                        unsigned dest = ins->dest;

                        if (dest < ctx->temp_count) {
                                for (unsigned i = 0; i < ctx->temp_count; ++i)
                                        if (live[i])
                                                ra_add_node_interference(g, dest, i);
                        }

                        /* Update live_in */
                        liveness_ins_update(live, ins, ctx->temp_count);
                }

                free(live);
        }

        mir_foreach_block(ctx, blk) {
                free(blk->live_in);
                free(blk->live_out);
        }
}

/* This routine performs the actual register allocation. It should be succeeded
 * by install_registers */

struct ra_graph *
allocate_registers(compiler_context *ctx, bool *spilled)
{
        /* The number of vec4 work registers available depends on when the
         * uniforms start, so compute that first */
        int work_count = 16 - MAX2((ctx->uniform_cutoff - 8), 0);
        unsigned *classes = NULL;
        struct ra_regs *regs = get_register_set(ctx->screen, work_count, &classes);

        assert(regs != NULL);
        assert(classes != NULL);

       /* No register allocation to do with no SSA */

        if (!ctx->temp_count)
                return NULL;

        /* Let's actually do register allocation */
        int nodes = ctx->temp_count;
        struct ra_graph *g = ra_alloc_interference_graph(regs, nodes);
        
        /* Register class (as known to the Mesa register allocator) is actually
         * the product of both semantic class (work, load/store, texture..) and
         * size (vec2/vec3..). First, we'll go through and determine the
         * minimum size needed to hold values */

        unsigned *found_class = calloc(sizeof(unsigned), ctx->temp_count);

        mir_foreach_instr_global(ctx, ins) {
                if (ins->dest >= SSA_FIXED_MINIMUM) continue;

                /* 0 for x, 1 for xy, 2 for xyz, 3 for xyzw */
                int class = util_logbase2(ins->mask);

                /* Use the largest class if there's ambiguity, this
                 * handles partial writes */

                int dest = ins->dest;
                found_class[dest] = MAX2(found_class[dest], class);
        }

        /* Next, we'll determine semantic class. We default to zero (work).
         * But, if we're used with a special operation, that will force us to a
         * particular class. Each node must be assigned to exactly one class; a
         * prepass before RA should have lowered what-would-have-been
         * multiclass nodes into a series of moves to break it up into multiple
         * nodes (TODO) */

        mir_foreach_instr_global(ctx, ins) {
                /* Check if this operation imposes any classes */

                if (ins->type == TAG_LOAD_STORE_4) {
                        bool force_vec4_only = OP_IS_VEC4_ONLY(ins->load_store.op);

                        set_class(found_class, ins->src[0], REG_CLASS_LDST);
                        set_class(found_class, ins->src[1], REG_CLASS_LDST);
                        set_class(found_class, ins->src[2], REG_CLASS_LDST);

                        if (force_vec4_only) {
                                force_vec4(found_class, ins->dest);
                                force_vec4(found_class, ins->src[0]);
                                force_vec4(found_class, ins->src[1]);
                                force_vec4(found_class, ins->src[2]);
                        }
                } else if (ins->type == TAG_TEXTURE_4) {
                        set_class(found_class, ins->dest, REG_CLASS_TEXW);
                        set_class(found_class, ins->src[0], REG_CLASS_TEXR);
                        set_class(found_class, ins->src[1], REG_CLASS_TEXR);
                        set_class(found_class, ins->src[2], REG_CLASS_TEXR);
                }
        }

        /* Check that the semantics of the class are respected */
        mir_foreach_instr_global(ctx, ins) {
                assert(check_write_class(found_class, ins->type, ins->dest));
                assert(check_read_class(found_class, ins->type, ins->src[0]));
                assert(check_read_class(found_class, ins->type, ins->src[1]));
                assert(check_read_class(found_class, ins->type, ins->src[2]));
        }

        /* Mark writeout to r0 */
        mir_foreach_instr_global(ctx, ins) {
                if (ins->compact_branch && ins->writeout)
                        set_class(found_class, ins->src[0], REG_CLASS_FRAGC);
        }

        for (unsigned i = 0; i < ctx->temp_count; ++i) {
                unsigned class = found_class[i];
                ra_set_node_class(g, i, classes[class]);
        }

        mir_compute_liveness(ctx, g);

        if (!ra_allocate(g)) {
                *spilled = true;
        } else {
                *spilled = false;
        }

        /* Whether we were successful or not, report the graph so we can
         * compute spill nodes */

        return g;
}

/* Once registers have been decided via register allocation
 * (allocate_registers), we need to rewrite the MIR to use registers instead of
 * indices */

static void
install_registers_instr(
        compiler_context *ctx,
        struct ra_graph *g,
        midgard_instruction *ins)
{
        switch (ins->type) {
        case TAG_ALU_4:
        case TAG_ALU_8:
        case TAG_ALU_12:
        case TAG_ALU_16: {
                 if (ins->compact_branch)
                         return;

                struct phys_reg src1 = index_to_reg(ctx, g, ins->src[0]);
                struct phys_reg src2 = index_to_reg(ctx, g, ins->src[1]);
                struct phys_reg dest = index_to_reg(ctx, g, ins->dest);

                unsigned uncomposed_mask = ins->mask;
                ins->mask = compose_writemask(uncomposed_mask, dest);

                /* Adjust the dest mask if necessary. Mostly this is a no-op
                 * but it matters for dot products */
                dest.mask = effective_writemask(&ins->alu, ins->mask);

                midgard_vector_alu_src mod1 =
                        vector_alu_from_unsigned(ins->alu.src1);
                mod1.swizzle = compose_swizzle(mod1.swizzle, uncomposed_mask, src1, dest);
                ins->alu.src1 = vector_alu_srco_unsigned(mod1);

                ins->registers.src1_reg = src1.reg;

                ins->registers.src2_imm = ins->has_inline_constant;

                if (ins->has_inline_constant) {
                        /* Encode inline 16-bit constant. See disassembler for
                         * where the algorithm is from */

                        ins->registers.src2_reg = ins->inline_constant >> 11;

                        int lower_11 = ins->inline_constant & ((1 << 12) - 1);
                        uint16_t imm = ((lower_11 >> 8) & 0x7) |
                                       ((lower_11 & 0xFF) << 3);

                        ins->alu.src2 = imm << 2;
                } else {
                        midgard_vector_alu_src mod2 =
                                vector_alu_from_unsigned(ins->alu.src2);
                        mod2.swizzle = compose_swizzle(
                                               mod2.swizzle, uncomposed_mask, src2, dest);
                        ins->alu.src2 = vector_alu_srco_unsigned(mod2);

                        ins->registers.src2_reg = src2.reg;
                }

                ins->registers.out_reg = dest.reg;
                break;
        }

        case TAG_LOAD_STORE_4: {
                /* Which physical register we read off depends on
                 * whether we are loading or storing -- think about the
                 * logical dataflow */

                bool encodes_src = OP_IS_STORE(ins->load_store.op);

                if (encodes_src) {
                        struct phys_reg src = index_to_reg(ctx, g, ins->src[0]);
                        assert(src.reg == 26 || src.reg == 27);

                        ins->load_store.reg = src.reg - 26;

                        unsigned shift = __builtin_ctz(src.mask);
                        unsigned adjusted_mask = src.mask >> shift;
                        assert(((adjusted_mask + 1) & adjusted_mask) == 0);

                        unsigned new_swizzle = 0;
                        for (unsigned q = 0; q < 4; ++q) {
                                unsigned c = (ins->load_store.swizzle >> (2*q)) & 3;
                                new_swizzle |= (c + shift) << (2*q);
                        }

                        ins->load_store.swizzle = compose_swizzle(
                                                          new_swizzle, src.mask,
                                                          default_phys_reg(0), src);
               } else {
                        struct phys_reg src = index_to_reg(ctx, g, ins->dest);

                        ins->load_store.reg = src.reg;

                        ins->load_store.swizzle = compose_swizzle(
                                                          ins->load_store.swizzle, 0xF,
                                                          default_phys_reg(0), src);

                        ins->mask = compose_writemask(
                                            ins->mask, src);
                }

                /* We also follow up by actual arguments */

                int src2 =
                        encodes_src ? ins->src[1] : ins->src[0];

                int src3 =
                        encodes_src ? ins->src[2] : ins->src[1];

                if (src2 >= 0) {
                        struct phys_reg src = index_to_reg(ctx, g, src2);
                        unsigned component = __builtin_ctz(src.mask);
                        ins->load_store.arg_1 |= midgard_ldst_reg(src.reg, component);
                }

                if (src3 >= 0) {
                        struct phys_reg src = index_to_reg(ctx, g, src3);
                        unsigned component = __builtin_ctz(src.mask);
                        ins->load_store.arg_2 |= midgard_ldst_reg(src.reg, component);
                }
 
                break;
        }

        case TAG_TEXTURE_4: {
                /* Grab RA results */
                struct phys_reg dest = index_to_reg(ctx, g, ins->dest);
                struct phys_reg coord = index_to_reg(ctx, g, ins->src[0]);
                struct phys_reg lod = index_to_reg(ctx, g, ins->src[1]);

                assert(dest.reg == 28 || dest.reg == 29);
                assert(coord.reg == 28 || coord.reg == 29);

                /* First, install the texture coordinate */
                ins->texture.in_reg_full = 1;
                ins->texture.in_reg_upper = 0;
                ins->texture.in_reg_select = coord.reg - 28;
                ins->texture.in_reg_swizzle =
                        compose_swizzle(ins->texture.in_reg_swizzle, 0xF, coord, dest);

                /* Next, install the destination */
                ins->texture.out_full = 1;
                ins->texture.out_upper = 0;
                ins->texture.out_reg_select = dest.reg - 28;
                ins->texture.swizzle =
                        compose_swizzle(ins->texture.swizzle, dest.mask, dest, dest);
                ins->mask =
                        compose_writemask(ins->mask, dest);

                /* If there is a register LOD/bias, use it */
                if (ins->src[1] != ~0) {
                        midgard_tex_register_select sel = {
                                .select = lod.reg,
                                .full = 1,
                                .component = lod.swizzle & 3,
                        };

                        uint8_t packed;
                        memcpy(&packed, &sel, sizeof(packed));
                        ins->texture.bias = packed;
                }

                break;
        }

        default:
                break;
        }
}

void
install_registers(compiler_context *ctx, struct ra_graph *g)
{
        mir_foreach_instr_global(ctx, ins)
                install_registers_instr(ctx, g, ins);
}